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Comparison of the hidden order transition in URu2Si2 to the λ-transition in 4He
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The low-temperature states of ambient URu2Si2 and superfluid 4He are both characterized by momentum-
dependent energy gaps between the ground and excited states. This behavior weakly persists even above the
transition temperatures but becomes overdamped (ungapped) because of the number of excitations present at
elevated temperature. We show that, akin to the normal-fluid-to-superfluid transition in 4He, the hidden order
(HO) transition in URu2Si2 can be understood by a change of the ungapped excitations to the gapped, elementary
excitations (EE) of the unknown ordered state. These underdamped EEs reflect the basic character and order
parameters of the different phase transitions. This view accounts for the full amount of entropy released in these
transitions, the jumps in the resistivity and thermal conductivity directly below the transition, as well as the
reduction of the Fermi surface. We argue that the behavior in the HO phase is that of a gas of weakly interacting
excitations from charge density wave or crystal-field states in a similar manner to that of the phonon-roton
excitations of the superfluid 4He phase. We discuss the influence of applying pressure and magnetic fields within
this scenario and the role of the small moment antiferromagnetic clustering in the hidden order phase.
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I. INTRODUCTION

The hidden order transition in URu2Si2 that occurs at
THO = 17.5 K under ambient presence in the absence of mag-
netic fields, has been studied extensively [1,2] but proven very
difficult to pin down. The transition itself is marked by a sharp
λ-shaped increase [3] in specific heat (on cooling), an increase
in resistivity and thermal conductivity [4,5] just below the
transition, and a notable reduction [6] of the Fermi surface. In
addition, antiferromagnetic (AFM) order appears at the transi-
tion, but the uranium moment associated with this ordering is
very small [7] and the ordering itself is not truly long range. In
addition, the system undergoes a superconducting transition
at T = 1.5 K. Applying hydrostatic pressure [8] increases
both THO and the size of the ordered AFM-moment, resulting
in a first-order transition at a critical pressure of ≈0.5 GPa
[9]. The application of modest magnetic fields lowers THO

without affecting [10] the amount of entropy associated with
the transition.

Neutron-scattering experiments on URu2Si2 [7] have
revealed that the excitations present in the system are (most
likely) propagating crystal-field excitations, also called Van
Vleck excitons [11], between two singlet levels. These
excitations are gapped throughout the entire Brillouin zone
at low temperature, but their damping increases on raising
the temperature and they become strongly damped and
overdamped (at select wave vectors) [12,13] at THO. The low-
T dispersion shows a minimum at finite energy, well separated
from the zero-energy intensity associated with the small
moment AFM-order, at the AFM-wave vector Q0 = (1, 0, 0)
and a higher minimum at the incommensurate vector Q1 =
(0.6, 0, 0). The excitations at Q0 and Q1 become overdamped
[13] on raising the temperature through the transition, but can
still easily be identified [14]. In addition, ARPES and STM

measurements [1,15,16] have yielded a trove of experimental
data, but despite an impressive amount of theoretical work, the
order parameter associated with the hidden order transition
has remained elusive. Lastly, Butch et al. [17] have presented
evidence that the magnetic excitations above and below THO

have the same symmetry (body-centered tetragonal) suggest-
ing an order parameter that does not break spatial symmetry.

Here, we show that the cause behind the opening up of a
gap in the excitation spectrum is no mystery, but that it can
be attributed fully to the temperature-dependent number of
excitations falling below a critical value upon cooling. When
this happens, the excitations change from being overdamped
to propagating, resulting in the appearance of an energy gap
as well as in a greatly enhanced thermal conductivity. This
mechanism is independent of the exact nature of the excita-
tions, instead it is entirely driven by the thermal population of
the excitations via the well-known Landau-Khalatnikov [18]
damping mechanism (see inset Fig. 1). We argue the validity
of this mechanism in URu2Si2 by making a direct comparison
to the superfluid transition in helium-4.

The order parameter of the normal-fluid-to-superfluid tran-
sition in helium-4 is well known and the critical exponents
associated with the transition have been verified [20] to be
those of the three-dimensional-XY (3D-XY ) model. Once the
fluid is cooled down below Tλ = 2.172 K, the liquid stops
boiling and alerts us to its new state by spontaneously emp-
tying out of a beaker and leaking out of sealed containers
through the tiniest of openings. The latter is a manifestation
of the fluid being able to flow without friction through thin
capillaries [21] whereas the lack of boiling bubbles is related
to its exceptional heat conductivity.

The fraction of the liquid that can flow without friction is
the superfluid fraction ρs; this fraction equals zero above Tλ

and reaches 100% at T = 0 K [22]. This superfluid fraction is
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FIG. 1. The phonon-roton dispersion curve of elementary exci-
tations in superfluid helium. The roton minimum (�) is located at
q = 1.94 Å−1 and the curve terminates at twice the roton energy
and momentum. The slope of the dotted line tangent to the curve
corresponds to the minimum flow velocity below which the liquid
behaves as a superfluid [19]. When the roton gap closes, the fluid
ceases to be a superfluid. The inset sketches the Landau-Khalatnikov
damping mechanism [18]: excitations with momentum q acquire a fi-
nite lifetime through collisions with other excitations k. Independent
of the details of this quasiparticle interaction, the resulting lifetime
will be strongly temperature dependent because the weight of each
diagram is proportional to the Bose population factor 1/(eβEk − 1),
with β being the inverse temperature 1/kBT and Ek the energy of the
quasiparticle.

the order parameter of the superfluid phase. The fraction that
gets dragged along in torsional experiments is referred to as
the normal-fluid fraction ρn, with ρs + ρn = 1. Experiments
have revealed that the latter fraction is determined by the
number of elementary excitations present at a given tempera-
ture. The dispersion of these elementary excitations, shown in
Fig. 1, is commonly referred to as the phonon-roton dispersion
curve. While ρs reaches 100% at T = 0 K, reflecting that there
are no excitations present at absolute zero, the Bose-Einstein
condensate fraction only reaches ≈7% [23]. This in contrast
with an ideal, noninteracting Bose gas where the condensate
fraction reaches 100%, but which is not a superfluid as the
ideal Bose gas quadratic dispersion does not have a mini-
mum, nonzero slope. These well-known facts merely serve
to illustrate that the condensate is a property of the ground
state, but superfluidity is a property of the excited states. In
particular, superfluidity (like superconductivity) materializes
because there is a finite energy gap between the ground state
and excited states.

Neutron-scattering experiments have shown [24] that the
superfluid-to-normal-fluid transition is marked by a very rapid
decrease in lifetime of the elementary excitations, with these
excitations continuously transforming into the density fluctua-
tions that characterize normal liquids [24–26]. In other words,
the phonon-roton excitations are (almost) the same density
fluctuations as present in normal fluids, but with a much,
much longer decay time [27]. The increase in decay time
(decrease in damping) is entirely due to the disappearance
of excitations upon lowering the temperature as the damping
rate of excitations is determined by the collision rate between
these quasiparticles. The very rapid changes observed in the

damping rate of the elementary excitations just below Tλ are
the result of the roton gap in the excitation spectrum opening
up [26,27].

In this paper we pursue the similarities between the hidden
order transition and the λ-transition. In particular, we focus
on the change in character of the excitation branches in going
from the low-temperature phase to the higher-temperature
phase and establish a one-to-one correspondence between the
two systems based on the softening of the minima of the
excitation curves in both systems. Doing so, we are able to
provide a natural explanation for the most salient features
associated with the hidden order transition.

This paper is organized as follows: In the next section we
make a direct comparison between the entropy in the low-
temperature phases of 4He and URu2Si2, showing that they
behave virtually identically in warming up to the transition.
We also compare the damping rates of the characteristic low-
temperature excitations (the roton excitation in 4He and the
incommensurate Q1 excitation in URu2Si2), demonstrating
that both systems display a very similar increase in damping
upon approaching the transition. In Sec. III on the λ transition
in helium we review that the superfluid transition is marked
by the point where the transitions between the two levels
in 4He (the ground state and the first-excited state) become
so frequent that the excitations go from being very well
defined to a very heavily damped or even overdamped.
This transition from well-defined (elementary) excitations
to (almost) diffusive transport is complete at the transition
point. In Sec. IV we show that identical considerations
hold for the hidden order transition in URu2Si2, and that
most of the puzzling features associated with hidden order
can be directly associated with a change from well-defined
propagating excitations in the hidden order phase to diffusive,
overdamped excitations in the Kondo lattice phase above
THO. In our discussion section we argue provided that the
lowest excitations in URu2Si2 are between two singlet states,
that the sharp increases in resistivity and thermal conductivity
on cooling through the hidden order transition are a direct
consequence of the changes in the damping mechanism of the
excitations. From our comparison with helium we argue that
these changes in damping mechanism are entirely attributable
to the number of quasiparticles excited at a given temperature,
with their damping rates (lifetimes) governed by the number
of collisions between the quasiparticles.

II. GLOBAL COMPARISON BETWEEN 4He AND URu2Si2

Both the hidden order transition in URu2Si2 at 17.5 K and
the superfluid transition in 4He at 2.172 K are marked by a
λ-shaped anomaly in the specific heat c [10,22]. Integrating
the c/T curves from zero to T yields the entropy of the
systems, which we display in Fig. 2. To make a direct com-
parison between the two systems, we apply scaling both in
this figure and in subsequent figures. We give the relevant pa-
rameters used in our scaling procedures in Table I. In addition,
in order to bring the similarity between the two systems to the
fore, we have removed the entropy change that is due to the
superconducting transition at 1.5 K [3] from the URu2Si2 data:
�S = S − S(T = 2 K). This is justified because the super-
conducting transition occurs at a temperature well below any
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FIG. 2. The measured entropy for URu2Si2 [10] (with the value
at T = 2 K subtracted to eliminate the superconducting transition)
and 4He [28]. A vertical scale factor of 5.2 has been applied to
the helium data, and the results have been plotted versus reduced
temperature. The dashed-dotted line is the predicted entropy for 4He
using the T = 0 K dispersion for the calculation, the solid curve
(largely coinciding with the dashed curve) is the same for URu2Si2

using the dispersion from Ref. [7].

changes associated with the hidden order transition. It is clear
from Fig. 2 that the temperature evolution of the entropy upon
approaching the transition from below is very similar in shape.
However, the entropy of helium at the transition is roughly
R ln 2 [28], that of URu2Si2 is lower by a factor of five [10],
indicating that the hidden order transition does not correspond
to a complete freezing out of a degree of freedom; most of the
entropy has already been shed at higher temperatures.

A similar close agreement between the two systems is
found when looking at the damping rates of the excitations
at the minimum of the dispersion curves. We reproduce the
dispersion of URu2Si2 in the hidden order phase as measured
by Broholm et al. [7] in Fig. 3 for three crystallographic
directions. The two lowest minima of the dispersion occur at
q = (1, 0, 0) and at (0.6,0,0) with gaps of 2.2 and 4.5 meV, re-
spectively. We refer to their positions in reciprocal space with
Q0 and Q1. We also show the direction-independent curve
of elementary excitations [27] (Fig. 1) of the superfluid as a
solid line, scaled so that the minimum of the 4He dispersion
coincides with the minimum at Q1.

Neutron-scattering experiments [12,13,24] have revealed
that the sharp (in energy) excitations in 4He and URu2Si2
broaden considerably upon approaching the transition
from below, with the largest increases occurring close

TABLE I. Parameters characterizing the hidden order and the
superfluid transitions.

System Tord S(Tord ) Qmin Gap(0 K) �(18 K) [13]
K R ln 2 nm−1 meV meV

4He 2.172 1.08 19.2 0.74 0.55 (SVP)
URu2Si2 (Q0) 17.5 0.22 15 2.2 2.3
URu2Si2 (Q1) 17.5 0.22 9.1 4.4 3.8

FIG. 3. The excitation energies (symbols) along high-symmetry
directions indicated in the plot for URu2Si2 as measured by Broholm
et al. [7] in the hidden order phase. The solid line is the phonon-
roton dispersion curve plotted for comparison and scaled to make
the roton coincide with the Q1-minimum of the URu2Si2 dispersion.
The dotted lines are the approximations by Williams et al. [29] for
the two minima Q0 = (1, 0, 0) and Q1 = (2–0.6, 0, 0).

to the transition. This is shown in Fig. 4. At the lowest
temperatures, the damping rates are very small, implying
long lifetimes for the excitations. Long-lived excitations
are referred to as elementary excitations, or well-defined
quasiparticles. It is clear from this figure that both systems
share a similar evolution in the decay rate (inverse lifetime)
of their excitations, and that very rapid changes occur in the
damping mechanism close to the transition.

In the next section we review the superfluid state with the
aim of facilitating the comparison between the two systems.
Unlike URu2Si2, superfluid helium is a relatively simple sys-
tem with the only signal that shows up in neutron-scattering
experiments being the density fluctuations that are created (or
absorbed) by the neutron. In addition, the order parameter of
the λ transition is well known [20] and characterized as being
the superfluid fraction. Thus, the aim of the next section is
catalog exactly what is changing between the normal-fluid and
the superfluid phase in helium so that we can then utilize the
similarity between 4He and URu2Si2 to learn more about the
hidden order transition.

FIG. 4. The damping rates at the roton minimum [25] and the ex-
citations at Q1 [12] versus reduced temperature, made to coincide at
Tord. The temperature evolution of both rates is essentially identical.
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III. THE λ TRANSITION IN 4He

We first elucidate how the λ transition in 4He is linked to
the opening up of a gap in the excitation spectrum as there
exists the common misconception that the spectacular proper-
ties of superfluid helium are the result of the presence of the
Bose-Einstein condensate. Most simply put, helium can flow
without friction because a minimum flow velocity is required
in order to transfer the energy and momentum of the liquid
flow into internal degrees of freedom of the liquid; that is,
creating elementary excitations. This minimum requirement
is present because of a finite energy gap between the ground
state and the excited states. This gap in turn is present because
of the Bose statistical nature of the 4He atoms, not because
of the presence of a Bose-Einstein condensate. We refer to
the textbook by Feynman [30] for the basic arguments behind
these facts.

We show the details of the elementary excitation spectrum
of superfluid helium in Fig. 1. This phonon-roton excitation
curve captures the sound-like excitations at small momen-
tum transfers h̄q, the roton minimum with energy gap � at
wavelengths λ = 2π/q = d corresponding to the average in-
teratomic separation d , followed by a flat part of the dispersion
that terminates at twice the roton momentum at a level of
2�. The minimum flow velocity is given by the tangent to
the dispersion curve (dashed curve in Fig. 1) which reaches
its smallest value close to the roton minimum. Experiments
where the liquid was made to flow through very small ori-
fices [31] (in order to impede the formation of topological
excitations) have shown that this minimum slope does indeed
correspond to the critical velocity as predicted [19] by Lan-
dau. Thus, it is the presence of the roton gap that ensures the
property of superfluidity, making it clear that superfluidity is
a property of the excited states.

The order parameter of the superfluid transition is the su-
perfluid fraction ρs, being the fraction of the liquid that can
flow through thin capillaries without friction. The normal-
fluid fraction ρn (with ρn + ρs = 1), being the part of the
liquid that is dragged along in torsional balance experiments,
is a measure of how many elementary excitations are present.
Therefore, the order parameter is not linked to the condensate
fraction of the 7% of the atoms [23] that have formed a
Bose-Einstein condensate in the ground state; instead it is
determined by the shape of the elementary dispersion curve.
While not needed in this paper, we note that the univer-
sality class of the superfluid transition has been confirmed
by specific-heat experiments [20] onboard the space shuttle
in microgravity conditions in order to determine the crit-
ical exponent α. Thus, the order parameter of superfluid
helium holds no mystery, unlike the hidden order transition
in URu2Si2.

On a microscopic scale, the superfluid-to-normal-fluid
transition is marked by a complete filling in of the roton gap.
Neutron-scattering experiments [24,25] very close to Tλ have
revealed that the transition from the elementary excitations of
the superfluid (Fig. 1) to the normal-fluid density fluctuations
is a continuous one, with most of the changes occurring within
0.05 K of Tλ. The excitations are seen to become heavily
damped upon raising the temperature as a direct result of
Landau-Khalatnikov damping (see inset of Fig. 1), as shown

in Fig. 4 for the roton excitation. For the roton, the damping
rate becomes comparable to the energy gap, with the result
that the gap disappears, and the fluid ceases to be a superfluid
as a direct consequence. Note that this increase in damping
resulting in a change in character cannot be avoided: it is
something that necessarily must happen at a given temperature
given the increase in the number of quasiparticles that are
thermally excited. In helium, the elementary excitations of
the superfluid phase change completely in character because
of the increase in damping and transform into the ordinary
density fluctuations of normal fluids. This statement was veri-
fied [27] through second-order perturbation theory by using
ordinary density fluctuations as basis functions and linking
them to multiparticle states. This perturbation expansion was
successful in reproducing [26,27] the entire phonon-roton
dispersion curve, including the intensity of the excitations
in neutron-scattering experiments as well as the termination
point of the dispersion at twice the roton momentum. Thus,
on a microscopic scale, the superfluid transition can be fully
understood as being the consequence of the unavoidable fill-
ing in of the roton gap.

In the next section we argue that the hidden order transition
in URu2Si2 is of a similar nature in the sense that the same
excitations are present both above and below the transition,
but that a marked change in their damping rates and character
(reflecting the rapid increase in the number of excitations
present) accounts for the difference between the hidden or-
der phase and the Kondo-shielded metallic phase above the
transition.

IV. THE HIDDEN ORDER TRANSITION IN URu2Si2

In this section we argue that the hidden order transition
in URu2Si2 is associated with the two lowest levels of the
electronic subsystem, with the levels becoming degenerate
above the hidden order transition because of thermal popu-
lation effects. We demonstrate that this change in character
accounts for the most salient features of the hidden order
transition, and, provided the two levels are magnetic singlets,
it also accounts for the differences in thermal conductivity and
electrical resistivity between the hidden order state and the
Kondo lattice state above THO.

A. The hidden order phase of URu2Si2

URu2Si2 above THO is a metal that exhibits Kondo screen-
ing [1] as evinced by the observed coherence in the resistivity
and the enhanced electron effective mass just above THO, re-
sulting in a strongly enhanced coefficient of the linear term of
the specific heat (γ = 160 mJ mol−1 K−2 [1]). Cooling down
through THO sees a jump in the specific-heat curve (�c ≈ 300
mJ/K) over a narrow temperature interval (�T ≈ 0.2 K), with
an overall λ shape for the entire curve. At the same time
and quite surprisingly, a significant increase is observed, upon
entering the HO phase, in the thermal conductivity as well as
in the resistivity.

Neutron-scattering experiments have shown that a weak
antiferromagnetic (AFM) Bragg peak appears [32] at THO,
corresponding to a tiny fraction of the U moment (≈0.02μB).
This Bragg peak is not a true Bragg peak in the sense that the
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ordering is not truly long range, but is limited [7] to about
50 nm. The size of this ordered moment is so small that
AFM ordering cannot correspond to the observed changes in
specific heat at THO because a moment that small must al-
ready have lost most of its entropy during the Kondo-shielding
process [33]. In addition, the inferred size of the ordered
moment is strongly sample dependent [2] and nonuniform
[34] throughout a sample, suggesting that this small-moment
phase might not be intrinsic. Inelastic neutron-scattering ex-
periments showed that magnetic excitations are present in
the HO phase [7,32], and that these excitations are gapped
throughout the entire Brillouin zone, with excitation minima
observed at the AFM position Q0 (� = 2.2 meV) and at
incommensurate positions Q1 (� = 4.4 meV). We reproduce
the earliest measurements of the dispersion curve in Fig. 3.

Based on the details of the scattering process and on the
(lack of) field dependence of the excitation energies, these
excitations were identified [7] as transitions between two
magnetic singlet states. Thus, these excitations are propagat-
ing fluctuations of the electronic subsystem. We note that
transitions between singlet states that do not have a net
magnetic moment will still be observed in magnetic neutron-
scattering experiments and in susceptibility measurements:
Whatever the exact nature of the two singlet states (such
as the states considered by Sikkema et al. [33]), the oper-
ator Jz will induce transitions between them. In magnetic
neutron-scattering experiments this corresponds to non-spin-
flip scattering, or longitudinal excitations. As far as we are
aware, this is indeed what has been observed for the mag-
netic inelastic cross section. In susceptibility measurements,
the transitions show up as Van Vleck terms [35]. Thus,
even though no net magnetic moment needs to be present
in URu2Si2, it will still have a magnetic response. We note
that recently the singlet character of the lowest-lying states
has been confirmed [36] through inelastic x-ray-scattering
experiments.

These spatially extended singlet states, representing prop-
agating excitations, acquire their dispersion through the
RKKY-interaction J�q [7]. The RKKY-interaction strength is
strongest at Q0 and Q1, as evinced by the dispersion minima
at these wave vectors. Scattering experiments [14] have shown
that this interaction still leads to a strong scattering rate at Q1

above THO, but now without an energy gap being present.
The opening up of an excitation gap between the two states

at THO has been observed in many types of experiments,
perhaps most convincingly [15] so by spectroscopic imaging
scanning tunneling microscopy (SI-STM). These experiments
confirm Kondo screening above THO where in the absence
of an energy gap the two singlet states are degenerate, al-
lowing for the Kondo shielding mechanism to materialize.
They also show that, below THO, the degenerate band is split
into two separate bands, and the Kondo shielding process is
thwarted.

Finally, experiments have been performed as a function
of magnetic field [10] and hydrostatic pressure [8]. The
field-dependent measurements revealed that THO is lowered
somewhat by moderate fields, and the hidden order phase can
be destroyed [37] by applying large fields (in excess of 30 T).
Application of hydrostatic pressure [8] results in a modest
increase in THO up to a critical pressure. At the same time, the

ordered AFM moment increases with applied pressure, until
a transition from the HO-phase to a true long-range-ordered
AFM-state is reached. Below T ≈ 1.5 K superconductivity
appears [3] in the HO-phase, however, we will not address
this in this paper.

B. A more detailed comparison of the hidden order
and the λ transitions

In this section we perform a slightly more detailed com-
parison between the two systems in order to show that both
systems are two level systems, with the excited level becom-
ing increasingly more populated upon raising the temperature,
leading to a closure of the gap between the two levels at the
transition.

In Fig. 2 we already did a direct comparison between the
entropy of both systems, we now show that this entropy can
be predicted numerically based on the measured dispersion
curves. In Fig. 2 we show the expected entropy for 4He based
on the dispersion curve as the dashed-dotted curve, using
standard statistical methods [38] to relate the dispersion to the
specific heat. Of course, it was the measured specific heat of
helium that led Landau [19] to make his now famous predic-
tion of the phonon-roton curve, well before neutron-scattering
experiments revealed its correctness. The measured entropy
and predicted value start to deviate at elevated temperatures
(T > 1.3 K) when the excitation energies start to become ap-
preciably smaller because of the increased damping. Including
the measured softening [39] of the roton excitation would
extend the agreement between the curve and the experimental
entropy to slightly higher temperatures, but (of course) the
region right at the transition cannot be adequately captured
without including power-law behavior.

We perform an identical procedure [38] for URu2Si2 and
show the results in Fig. 2 (solid curve). We use the dispersion
curve from Fig. 3 in combination with the results from other
experiments such as those by Wiebe et al. [40] where it was
shown that most of the scattered intensity appears in a ring
in the ab plane centered around Q0 with a radius of 0.4
reciprocal-lattice units. In Fig. 3 there are two points of the
dispersion visible along this ring: Q1 and q = (1.3, 0.3, 0).
Note that the gap energy is higher at the latter point, although
still at a local minimum. We approximate the entire dispersion
curve by parabolic minima located on this ring as well as
a by an additional single minimum located at Q0. We use
the measured experimental parameters to extend these points
throughout the entire Brillouin zone. Examples are given by
the dotted parabolic curves in Fig. 3 where we have used
the relevant velocities determined by Williams et al. [29]
(v = 24 meV Å in plane and v = 32 meV Å parallel to the
c axis). The results of our calculation are shown by the solid
curve in Fig. 2. Note that we have not allowed for the gap to
soften upon approaching the transition in these calculations.
Van Dijk et al. [10] have already shown that by allowing
for a softening of an effective gap (with a complete soften-
ing at THO) that the entropy curve can be reproduced over
a much larger temperature range. Overall, the data in this
figure demonstrate that the entropy changes as a function of
temperature in URu2Si2 are to be ascribed to the changes in
population of the excited states, similar to the case for helium.
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Note that, in our calculations for both systems, the entire
dispersion curve has been used as input. In the case of helium,
the phonon contributions to the specific heat yield a ∼T 3

term which is overtaken in importance by contributions from
excitations near the roton minimum at around 0.7 K. At the su-
perfluid transition, the phonon contributions are significantly
less important than the rapidly increasing number of softening
roton excitations. A somewhat similar situation takes place in
URu2Si2. Even though the Q0 gap is lower in energy than the
Q1 gap, there are four Q1 points in the first Brillouin zone with
the result that the Q1 contributions account for roughly double
the Q0 contribution at the hidden order transition.

Another striking similarity between the two systems is the
sharp increase in damping rate (decrease in lifetime) upon
approaching the transition from below. We already showed
this correspondence in Fig. 4. This rapid increase in damping
is observed both at Q0 and at Q1. Therefore, in a manner
identical to superfluid helium, approaching the transition from
below is marked by a very rapid increase in damping rate, re-
sulting in a disappearance of the gap between the ground state
and the first-excited state. In helium, this increase in damping
is driven solely by an increase in the number of quasiparticles
present resulting in an increased collision rate between them
(see Fig. 1), not by an underlying change in the undamped gap
value. By extension, it stands to reason that the hidden order
transition is caused by the same rapid increase in the num-
ber of quasiparticles present, with the damping mechanism
given by the number of collisions between these quasipar-
ticles as depicted in the renormalized four-vertex diagram
shown in Fig. 1.

To emphasize this point of view, in Fig. 5(c) we reproduce
the temperature dependence of the response of helium at the
roton minimum when it goes through the superfluid tran-
sition as measured by neutron-scattering experiments [27].
The signal seen in neutron-scattering experiments is distorted
because of the presence of the Bose population factor; we
therefore remove this factor and plot the Fourier transform
of the relaxation function [41] instead [χ (E )′′/E with χ ′′
the imaginary part of the dynamic susceptibility] in order to
view the temperature dependence of the poles of the dynamic
susceptibility. It is clear from this figure that rapid changes
occur in the response, with most changes taking place close
to the transition temperature. We see that the (resolution-
broadened) well-defined low-temperature excitations become
increasingly more damped, until they become, for all practical
purposes, quasielastic nonpropagating features at the transi-
tion. In helium this marks the transition from superfluid to
normal-fluid behavior, and it is driven entirely by the increase
in damping rate (Fig. 4), which in turn is driven entirely by
the number of excitations present. Both above and below Tλ,
neutron scattering measures density fluctuations, but these
fluctuations become less and less damped upon lowering the
temperature, until at the very lowest temperature the damping
is so reduced that these density fluctuations acquire the char-
acter of elementary excitations.

The response of URu2Si2 upon going through the hidden
order transition [Fig. 4 and Figs. 5(a) and 5(b)] is very similar
to that of helium. We see a marked increase in damping rate
upon raising the temperature (Fig. 4), with the most rapid
increase occurring close to the transition. Above the transition,

FIG. 5. Neutron-scattering data on URu2Si2 for (a) Q0 and (b) Q1

plotted as χ ′′/E (to eliminate the Bose population factor) and re-
produced from Niklowitz et al. [13] (diamonds: T = 3 K; pluses:
12.5 K; asterisks: 16 K; filled symbols: 18 K). (c) Without any data
analysis besides the subtraction of a temperature-independent flat
background, the data already clearly show the transition from well-
defined excitations to heavily damped quasielastic features upon
leaving the hidden order phase, in a manner strongly reminiscent of
4He. The 4He-data have been reproduced from Ref. [25] and convo-
luted with a Gaussian in order to mimic the energy resolution of the
URu2Si2 experiments. The data are shown for temperatures of 1.1 K
(highest peak), 1.9, 2.0, 2.1, 2.15, and 2.2 K (quasielastic feature),
demonstrating the smooth transition from propagating (gapped) to
nonpropagating as the temperature is raised through the λ transition
at 2.172 K. The lines shown in this panel are the (essentially perfect)
damped harmonic-oscillator fits detailed in Ref. [25].

the excitations have become overdamped (visible to the naked
eye in Fig. 5), implying that there are now two energy levels
in the system with the same energy. When the temperature
is lowered through THO then the excitations become under-
damped, and they can now propagate through the system.
Thus, rather than having a diffusive character (overdamped),
they have now become propagating waves. In the discussion
section we detail how this change from overdamped to un-
derdamped affects Kondo screening and the Fermi surface,
and how the change from diffusive behavior to propagating
is reflected in the thermal conductivity of URu2Si2.

V. DISCUSSION

In the previous section we established the close connection
between the normal-fluid to superfluid transition in 4He and
the hidden order transition in URu2Si2. We implied that be-
cause of this similarity, the hidden order transition is one that
is driven by the thermal population of the excitations to the
point where the collision rate between the excitations becomes
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so large upon heating that the gap between the two singlet
states disappears, and the system becomes a Kondo-shielded
metal. However, we have to look into the many other aspects
that have been discovered about the HO phase to ascertain
that this scenario stands up to scrutiny. We show in this sec-
tion that, from a qualitative point of view, this is indeed the
case and end with some suggestions for future experiments as
well as some speculative remarks.

A. Transport

Upon lowering the temperature through the hidden order
transition, there is a noticeable increase [4,5] in resistivity
as well as in thermal conductivity. A large fraction of the
carriers is lost, and URu2Si2 becomes an almost-compensated
metal below THO with about 0.1 holes per uranium ion [1].
As such, the increase in thermal conductivity is even more
astounding. However, the scenario sketched in the preceding
sections offers a natural interpretation for this.

The increase in thermal conductivity can be interpreted as
a transition from the excitations being overdamped (diffusive)
to becoming propagating. Excitations carry energy, and as
such, a transition from diffusive to propagating would herald a
large increase in the speed at which energy can be transported.
Since the number of excitations decreases precipitously with
decreasing temperature, this increase in conductivity would
be restricted to temperatures just below THO but, initially, the
increase will easily overcome the loss of conduction electrons
when the Fermi-surface shrinks (see the next paragraph). Note
that this increase in thermal conductivity is independent of the
exact nature of the excitations in the HO phase, whether they
are associated with magnetic singlets or not.

Above THO, Kondo shielding takes place and the otherwise
localized U electrons partake in the transport mechanism. In
URu2Si2 above THO, the Kondo-screening mechanism is not
facilitated by a magnetic ground-state doublet, but rather by
the two degenerate magnetic singlet levels. Once this de-
generacy is lifted, then Kondo shielding is impeded because
of the opening up of the gap between the singlets. In our
scenario, this happens when the number of excitations drops
enough for the gap to open up in the dynamic susceptibility.
As such, the increase in resistivity below THO simply reflects
the disappearance of the Kondo shielding mechanism. While
this is not a new insight because an arrested Kondo effect has
already been associated with the hidden order transition [42],
where we differ with the literature is in the reason for this gap
opening up as being caused by a thermally driven decrease in
the number of quasiparticles and consequently by a reduced
collision rate between them, rather than by any fundamental
change in the nature of the system.

B. Order parameter

The order parameter for superfluid helium is a complex
function whose amplitude yields the temperature dependence
of the superfluid fraction and whose phase captures the extent
of the long-range correlations that allow helium to creep out of
a beaker. Thus, the magnitude of the order parameter captures
an aspect of the excited states. Below Tλ, the ground state of
helium also exhibits marked changes with the appearance of

FIG. 6. Comparison of the elastic (left panel) and inelastic inten-
sities (right panel) in URu2Si2 (filled circles: T < THO, open circles:
T > THO) with the superfluid density in 4He (solid line). The elastic
intensity displays the temperature evolution of the (1,0,0) incipient
Bragg peak (as the order is not truly long range [7]), the inelastic
intensity is the integration of the imaginary part of the dynamic
susceptibility for 0 < E < 6.3 meV (reproduced from Bourdarot
et al. [12]). The left panel shows that the Bragg peak does not
coincide with the temperature evolution of the 4He order parame-
ter. The integrated inelastic intensity (right panel) follows the 4He
order parameter much more closely, and can be made to coincide by
assuming the presence of critical scattering (dotted curve).

the Bose-Einstein condensate that sees a small fraction [23]
(≈7%) of the He atoms condense into the zero-momentum
state. However, the condensate fraction does not serve as the
order parameter. Given the similarity between helium and
URu2Si2, we discuss the nature of the “hidden order” parame-
ter and the appearance of the small moment elastic Bragg peak
that materializes below THO.

We plot the superfluid density and the intensity of the
(1,0,0) Bragg peak in URu2Si2 as a function of T/Tord in the
left panel of Fig. 6. It is clear from this figure that the tem-
perature dependence of the two quantities is fundamentally
different. We observe a much closer agreement (right panel)
between ρs(T )/ρ and the integrated intensity of the inelastic
part of the (1,0,0) excitations. This correspondence between
the excited states in URu2Si2 and the superfluid density (a
measure of how many excitations are no longer present) is
in agreement with our proposed scenario that the transition is
driven by changes to the excited states caused by an increased
number of excitations present.

Even though the number of excitations present would de-
termine the transition temperature, this number by itself is not
the order parameter. In superfluid helium, it is the number of
excitations present multiplied by their mass equivalent (as we
are describing superflow of particles), with the mass equiv-
alent also being temperature dependent [19]. It is unclear,
assuming that the similarity with helium carries all the way,
what property needs to be multiplied with the number of ex-
citations in order to arrive at the order parameter in URu2Si2.
While the excitations carry energy and momentum, they do
not carry a magnetic moment. They probably also do not carry
charge as they are (most likely) propagating electron-hole
excitations (excitons, or transitions between the top of the
valence band and the bottom of the conduction band [17]).
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Therefore, the spin and charge attributes of the electron would
likely not factor into the order parameter, in line with the
observed lack of symmetry change of the excitations on going
through the hidden order transition [17].

We note that the comparison with superfluid helium can
only go so far: in 4He, the density fluctuations are the only
excitations left and as such, reducing their number by cool-
ing down sees them evolve into elementary excitations. In
contrast, URu2Si2 still has many degrees of freedom left and
we expect the excitations in the hidden order phase to remain
fractionally damped, not allowing for the complete separation
between the equivalent of the normal-fluid and superfluid
components as energy transfer between the two remains possi-
ble. Therefore, it is quite possible that the HO order parameter
does not reach its full extent on cooling down.

Overall, the connection between the amplitude of the order
parameter and the number of excitations present in URu2Si2
appears to agree with all experimental observations. Applying
a magnetic field lowers the hidden order transition temper-
ature; measuring the field-dependent entropy revealed [10]
that the entropy at THO is independent of field. This is what
is expected when the transition is driven by the number of
excitations present for a given gap energy. When the Q1 gap
energy increases, as it does with applying pressure, then we
see that THO also increases. Again, this is as expected since
now more excitations should be present before the damping
rate matches the gap energy. In all, it appears that the in-
commensurate Q1-gap energy is the determining parameter,
similar to how the roton energy is the determining parameter
in helium, with the thermally driven opening up of the gap
responsible for the λ anomaly in the specific heat at THO.

C. The origin of the entropy at THO

We showed in Fig. 2 that the superfluid transition is asso-
ciated with ≈R ln 2 in entropy, but the hidden order transition
is only of the order of 0.2R ln 2 [17]. This raises questions
both as to its smallness as well as to its largeness. On the one
hand, in our sketched scenario, all singlet levels are partaking
so we would expect the associated entropy to be 2R ln 2 (R ln 2
for each of the two 5 f 2 electrons). On the other hand, the
system above the hidden order transition is a Kondo shielded
system with a Kondo temperature of the order of 70 K, so we
expect all the local moment degrees of freedom to have frozen
out at THO [33], leaving no entropy to be shed in the hidden
order phase. That is, when the system goes from being Kondo
shielded to having an energy gap greatly exceeding the sample
temperature, then there is no net change in available degrees
of freedom (merely a rearrangement) and we would expect
zero entropy to be associated with the transition, removing
the signature of the transition from the specific-heat curve.

A very similar issue was recently resolved [43,44] in
Kondo lattice systems and accounts for the entropy magnitude
of 0.2R ln 2. Whereas the average Kondo temperature is well
in excess of THO, the zero-point motion of the ions induces
a broad instantaneous distribution of shielding temperatures.
For instance, a 1% distribution in Ru-U separation results in
a 50% distribution of shielding temperatures, owing to the
exponential sensitivity of the Kondo scale to interionic sep-
arations [44]. As long as the electronic timescales are much

FIG. 7. Instantaneous distribution of Kondo-shielding tempera-
tures (left axis) and resulting fraction of ions where the formation
of a magnetic singlet is favored (right axis) for URu2Si2. Note the
logarithmic temperature axis. The average Kondo temperature was
chosen to be 75 K, the conduction bandwidth was taken to be 0.4 eV
based on theoretical estimates [6], and the Debye-Waller factor for
the U-Ru distance was fixed at 0.006 nm based on experimental
observations [45]. The dotted lines indicate that at THO = 17.5 K
11% of the moments are not Kondo shielded at any instance in time.
Figure adapted from Ref. [44].

faster than the ionic timescales, this instantaneous distribu-
tion is experienced by the electrons as a static distribution.
We reproduce the Kondo shielding temperature distribution
in Fig. 7. Note that there is only one adjustable parameter
in this distribution, namely, the average Kondo temperature.
The other two parameters (conduction bandwidth and Debye-
Waller factor) are known from experiments and calculations.
It can be seen in this figure that at THO roughly a 10% fraction
of the moments is not Kondo shielded at any given time. This
would account for the ≈0.2R ln 2 entropy still available at THO

(there being two electrons per U ion), rendering our scenario
for the transition self-consistent.

D. Pressure dependence

Applying hydrostatic pressure at constant temperature to
URu2Si2 results in minor changes for moderate pressure, but
results in a first-order transition at higher pressure [8]. The
ordered moment associated with the Q0 Bragg peak increases
with increased pressure, until a true long-range ordered AFM
state is reached above a critical pressure. We sketch this in
Fig. 8. The AFM state and the HO state are mutually exclu-
sive. The HO-transition temperature increases slightly with
increased pressure, until when the pressure is so high that
the system transitions directly into the AFM state from the
paramagnetic state upon lowering the temperature [8]. Lastly,
neutron-scattering experiments in the HO state have shown
that the Q1 gap increases with pressure, whereas the Q0 gap
decreases with pressure [12,29]. We next interpret these find-
ings in terms of our thermally driven scenario.

The size of the gaps at Q0 and Q1 is determined by
the RKKY-interaction mechanism J . Broholm et al. [7]
have shown that J for the nearest-neighbor (nn), next-
nearest-neighbor (nnn), next-next-nearest-neighbor (nnnn)
interactions are all negative. The (100) gap can then be at-
tributed to the fact that each uranium ion has eight nnns along
the body diagonal that add up in antiphase, two nns along the
a direction, and two nns along the b direction (adding up in
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FIG. 8. A cartoon depiction of the excitations in the various parts
of the temperature-pressure phase diagram of URu2Si2. For simplic-
ity, we show the excitations as bound electron-hole pairs (excitons).
In the paramagnetic phase (top part of diagram), the excitations are
strongly damped and even overdamped (gapless) at Q0 and Q1 due
to the sheer number present. This overdamping leads to degenerate
regions in the dispersion, which in turn sets the stage for Kondo
shielding. Upon cooling at low pressure, the number of excitations
drops below a critical level and the excitations become underdamped
(propagating). The concomitant appearance of a gap impedes Kondo
screening and the resistivity jumps. The excitations themselves are
propagating, explaining the sharp increase in thermal conductivity.
Cooling further results in a superconducting phase (dotted line) of an
unresolved nature. Increasing pressure in the HO phase lowers the Q0

gap (see text), resulting in larger droplets of the AFM phase. Once a
critical pressure is reached, the Q0 gap disappears [12] in a first-order
transition and a long-range AFM phase is reached.

phase), and four nnnns along the (110) direction (adding up
in phase). According to Broholm et al. the nnn interaction is
the strongest so that Jq for (100) is positive, and the dispersion
ωq reaches a minimum since ωq = (�2 − 4α�Jq )1/2 (with �

being the bare singlet-singlet gap, and α the transition ele-
ment between the two singlet states [7]). Increasing pressure
increases the orbital overlap (and thereby J), resulting in a
lowering the (100)-excitation gap.

The pressure evolution of Jq for q = Q1 is not as easily
visualized due to the incommensurate nature, but apparently
Jq decreases slightly, resulting is a slightly larger gap ωq at
q = Q1. This latter gap increase is the reason behind the slight
increase in THO with pressure. The number of excitations de-
pends on the size of both gaps, but since the Q1 gap has a four-
fold weight in the Brillouin zone compared with the Q0 gap,
the critical number of excitons is determined by the Q1 gap.
As such, an increase in Q1 gap leads to an increase in THO.

We note that the increase in J at Q0 with pressure (and
concomitant decrease of the Q0 gap) naturally drives the sys-
tem to long-range AFM order, even when the excitations are
between singlet states. Should small local moments develop
on the U ions, then having these moments probed in antiphase
(as Q0 probing does) induces AFM order. Since this order
lowers the energy of the system, URu2Si2 becomes unstable
against moment formation with increased pressure.

The decrease in the Q0 gap with increased pressure heralds
the transition from the HO state to the AFM state and the
demise of the low-temperature superconducting state, as noted

by various authors [1,12]. The transition appears to be first
order, with the Q0 gap only decreasing to about 1 meV before
it closes in the AFM phase. This was uncovered in neutron-
scattering experiments [8] at fixed pressure where cooling sees
a transition into the HO phase, followed by a transition into the
AFM phase. With the disappearance of the Q0 gap between
the two singlet states, superconductivity disappears alongside
as superconductivity requires a finite-size gap to exist between
the electronic ground state and first-excited state.

In quantum critical systems, both hydrostatic pressure and
chemical pressure can be used virtually interchangeably [46]
to drive the system between ordered and disordered phases.
It appears that in URu2Si2 the situation is more complicated
as chemical substitution results in both chemical pressure
as well as in changes in hybridization. For instance, iso-
electronic substitution of Fe on the Ru sites mimics the effects
of hydrostatic pressure for low Fe concentrations [47], but
the transition becomes more smeared out with increased Fe
concentration [48] and deviates at higher concentrations due
to changes in hybridization [49]. Amorese et al. [36] have
shown by means of x-ray scattering studies on fully substi-
tuted samples (UFe2Si2, UPd2Si2, and UNi2Si2) that, while
all systems are well described by a 5 f 2 state where the two
lowest lying multiplets are singlets, 5 f 3 configurations get
mixed in, with most mixing taking place in UFe2Si2 and the
least amount in UPd2Si2 [36]. The authors linked the high
degree of mixing in UFe2Si2 with the absence of a hidden
order transition. This viewpoint is entirely consistent with our
scenario of what drives the transition.

E. Speculation and future experiments

A potentially revealing experiment is using a heat-pulse
method to measure the thermal conductivity (if at all possible
in a metal). This method revealed the existence of second
sound [22] in the superfluid phase. For reference, second
sound refers to density oscillations in the gas of quasiparticles
(as opposed to density oscillations in the gas of helium atoms).
Should the excitations in URu2Si2 become very long lived, as
they appear to do, then such second-sound oscillations could
very well be present in URu2Si2. Should such oscillations be
observed, then this firmly establishes the order parameter as
the equivalent of the superfluid density.

A second experiment of potential interest was already pro-
posed by Amorese et al. [36]: applying hydrostatic pressure to
the Fermi-liquid UFe2Si2 compound should drive the system
towards the hidden order phase because applying pressure
favors the smaller ionic radius of the 5 f 2 configuration at
the expense the 5 f 3 one. Should the hidden order transition
emerge upon applying pressure but at a lower temperature,
then we would expect to see large effects in the resistivity and
thermal transport, but only a very modest jump in the specific
heat as Kondo shielding will have removed a larger fraction of
the entropy at lower temperature.

Zero-point-motion responsible for the spread in Kondo
temperatures could very well play a role in the observed
steady increase in the AFM moment with increasing pres-
sure. While we correctly think of pressure as being uniform
throughout the sample, we also tend to think of the effects
induced by pressure as being uniform throughout the sample.

155104-9



W. MONTFROOIJ AND J. A. MYDOSH PHYSICAL REVIEW B 109, 155104 (2024)

However, when it comes to the interatomic separations, this
is incorrect. Spontaneous zero-point motion leads to 1%–2%
changes in these separations [45], a magnitude comparable to
the average pressure-induced changes. Since electrons move
much faster than the ions, to the electrons these spontaneous
ionic displacements appear to be static displacements, as if
locally the pressure were not uniform. In local regions cor-
responding to decreased interatomic separations, the system
is effectively in the high-pressure AFM phase and locally
there will be an ordered staggered moment. Of course, with
increased overall pressure, we expect to find more and more
such regions because the average interatomic separations are
already smaller, resulting in the overall observed increase of
AFM moment with increased pressure.

Thus, the observed AFM droplets could simply be the
result of quantum fluctuations, with the observed AFM mo-
ment that of small regions in the AFM phase (the standard
interpretation). The subtlety in viewing these droplets as be-
ing caused by zero point motion is that the droplets are an
intrinsic, unavoidable part of the HO phase where small re-
gions are driven to the AFM phase because of unavoidable
quantum fluctuations, with the HO-AFM transition related to
these droplets having grown so much in number that they
form a lattice-spanning network. Note that the only essential
assumption in the above is that the electronic timescales are
much faster than the ionic timescales, so that to electrons the
ionic displacements are static.

F. Summary

In summary, we have depicted the similarities between the
hidden order transition in URu2Si2 and the superfluid transi-
tion in 4He. In both systems a gap materializes at the transition
temperature detected by inelastic neutron scattering at dis-
tinct momentum values. These gapped elementary excitations
(EEs) determine the character of the phase transitions and
order parameters (OPs). Unfortunately, for URu2Si2 the exact
nature of the EEs and OPs have not yet been clearly estab-
lished. While the dispersion of URu2Si2 is a continuous one
throughout the Brillouin zone, almost certainly representing
excitations out of a singlet ground state, the different pressure
dependence of the Q0 and Q1 EEs indicates [17] that they play
a slightly different role in the HO phase because they would
result in different ground states should either gap close at low
temperature. Therefore, based on our comparisons with 4He
we propose that the two singlet-singlet EEs of URu2Si2 at Q0

and Q1 take on the character of antiferromagnetic fluctuations
at the (1,0,0) commensurate wave-vector (brought about by an
instability against moment formation and enhanced by hydro-
static pressure) and of charge-density-wave oscillations at the
incommensurate (0.6,0,0) wave-vector (enhanced by putative
negative pressure). Of course, in the absence of any (positive
or negative) pressure, neither minimum has succeeded in driv-
ing the system to a long-range-ordered ground state.

Loosely speaking, the gap opens itself up and does not re-
quire any change in underlying symmetry to emerge. Overall,
we have a fundamental change in the nature of the phases that
is precipitated by the number of excitations thermally excited.
As such the OP governing the HO transition bears similarities
to 4He in that both are of the continuous, second-order kind

that are reflected in the entropy and transport properties. The
opening up of the gap that drives the transition sets the stage
for the low-temperature ground state to materialize. In the
case of helium it is the emergence of a Bose-Einstein conden-
sate, in the case of URu2Si2 it could be any of the proposed
configurations, such as, for instance, a chirality density wave
[50]. However, in the absence of the need to explain the
specific heat, resistivity, and thermal-conductivity jumps (as
the unavoidable opening up of a gap explains all of this),
we should also keep an open mind to the possibility that
the hidden order state is nothing more that a gas of singlet
excitations in a nearly compensated metal, which does not
become puzzling again until superconductivity materializes
(potentially mediated by the AFM fluctuations). Independent
of the exact details of the ground state, our scenario proposes
that it is the opening up of the gap that sets the stage for any
order to emerge, it is not the low-temperature ground-state
configuration that drives the opening of a gap between the
ground state and the excited states.

In a simplified nutshell, the HO transition is effectively
comparable to the harmonic oscillator: when the damping is
increased there is a reduction in the oscillation frequency even
to the point where the oscillator can become overdamped, i.e.,
no EEs. In URu2Si2 and 4He the damping is caused by the
number of excitations (bosons) present and this number in-
creases rapidly once the gap closes due to the increased damp-
ing. When this happens, the excitations are no longer elemen-
tary excitations, but rather short-lived excitations that cannot
travel far before decaying. We summarize this scenario in
Fig. 8. The temperature dependence of the entropy and trans-
port (resistivity and thermal conductivity) properties follow
naturally from the number of excitations present combined
with whether they propagate or not. Independent of the exact
nature of the EEs, a thermally activated gap explains how
URu2Si2 can exhibit a λ anomaly in the specific heat without
any obvious signs of an order parameter being present.

Within our sketched scenario for the hidden order transi-
tion in URu2Si2, it is natural to ask whether URu2Si2 is a
unique system, or whether more such systems are waiting to
be discovered. What is required in our scenario are two energy
levels that are close enough in energy that a sufficient number
of quasiparticles can be excited by raising the temperature
(without affecting other parts of the system) for the levels to
become degenerate. For URu2Si2 and helium, this number is
reached for �/(kBTtransition ) ≈ 3–4, with � the gap energy of
the driving minimum. We expect that any system where the
temperature can be raised to about half the gap energy without
mixing in other degrees of freedom will exhibit a marked
change in thermal conductivity. To see corresponding changes
in the resistivity of a metal we would also need that the lowest
lying levels are singlets in order to affect the Kondo screening
mechanism. In addition to the singlet states requirement, the
value of the average Kondo-shielding temperature also plays
a role. Not only does the average TK determine how much
entropy is left to be shed at the transition, since both TK and the
RKKY ordering temperature are determined [51] by the same
orbital overlap mechanism, the window for optimal shielding
temperature appears to be quite narrow. A high shielding tem-
perature would imply a large energy gap between the singlet
states, making it very unlikely that the temperature can be
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raised enough without other degrees of freedom being mixed
in (breaking the isolation of the low-lying singlets), whereas a
low shielding temperature would favor moment formation and
long-range magnetic order as exemplified in the Doniach [51]

phase diagram. As such, URu2Si2 might well be a unique sys-
tem, but experiments under pressure on UFe2Si2 as proposed
by Amoresi et al. [36] might well reveal another hidden order
compound.
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