
PHYSICAL REVIEW B 109, 155102 (2024)

Fractional quantum Hall interface induced by geometric singularity
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The geometric response, which goes beyond the electromagnetic response, of quantum Hall (QH) liquids is
crucial for understanding their topological characteristics. According to the Wen-Zee theory, the topological spin
is intricately linked to the curvature of the space in which the electrons exist. The presence of conical geometry
offers a local, isolated geometric singularity, making it an ideal setting for exploring geometric responses. In the
context of two-dimensional electrons in a perpendicular magnetic field, each Landau orbit occupies the same
area. The cone geometry naturally provides a structure where the distances between adjacent orbits vary gradu-
ally and can be easily adjusted by modifying the tip angle. The cone tip introduces a geometric singularity that
impacts electron density and interacts with electron motion, which has been extensively studied. Additionally,
this geometry automatically creates a smooth interface or crossover between the crystalline charge-density-wave
state and the liquidlike fractional QH state. In this paper, we investigate the properties of this interface from
multiple perspectives, shedding light on the behavior of QH liquids in such geometric configurations.
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I. INTRODUCTION

Fractional quantum Hall (FQH) effects have revealed a
range of exotic topologically ordered phases since their dis-
covery [1] more than three decades ago. As an emergent
phenomenon arisen from the two-dimensional electron system
interacting with the perpendicular magnetic field, numerous
theoretical and experimental investigations are devoted to it. A
seminal work is contributed by Laughlin [2], who gave an ele-
gant trial wave function describing a partial filling ν = 1

3 state
in the lowest Landau level (LLL), which was proven to have
fractional excitation and statistics. More exotic FQH states,
such as the Moore-Read (MR)-like state at half-filling in the
first Landau level with ν = 5

2 , have been found to host non-
Abelian topological excitations and statistics [3,4]. In addition
to the regular descriptions of a quantum Hall (QH) system
from the electromagnetic response, the topological state also
has a response to the geometric manifold where the electrons
live. For example, the FQH state on a torus has topological
degeneracy, and that on a sphere has a topological shift. The
geometric responses including the anomalous viscosity [5–7]
and the gravitational anomaly [8–10] are less well known
but are topological characteristics of the QH state. Haldane
[11] and Park and Haldane [12] pointed out that the internal
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geometrical degree of freedom to the variation of the corre-
lation hole shape is responsible for the dynamical variation
of the guiding-center metric. Following seminal work by Wen
and Zee [13], more efforts have been devoted to the response
of FQH states to changes in spatial geometry and topology,
such as points of singular curvature in real space or geometry
with different genus [14–16].

Recently, experimental efforts have been devoted to creat-
ing synthetic materials in artificial magnetic fields such as cold
atoms and photonic systems [17–25]. Ultracold atomic gases
in a fast rotating trap could be employed to the study of QH
phases and transitions, as one can precisely control the dipole-
dipole interaction in an anisotropic way [26–34]. Likewise,
artificial gauge fields could also be generated for photons. The
Landau levels and even Laughlin-type FQH state for photons
have been actualized [35–40]. In experiment [38–40], photons
have been confined in a plane with several copies. Each copy
is confined in a conical geometry. It not only provides the trap
stability against the centrifugal limit but also constructs point-
like curved space with nonzero curvature at the tip. The grav-
itational anomaly has already been extracted from the particle
density near the cone tip with coupling to the local curvature
[14,16]. Three topological quantities—Chern number, mean
orbital spin, and chiral central charge—have been measured
through local electromagnetic and gravitational responses
[39]. Due to the holomophism feature of the FQH wave func-
tion, the radial direction length of a cone manifold extends
gradually accompanied by decreasing the cone angle, namely,
increasing the number of copies in the experiment. The
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FIG. 1. The sketch of a cone built from a planar disk. (a) The
cone mapped to a plane with deficit angle α and the remaining part
with angle 2π

β
= 2π − α. (b) The three-dimensional perspective of

a cone with a uniform magnetic field �B penetrating the surface, and
single-particle orbitals are formed with symmetric gauge on a cone.

interval between two adjacent Landau orbits is thus increased
and less overlapped. In this geometry, the change rate of the
intervals is inhomogeneous since each Landau orbit occupies
a fixed area 2π ł2

B. Therefore, the Landau orbits near the tip are
far apart from each other compared with that near the edge.
Like the Tao-Thouless (TT) state formed in the cylinder ge-
ometry, the electrons tend to form a crystalline TT state in the
thin cylinder limit. Because of the inhomogeneous change rate
of the intervals of Landau orbits, the TT state is first formed
near the cone tip and thus a smooth interface, or a crossover
naturally emerges in the bulk separating the crystalline phase
and the FQH phase without artificial cut-and-glue operations
[41] or designing double-quantum-well systems [42].

In this paper, we investigate several properties of FQH
states on a cone with the help of Jack polynomials and Monte
Carlo (MC) simulation [43,44]. The rest of this paper is
arranged as follows. In Sec. II, we briefly introduce the single-
particle eigenstates on cones. The ground-state wave function
of the many-body Hamiltonian of FQH systems could be
obtained numerically using exact diagonalization (ED) or the
Jack polynomials method. Section III gives the density profile
and charge distribution for two typical FQH states on cones.
We calculate the orbital angular momentum which agrees well
with the theoretical predictions, revealing the gravitational
anomaly coming from the curvature singularity. In addition,
the low-lying spectrum shows opposite chirality near the in-
duced interface compared with disk geometry. We perform
calculations with respect to wave function overlap and pair
correlation functions based on conical wave function profiles
in Sec. IV. Furthermore, we investigate the entanglement
entropy in momentum space to record the formation of the
interface and manipulate the bipartition of the system in real
space with an exact cutting position which could efficiently
experience the singular curvature in real space. Conclusions
and discussion are presented in Sec. V. Some technical details
of MC simulation are given in the Appendixes.

II. MODEL AND METHOD

As illustrated in Fig. 1, the creation of an isolated point
with singular spatial curvature can be achieved by excising

a sector with a specific apical angle from a disk and subse-
quently joining the resulting edges. This leads to the formation
of a cone-shaped geometry that features a point of singular
curvature at its tip, making it an ideal platform for physical
studies. Experimental creation of such points within lattice
systems is feasible. Notably, the curvature of a cone exhibits
singularity solely at its tip in the Gaussian curvature field,
vanishing elsewhere [9,13,15,45]. The Gauss-Bonnet theorem
ensures that the integrated curvature encompassing the apex of
the cone is connected to the deficit angle α:∫

K (r)dS = α = 2π

(
1 − 1

β

)
. (1)

The two-dimensional charge carriers on the surface of a
cone which is penetrated by uniform magnetic field �B have
effective single-particle Hamiltonian:

H0 = 1

2m
(P + eA)2. (2)

In the symmetric gauge A = B
2 (−y, x), one can express the

eigenstate wave function of the Hamiltonian H0 in a manner
like that in disk geometry. Typically, there are two types of
single-particle wave functions [46], and the type-I wave func-
tion can be formulated as follows:

�I
n,m(z) = Nn,mzβmLβm

n

( |z|2
2

)
exp

(
−|z|2

4

)
, (3)

where the complex coordinate z = (x + iy)/�B = |z|eiθ , with
arg(z) = θ ∈ [0, 2π/β]. We set the magnetic length �B =√

h̄c/eB = 1. Here, Lβm
n (|z|2/2) is a generalized Laguerrel

polynomial. Here, we can separate the angular and radial
variations of the eigenstate wave function into distinct com-
ponents:

�(|z|, θ ) = φ(|z|) exp(iβmθ ), (4)

and the periodic boundary condition �(|z|, 2π/β ) =
�(|z|, 0) comes from the joining operation. The corre-
sponding type-I eigenvalues:

EI
n,m = (

n + 1
2

)
h̄ωc, (5)

with n, m = 0, 1, 2, . . . , are independent of m and responsi-
ble for the macroscopic degeneracy of the LLs. The type-II
eigenstates:

�II
n,m(z) = Nn,mz∗βmLβm

n

( |z|2
2

)
exp

(
−|z|2

4

)
, (6)

have eigenvalues

EII
n,m = (

n + βm + 1
2

)
h̄ωc, (7)

with n = 0, 1, 2, . . . and m = 1, 2, . . . , which are related to
m and β. The normalization factor is

N 2
n,m = βn!

2π2βm�(n + βm + 1)
. (8)

When parameter β = 1, i.e., the flat disk case, the LL
index for type-I states is given by nLL = n, but nLL = n + m
for type-II states, and both cases are degenerate. When pa-
rameter β > 1, i.e., a general cone case, type-I states remain
unchanged, while energies of type-II states elevate to the
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internal levels inside the inter-LL gaps. The states in the LLL
come from type I with energy E = 1

2 h̄ωc, and we will use the
single-particle wave function, which refers to type-I �0LL =
N0,mzβm exp(−|z|2/4) in subsequent parts with no superscript.

The Laughlin state at ν = 1
3 can be obtained by diag-

onalizing the hard-core model Hamiltonian with Haldane’s
pseudopotential V1 [2,47]. The low-lying energy spectra are
obtained using the ED method. It is known that the model
wave functions could also be obtained with the help of a Jack
polynomial which is characterized by a root configuration and
a parameter α [48–50]. For example, the root configuration
for the Laughlin state is 1001001 · · · and 11001100 · · · for the
MR state [4]. The leftmost orbit represents the innermost Lan-
dau orbit which could be the center of a flat disk or the cone
tip. In addition to the ground state, one can similarly describe
quasihole states with one addition unoccupied orbit at the cone
tip, namely, 01001001 · · · . In general, it is straightforward to
consider Laughlin’s model wave function �L(z1, . . . , zN ) =∏

j<k (z j − zk )me−(1/4)
∑

i |zi|2 for a state with a single quasihole
located at z0, �qh(z0) = ∏

i(zi − z0)�L(z1, . . . , zN ). Based on
these model wave functions obtained from Jack constructions,
we calculate the density profile, accumulated charge, overlap,
pair correlation functions, and entanglement properties. In
addition, it is convenient to use the Metropolis MC method to
get the mean orbital occupation number 〈n〉 for larger system
size such as 20 electrons for the Laughlin and MR states, the
orbital angular momentum with 50 electrons, and the edge
Green’s function with 30 electrons.

III. CHARGE DENSITY PROFILES

The incompressible topological FQH ground state exhibits
a uniform bulk density ρ0 = ν/2π�2

B at a filling factor ν in
a smooth space, such as an infinite plane. However, in the
presence of a QH edge or interface, the density becomes
nonuniform. Furthermore, in a curved space, there is an
additional correction to the density that takes the following
form:

ρ = ν

2π�2
B

+ νK (r)

8π
(S − 2 j), (9)

with the Gaussian curvature K (r), the particle spin j [51], and
the topological shift S [13]. The topological shift S = ν−1

for the fermionic Laughlin state and S = ν−1 + 1 for the
fermionic MR state. In spherical geometry, the curvature is
uniform, resulting in a constant correction everywhere, and
thus, the charge density remains uniform. Conversely, in con-
ical geometry, nonzero curvature emerges at the apex, leading
to an excess charge density at the apex of the cone. This
difference in curvature between spherical and conical geome-
tries causes variations in charge density in the corresponding
systems. Figure 2(a) displays the radial density profile for a
10-electron ν = 1

3 Laughlin state, with β ∈ [1, 10]. Here, β =
1 corresponds to a plane disk with no curvature, and thus, the
density at the apex equals the bulk density value 2πρ(r) = ν.
When β > 1, there is charge accumulation around the cone
apex, as observed in the bosonic FQH state [16]. It is worth
noting that, as β increases, the density profile approaches
β at the cone tip. Explicitly, the cone tip density ρ(0) =∑

m |�m(0)|2〈�0|C†
mCm|�0〉 = β

2π
〈�0|C†

0C0|�0〉 → β

2π
. This

r/⎯√β = ⎯⎯⎯⎯⎯⎯√2(3N-2)

r/⎯√β

r/⎯√β = ⎯⎯⎯⎯⎯⎯√2(3N-2)

⎯

r/⎯√β = ⎯⎯⎯⎯⎯⎯√2(3N-2)

⎯

r/⎯√β = ⎯⎯⎯⎯⎯⎯√2(3N-2)

⎯

r/⎯√β = ⎯⎯⎯⎯⎯⎯√2(3N-2)

⎯

r/⎯√β = ⎯⎯⎯⎯⎯⎯√2(3N-2)

⎯

r/⎯√β = ⎯⎯⎯⎯⎯⎯√2(3N-2)

⎯
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FIG. 2. The density profile 2πρ(r) as a function of r for (a) the
ν = 1

3 Laughlin state and (b) the ν = 5
2 Moore-Read (MR) state on

cones. The inset plots in (a) and (b) show β − 2πρ(0) vs β with
respect to the corresponding states, respectively. (c) and (d) Zoom-ins
of the density profile near the physical edge r = √

2Norbβ in rescaled
coordinate axis r/

√
β. The system size for (a) and (c) the Laughlin

state is 10 electrons and for (b) and (d) the MR state is 18 electrons.

suggests that the zeroth orbital is fully occupied, leading to a
crystalline state at the apex. For the Laughlin state, it is shown
that the condition for this behavior is β > 4, as indicated in
the inserted figure, which plots β − 2πρ(0) vs β.

On the contrary, as β increases, the surface area for a
fixed radius decreases, as illustrated in Fig. 1. This results
in radial stretching of the cone while maintaining the total
area unchanged. Consequently, as β rises, the edge moves
away from the apex point, making it easier for the system
to establish a universal QH edge. The density profiles near
the edge exhibit a crossover behavior with a rescaled radius
r/

√
β, as shown in Fig. 2(c). The crossover point is located

at r/
√

β = √
2Norb = √

2(3N − 2), which corresponds to the
physical edge for the N-electron Laughlin state in (3N − 2)
orbits. In Figs. 2(b) and 2(d), we present similar data for the
MR state, another intriguing trial state for the ν = 5

2 FQH
liquid that is conjectured to possess non-Abelian topologi-
cal order. Like the Laughlin state, an excess density profile
persists at the cone tip with an exact value of 2πρ(0) = β

when β > 3. The density exhibits a crossover at its physical
edge r/

√
β = √

2(2N − 2). Moreover, the density at the cone
tip exhibits more pronounced oscillations than that of the
Laughlin state, indicating different geometric responses for
different FQH states.

To obtain more detailed information about the charge dis-
tribution, we can calculate the accumulated charge over an
area that encloses the cone tip in real space:

Q(R) =
∫ R

0
ρ(r)

2πr

β
dr. (10)

This calculation will enable us to investigate the distribu-
tion of charge within the system and determine if there are any
localized regions of excess charge density near the cone apex.
As shown in Figs. 3(a) and 3(b), as the integrated internal
[0, R] increases, the accumulated charge Q starts from zero
and increases to the total number of electrons N in the system.
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FIG. 3. The quantity Q in Eq. (10) as a function of the upper limit
R of integration for (a) the ν = 1

3 Laughlin state and (b) the ν = 5
2

Moore-Read (MR) state on cones. The system size for the Laughlin
state is 10 electrons and for the MR state is 18 electrons.

As we know, a larger β makes the cone thinner and stretches
the distance between the two nearest electrons, like the case
of a thin cylinder. As a result, it becomes easier to count the
charges as the enclosed integrated area gradually grows. How-
ever, unlike the disk case with a smooth ascending curve, step
plateaus emerge starting from the cone tip for large β cases,
indicating the formation of charge-density-wave (CDW) pat-
terns. In analogy to disk geometry with symmetric gauge,
the Landau orbits on cones are not uniformly distributed,
so the charge plateaus in real space show different lengths.
Furthermore, we notice that the integrated charge step is not
always one for the MR state. The first ladder jumps by only
one electron charge, but the following ladders jump by two
electron charges. The contributions from the paired ground-
state root configuration approximately explain the two-step
jumping, and the one-step jumping could be attributed to the
curvature singularity at the cone tip, which always captures
one electron if β is large enough. However, in the β → ∞
limit, the ladder jumping steps will always be one with two
jumps located closer together as a group (11), and the plateaus
between two groups will take longer intervals (00). The charge
pattern can be observed more clearly through the mean orbital
electron occupation number 〈c†

ncn〉 = 〈n〉. For large system
sizes, the occupation numbers can be evaluated using the MC
method [43,52,53] with the aid of the one-particle reduced
density matrix [54]. The technical details for cone geometry
are discussed in Appendixes A and B. As β increases, Fig. 4
illustrates the emergence of an interface that separates the
droplets into two distinct regions. In the region close to the
cone tip, a CDW (TT) phase begins to form, with the leftmost
orbital always being occupied. In contrast, the region near the
other end of the cone preserves the FQH states.

A. Orbital angular momentum (OAM)

The net moment of the cone tip should be captured to
determine the OAM of the cone tip. This can be achieved
by carefully analyzing the spatial distribution of the electron
density profile at the cone tip. The net moment can then be
calculated as follows:

Ltip =
∫ (

r2

2
− 1

)
�ρ(r)dS, (11)

where �ρ(r) = ρ(r) − ν/(2π ). The presence of a singularity
at the origin in the cone geometry indeed leads to the existence
of a net momentum. This net momentum is a result of the

FIG. 4. The mean orbital occupation number 〈n〉 for (a) the
Laughlin state and (b) the Moore-Read (MR) state with 20 electrons
on cones. In each case, five discrete β values are considered.

gravitational anomaly and is associated with significant topo-
logical quantum numbers. However, when the thermodynamic
limit is considered, the net momentum vanishes in the disk ge-
ometry. The conformal symmetry has the following prediction
[9,39]:

Ltip = c − 12ν s̄2

24

(
β − 1

β

)
+ a

2

(
2s̄ − a

β

)
, (12)

where c is the chiral central charge and s̄ is the mean orbital
spin of conformal field theory. Here, a is the excess flux
quanta through the cone tip which could take three values
0, 1

3 , 2
3 . Here, we note that the central charge cH of Ref. [9]

and c of Ref. [39] are related by cH = c − 12ν s̄2. Therefore, if
we consider a Laughlin state at ν = 1

3 , s̄ = ν−1/2, c = 1 and
cH = −8. In the above formula, the first term is brought by the
conical tip defect, while the second term is related to quasihole
with charge e/ν. Here, we consider FQH states without any
extra flux threading at the cone tip; in other words, a = 0. In
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FIG. 5. The orbital angular momentum (OAM) of the cone tip for
(a) the 1

3 Laughlin state and (b) the Moore-Read (MR) state. The line

is the theoretical value which is described as Ltip = c−12ν s̄2

24 (β − 1
β

) +
a
2 (2s̄ − a

β
), with c = 1, s̄ = 1

2 ν−1, and a = 0 for the 1
3 Laughlin state

and c = 3/2, s̄ = 3
2 , and a = 0 for the MR state.

this case, OAM is reduced to

Ltip = c − 12ν s̄2

24

(
β − 1

β

)
. (13)

In our numerical analysis, we have accurately determined
the value of Ltip for both the Laughlin and MR states through
MC simulations of a large system containing up to 50 elec-
trons. To achieve this, we employed an integral upper bound
denoted as R, which was situated well away from both the
cone tip and the edge of the system. The results of our cal-
culations are presented in Fig. 5, which clearly illustrates
a linear relationship between Ltip and β − 1

β
. Notably, the

fitting slope obtained from our numerical data aligns well with
the theoretical predictions, highlighting the accuracy of our
findings.

In the subsequent analysis, we will delve into the character-
istics of the low-lying excitations in the system. To illustrate
this, we will use the Laughlin state as a case study, which
is defined by a model Hamiltonian that incorporates a hard-
core interaction. Notably, in this model, only the Haldane’s
pseudopotential V1 assumes a nonzero value. In a system
containing 10 electrons in 28 orbitals, we will explore the
energy spectrum at various values of β, as displayed in Fig. 6.
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FIG. 6. The low-lying energy spectrum of a Hard-core interac-
tion with different (a) β = 1 and (b) β = 6, 10. The density profile
comparison between the Laughlin state and one of the excited states
is depicted in (c) and (d).

The ground state of this system is marked by a total angular
momentum Mtot = M0 = 3N (N − 1)/2 = 135, which corre-
sponds to zero energy. By exploring the energy spectrum
across various β values, we can gain deeper insights into
the behavior of the system and the nature of its low-lying
excitations.

In the case of the plane disk with β = 1, the lowest excited
states are the chiral edge excitations, which possess a total
angular momentum Mtot greater than the ground-state angular
momentum M0. However, as β increases, these states are
gradually lifted in energy, and energy levels with Mtot < M0

are suppressed. This leads to the evolution of these suppressed
energy levels into the lowest excited states for β > 5. Inter-
esting, this is exactly the criterion for the development of the
interface, as discussed previously in Fig. 2(a). In Fig. 6(b),
we observe that, for β = 6, nearly degenerate energy levels in
the range Mtot ∈ [126, 134] emerge as the low-lying excitation
branch. This behavior reflects the influence of β on the energy
spectrum and the emergence of new low-lying excitations in
the system. Figures 6(c) and 6(d) compare the radial density
between the ground state M0 = 135 and one of the lowest
excited states at M0 ± 3. Obviously, for β = 1, the M = 138
state is indeed an edge excitation, exhibiting a density per-
turbation near the edge. Conversely, for β = 6, the M = 132
state exhibits a density perturbation in the bulk while main-
taining a constant density at the cone tip and edge. This can
be explained as an interface excitation, which possesses a
lower energy than the edge excitation. It is worth noting that,
as β increases further, the excitation energy branch of the
interface continues to be suppressed and eventually becomes
a zero-energy branch, as shown in Fig. 6(b).

IV. WAVE FUNCTION PROFILES

Intuitively, for large enough β, the cone is extremely
stretched and resembles the thin cylinder [55–57] limit. To
specify the continued transition to the CDW TT state [58], we
describe the overlap between wave functions on a cone with
varying β and that on a cylinder with varying the circumfer-
ence Ly (or equivalent Lx) for the same system size. In Fig. 7,
we plot the corresponding overlaps |〈�cone(β )|�cylinder(Lx )〉|
for both the Laughlin and MR states. When it comes to the
cylinder, we understand that it solely represents an incom-
pressible fluid under specific conditions. Specifically, when
the lengths Ly and Lx of the cylinder are comparable, and as Ly

approaches zero or Ly tends toward infinity, the ground state
assumes the form of a gapped crystal known as the TT state.
In our numerical tests, as illustrated in Fig. 7(a), the overlap
between the ground state on the cylinder and the CDW states
approaches unity when Lx ≈ 40�B for finite systems. More-
over, in Fig. 7(b), we observe that the wave function overlaps
between cones and cylinders asymptotically approach unity,
despite the finite values of β. As β approaches infinity, the
extrapolation of the positions of the overlap peaks approaches
41.1�B with an overlap of 99.3% for the Laughlin state and
34.2�B with an overlap of 92.6% for the MR state. It should be
noted that the calculation is performed in a finite system, and
the extrapolation of Lx � 41.1�B with β → ∞ is not valid in
the thermodynamic limit. The aspect ratio γ = Lx/Ly would
be more appropriate which suffers less of a finite-size effect.
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FIG. 7. (a) The overlaps between wave functions on cylinders
|�cylinder(Lx )〉 and the charge-density-wave (CDW) state as a func-
tion of the length Lx . Both the Laughlin and Moore-Read (MR)
states are considered. The overlaps |〈�cone(β )|�cylinder(Lx )〉| between
wave functions on cones |�cone(β )〉 and wave functions on cylin-
ders |�cylinder(Lx )〉 are plotted in for (b) the Laughlin state with 10
electrons and (c) the MR state with 16 electrons. The inset plot
in (b) gives the extrapolation of the overlap peak positions Lx for
large β cases of the Laughlin state, and the fitting function reads
Lx = 29.3371e−13.6515/β + 11.973. The corresponding Lx in β → ∞
limit is ∼41.1�B for the Laughlin state and 34.2�B for the MR state,
indicated by arrows in (a).

Nevertheless, these findings validate that the limit of β → ∞
corresponds to that of a thin cylinder, thus confirming that the
state indeed corresponds to the TT state.

A. Pair correlation function

To investigate the evolution of the electron density near the
cone tip, we consider the two-point pair correlation function
which is defined as

g(�r) = LxLy

N (N − 1)
〈�|

∑
i = j

δ(�r + �ri − �r j )|�〉. (14)

While the coordinate of one particle is fixed at the tip, the pair
correlation function can be written in a second quantized form
as

g(r) = 1

ρ(0)ρ(r)

∑
mi

�∗
βm1

(r)�∗
βm2

(0)

×�βm3 (0)�βm4 (r)
〈
c†

m1
c†

m2
cm3 cm4

〉
. (15)

It can be obtained using the wave function from either diag-
onalization or MC simulation [59]. The results are shown in
Fig. 8 for both the Laughlin and MR states in the rescaled
radial distance. In both cases, g(r) evolves into a sharp step
shape. Taking the Laughlin state as an example, the pair
correlation function g(r) in a plane disk (β = 1) exhibits
oscillations, characteristic of a liquidlike state. These oscilla-
tions are gradually suppressed as the value of β is increased.
The peak of g(r), which is >1, disappears at around β = 5,
indicating the formation of a crystalline state near the cone
tip, which is consistent with the results from the electron
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FIG. 8. Pair correlation function g(r) for the 1
3 Laughlin state and

the 5
2 Moore-Read (MR) state for different β on a cone. The system

size for the Laughlin state is 10 electrons and for the MR state is 16
electrons.

density. A similar analysis applies to the MR state as shown
in Fig. 8(b).

B. Entanglement

An effective tool to extract topological information from
the ground-state wave function of the FQH states is the en-
tanglement spectrum [60], which goes beyond the traditional
Landau theory based on symmetry breaking and local order
parameters. To be more precise, we consider the bipartite
entanglement when the Hilbert space is divided into two parts
H = HA + HB. This partition is characterized by the reduced
density matrix ρA = TrB|�0〉〈�0| after tracing out the degrees
of freedom of B. The bipartite operation on ground-state �0

can be implemented in momentum space [61,62] or alterna-
tively in real space [63,64] of the two-dimensional system.
The former is called the orbital cut (OC) and the latter the
real-space cut (RC). One can perform Schmidt decomposition
on �0 and express it as |�0〉 = ∑

i exp(−ξi/2)|ψA
i 〉 ⊗ |ψB

i 〉,
where |ψA

i 〉 and |ψB
i 〉 are orthonormal bases providing a

natural bipartition of the system. The singular values set
exp(−ξi/2) reveals the entanglement energies ξi, which was
introduced by Li and Haldane [60]. As an entanglement mea-
surement, the entanglement entropy is defined associated with
ρA, i.e., the Von Neumann entropy reads SA = −TrA[ρA ln ρA].
For two-dimensional topological systems, the entanglement
entropy satisfies the area law with a first correction which is
named the topological entanglement entropy γ [65–67]. Here,
L is the boundary length between two systems in the two-
dimensional case, and α is a nonuniversal number depending
on the way of the bipartition S � αL − γ . As a topological
order, γ = lnD is related to the total quantum dimension D
characterizing the topological field theory associated with the
phase and the nature of the system excitations. As we know,
the quantum dimension characterizes the growth rate of the
Hilbert space with an anyon number, and for the fermionic
Laughlin state with anyonic excitations and filling fraction
ν = 1/m, it reads D = √

m. In addition, when a topolog-
ical excitation or quasiparticle emerges in the system, we
can detect the quantum dimension of the quasiparticle dα

using the additional change of topological entanglement en-
tropy γ qp = lnD − ln dα . In general, the quantum dimension
dα = 1 for Abelian quasiparticles, but dα > 1 for non-Abelian
quasiparticles.

In this paper, we investigate the entanglement entropy of
the Laughlin and MR states on cones, both for the OC and
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FIG. 9. The orbital cut entanglement entropy SA as a function of
Norb(A) for (a) the Laughlin state and (b) the Moore-Read (MR) state
on cones. The total Landau orbital in subsystem A, Norb(A), varies as
we cut the system in momentum space in different positions. The real
space cut entanglement entropy SA as a function of cutting position R
for (c) the Laughlin state and (d) the MR state on cones. The system
size for (a) and (c) the Laughlin state is 10 electrons and for (b) and
(d) the MR state is 12 electrons. The inset plot in (c) is the enlarged
data SA for R ∈ [0, 3]. The dashed line is exactly the classical Von
Neumann entropy S = ln(2).

RC cases. Our focus is on the impact of the emergence of a
CDW phase on entanglement entropy in both real space and
momentum space. For the OC case, it is natural to vary the
cutting position by adjusting the number of Landau orbitals
in subsystem A, Norb(A). Here, we define the leftmost Norb(A)
consecutive orbitals as belonging to part A, corresponding to
the inner circle of a disk or the upper part of a cone. Part A
maintains the same shape as the entire system but differs in
the number of orbitals. We focus on the cone case, particularly
when a large singularity affects the tip. As β increases, we
observe in Figs. 9(a) and 9(b) that the global entropy SA mono-
tonically decreases. When β > 4, entropy SA approaches zero
for Norb(A) = 1, 2, 3 in Fig. 9(a). This suggests that the cone
tip loses its correlation with the bulk as the crystalline state
forms. Interestingly, three consecutive data points form a set
with almost identical SA, creating a steplike structure. For
example, in the β = 14 case, three steps are evident, consis-
tent with the occupation pattern 1001001001 · · · in the TT
state, where three consecutive orbitals serve as a unit cell.
Cutting at the leftmost orbitals with Norb(A) = 1, 2, 3 has one
common feature: Part A contains one electron. When cutting
at Norb(A) = 4, 5, 6, part A contains two electrons, leading to
a new step. For the MR state in Fig. 9(b), large β induces
a CDW phase with a configuration of 11001100110011 · · · .
It is evident that Norb(A) = 1 and Norb(A) = 2 correspond to
different NA cases, while Norb(A) = 2, 3, 4 form a step with
almost equal SA. Two additional steps occur at Norb(A) = 5
and Norb(A) = 6, with NA = 3, 4 respectively.

For the RC case, by cutting the cone along the loop paral-
lel to the basal circumference in real space, a smaller cone
defined as part A and the residual part defined as part B
are obtained. The generatrix length R of the smaller cone
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FIG. 10. The orbital cut entanglement spectrum ξ for (a) the
Laughlin state and (b) the Moore-Read (MR) state on cones. The
system size for the Laughlin state is 10 electrons and for the MR
state is 16 electrons.

(part A) is determined by the RC position, and we plot the
entanglement entropy SA against R for the Laughlin and MR
states in Figs. 9(c) and 9(d), respectively. First, we notice the
figures share a common feature that, near the cone tip, all
entropies almost collapse into each other (except the β = 1
case). The enlarged figure inserted in Fig. 9(c) also shows
that, for the cone cases with β > 4, a first peak occurs around
R = 1.18�B, with the entropy exactly equal to the classical
Von Neumann entropy S = ln(2). This phenomenon implies
that the cutting is right on one electron, and all the patterns
for big-enough β cases are almost the same near the cone tip,
which again shows consistency for local characteristic length
around 1�B. In addition, with increasing the β value, a second
peak will appear with SA > ln(2) at larger R and finally equals
ln(2) (cut on electrons again) but never <ln(2). In the β → ∞
limit, there would be N − 1 peaks (except the tip one) with
values ln(2), which totally corresponds to the CDW phase
and is analogous to the thin cylinder case. However, within
the finite β case, the CDW pattern begins from the cone tip
side and has an evolution process to fully expand to the whole
cone. Compared with the Laughlin state case, the MR state
entropy curves in Fig. 9(d) show similar behaviors but with
the first two peaks closer. Here, we should note that the first
peak occurs also around R = 1.18�B. The thinner cone will
extend the distance between two neighbor orbitals and lower
the correlations or entropy values between two subsystems.

Figure 10 illustrates the entanglement spectrum of the
one-cone state for half of the system at different values of
β. Notably, the structure of the entanglement spectrum, i.e.,
the number of states in each momentum space, remains un-
changed for all β values. This suggests that increasing β does
not lead to a phase transition, indicating that the topological
phase of the TT state is the same as that of the Laughlin state.
The only variation observed is the steepness of the spectrum.
In the TT state, the entanglement is predominantly influenced
by the unique ground state in the entanglement spectrum.

C. Edge Green’s function

The FQH edge states exhibit a non-Ohmic I-V relation I ∝
V η in tunneling experiments, in contrast with the noninter-
acting Fermi liquid. This behavior can be predicted by chiral
Luttinger liquid theory and has been observed in experiments
[68]. The parameter η in the I-V relation is a topological
quantity of the FQH liquid, with values such as η = 3 for the
ν = 1

3 Laughlin state and the MR state, as predicted by chiral
Luttinger liquid theory [69,70]. When considering a conical
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manifold, the edge of the FQH liquid is located far from the
tip where the curvature singularity exists, thereby making the
edge physics unaffected by the geometric singularity. More-
over, as the system transitions into the TT state by increasing
β, which is topologically equivalent to the Laughlin state, the
exponent η should remain constant if it is indeed a topological
invariant.

Numerically, the exponent η could be obtained from the
equal-time edge Green’s function Gedge(|z1 − z2|) ∼ |z1 −
z2|−η. In a system with rotational symmetry, the edge Green’s
function can be described as

Gedge(| �z1 − �z2|) = �†( �z1)�( �z2)

=
∑

m

β

2π2βm�(βm + 1)
zβm

1 zβm
2

× exp[iβm(θ1 − θ2)] exp

(
− z2

1 + z2
2

4

)
nm,

where two points �z1 and �z2 are chosen at the edge of a cone,
at a distance of | �z1| = | �z1| = R = √

2Norbβ + X from the tip,
where θ = θ1 − θ2 is the angle between �z1 and �z2, and X is the
length of the density tail. Thus, the edge Green’s function is
rewritten as

�†( �z1)�( �z2) =
∑

m

β

2π2βm�(βm + 1)
R2βm

× exp(iβmθ ) exp

(
−R2

2

)
nm. (16)

Analytically, the chord length between two edge points
reads | �z1 − �z2| = 2R/β sin(θβ/2), with θ ∈ [0, 2π/β].

As depicted in Figs. 11(a) and 11(b), or cones with mod-
ified curvature, a perfect fitting exponent η � 3 for both the
Laughlin and MR states while the distance |z1 − z2| is large
enough, which aligns with the theoretical prediction. Even
though a stretched cone has a smaller bottom surface radius,
limiting the distance between the two electrons, the edge
state of the conical surface still displays the same topological
property as the FQH state. The results of the edge Green’s
function still manifest the topological equivalent between the
FQH state and its TT limit.

V. CONCLUSIONS

In summary, our detailed exploration of FQH states on
conical manifolds has revealed the emergence of a smooth
interface that separates the topologically trivial (TT) state
from the FQH liquid. This interface is tunable by gradually ad-
justing the curvature singularity at the cone tip. The presence
of a localized geometric defect at the cone tip results in charge
accumulation due to positive curvature, significantly altering
the density profile around the apex. The TT state is signaled
by the full occupation of the zeroth orbital, while for the
Laughlin state, it emerges at β > 4, and for the MR state, at
β > 3. As the interface between the FQH state and the CDW
state forms, the low-energy spectrum is dominated by density
oscillations near the interface, rather than edge excitations
of the FQH liquid. This observation implies that interface
excitations may play a pivotal role in the low-energy physics
of realistic scenarios, such as FQH liquids confined in sharp
potential wells or experiencing nonuniform electron density.
Our OAM calculations align well with theoretical predictions,
clearly demonstrating the gravitational anomaly arising from
the geometric singularity. However, through careful consider-
ations of wave function overlap, entanglement spectrum, and
edge Green’s function, we confirm that the FQH state and
its TT limit belong to the same topological phase, indicating
that the interface in this paper behaves more as a crossover
phenomenon.
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APPENDIX A: OCCUPATION NUMBER OF 1
3 LAUGHLIN

STATE FROM MC SIMULATION

In this Appendix, we use Metropolis MC simulation to get
the occupation number of FQH states on a cone. Comparing
the single-particle wave functions in Eq. (3) on cone and
disk, the (unnormalized) wave function corresponding to the
1
3 Laughlin state |�1/3〉 is

|�1/3〉 =
∏
j<k

(
�z j

β − �zk
β
)3

exp

(
−1

4

∑
i

z2
i

)
, (A1)
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where �z j = x j + iy j = z j exp(iθ j ) is the coordinate of the jth
particle, θ j ∈ [0, 2π

β
].

The occupation number of the mth single-particle orbit of
|�1/3〉 is

n1/3
m = 〈�1/3|c†

mcm|�1/3〉
〈�1/3|�1/3〉

=
∫

d �z1d �z2ρ1/3( �z1, �z2)�∗
βm( �z1)�βm( �z2), (A2)

where ρ1/3 is the one-particle reduced density matrix, and
�βm is the type-I wave function of LLL (n = 0). Here, ρ1/3

can be described as follows [54]:

ρ1/3( �za, �zb)

= N
∫ ∏N

i=2 d2 �zi�
∗
1/3( �za, �z2, . . . �zN )�1/3( �zb, �z2, . . . �zN )∫ ∏N

i=1 d2 �zi|�1/3|2
.

(A3)

In momentum space, the one-particle density matrix can be
written as

ρ1/3( �za, �zb) =
∑

m

n1/3
m �∗

βm( �za)�βm( �zb). (A4)

We choose �za = z exp[i(θz + θ )] and �zb = z exp(iθz ), which
have the same radial distance but differ by an angle θ in the
complex coordinate system. Thus,

ρ1/3[ �zb, �zb exp(−iθ )] =
∑

m

n1/3
m |�βm( �zb)|2 exp(−iβmθ ).

(A5)

Then we consider the above relation as a discrete Fourier
transform from momentum-space index m to real-space con-
jugate θ and set �zb = �z. The inverse transformations read

n1/3
m |�βm(�z)|2= 1

3N−2

3(N−1)∑
j=0

exp(iβmθ j )ρ1/3[�z, �z exp(−iθ j )],

(A6)

where θ j = 2π j/(3Nβ − 2β ). Then we calculate the occupa-
tion number by integrating Eq. (A6) over �z and get

n1/3
m = 1

3N − 2

3(N−1)∑
j=0

exp(iβmθ j )ρ1/3(θ j ), (A7)

where ρ1/3(θ j ) = ∫
d�zρ1/3[�z, �z exp(−iθ j )]. Using Eq. (A3),

we have

ρ1/3(θ j ) = N
∫ ∏N

i=1 d �zi�
∗
1/3( �z1, �z2, . . . �zN )�1/3[ �z1 exp(−iθ j ), �z2, . . . �zN ]∫ ∏N

i=1 d2 �zi|ψ1/3|2
. (A8)

Using Eq. (A1), we have

�1/3[ �z1 exp(−iθ j ), �z2, . . . ] = �1/3(�zi )Z1(θ j ) (A9)

Za(θ j ) =
∏
k =a

[
�za

β exp(−iβθ j ) − �zk
β
]3

(
�za

β − �zk
β
)3 , (A10)

so we have

ρ1/3(θ j ) = N
∫ ∏N

i=1 d2 �zi|�1/3|2Z1(θ j )∫ ∏N
i=1 d2 �zi|�1/3|2

= N〈Z1(θ j )〉.
(A11)

Without loss of generality.

ρ1/3(θ j ) =
N∑

a=1

〈Za(θ j )〉. (A12)

Using Eqs. (A7), (A10), and (A12), we finally obtain the
occupation number n1/3

m from MC simulation.

APPENDIX B: OCCUPATION NUMBER OF 5
2 MR STATE

FROM MC SIMULATION

Similarly, the (unnormalized) wave function corresponding
to the ν = 5

2 MR state is

�5/2 = Pf

(
1

�zβ
i − �zβ

j

) ∏
i< j

(
�zβ

i − �zβ
j

)2
exp

(
−1

4

∑
i

z2
i

)
,

(B1)

where Pf(Z ) is the Pfaffian polynomial of matrix Z . For in-
stance, in the N = 4 electron system, the matrix Z is equal
to

Z =

⎡
⎢⎢⎢⎢⎢⎣

0 1
�zβ

1 −�zβ

2

1
�zβ

1 −�zβ

3

1
�zβ

1 −�zβ

4

− 1
�zβ

1 −�zβ

2

0 1
�zβ

2 −�zβ

3

1
�zβ

2 −�zβ

4

− 1
�zβ

1 −�zβ

3

− 1
�zβ

2 −�zβ

3

0 1
�zβ

3 −�zβ

4

− 1
�zβ

1 −�zβ

4

− 1
�zβ

2 −�zβ

4

− 1
�zβ

3 −�zβ

4

0

⎤
⎥⎥⎥⎥⎥⎦, (B2)

and Pf(Z ) = 1
�zβ

1 −�zβ

2

1
�zβ

3 −�zβ

4

− 1
�zβ

1 −�zβ

3

1
�zβ

2 −�zβ

4

+ 1
�zβ

1 −�zβ

4

1
�zβ

2 −�zβ

3

. While

Pf(Z ) has a complicated form, its square satisfies
|Pf(Z )|2 = | det[Pf(Z )]|. In a similar way, we have

n5/2
m = 1

2N − 2

2N−3∑
j=0

exp(iβmθ j )ρ5/2(θ j ), (B3)

ρ5/2(θ j ) =
N∑

a=1

〈Za(θ j )〉, (B4)

Za(θ j ) =
∏
k =a

[
�za

β exp(−iβθ j ) − �zk
β
]2

(
�za

β − �zk
β
)2

× Pf
(
Z
{
�za

β → [�za exp(−iθ j )]β
})

Pf(Z )
, (B5)

where θ j = 2π j/(2βN − 2β ). We implement the Pfaffian
polynomial with the help of the algorithm [71].
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FIG. 12. Charge accumulation Q from Eq. (10) for (a) the ν = 1
3

Laughlin state and (b) the ν = 5
2 Moore-Read (MR) state with suffi-

ciently big β. The inset in (b) shows the charge-density-wave (CDW)
limit for the MR state. Every single charge plateau could be seen.

APPENDIX C: ACCUMULATED ELECTRON CHARGE
FOR BIG β CASES

In this Appendix, we supply more numerical results of the
accumulated charge for sufficiently big β cases, as shown in
Fig. 12.

APPENDIX D: CALCULATION OF OVERLAP BETWEEN
DIFFERENT GEOMETRIES

In this Appendix, we give some details on how to calculate
the wave-function overlap between different geometries.

In the first step, we need to generate the wave functions
of different FQH states with the help of the Jack polynomial

method. Here, we should note that the wave functions in
this step are presented in the conformal field theory limit,
where the geometry factor of the many-body wave function
can be neglected. For example, the ν = 1

3 Laughlin state with
only two fermions could be constructed as �ν=1/3(z1, z2) =
1 × |1001〉 − 3 × |0110〉.

The second step follows with adding the corresponding
geometry factor to wave functions. Take cone geometry as
an example. The single-particle wave function is �m(z, β ) ∼

1√
2βm (βm)!

zβm exp(−|z|2/4). The wave function normalization

could be executed after multiplying a prefactor which contains
the geometry information:

�
β

ν=1/3(z1, z2) ∼ 1 ×
√

20β (0β )!
√

23β (3β )! × |1001〉
− 3 ×

√
21β (1β )!

√
22β (2β )! × |0110〉

∼ 1 ×
√

(0β )!(3β )! × |1001〉
− 3 ×

√
(1β )!(2β )! × |0110〉.

Thus, the FQH state wave function �cone(β ) on a cone could
be obtained. In a similar way, one gets the wave function
�cylinder(Lx ) on a cylinder with parameter Lx.

The third step follows with calculating the inner prod-
uct between �cone(β ) and �cylinder(Lx ) straightforwardly. Fi-
nally, one gets the overlap between different geometries
〈�cone(β )|�cylinder(Lx )〉.
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