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Quantum oscillations in an excitonic insulating electron-hole bilayer
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We study the quantum oscillations of interlayer capacitance in an excitonic insulating electron-hole double
layer with the Hartree-Fock mean-field theory. Such oscillations could be simply understood from the physical
picture of an exciton formed by electron and hole Landau levels, in which the direct gap between the electron-
hole Landau levels will oscillate with the exciton chemical potential and the inverse of the magnetic field. We
also find that the excitonic order parameters can be destroyed by a strong magnetic field. At this time, the
system becomes two independent quantum Hall liquids, and the interlayer capacitance oscillates to zero at zero
temperature.
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I. INTRODUCTION

A two-dimensional bilayer separated by a perfect insulat-
ing barrier is expected to be a candidate system for realizing
exciton condensation and the excitonic insulator (EI) phase
at the charge neutrality point (CNP), where the two layers
are equally charged by electrons and holes [1–11]. Evidence
of the EI phase in such a bilayer was first observed in
quantum well system [12] and was also identified in dual-
gated transition metal dichalcogenide (TMD) double layers
recently [13–16]. In this paper, we focus on the TMDs bi-
layer, and the experimental setup is illustrated in Fig. 1(a),
where the electron layer (blue) and hole layer (orange) are
sandwiched between the top and bottom gates (black) and
dielectric spacers (gray) are inserted between gates and layers
to avoid direct tunneling. The gate-layer voltage (Ve + Vh)/2
is used to control the overall chemical potential μ to make
the system charge neutral. And the exciton density (charge
number density per layer) nex is tuned by the exciton chemical
potential μex = eVb − Eg, where Vb = Vh − Ve is the interlayer
bias voltage and Eg is the spatially indirect gap between the
electron and hole bands at zero bias.

Low-energy excitations of single-layer TMDs near the val-
ley center are approximated as free fermions with quadratic
dispersion [17]. By tuning the exciton chemical potential
μex, a typical noninteracting band structure at the CNP is
illustrated in Fig. 1(b), where the electron and hole layers
have nested Fermi surfaces. In the absence of single-particle
tunneling t , the electron and hole layers have separate charge
conservations, and the system has a Ue(1) × Uh(1) symmetry.
However, when interlayer excitons are generated and con-
densed due to the attractive interaction between electrons
and holes, a nonzero mean-field interlayer coherence � ≡
hmf

eh = |�|eiφ will spontaneously arise, break the electron-hole
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U(1) symmetry, and leave only the total charge conserva-
tion. In addition, the interlayer coherence � will also gap
out the Fermi surfaces and drive the system into an exci-
tonic insulator phase [18]. Due to the spontaneous symmetry
breaking, the long-wave phase fluctuation of the excitonic
order parameter in real space δφ(r) is the Goldstone mode
and is related to the exciton superfluidity. In real materi-
als, a tiny single-particle tunneling t is unavoidable, which
breaks the electron-hole U(1) symmetry initially. This will
pin the phase of the interlayer coherence to φ = arg t , gap
out the zero-energy Goldstone mode, and destroy the exciton
superfluidity [19–21]. Without a dielectric spacer, the single-
particle tunneling strength in TMDs bilayer is on the order
of 10 meV [21,22]. By inserting a few-layer hexagonal boron
nitride (hBN) spacer between the two TMD single layers, the
inter-layer hopping strength will be exponentially suppressed.
The charge transfer time through a 1 nm thick hBN barrier
was found to be about τ = 500 ps, which is over 3 orders
of magnitude slower than that between TMD layers without
a spacer [23]. And the tunneling strength is just estimated as
t ≈ h̄/τ ≈ 0.01 meV, which is also 3 orders lower. In addition
to the phase pinning effect, the interlayer tunneling will also
induce a tunneling current when the circuit is closed, which
drives the system into a nonequilibrium state. However, as
long as t is small enough, the tunneling current is insignificant,
and the nonequilibrium transport physics can be ignored.

When magnetic field is applied along the z direction, the
parabolic dispersions of electron and holes are quantized
into Landau levels (LLs). At the CNP, the overall chemical
potential must lie between the electron and hole LLs with
the same index as illustrated in Fig. 1(c). The low-energy
excitations are free particle-hole pairs between the highest
occupied electron LL and the highest empty hole LL. When
interaction is considered, such free pairs will bind to form
an exciton of LLs with binding energy EB. By tuning the
magnetic field B or exciton chemical potential μex to make
the exciton binding energy EB larger than the gap between
the highest occupied electron and empty hole LLs, excitons
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FIG. 1. (a) Setup of the double-gated electron-hole bilayer sys-
tem. d is the geometry distance between the electron-hole layers.
The distances between the top and bottom gates and the electron
and hole layers are set to be equal to dg. The voltages applied to
the two layers, Ve and Vh, are used to tune the overall chemical po-
tential and the exciton chemical potential. (b) The exciton chemical
potential μex = eVb − Eg is determined by the interlayer bias voltage
Vb = Vh − Ve, while the overall chemical potential μ is tuned by
(Ve + Vh )/2 to make the system charge neutral. (c) When a magnetic
field is applied in the z direction, the noninteracting electron and
hole bands are quantized to LLs. At the CNP, the overall chemical
potential must lie between the electron and hole LLs with the same
index, for example, the N th level. If the electron-hole interaction
is considered, particle-hole excitations will bind to form an exciton
with binding energy EB. If the gap between the N th electron and hole
LLs is smaller than EB, such an exciton of LLs will spontaneously
form and condense.

of LLs will spontaneously form and condense. Since the gap
between the highest electron and hole LLs will oscillate with
1/B and μex, the physical properties of the exciton condensa-
tion state will also oscillate. As an insulator, the conventional
quantum oscillation of resistance might be hard to detect. In
our paper, we will focus on the interlayer capacitance

CI = e2

(
∂nex

∂μex

)
T

(1)

to show the quantum oscillation phenomenon in such an exci-
tonic insulating electron-hole bilayer system.

There are several advantages of the interlayer capacitance
measurement. First, it is unique to the bilayer system and
can be measured accurately in real experiments [15]; i.e.,
by applying an ac voltage dVb in one layer and measuring
the differential charge density dn in the other layer, the in-
terlayer capacitance is directly determined by definition as
CI = edn/dVb. In addition, as we will show, the oscillation
behaviors of the interlayer capacitance could help us to distin-
guish an excitonic gap from a single-particle one. When the
magnetic field is so large that the cyclotron energy h̄(ωe + ωh)
is much larger than the exciton binding energy, one can always
tune the exciton chemical potential μex to make EB smaller
than the LL direct gap, and the exciton will not spontaneously
generate and condense anymore. For such a situation, the
bilayer system in the magnetic field is just two indepen-
dent quantum Hall (QH) liquids and is charge incompressible
at zero temperature [24], which results in a zero interlayer

capacitance CI (T = 0) = 0. In other words, the interlayer
coherence � of an excitonic insulator can be destroyed by
a strong magnetic field, and the interlayer capacitance might
oscillate to zero. However, for a consistent hybridization from
single-particle tunneling, the interlayer capacitance will never
be zero.

II. MODEL AND MEAN-FIELD THEORY

In general, the TMDs have complicated spin-valley struc-
tures. When both spin and valley degrees of freedom are
considered, the lowest exciton level is approximated fourfold
degenerate. However, at an appropriate interlayer distance
and exciton chemical potential, which is usually satisfied in
experiments, this degeneracy is lifted due to the spontaneous
breaking of the time-reversal symmetry, and the exciton con-
densation problem will be relevant to only the two bands that
form the lifted exciton energy level with the lowest energy [8].
Without magnetic field, the many-body Hamiltonian for the
bilayer system as illustrated in Fig. 1(a) is modeled as [25]

H0 =
∑

ss′=eh,k

(
h0

ss′k − μδss′
)
c†

skcs′k, (2a)

HI = 1

2V
∑

ss′=eh

∑
k1k2q

Vss′ (q)c†
sk1

c†
s′k2

cs′k2+qcsk1−q, (2b)

where c†
ek and c†

hk are electron creation operators in the
electron and hole layers, V ≡ LxLy is the area of the two-
dimensional (2D) system, and Li is the system length in the
i direction. The spin-valley structures of the electron and hole
bands are related to the true ground state after the breaking of
time-reversal symmetry. Since they do not affect the exciton
condensation and quantum oscillation physics, the spin and
valley indices will be abbreviated in this paper. Under k · p
approximation, the single-particle Hamiltonian is

h0
k =

[
h̄2k2/2me − μex t

t∗ −h̄2k2/2mh

]
, (3)

where me/h are the effective masses and t is the in-
terlayer tunneling strength. The intra- and interlayer in-
teractions are taken as the gate-screened Coulomb in-
teractions [26] V (q) ≡ Vs=s′ (q) ≈ 2πe2/εq(1 − e−2κqdg ) and
U (q) ≡ Vs �=s′ (q) ≈ V (q)e−κqd , where ε = √

εxyεz is the ef-
fective dielectric constant and κ ≡ √

εxy/εz is the anisotropy
parameter (a detailed derivation is given in Appendix A).

By assuming a nonzero EI order parameter ρehk, where
ρss′k ≡ 〈c†

s′kcsk〉 − δss′δsh is the density matrix relative to the
uncharged state (ρ0 = δss′δsh is subtracted to avoid dou-
ble counting [8,27]), the interacting part of the many-body
Hamiltonian (2) is decoupled into a noninteracting mean-field
Hamiltonian

HMF =
∑
ss′k

(
h0

ss′k + hH
ss′ + hF

ss′k − μδss′
)
c†

skcs′k. (4)

The Hartree and Fock terms are constructed by a density
matrix as

hH = e2nex

2Cgeo
σz, (5a)

hF
ss′k = − 1

V
∑

k

Vss′ (k − k′)ρss′k′ , (5b)
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where σz is the Pauli matrix, nex = V−1 ∑
k ρeek is exciton

density, and Cgeo = εz/4πd is the geometry capacitance of
the charged electron-hole double layer. The mean-field Hamil-
tonian hmf

k = h0
k + hH + hF

k is a 2 × 2 matrix and has two
eigenvalues:

hmf
k |c/v, k〉 = ξc/v,k|c/v, k〉, (6)

where ξc,k > ξv,k are the mean-field energy bands and |c/v, k〉
are the corresponding eigenstates. Then a new density matrix
can be reconstructed as

ρk =
∑
i=c,v

fi,k(μ)|i, k〉〈i, k| − δss′δsh, (7)

where fi,k(μ) = 1/[1 + e(ξi,k−μ)/kBT ] are the occupation num-
bers. By requiring charge neutrality, the overall chemical
potential is determined by solving∑

k

[ fc,k(μ) + fv,k(μ) − 1] = 0. (8)

Equations (5)–(8) form the full self-consistent procedure. At
zero temperature T = 0, Eq. (8) is simply solved as fc,k = 0
and fv,k = 1. Such a mean-field procedure is equivalent to
minimizing the free energy F [|c/v, k〉, fc/v,k; T, μex] = U −
T S with respect to the wave functions |c/v, k〉 and occu-
pation numbers fc/v,k under constraints 〈i, k| j, k〉 = δi j and∑

k Trρk = 0, where U and S are internal energy and entropy,
defined as

U = 1

2

∑
k

Tr
[(

h0
k + hmf

k

)
ρk

]
, (9)

S = −kB

∑
i,k

[ fi,k ln fi,k + (1 − fi,k) ln(1 − fi,k)]. (10)

Proof of the equivalence is given in Appendix B.
When a magnetic field is applied along the z direction,

it is more convenient to adopt the LL basis. In the Landau
gauge A = (−yB, 0), the parabolic bands are quantized into
LLs |φnkx 〉, as shown in Fig. 1(c), where n is the LL index and
kx is the momentum in the x direction. By defining the creation
operator for LL electrons l†

snkx
≡ ∑

k′ 〈k′|φnkx 〉c†
sk′ , which, in

fact, is a basis transformation, the many-body Hamiltonian
with magnetic field is written under the LL basis as

H0 =
∑
ss′nkx

(
h0

n,ss′ − μδss′
)
l†
snkx

ls′nkx , (11a)

HI = 1

2V
∑

ss′niki

∑
q

Vss′ (q)eiqy (k1−k2 )�2
�∗

n4n1
(q)�n2n3 (q)

× l†
sn1k1+qx/2l†

s′n2k2−qx/2ls′n3k2+qx/2lsn4k1−qx/2, (11b)

where � = √
h̄/eB is the magnetic length and �mn(q) is the

form factor of the LLs, defined as [28]

�mn(q) ≡ 〈φmk−qx/2|e−iq·r|φnk+qx/2〉eikqy�
2
. (12)

The single-particle Hamiltonian now becomes

h0
n =

[
h̄ωe(n + 1/2) − μex t

t∗ −h̄ωh(n + 1/2)

]
, (13)

where ωs ≡ eB/ms is the cyclotron frequency. The details of
deriving Eq. (11) are given in Appendix C. In addition to

the Landau quantization of the electron and hole bands, the
Zeeman effect will also help fix the spin structures of the
electron and hole bands [8]; i.e., the electron band has an up
spin, while the hole band prefers a down spin. Then the valley
indices of the two bands will be automatically fixed due to
the spin-valley locking physics in TMDs [29]. In addition, the
Zeeman energies can be absorbed in the definition of μex and
will not be written out explicitly.

The density matrix is now defined as ρsn1,s′n2 (kx ) ≡
〈l†

s′n2kx
lsn1kx 〉 − δss′δsh. However, due to symmetry constraints,

not all the elements survive. Although the vector potential in
the Landau gauge A = (−yB, 0) breaks translation symmetry
in the y direction, the physics is expected to be indepen-
dent of the choice of the gauge. After a small translation
in the y direction, i.e., A → ( − (y − η)B, 0), the magnetic
field is invariant, while the LL electron transforms as l†

snkx
→

l†
snkx+eBη/h̄. It is easy to see that the many-body Hamiltonian

(11) is invariant under such a magnetic translation, while the
density matrix transforms from ρsn1,s′n2 (kx ) to ρsn1,s′n2 (kx +
eBη/h̄). By requiring magnetic translation symmetry in the y
direction, the density matrix should be kx independent, i.e.,
ρsn1,s′n2 (kx ) = ρsn1,s′n2 . As discussed in Appendix D, when
magnetic translation symmetry is preserved, the EI order
parameters ρen1,hn2 can be decomposed into independent chan-
nels labeled by their angular momenta M ≡ n1 − n2. In the
charge-neutral case, the overall chemical potential μ must
lie between electron and hole LLs with the same index, for
example, the N th level, as illustrated in Fig. 1(c). At this time,
the s-wave pairing case with zero angular momentum M = 0
usually has the lowest energy. For electron and hole bands
with trivial band topology, high angular momentum exciton
condensation in the quantum Hall regime is energetically
preferable only when the electron and hole layers are charge
imbalanced, as investigated by Zou et al. [30]. In summary, by
requiring magnetic translation symmetry and s-wave pairing,
the only surviving density matrix elements are ρsn,s′n, and they
will be abbreviated as ρn,ss′ in the following.

Once the mean-field channels are determined, the Hartree-
Fock procedure is straightforward, and the mean-field Hamil-
tonian in the LL basis is written as

HMF =
∑
ss′nkx

(
h0

n,ss′ + hH
ss′ + hF

n,ss′ − μδss′
)
l†
snkx

ls′nkx . (14)

Since the Hartree term is just a renormalization of the exciton
chemical potential due to the geometry electrostatic energy,
it is independent of basis transformation and is still given by
Eq. (5a). The only difference is that the exciton density is cal-
culated as nex = (2π�2)−1 ∑

n ρn,ee. The Fock term becomes

hF
n,ss′ = −

∑
n′

Vss′,nn′ρn′,ss′ , (15)

where Vss′,nn′ = V−1 ∑
q Vss′ (q)|�n′n(q)|2 is the interaction

matrix elements projected to the LL basis. By replacing the
k index in (6)–(8) with the LL index n, we get the full self-
consistent equations under the LL basis.
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FIG. 2. (a) Zero magnetic field phase diagram as a function of the
exciton chemical potential μex and temperature T ; the single-particle
tunneling strength t is assumed to be zero. Below the red solid line,
the EI order parameter is not zero, i.e., ρeh �= 0, which means the
system is in the EI phase, while above the red solid line ρeh = 0
and the system is in the normal phase. The gray dashed line further
separates the normal phase into a NI phase and a SM phase. In the
NI phase, there is no inversion between the renormalized electron
and hole bands, while in the SM phase electron and hole bands
are inverted. The color represents the mean-field band gap. (b) and
(c) Typical mean-field band structures in different regions of the
parameter space; points P1−4 in (a) are used as examples.

III. RESULTS

In our calculation, the parameters are set to be consistent
with the MoSe2/hBN/WSe2 heterostructure experimentally
studied by Ma et al. [15]. The effective masses of the con-
duction band minimum of MoSe2 and valence band maximum
of WSe2 in the K-valley centers are about me ≈ 0.58m0 and
mh ≈ 0.36m0 [31] (m0 is the bare electron mass). The in-
terlayer and gate-layer distances are taken as d ≈ 2.5 nm
(five- to six-layer hBN spacer) and dg ≈ 10 nm. The dielectric
constant of hBN is about εxy ≈ 6.71 and εz ≈ 3.57 [32]. Thus,
the anisotropy parameter and the effective dielectric constant
are about κ ≈ 1.37 and ε ≈ 4.89. To fit the interlayer exci-
ton binding energy in the experiment [15] (about 20 meV),
a larger effective dielectric constant, ε = 9, is used in the
calculation.

A. Interlayer capacitance at zero magnetic field

Let us first ignore the single-particle tunneling t . At zero
magnetic field, the mean-field phase diagram as a function
of the exciton chemical potential μex and temperature T is
calculated and plotted in Fig. 2(a). The red solid line is
the boundary of the region ρeh(T, μex) �= 0. The area below
the red line is the EI phase with a nonzero order parameter
ρeh �= 0. However, above the red line, there is no EI order,

FIG. 3. (a) Interlayer capacitance as a function of exciton density
and temperature. The inset shows a magnified view of the line at 60 K
near the phase boundary between the EI and SM phases, which has
a discontinuous feature. (b) Entropy change per exciton (∂s/∂nex )T

as a function of exciton density and temperature, which shows the
discontinuities between the EI and SM phases more clearly. (c) and
(d) The same quantities as in (a) and (b) except that a finite single-
particle tunneling strength t ≈ 0.01 meV instead t = 0 meV is used.

and the system is in the normal phase. The gray dashed line is
determined by requiring the renormalized offset between the
electron and hole bands to be equal to the original gap, after
which the inversion between the renormalized conduction and
valence bands from different layers occurs. To the left of the
gray dashed line, there is no band inversion, and the normal
phase is just a normal insulator (NI); to the right of this line,
the normal phase is a semimetal (SM). In the EI phase, the
gray dashed line does not mark a phase transition but, rather,
indicates a Bose-Einstein condensate to BCS crossover to
some extent. By diagonalizing the mean-field Hamiltonian
hmf

k , mean-field band structures are obtained, and the gap is
represented by the color plot in Fig. 2(a). In addition, typical
mean-field band structures in different regions of the parame-
ter space are also plotted in Figs. 2(b) and 2(c) [points P1−4 in
Fig. 2(a) are used as examples].

At the CNP, the interlayer capacitance CI (in units of
the geometry capacitance Cgeo = εz/4πd) is calculated and
plotted in Fig. 3(a) as a function of the exciton density (the
abscissa) and temperature (different colored lines). The inset
in Fig. 3(a) shows a magnified view of the line near the
phase boundary between the EI phase and the SM phase at
60 K. Due to the exchange part of the interaction, which
accounts for exciton condensation, the interlayer capacitance
is greatly enhanced from its classic geometry value, which
is consistent with previous studies [8,25]. In addition, dis-
continuities of CI are shown at the transition points between
EI and normal phases. To see the discontinuities between
the EI and SM phases more clearly, the entropy change per
exciton (∂s/∂nex)T is calculated and plotted in Fig. 3(b),
where s ≡ S/V is the entropy density and S is calculated using
Eq. (10). However, these discontinuities may be absent in real
experiments. On the one hand, the transition between an EI
and NI in the low-density region at finite temperature is a
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FIG. 4. (a) Phase diagram as a function of the exciton chemical
potential μex and magnetic field strength B at 0 K. The single-particle
tunneling strength is assumed to be zero. The red solid line separates
the region into an EI phase with a nonzero EI order parameter
ρeh �= 0 and normal phases with ρeh = 0. The gray dashed line is
the critical line for band inversion. In the NI phase, all hole LLs are
occupied, and all electron LLs are empty. In the QHN phases, the first
N electron LLs are occupied, while the first N hole LLs are empty.
The pseudo color map represents the interlayer capacitance CI/Cgeo.
(b) and (c) Oscillations of interlayer capacitance CI versus B−1 and
μex, respectively.

Berezinskii-Kosterlitz-Thouless (BKT) transition [7,33] that
is beyond the mean-field description, and its main effect is
to smooth out the dramatic changes in the mean-field theory.
On the other hand, these discontinuities are easily smoothed
by a very small single-particle tunneling effect. In Figs. 3(c)
and 3(d), the same quantities as in Figs. 3(a) and 3(b) are
plotted, except that a finite single-particle tunneling strength
t = 0.01 meV is used. Although the tunneling strength t is
much smaller than the mean-field gap [about 20 meV, as indi-
cated in Fig. 2(a)], the discontinuities at the EI phase boundary
no longer exist, as shown in Figs. 3(c) and 3(d).

B. Quantum oscillation of the interlayer capacitance

Since the interlayer tunneling gaps out the Goldstone
mode, the BKT phenomenon is suppressed for temperatures
much below the energy scale of the tunneling strength t ,
especially at zero temperature. In this situation, the mean-
field theory is still qualitatively right. Thus, in this part, we
will focus on zero temperature. Ignoring the single-particle
tunneling effect, the mean-field phase diagram as a function of
the exciton chemical potential μex and magnetic field strength
B is plotted in Fig. 4(a). Like in Fig. 2(a), the red solid line
is the boundary of the region ρeh �= 0, and the gray dashed
line is the critical line for band inversion. Only in the EI
phase does ρeh �= 0, and there is interlayer coherence. In the

FIG. 5. Oscillations of �CI (nex, B) versus nex for different mag-
netic field strengths.

NI phase, there is no band inversion between the electron
and hole bands in which all the hole LLs are occupied and
the electron LLs are empty. In the QH phase, according
to the index N of the highest inverted electron and hole LLs,
the regions in the parameter space are labeled by QHN , as
shown in Fig. 4(a). The color in Fig. 4(a) represents the
interlayer capacitance CI/Cgeo, which is plotted in more detail
in Figs. 4(b) and 4(c). Oscillations versus B−1 and μex are
easily identified. Similar to the quantum oscillation in metal,
the oscillation frequency versus B−1 increases with exciton
chemical potential, as shown in Fig. 4(b). It is also worth
noting that interlayer capacitance sharply oscillates to zero in
the QH phases, which reflects the fact that a QH state is charge
incompressible at zero temperature. To see the oscillations
versus μex more clearly, let us transform the abscissa from
μex to nex and define �CI (nex, B) as

�CI (nex, B) ≡ CI (nex, B) − CI (nex, B = 0). (16)

Then the oscillations of �CI versus nex are shown in
Figs. 5(a)–5(d) for different magnetic field strengths. A period
of about (2π�2)−1 = eB/h is observed, which is exactly the
LL degeneracy for a spinless fermion.

When the finite, but small, tunneling strength t =
0.01 meV is considered, the phase transitions between the
NI, EI, and QH phases become continuous crossovers, and the
discontinuities in Figs. 4(b) and 4(c) are also smoothed, just
like in the case without magnetic field. In addition, the oscil-
lation amplitudes also get slightly smaller. The corresponding
numerical results are given in Appendix E for reference.

IV. SUMMARY AND DISCUSSION

For an electron-hole bilayer without any interlayer cou-
pling, the system is just a semimetal, and quantum oscillations
are not surprising due to the Landau quantization of the elec-
tron and hole Fermi surfaces [34]. An interband hybridization
heh will gap out the Fermi surfaces and lead the system
into an insulating phase at the CNP. However, as long as
the hybridization strength is comparable to the cyclotron
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frequency h̄(ωe + ωh), quantum oscillations of physical quan-
tities are still expected. Such oscillations have already been
predicted [35–39] and detected [40–43] in narrow-gap insula-
tors where the hybridization has a single-particle origination.
However, in this paper, we showed that quantum oscillations
will also appear in EI systems where the interband hybridiza-
tion arises purely from exciton condensation.

A more interesting observation is the QH phases in the
phase diagram in Fig. 4(a), where there is no EI order pa-
rameter. These phases are also noted in a similar study by Zou
et al. [30]. From the physical picture of an exciton formed
by electron and hole LLs illustrated in Fig. 1(c), the critical
magnetic field strength can be estimated by requiring the
cyclotron frequency to be comparable to the exciton binding
energy, i.e., h̄(ωe + ωh)/2 = EB, which implies

Bc = 2memh

me + mh

EB

eh̄
. (17)

Substituting the parameters me = 0.58m0 and mh = 0.36m0

and the value of the zero-density binding energy EB ≈
20 meV into Eq. (17), the critical field strength is estimated
as Bc ≈ 77 T. We argue that this value is an overestimation
since the binding energy usually drops with the increase of
the exciton density nex (or, equivalently, the exciton chemical
potential μex) [25]. This point can also be seen from the fact
that the critical field strength of the QH2 phase is lower than
that of the QH1 phase. Such QH phases are also unique to
the 2D system. In three-dimensional cases, the electron and
hole LLs are usually dispersive in the third dimension, like in
Fig. 1(b). In the BCS regime where electron and hole bands
are inverted, the subbands of LLs are also inverted, and the
Fermi surface instability will always drive the system into the
EI phase [44–47].

The emergence of the QH phases also reflects the insta-
bility of an excitonic gap, which can be destroyed not only
by temperature [18] and electrical field [48] but also by mag-
netic field in 2D systems. This instability is a key difference
between an exciton gap and a single-particle gap and can
easily be identified in interlayer capacitance measurements.
As shown in Figs. 4(b) and 4(c), the interlayer capacitance
at zero temperature oscillates to zero when the EI order and
interband hybridization are destroyed by the magnetic field
in the QH phases. However, the capacitance will never be
zero if the gap has a single-particle origination as derived in
Appendix F. Furthermore, a zero interlayer capacitance in a
strong magnetic field could be used to exclude the single-
particle contribution to the excitonic gap, which is an essential
requirement for exciton superfluidity.
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APPENDIX A: GATE SCREENING INTERACTION

When the gate layer distance dg is comparable to the in-
terlayer distance d , the screening effects from the gates are

not negligible. To derive the gate screening interaction, let us
solve the Poisson equation of a point charge. For convenience,
let us assume the point charge is in the electron layer; using
the Dirichlet boundary condition, the Poisson equation reads

εxy∇2
r ϕ(r, z) + εz∂2

z ϕ(r, z) = −4πeδ(r − r0)δ(z − d − dg),

∇rϕ(r, z)|z=0,d+2dg = 0.

If we define the 2D Fourier transformation of ϕ(r, z) as
ϕq(z) = ∫

dr ϕ(r, z)e−iq·r, the Poisson equation becomes

εz∂2
z ϕq(z) − q2εxyϕq(z) = −4πeδ(z − d − dg), (A2a)

ϕq(z = 0, d + 2dg) = 0. (A2b)

If we define the effective dielectric constant and anisotropy
parameter as ε = √

εxyεz and κ = √
εxy/εz, the Poisson equa-

tion (A2) is solved as

ϕq(z) = 2π

εq
[c1eκqz + c2e−κqz + e−κq|z−(d+dg)|],

c1 = −e−κq(2dg+d ) sinh κq(dg + d )

sinh κq(2dg + d )
,

c2 = − sinh κqdg

sinh κq(2dg + d )
.

Thus, the intra- and interlayer interactions are

Vintra (q) = eϕq(d + dg) = 4πe2

εq

sinh κqdg sinh κq(d + dg)

sinh κq(2dg + d )
,

(A3a)

Vinter (q) = eϕq(dg) = 4πe2

εq

sinh2 κqdg

sinh κq(2dg + d )
. (A3b)

Expanded in exponentials, the interactions are approximated
by

Vintra (q) ≈ 2πe2

εq

(
1 − e−2κqdg

)
, (A4a)

Vinter (q) ≈ 2πe2

εq

(
1 − e−2κqdg

)
e−κqd . (A4b)

From the expression in Eq. (A4) we can see that the screen-
ing mainly happens in the long-range part (q → 0) of the
interaction.

APPENDIX B: MINIMIZATION OF THE FREE ENERGY

In this appendix, we will derive the self-consistent equa-
tions by minimizing the free energy. For simplicity, only the
derivations for the case without magnetic field are presented.

At fixed temperature T and exciton chemical potential
μex, the free energy F = U − T S is a functional of the wave
functions |i = c/v, k〉 and occupation numbers fi,k of the
mean-field bands, where the internal energy U and entropy
S are respectively written as

U = 1

2

∑
k

Tr
[(

h0
k + hmf

k

)
ρk

]
, (B1)

S = −kB

∑
i,k

[ fi,k ln fi,k + (1 − fi,k) ln(1 − fi,k)], (B2)

155107-6



QUANTUM OSCILLATIONS IN AN EXCITONIC … PHYSICAL REVIEW B 109, 155107 (2024)

and ρk is the density matrix relative to the uncharged state
ρ0 = δss′δsh, which is defined by

ρk[|i, k〉, fi,k] =
∑
i=c,v

fi,k|i, k〉〈i, k| − δss′δsh. (B3)

There are two kinds of constraints. The first one is the or-
thonormal relation of the wave functions,

〈i, k| j, k〉 = δi j, (B4)

and the second one is the charge neutrality requirement,∑
k

Tr(ρk) =
∑

k

( fc,k + fv,k − 1) = 0. (B5)

It is more convenient to introduce the Lagrange multipliers
ξi,k (the mean-field band energies) and μ (overall chemical
potential) and transform the constrained minimization of the
free energy to an unconstrained minimization of the grand
potential

G ≡ F −
∑
i,k

ξi,k fi,k(〈i, k|i, k〉 − 1) − μ
∑

k

( fc,k + fv,k − 1).

(B6)
Under this definition, derivatives of G with respect to ξi,k

and μ recover the constraints (B4) and (B5). Unconstrained
derivatives of G with respect to |i, k〉 are calculated as

δG

δ〈i, k| = δU

δρk

δρk

δ〈i, k| − ξi,k fi,k|i, k〉 = fi,k
(
hmf

k − ξi,k
)|i, k〉.

(B7)

For fi,k �= 0, the minimization condition δG/δ〈i, k| = 0 leads
to the eigenvalue equation

hmf
k |i, k〉 = ξi,k|i, k〉. (B8)

In addition, unconstrained derivatives of G with respect to fi,k

are calculated as

δG

δ fi,k
= δU

δρk

δρk

δ fi,k
− T

δS

δ fi,k
− ξi,k(〈i, k|i, k〉 − 1) − μ

= Tr
(
hmf

k |i, k〉〈i, k|) + kBT ln
fi,k

1 − fi,k
− μ

= ξi,k − μ + kBT ln
fi,k

1 − fi,k
, (B9)

where the orthonormal constraints (B4) and the eigenvalue
equation (B8) are used to get the final expression. Then the
minimization condition δG/δ fi,k = 0 leads to the Fermi-Dirac
distribution

fi,k = 1

1 + e(ξi,k−μ)/kBT
. (B10)

APPENDIX C: MANY-BODY HAMILTONIAN UNDER THE
LANDAU LEVEL BASIS

In this Appendix, we will derive the LL representations of
the many-body Hamiltonian. When magnetic field is applied,
one should replace the kinetic momentum h̄k in Eq. (3) by
the canonical momentum � = h̄k + eA (e = |e|) according to
Peierls substitution [49]. In the Landau gauge A = (−yB, 0),

the wave functions of LLs are

φnkx (r) = 1√
Lx�

eikxxψn(y/� − �kx ), kx ∈ [0, Ly/�
2], (C1)

where Li is the system size in the i direction, � = √
h̄/eB is

the magnetic length, and

ψn(x) = (2nn!
√

π )−1/2e−x2/2Hn(x) (C2)

is the nth level of the one-dimensional quantum Har-
monic oscillator. The LLs are complete and orthonormal;
i.e., 〈φnkx |φmk′

x
〉 = δnmδkxk′

x
, and

∑
nkx

|φnkx 〉〈φnkx | = 1. Fur-
thermore, they satisfy

�2

2ms
|φnkx 〉 = h̄ωs(n + 1/2)|φnkx 〉, (C3)

where ωs = eB/ms is the cyclotron frequency.
It is easy to verify that〈

e, φnkx

∣∣h0
�

∣∣e, φmk′
x

〉 = [h̄ωe(n + 1/2) − μex]δnmδkxk′
x
,〈

h, φnkx

∣∣h0
�

∣∣h, φmk′
x

〉 = −h̄ωh(n + 1/2)δnmδkxk′
x
,〈

e, φnkx

∣∣h0
�

∣∣h, φmk′
x

〉 = tδnmδkxk′
x
.

Thus, the single-particle part expressed in the LL basis is
written as

H0 =
∑
ss′nkx

〈
s, φnkx

∣∣h0
� − μ

∣∣s′, φnkx

〉
l†
snkx

lsnkx

=
∑
ss′nkx

(
h0

n,ss′ − μδss′
)
l†
snkx

lsnkx , (C5)

where l†
snx

is the creation operator for LL electrons and

h0
n =

[
h̄ωe(n + 1/2) − μex t

t∗ −h̄ωh(n + 1/2)

]
. (C6)

Using the relation

csk =
∑
nk′

x

〈k|φnk′
x
〉lsnk′

x
, (C7)

the interaction part [Eq. (2b)] becomes

HI = 1

2V
∑
ss′

∑
k′

1k′
2q

∑
niki

Vss′ (q)l†
sn1k1

l†
s′n2k2

ls′n3k3 lsn4k4

× 〈φn1k1 |k′
1〉〈k′

1 − q|φn4k4〉〈φn2k2 |k′
2〉〈k′

2 + q|φn3k3〉

= 1

2V
∑

ss′niki

∑
q

Vss′ (q)l†
sn1k1

l†
s′n2k2

ls′n3k3 lsn4k4

× 〈φn1k1 |eiq·r|φn4k4〉〈φn2k2 |e−iq·r|φn3k3〉. (C8)

To get the last equality, we use the identity∑
k

|k〉〈k − q| =
∑

k

∫
dr|k〉〈k − q|r〉〈r|

=
∑

k

∫
dr|k〉e−i(k−q)·r〈r|

=
∑

k

∫
dr|k〉〈k|eiq·r|r〉〈r|

= eiq·r. (C9)
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Notice that 〈φn2k2 |e−iq·r|φn3k3〉 ∝ ∫
dx e−i(k2+qx−k3 )x ∝

δk3−k2,qx ; Eq. (C8) is finally simplified to

HI = 1

2V
∑

ss′niki

∑
q

Vss′ (q)eiqy (k1−k2 )�2
�∗

n4n1
(q)�n2n3 (q)

× l†
sn1k1+qx/2l†

s′n2k2−qx/2ls′n3k2+qx/2lsn4k1−qx/2, (C10)

where �mn(q) is the form factor for LLs,

�mn(q) ≡ 〈φmk−qx/2|e−iq·r|φnk+qx/2〉eikqy�
2

=
∫

dy e−iqy�yψm(y + qx�/2)ψn(y − qx�/2).

(C11)

For m � n, �mn(q) is evaluated as [28]

�mn(q) = e− q2�2

4

√
m!

n!

(
q−�√

2

)m−n

L(m−n)
n

(
q2�2

2

)
, (C12)

where q− = qx − iqy and L(α)
n (x) is the Laguerre polynomial;

for m < n, �mn(q) can be determined by �mn(q) = �∗
nm(−q).

APPENDIX D: MEAN-FIELD CHANNELS
IN MAGNETIC FIELD

As discussed in the main text, by requiring magnetic trans-
lation symmetry, the density matrix

ρsn1,s′n2 (kx ) ≡ 〈l†
s′n2kx

lsn1kx 〉 − δss′δsh (D1)

is kx independent. Under Hartree-Fock approximation, the
mean-field Fock Hamiltonian is decoupled as

HF = − 1

2V
∑
ss′nik

∑
q

Vss′ (q)�∗
n4n1

(q)�n2n3 (q)

× [l†
s′n2klsn4kρs′n3,sn1 + l†

sn1kls′n3kρsn4,s′n2 ]. (D2)

According to Eq. (C12), we have �mn(q) ∝ e−i(m−n)θq . Thus,
the q summation in Eq. (D2) is nonzero only when n4 − n1 =
n2 − n3. It is convenient to define M = n3 − n1 = n2 − n4,
which labels independent condensation channels. For a con-
densation channel labeled by M, the only surviving density
matrix elements are ρs′M+n,sn and ρsn,s′n+M .

We argue that the index M is just the angular momentum of
the exciton condensation. In the absence of a magnetic field,
the density matrix for the exciton condensation of angular
momentum M takes the form

ρehk ∼ kM
+ f (k2), (D3)

where k+ = kx + iky and f is some analytic function. After
Peierls substitution and projecting to the LL basis, we have

〈e, φnkx |ρ�|h, φmk′
x
〉

∼ 〈φnkx |�M
+ f (�2/h̄2)|φmk′

x
〉

∼ 〈φnkx |�M
+ |φmk′

x
〉 f ((2m + 1)eB/h̄)

∼ δn,m+Mδkxk′
x
. (D4)

Due to Hermiticity, 〈h, φnkx |ρ�|e, φmk′
x
〉 ∼ δn+M,mδkxk′

x
. Thus,

for exciton condensation of angular momentum M, the only
surviving EI order parameters under LL basis are ρen+M,hn and
ρhn,en+M .

FIG. 6. The same quantities as in Fig. 4, expect that a finite
tunneling strength t = 0.01 meV is used.

APPENDIX E: CAPACITANCE OSCILLATION AT FINITE
INTERLAYER TUNNELING

With a finite tunneling strength t = 0.01 meV, the same
quantities as in Fig. 4 are calculated and shown in Fig. 6. At
this time, there is no phase transition since the off-diagonal
part of the density matrix ρeh never goes to zero due to the
persistent single-particle tunneling t . And the red solid lines
which mark the phase boundaries in Fig. 4(a) are replaced by
the red dashed lines (determined by maxn |ρn,eh| = 0.01) in
Fig. 6(a), which could be used to indicate the crossover. It
is easily seen from Fig. 6 that the main results of the single-
particle tunneling are to smooth the curves of the interlayer
capacitance just like in the case without magnetic field.

Using B = 15 T as an example, oscillations of �CI versus
nex at different tunneling strengths are plotted in Fig. 7, and

FIG. 7. Oscillations of �CI versus nex for different tunneling
strengths. The magnetic field strength is taken as B = 15 T.
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the oscillation amplitudes get smaller when the interlayer
tunneling is included.

APPENDIX F: EFFECT OF SINGLE-PARTICLE
HYBRIDIZATION ON THE INTERLAYER CAPACITANCE

Let us assume a nonzero tunneling strength t �= 0 and ig-
nore the exchange part of the interaction, which accounts for
the exciton condensation. Then the charge density per layer is
calculated as

nex = 1

4π�2

∑
n

[
1 − h̄ω∗(2n + 1) − μ̃ex√

[h̄ω∗(2n + 1) − μ̃ex]2 + 4t2

]
,

(F1)
where ω∗ = (ωe + ωh)/2 and μ̃ex = μex − e2nex/Cgeo is the
renormalized “exciton chemical potential” from interlayer

geometry electrostatic energy. By definition, the interlayer
capacitance should be calculated as

CI ≡ e2 ∂nex

∂μex
= e2 ∂nex

∂μ̃ex

∂μ̃ex

∂μex
= e2 ∂nex

∂μ̃ex

(
1 − CI

Cgeo

)
. (F2)

Denoting C̃I = e2∂nex/∂μ̃ex, the interlayer capacitance is
solved as CI = (C̃−1

I + C−1
geo)−1. It is easily verified that

C̃I = e2

4π�2

∑
n

4t2

{[h̄ω∗(2n + 1) − μ̃ex]2 + 4t2}3/2
> 0 (F3)

as long as the hybridization strength t is nonzero, and the
interlayer capacitance must satisfy 0 < CI < Cgeo.
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