
PHYSICAL REVIEW B 109, 144523 (2024)
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Feasibility of accurate quantum calculations is often restricted by the dimensionality of the truncated Hilbert
space required for the numerical computations. The present work demonstrates Bayesian machine learning
(ML) models that use quantum properties in an effectively lower-dimensional Hilbert space to make predictions
for the Hamiltonian parameters that require a larger basis set as applied to a classical problem in quantum
statistical mechanics, the polaron problem. We consider two polaron models: the Su-Schrieffer-Heeger (SSH)
model and the mixed SSH - Holstein model. We demonstrate ML models that can extrapolate polaron properties
in the phonon frequency. We consider the sharp transition in the ground-state momentum of the SSH polaron
and examine the evolution of this transition from the antiadiabatic regime to the adiabatic regime. We also
demonstrate Bayesian models that use the posterior distributions of highly approximate quantum calculations
as the prior distribution for models of more accurate quantum results. This drastically reduces the number of
fully converged quantum calculations required to map out the polaron dispersion relations for the full range of
Hamiltonian parameters of interest.
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I. INTRODUCTION

The electron-phonon interactions in lattice systems give
rise to polarons. These interactions can be represented by
models that describe the effect of phonons on the on-site
energy of the bare particle and models that modulate the
amplitude for transitions between lattice sites. The notable ex-
amples are the Holstein model and the Su-Schrieffer-Heeger
model. The Holstein electron-phonon coupling originates
from the change of the potential energy of an electron
in a given lattice site due to lattice distortions [1,2]. The
SSH coupling originates from the modulation of lattice site
separations due to lattice vibrations [3,4]. Polarons described
by these two models exhibit very different properties. For
example, the effective mass of the Holstein polaron increases
monotonically with the electron-phonon coupling strength,
whereas the effective mass of the SSH polaron exhibits
a sharp transition and can be low at strong coupling [5].
It has been argued that the low effective mass of SSH
polarons, and bipolarons [6], may allow for high-temperature
bipolaronic superconductivity [7,8]. Various extensions
of these arguments have been considered to explore the
properties of SSH-like polarons and bipolarons. For example,
Sous et al. [6] showed that a breathing-mode Peierls model
leads to polarons whose effective mass remains approximately
constant through transition to the strong coupling regime for
a one-dimensional model. The same authors introduced the
bond-Peierls model [9,10] to study this phenomenon in two
dimensions, leading to the discovery of light polarons at
strong coupling in two dimensions. This result was later
extended to bipolarons in the presence of screened [11] and
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unscreened Coloumb repulsion [12], illustrating that phonons
stimulate strongly bound yet light bipolarons, resilient to
local repulsive interactions of the Hubbard type.

However, these results, though encouraging for the
prospects of bipolaronic high-temperature superconductivity
[11], are most relevant for the regimes where phonon dy-
namics are fast or comparable to electron dynamics. The
electron-phonon interactions for most materials are dominated
by those in the adiabatic limit, i.e., the regime of low phonon
frequencies. This limit is difficult to explore by numerical
computations due to the explosion of the phonon Hilbert space
[13,14]. Quantum Monte Carlo calculations have recently
been applied to compute both the Holstein and SSH polaron
properties in the adiabatic limit [15,16]. Extending these cal-
culations to low phonon frequencies requires unconventional
sampling techniques beyond the standard Metropolis-Hasting
method. Most other numerical methods meet with conver-
gence problems below �/t � 0.1, where � is the phonon
frequency and t is the bare particle lattice hopping amplitude.
Most numerical calculations for such phonon frequencies are
restricted to specific models with favorable local structure,
such as the Holstein model [17]. Reference [17] is an example
of a fully converged quantum calculation that uses general-
ized Green’s function cluster expansion (GGCE) to compute
the properties of the Holstein model at �/t � 0.1. Because
lattice vibrations are extremely slow in this extreme adia-
batic limit, one may treat phonons classically [18]. However,
in many materials, multiple phonon branches with varying
energies couple to electrons making the classical treatment
cumbersome. Therefore it is important to understand quantum
corrections and effects of nonlocal electron-phonon couplings
in the adiabatic limit, even for simplified models with a single
phonon branch that serve as a reference for more complex
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models. It is not understood if the sharp transition observed
in the effective mass for the SSH polaron [5] survives and
whether the SSH bipolarons with low effective mass [6] may
form at strong coupling in the adiabatic regime.

Motivated by this uncertainty and the difficulty of nu-
merical analysis of polarons at low phonon frequencies, the
present work explores the possibility of building machine
learning (ML) models that can be trained by either (i) po-
laron properties at high phonon frequencies or (ii) low-level,
highly approximate, quantum calculations, in order to make
accurate predictions of polaron properties at low phonon fre-
quencies. In recent years, ML has become a powerful tool
for numerical predictions for many applications in condensed
matter physics. ML algorithms have been used for accelerat-
ing DFT calculations [19], exploring phase diagrams [20–23],
determining the wavefunction in variational approaches with
sign problems and sampling configurations from many-body
Hamiltonians [24–26]. Bayesian kernel-based ML models
are particularly well-suited for data-starved models [27] and
where predictions are required outside the range of training
data [28–35]. For example, our previous work demonstrated
that Bayesian ML models can be used to identify multiple
phase transitions using system properties only from one phase
[28].

Here, we extend the work in Ref. [28] to problems with
more dimensions with a particular focus on extrapolation in
the phonon frequency domain. Our ML models are based
on Gaussian Process regression (GPR) trained by polaron
properties computed using the GGCE method [17,36]. Our
goal is to develop machine learning (ML) models that use
polaron properties in the antiadiabatic limit to predict polaron
properties in the adiabatic limit. The resulting ML models are
shown to capture the evolution of the SSH polaron proper-
ties down to phonon frequencies, where polaron dispersion
calculations are currently out of reach of rigorous quantum
theory. We identify the evolution of the position of the sharp
change in the SSH polaron effective mass in the Hamiltonian
parameter space with the change of the phonon frequency and
the accuracy level of the GGCE calculations.

The paper is organized as follows. Section II outlines the
electron-phonon model and the GGCE method used to calcu-
late polaron dispersions. Section III describes the algorithms
used for the ML predictions. Section III A discusses how to
construct multifidelity models for improving the accuracy of
quantum predictions. In Sec. IV, we present the main findings
and results obtained for different electron-phonon models. We
discuss the specific implications of our work for the ongoing
debate about the survival of the sharp transition of the SSH
polaron effective mass in the adiabatic regime. Section V
concludes by a summary of key results and implications.

II. GREEN’S FUNCTION CALCULATIONS

The most general Hamiltonian considered in this work can
be written as follows:

Ĥ =−t
∑
〈i j〉

ĉ†
i ĉ j + �

∑
i

b̂†
i b̂i + αH

∑
i

ĉ†
i ĉi(b̂

†
i + b̂i )

+ αSSH

∑
〈i j〉

(ĉ†
i ĉ j + ĉ†

j ĉi )(b̂
†
i + b̂i − b̂†

j − b̂ j ), (1)

where t is the electron hopping amplitude, � is the dispersion-
less frequency of phonons, αSSH and αH are the corresponding
strengths of the electron-phonon couplings for the SSH and
Holstein models, respectively, and the operators ĉi and b̂i

create the electron and phonon at site i of an infinite lattice.
In the present work, we consider a single phonon branch and
perform calculations for two types of models: (i) the pure SSH
model that corresponds to the αH = 0 limit of Eq. (1); and (ii)
the mixed model (1) with both αSSH �= and αH �= 0.

The electron-phonon coupling is quantified by λSSH =
2α2

SSH/�t for the pure SSH model and by a combination of
λSSH and λH = α2

H/2�t for the mixed model. We also use the
adiabaticity ratio

� = �/4t, (2)

to quantify the regime of electron-phonon interactions.
We compute the Green’s function G(k, ω) of the phonon-

dressed particle with the GGCE method [17,36], which uses
the momentum average (MA) approximation [37–40] along
with a variational ansatz parameterized by the spatial extent
of the phonon cloud (M) and the number of bosons in a
single phonon cloud (N). The convergence in the limit of
M → ∞ and N → ∞ corresponds to the exact solution. All
computations in the present work are for zero temperature.
The Green’s function is computed on a grid of ω and polaron
momentum k. The numerical complexity of the calculations
scales combinatorially with M and N .

To obtain the polaron dispersions, we calculate the
momentum-frequency resolved spectral function A(k, ω) de-
fined as A(k, ω) ≡ − 1

π
Im G(k, ω). We follow the evolution of

the lowest peak in A(k, ω) which corresponds to the polaron
band for all k values, and obtain the polaron dispersion for
a range of coupling strengths λSSH. For a given phonon fre-
quency �, we compute the polaron ground state momentum
KGS as a function of λSSH and observe the sharp transition
KGS = 0 ↔ KGS > 0 at a critical coupling strength λc

SSH [5].
Figure 1 illustrates the spectral function A(k, ω), the energy
disperion and the evolution of KGS thus computed for the SSH
polaron. In particular, it demonstrates the sharp transition in
KGS, which also manifests itself as a sharp transition in the
effective mass of the polaron

1/m∗ =
[

d2E (k)

dk2

]
KGS

, (3)

shown in the right panel of Fig. 1.

III. BAYESIAN MODEL CONSTRUCTION

We use Gaussian process regression (GPR) to build
machine learning models in the present work. GPR is a su-
pervised learning algorithm trained to predict a continuous
variable by the mean of a normal distribution of functions
f (x). A GP is entirely specified by a mean function m(x) and
a covariance function κ (x, x′):

f (x) ∼ GP(μ(x), κ (x, x′)). (4)

GPR can be formulated as a kernel machine learning method,
with the co-variance of a GP given by the kernel function of a
reproducing kernel Hilbert space [41].
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FIG. 1. (Left) Spectral function A(k, ω) for � = 4.0 and coupling strength λSSH = 1.75 and αH = 0. (middle) Polaron energy E (k) for
several coupling strengths: dotted curves are polaron energies for λ < λc with the energy minimum at k = 0 (black circles) and solid curves
are for λ > λc with the ground state occurring at k = ±KGS (black cirlces). (Right) SSH polaron ground state momentum KGS and effective
polaron mass 1/m∗ as functions of λSSH. The sharp transition occurs at λc

SSH = 0.644.

The training data set comprises D = {X, y}n
i=1, with n p-

dimensional input vectors denoted as X = [x1, x2, . . . , xn]ᵀ

and the corresponding values of the output variable collected
in the vector y. The training data are assumed to deviate from
a latent function by a Gaussian noise ε ∼ GP (0, σ 2) with
constant variance σ 2. Since the training data in the present
work come from theoretical calculations and are, therefore,
noiseless, the most appropriate choice of σ is zero. We set
σ = 10−6 for numerical stability.

The mean of the predictive distribution is given by

μ(x∗) = kT
∗ (K + σ 2I)−1y, (5)

where K is a symmetric positive definite kernel matrix of size
n × n, computed over the training set, kT

∗ is a vector of length
n, with elements representing the kernel function evaluated for
the combinations of xi ∈ X and arbitrary x∗, I is the identity
matrix and σ 2 is a hyperparameter that accounts for noise in
the dataset.

The elements of both K and kT
∗ are given by the values

of the kernel function κ (x, x′). The objective of training a
GP model is to find the parameters θ of a function chosen to
represent κ (x, x′). A GP model is trained by maximizing the
logarithm of the marginal likelihood (LML), which can be
written in closed form in terms of K and y as follows:

ln L(θ) = −1

2
yT K−1y − 1

2
ln |K| − n

2
ln 2π. (6)

The functional form of the kernel function κ (x, x′) defines
the model Mi. The choice of the kernel function is critically
important for data-starved problems and for extrapolation
problems. To identify the optimal functional form of the ker-
nel function, we follow the approach developed by Duvenaud
et al. [42,43].

The specific implementation of the kernel selection algo-
rithm is described in detail elsewhere [29,30,42,43]. In brief,
the algorithm begins with the following set of kernel functions

(base kernels):

κ (x, x′) = σ exp
(− 1

2 r2(x, x′)
)
, (7)

κ (x, x′) = σ

(
1 +

√
5 · r(x, x′) + 5

3
· r2(x, x′)

)

× exp(−
√

5 · r(x, x′)), (8)

κ (x, x′) = σ

(
1 + 1

2α
r2(x, x′)

)−α

, (9)

where r2(x, x′) = (x − x′)T × � × (x − x′), � is a diagonal
matrix of shape |Mi| × |Mi|, and |Mi| is the number of
kernel parameters for model Mi.

To minimize the number of free parameters in the kernel
function, one often uses isotropic kernels, such that � =
l × I, where l is a scalar parameter. In this work, we find
that the kernel anisotropy is important for the performance
of the resulting models. We therefore use anisotropic kernels,
with different parameters for different input features. We start
with the simple kernels given by Eqs. (7)–(9). These base
kernels are combined into products and linear combinations.
The optimal combination of the base kernels is then combined
with each of the base kernels and the process is iterated. At
each step of this kernel selection algorithm, the model Mi

is optimized by maximizing LML and the optimal model is
selected by the value of the Bayesian information criterion
[44]:

BIC(Mi ) = ln L(θ̂i ) − 1
2 |Mi| ln n, (10)

where θ̂ is a vector collecting the optimal values of the param-
eters of the kernel function Mi. We refer to GP kernels thus
constructed as composite kernels. For most of the calculations
presented in the subsequent section, the most optimal kernel
function was identified to be the product of Eqs. (7) and (8).

A. Multi-Fidelity learning

As mentioned above, the complexity of Green’s function
calculations increases rapidly with N and M. One of the

144523-3



KAIRON, SOUS, BERCIU, AND KREMS PHYSICAL REVIEW B 109, 144523 (2024)

goals of the present work is to make accurate predictions of
polaron properties using highly approximate, but inexpensive,
calculations with small N and M. To this end, we extend the
algorithm described in the previous section to produce models
trained by a combination of a large set of inexpensive results
(low N and M) and a small number of converged calculations
(large N and M). The assumption is that approximate calcula-
tions with small N and M are correlated with fully converged
results. The goal is to learn these correlations for extrapolation
models. Physical applications of such models in the context of
Bayesian machine learning was previously demonstrated, for
example, by Jie and Krems [34] and Jasinski et al. [31]. For
example, Ref. [34] demonstrated Bayesian models that can
learn from a large number of classical dynamics calculations
and a small number of quantum dynamics calculations in
order to make accurate quantum predictions, including pre-
dictions of quantum resonances, that are completely absent
in classical results. Similar approaches have also been used
for improving the accuracy of potential energy surfaces for
chemical dynamics applications [45].

In the present work, we follow the approach described by
Perdikaris et al. [46] based on nonlinear autoregressive mul-
tifidelity Gaussian processes (NARGP). The goal is to build
a model of a target function ft , which is expensive to evalu-
ate, by exploiting cheap auxiliary functions f0, f1, . . . , ft−1,
which approximate ft in the increasing order of fidelity. The
relationship between the target function and the auxiliary
functions can be generally represented as

ft (x) = ρt−1( ft−1(x)) + γt (x), (11)

where ρt−1(·) is a nonlinear mapping between two successive
auxiliary functions, which is independent of γt (x). This non-
linear mapping and γt are provided by independent GPs.

NARGP model can thus be viewed as a GP process with
the following kernel function

κt (x, x′) = κρt−1 (x, x′) × κ ft ( f ∗
t−1(x), f ∗

t−1(x′)) + κγt (x, x′),

(12)

where each of the kernel functions kρ , k f and kγ is
parametrized by an independent set of parameters to be
learned and f ∗

t−1 denotes the posterior at fidelity level t − 1.
When training the GP model by LML maximization, the

GP at level t thus learns simultaneously from the data of
fidelity t and the GP at level t − 1 (which is trained by data
of lower fidelity). The expectation that the resulting Bayesian
models must be efficient is based on the assumption that low-
level approximate calculations provide a better description of
the physical process than random guessing. Using NARGP,
one can propagate the uncertainty fully from a lower level of
fidelity to higher levels of fidelity. Hence, training a NARGP
model is akin to training a regular GP model. For a more
detailed discussion of multifidelity Gaussian processes see
Ref. [47].

IV. RESULTS

We present the main results of this work as follows. First,
we consider a pure SSH model and demonstrate ML mod-
els that extrapolate the ground state momentum of the SSH

polaron in phonon frequency. We build several ML mod-
els trained by the polaron energy dispersions in different
regimes of adiabaticity. We then apply a similar analysis to the
combined SSH - Holstein model. We obtain ML predictions
of the sharp transition in the polaron ground-state momentum
down to the extreme adiabatic limit. Finally, we demonstrate
the application of multifidelity models to obtain accurate
predictions of polaron properties from low-level GGCE cal-
culations, thus reducing the overhead of computationally
expensive numerical methods.

A. SSH polaron

We begin by training Gaussian process regression models
with composite kernels by polaron energies E (k,�, λSSH)
calculated using GGCE as described in Sec. II. The resulting
ML models predict the polaron energy for given values of
the Hamiltonian parameters �, λSSH and a given value of k.
Our ML models can thus be viewed as surrogate models of
GGCE calculations, with inputs given by three-dimensional
vectors of [�, λSSH, k] and outputs representing the polaron
energy. In Sec. IV D below, we show how to extend these
models to include the parameters N and M of the GGCE
calculations on input, in order to improve the accuracy of pre-
dictions based on low-level GGCE calculations. In Ref. [28],
the ML models were trained by full polaron dispersions at
fixed values of phonon frequency and particle-phonon cou-
plings. We note that we use a different approach in the present
work. In particular, we do not discriminate between the input
variables [�, λSSH, k]. Instead, the polaron energies are com-
puted at randomly selected combinations of the three variables
[�, λSSH, k]. We use a Latin Hypercube sampling strategy
[48] to avoid accidental clustering of the training data and
train ML models by energy points in the three-dimensional
space thus sampled.

Figure 2 illustrates the ML predictions of KGS for the SSH
polaron as a function of � and λSSH in the range up to 1.1.
Our particular focus is on the location of the sharp transition
KGS = 0 ↔ KGS > 0 in the [λSSH,�] diagram. The models
are trained by polaron energies computed for the Hamilto-
nian parameters in the antiadiabatic limit � > 1 indicated by
the symbols in the shaded region. The predictions are tested
at different phonon frequencies, extending to the adiabatic
regime. Figure 2 (left) illustrates ML extrapolation of the
sharp transition in the frequency domain. It can be observed
that ML models capture the evolution of the combination of
λSSH and � that gives rise to the sharp transition for the SSH
polaron down to low values of frequency � = 0.5.

Figure 2 (right) demonstrates the accuracy of the ML pre-
dictions obtained by extrapolation in both � and λSSH. As
illustrated by the shaded region of Fig. 2 (right), the polaron
energies used for training ML models are entirely in the high-
frequency, KGS > 0 region of the [λSSH, KGS] diagram, far
removed from the location of the sharp transition. The evo-
lution of the SSH polaron dispersion in the [λSSH, KGS] space
is analogous to the evolution of free energy across second or-
der phase transitions for some thermodynamic systems, such
as the many-body spin system described by the Heisenberg
model. Figure 2 (right) thus illustrates that ML models can be
used to identify a phase transition by extrapolation of smooth
functions from a single phase.
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FIG. 2. Critical coupling strength λc
SSH of the SSH polaron as a function of phonon frequency (�): squares – ML predictions of the sharp

transition; triangles – location of the sharp transition from the GGCE calculations. The ML models are trained by 600 polaron energies
randomly sampled from the three-dimensional space [�, λSSH, k] at [�, λSSH] indicated by the symbols in the shaded region.

The accuracy of ML predictions obtained by extrapolation
from a given phase is expected to improve as the training data
approach the transition. This is illustrated in Fig. 3, where
the polaron energies used for training the ML models are
computed in the phonon frequency range � ∈ [1, 1.3]. The
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1.1

1.4

λ
S
S
H

KGS > 0

KGS = 0

FIG. 3. Critical coupling strength λc
SSH of the SSH polaron as a

function of phonon frequency (�): squares – predictions of the sharp
transitions by the ML models trained by polaron energies at phonon
frequencies � � 1; circles – predictions of ML models trained by
polaron energies at phonon frequencies � � 3.5; triangles – GGCE
calculations. The ML models are trained by 415 polaron energies
randomly sampled from the three-dimensional space [�, λSSH, k].
The training range for predictions represented by squares is shown
by the shaded region.

circles in this figure are the predictions of the ML model
represented by squares in Fig. 2 (left).

B. Mixed Holstein – SSH Model

We now perform the same analysis as in the previous
subsection but for a mixed coupling model given by Eq. (1).
This model has been used for the description of excitations
in molecular complexes and organic crystals [49–51]. It can
be viewed as a generalization of both the SSH and Holstein
models to include competition between phonon-induced in-
teractions that modulate the potential and kinetic energy of
the bare particle.

It was previously shown that the ground-state momentum
of the polaron described by the mixed model also exhibits a
sharp transition. However, the critical coupling strength for
the generalized model is different. The dual coupling model
gives rise to a critical coupling surface λc = [λc

SSH, λH], where
λc is a function of �. We examine cuts through this surfaces
that correspond to fixed Holstein coupling. For the case illus-
trated in Fig. 4, we fix λH = 0.5. We train the ML models
by data at � = [3.7, 4.5] and predict the shift of this new
critical coupling strength with the phonon frequency. Here the
polaron energies are calculated as in Ref. [37].

C. Predictions by extrapolation to extreme adiabatic regime

The ML models illustrated in the previous section are here
used to predict the evolution of the sharp transition to the
extreme adiabatic regime (� � 1). As � decreases, accurate
calculations of the polaron energy become exceedingly dif-
ficult. As a result, � = 0.5 is the lowest phonon frequency,
for which polaron dispersions of the SSH polaron have been
reported in the literature to date [5]. Very recently, Grundner
et al. performed DMRG calculations for a lattice with 256
sites and the SSH particle - phonon coupling for the phonon
frequency 0.2 [52]. Interestingly, the results of their work
suggest the absence of the sharp transition at this phonon
frequency. We attempt to explore the persistence of the sharp
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FIG. 4. Critical coupling strength λc
SSH of the polaron for the

mixed Holstein - SSH model as a function of phonon frequency (�):
squares – ML predictions of the sharp transition; triangles – GGCE
calculations. The ML models are trained by 600 polaron energies
randomly sampled from the three-dimensional space [�, λSSH, k]
at [�, λSSH] indicated by the symbols in the shaded region. The
Holstein coupling strength is fixed to λH = 0.5.

transition in the SSH polaron diagram by extrapolation with
ML to � � 0.4. While large values of � are relevant for some
materials, such as SrTiO3 [53], the focus of the present work is
on using the results at high � to make predictions of polaron
properties at low values of �. Thus, polaron energies at large
values of � should be viewed as easy-to-compute inputs into
ML models.

First, we consider the case of � = 0.4. Our models are
trained by the polaron dispersions at � ∈ [0.5, 0.7] and
λSSH ∈ [0.25, 1.7], down to the lowest phonon frequencies
probed by the previous calculations, and predict the polaron
dispersions and transition curve at � = 0.4. The results re-
ported in Fig. 5 show that ML models predict the expected
trend for both the polaron dispersion and the evolution of the
transition. The predicted value of λc

SSH at � = 0.4 is 1.19.
To verify this prediction, we perform selected GGCE cal-

culations with M = 5 and N = 10. The results are compared
with the ML predictions in Fig. 5. The value of λc

SSH inferred
from the GGCE calculations is between 1.1 and 1.2. A more
accurate prediction would require a large number of GGCE
calculations on a dense grid of [ω, k, λSSH], which is currently
out of reach of our computation resources.

Given that ML predictions are accurate for � = 0.4, we
now test the limits of ML models for predicting polaron
dispersions in the extreme adiabatic regime. Previous work
showed that KGS undergoes the transition to π/2 for all shown
frequencies above 0.5 [5]. However, the transition at the low-
est considered phonon frequencies is predicted to occur at a
very large coupling strength λSSH ∼ 100 [5]. Our results of
Fig. 5 show that the transition may happen at much lower
values of λSSH.

We include the GGCE results into the training set for
another set of ML models. In the process of training these ML
models, we have found that including data from a narrower
range of frequencies, just above the prediction range, leads
to better quantitative predictions. This happens because the
resulting models are less biased by the different physics at
high phonon frequencies. Therefore we produce a new set
of ML models by training with the polaron energies in the
phonon frequency range � ∈ [0.4, 0.7]. We predict the po-
laron dispersions at � = [0.4, 0.3, 0.2, 0.1, 0.01] as shown in
Figs. 6 and 7.

These predictions are in the phonon frequency regime that
is currently out of reach of rigorous quantum calculations.
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FIG. 5. (Left) SSH polaron dispersions for � = 0.4: the symbols represent the results of the GGCE calculations with M = 5, N = 10;
the solid lines are the ML predictions. The ML model is trained by the polaron energies at � ∈ [0.5, 0.7] and λSSH ∈ [0.25, 1.7]. (Right) The
sharp KGS = 0 ↔ KGS > 0 transition observed in the ground state momentum at � = 0.4: circles – the ML predictions; squares – the GGCE
calculations.
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FIG. 6. Extrapolation of the polaron dispersion relation E in phonon frequency space (�) for the pure SSH model. The dispersion curves
are predicted by a ML model trained by polaron energies at phonon frequencies � ∈ [0.4, 0.9]. The solid lines are the predictions of the
model for various coupling strengths. The horizontal dashed lines show the limit of the dispersion bandwidth equal to �. (Bottom right) The
dependence of KGS of the SSH polaron on λSSH at three phonon frequencies corresponding to the dispersion curves shown in the other panels.
The symbols represent different values of �: triangles for � = 0.4, circles for � = 0.3, and squares for � = 0.2.

They can therefore not be independently tested. However,
there are some general physical features that one can verify
to confirm the validity of the ML predictions. As described in
Ref. [5], the polaron ground state is determined by the lowest
peak in the spectral function at a particular value of momen-
tum k. The onset of the continuum happens at � above the
ground-state energy. For Einstein phonons, a state with energy
E ′ > E (0) + � can therefore dissociate into a ground state
polaron + one phonon, so a state with such energy cannot be
bound. Thus, the energy of a stable polaron must be lower than
this bound. We observe that the dispersion curves predcited
by ML for � = 0.4 and � = 0.3 satisfy |E (k) − E (0)| < �.
This condition is also approximately satisfied for � = 0.2.
We further observe that the dispersion curves predicted for
� < 0.2 do not follow this expected behavior.

Another way to confirm the validity of ML predictions
is by training multiple models with different distributions of
training data (e.g., data from different regions of the [λ,�]
diagram). All predictions in Figs. 6 and 7 are qualitatively

robust to variations of the training data. We thus attach a
high level of confidence to the ML predictions for � � 0.3.
The dispersion curves predicted by ML at � � 0.3 exhibit
the sharp KGS = 0 ↔ KGS > 0 transition. The ML predictions
at � < 0.3 cannot be regarded as reliable. Interestingly, our
results indicate a qualitative change in the ML predictions
at the phonon frequency around 0.3. The breakdown of ML
predictions below � = 0.3 may be indicative of a qualitative
change in polaron physics. This is consistent with the DMRG
results of Grundner et al. [52] at � = 0.2.

D. Interpolation in variational space

In this final section, we demonstrate multifidelity models
that can be used to enhance the efficiency and accuracy of
the GGCE calculations described in Sec. II. As mentioned
previously, we generalize the inputs to our machine learning
models to include N and M of the GGCE calculations, and
the outputs to describe the results of quantum calculations
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FIG. 7. Extrapolation of the polaron dispersion relation E in phonon frequency space (�) for the pure SSH model. The dispersion curves
are predicted by a ML model trained by polaron energies at phonon frequencies � ∈ [0.4, 0.9]. The solid lines are the predictions of the model
for various coupling strengths. The horizontal dashed lines show the limit of the dispersion bandwidth equal to �. Lower right: The dependence
of KGS of the SSH polaron on λSSH at three phonon frequencies corresponding to the dispersion curves shown in the other panels. The symbols
represent different values of �: triangles for � = 0.1, circles for � = 0.05, and squares for � = 0.01.

at different levels of theory. One can view the resulting ML
models as surrogate models of the polaron energy in the space
of [�, λSSH, k] as well as the parameters of the GGCE calcu-
lations [N, M].

We chose Eq. (8) as our kernel function in the NARGP
scheme. NARGP models are first trained on 100 points sam-
pled across the [λSSH, k] grid, with the polaron dispersions
calculated using (M, N ) = (2, 4), far smaller values than re-
quired for convergence. We limit our calculations to k �
0.8 π . The reasons for this choice are twofold. First, for
high momentum states k > 0.8 π , the peaks corresponding
to ground state energy in the spectral function tend to be
small. This poses a challenge for accurate peak detection
algorithms, potentially leading to less precise data for high
momentum states compared to the well-defined peaks ob-
served for low-lying energy eigenstates. Second, the sharp
transition is entirely captured by k � 0.8 π . With this set
of parameters, the full diagram of the polaron energies in
[λSSH, k] can be computed on an 8-core iMac with 16 GB

RAM in less than ten minutes. The poor accuracy of this
fidelity level can be seen in the green sharp transition curve
in Fig. 8, as the critical coupling strength λc

SSH at this level
is shifted to 1.21 from the exact value λc

SSH = 1.117. The
poor accuracy of this calculation is also evident from the
departure of green symbols (squares) from the fully converged
calculations represented by red circles in Fig. 8. However, GP
models of these approximate calculations can serve as a very
good prior into models of the more accurate results.

We show this by subsequently sampling 15 points from
the high-fidelity model with the polaron energies calculated
using (M, N ) = (3, 9), which correspond to fully converged
calculations. With this choice of parameters, full GGCE calcu-
lations of the entire diagram would require approximately 10
hours to generate the illustration shown in Fig. 8 on the same
computing device. The difficulty of this calculation quickly
scales up with M → M + 1, N → N + 1 and becomes in-
tractable at ∼(10,8) for most supercomputers [17,36]. The
results of Fig. 8 show that these calculations can be combined
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FIG. 8. (Top left) SSH polaron dispersions: for � = 0.5, the green squares (red circles) show the total of 100 (15) points sampled from
the lower (higher) fidelity quantum calculations and the curves are the NARGP model predictions trained on this combination of points. The
circles represent expensive quantum calculations. The solid lines are evaluated for λSSH = [0.25, 0.5, 0.75, 1.0, 1.1, 1.25, 1.5, 1.75] and 20
uniformly distributed points k ∈ [0, 0.8 π ]. (Top right) Ground-state momentum KGS of the SSH polaron as a function of λSSH. The red circles
and the green squares are the NARGP model predictions for high fidelity data with the sharp transition at λc

SSH = 1.117 and low fidelity data
with the transition at λc

SSH = 1.121, respectively. The black circles are the GGCE calculations presented for reference. (Bottom left) Red circles
– rigorous calculations (reference); broken curves – predictions of ML models trained directly by 15 high fidelity calculations. (Bottom right)
Red circles – rigorous calculations (same as in left); solid curves – NARGP model predictions. The difference between the dashed green curves
and the solid red curves represents the improvement of accuracy due to combination of low-fidelity and high-fidelity data.

to produce predictions for the polaron energies at the high
level of theory with a small fraction of the computation cost.

The improvement of the prediction accuracy by the inclu-
sion of cheap, low-level calculations is seen in the comparison
of the lower panels in Fig. 8. The left panel illustrates the ML
predictions from direct interpolation of the small number of
exact polaron energies, whereas the right panel illustrates the
predictions of multifidelity NARGP models. The computation
time to produce the dispersion curves in both panels is very
similar, as it is determined by the computation of the 15
polaron energies at the (M, N ) = (3, 9) level.

V. CONCLUSION

The present work demonstrates that it is possible to ob-
tain accurate predictions of polaron properties at low phonon
frequencies by machine learning models trained on polaron
properties at high phonon frequencies. This represents an ex-
ample of machine learning for a quantum problem, where data
from an effectively lower-dimensional Hilbert space are used
to make predictions for an effectively higher-dimensional
Hilbert space. There are numerous examples in quantum the-

ory, where this strategy can be used to extend the range
of quantum predictions beyond the limitations of numeri-
cal calculations. In the present work, we consider the sharp
transition in the ground-state momentum of the SSH po-
laron and examine the evolution of this transition from the
antiadiabatic regime to the adiabatic regime. Whether the
sharp transition observed in the antiadiabatic regime of high
phonon frequencies occurs at reasonable electron-phonon
coupling strength in the adiabatic limit has been debated in
the recent literature. All of the ML models in the present
work predict the sharp transition, even at very low phonon
frequencies.

Extrapolation, by definition, cannot be rigorously tested,
until new results become available, whether from theory or
experiment. Our conclusions rely on three results. First, we
test the prediction accuracy of our ML models in the range of
phonon frequencies accessible by quantum calculations. The
calculations for this range of phonons show that Bayesian ML
models proposed here can produce quantitative predictions by
extrapolation in the phonon frequency domain.

For the range of phonon frequencies outside of avail-
able rigorous results, we discuss the validity of our ML
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predictions based on two criteria: (i) ML predictions must
satisfy basic physical principles and (ii) models trained with
different distributions of data must produce consistent pre-
dictions. The predictions of the sharp transition for the SSH
polaron at � > 0.3 presented in this work are robust to
changes of the training data distributions and should thus be
viewed as qualitatively, if not quantitatively, correct. This is
best exemplified by the two panels of Fig. 2 that present ML
predictions with training data sampled from two very different
parts of the Hamiltonian parameter space.

We observe that ML predictions of polaron dispersions
yield energies within the expected band limits for phonon fre-
quencies just beyond the range of the training data. However,
as the prediction range of phonon frequencies is reduced to
below � = 0.3, polaron dispersions predicted by ML become
unphysical and exceed the allowed energy range. This signals
the onset of the break-down of the ML predictions. This may
be the result of the qualitative change in polaron physics,
as suggested by the work in Ref. [52]. While the present
article was in preparation, the authors of Ref. [52] reported the
DMRG calculations of the SSH bipolaron energy for a lattice
of 256 sites with phonon frequency � = 0.2. The authors
find that the sharp transition does not occur at this phonon
frequency in the range of considered values of λSSH ∈ [0, 1.5].
Their results suggest the formation of a weakly bound bipo-
laron or unstable bipolaron-like state. This suggests departure
from the trends observed in Refs. [5,6,54,55], where stable
bipolarons exist at strong coupling.

We have also demonstrated Bayesian models that use the
posterior distributions of Gaussian processes based on highly
approximate quantum calculations as the prior distribution for
models of more accurate quantum results. This drastically
reduces the number of fully converged calculations required
to map out the full dispersion relations for the full range of
Hamiltonian parameters of interest. For example, we have
demonstrated that full dispersion relations for the SSH po-
larons in the range of electron-phonon couplings from λSSH =
0.25 to 1.75 producing the correct evolution of the sharp
transition in polaron ground-state momentum for � = 0.5
can be obtained with only 15 polaron energy calculations.
This strategy can be employed to build accurate surrogate
models of quantum results for problems with a hierarchy of
approximate methods, where the number of required quantum
calculations decreases with the numerical complexity of the
method. The loss of accuracy is fully controlled and can
potentially be reduced to negligible errors by increasing the
number of calculations as well as by aligning the kernels of
the underlying models with the most accurate results.
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