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We demonstrate that a plethora of higher order topological phases emerge in magnet-superconductor hybrid
(MSH) systems through the interplay of a stacked magnetic structure and an underlying triangular surface lattice;
the latter being of great current experimental interest. Such lattices offer the ability to create three main types
of edge terminations — called x-, y- and y′-edges — of MSH islands that, in turn, give rise to a complex phase
diagrams exhibiting various regions of higher order topological superconducting (HOTSC) phases. We identify
the single adatom chain, as well as a pair of adjacent adatom chains (called a double-chain), as the basic building
blocks for the emergence of HOTSC phases. Of particular interest are those HOTSC phases which arise from a
competition between the topology of single- and double-chain blocks, which are absent for square lattices.
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I. INTRODUCTION

Majorana zero modes (MZMs) that emerge in topo-
logical superconductors have non-Abelian statistics and
topological protection against disorder and decoherence,
which can be utilized for fault-tolerant quantum comput-
ing [1]. Among the most promising material platforms
for the creation of topological superconducting phases are
semiconductor-superconductor hybrid systems [2–5], as well
as magnet-superconductor hybrid (MSH) systems [6–13]. In
the latter, magnetic adatoms are deposited on the surface of
s-wave superconductors to form one-dimensional (1D) chains
[6–9] or two-dimensional (2D) islands [10–13]. Experiments
have shown evidence for strong topological superconducting
phases in 2D ferromagnetic MSH systems [10–13], and re-
cent scanning tunneling spectroscopy experiments have also
revealed evidence for topological nodal superconductivity
in antiferromagnetic (AFM) MSH systems [13]. A series
of theoretical studies also predicted the existence of strong
topological phases in MSH systems having skyrmionic [14],
checkerboard [15], or 3Q-magnetic structures [16].

Recently, higher order topological superconducting
(HOTSC) phases have been predicted in more complex
AFM [17] or stacked [18] magnetic structures. The predicted
HOTSC phases realize extrinsic, boundary-obstructed higher
order topology [19–22], which yields a phenomenology
that depends on the details of the boundary geometry and
terminations of finite sized MSH systems. Since the types of
possible edge terminations in MSH systems strongly depend
on the underlying lattice structure of the (superconducting)
surface on which the magnetic adatoms are patterned, the
question immediately arises of how the square-lattice results
of Ref. [18] can be generalized to other experimentally
relevant lattices such as triangular lattice Re surfaces [11] or

two-dimensional NiSe2/CrBr3 heterostructures [12], or the
projected Nb bcc-lattice [13], can give rise to novel unique
new mechanisms of HOTSC phases.

In this article, we address this question by investigating the
emergence of HOTSC phases in MSH systems that possess
a triangular (superconducting) surface lattice. Such a lattice
allows for three primary types of edge terminations — which
we call x-, y-, and y′-edges — of finite MSH island samples
[see Fig. 1(a)]. The interplay between the extrinsic higher
order topology and the boundary geometry gives rise to a
complex phase diagram exhibiting distinct regions of HOTSC
phases. In particular, we show that, in contrast to MSH islands
on a square lattice [18], for a triangular lattice, HOTSCs can
arise from coupling arrays of single adatom chains, as well as
adjacent pairs of adatom chains (called double-chains). This,
in turn, is the source of the rich phenomenology of HOTSC
phases, all of which can be determined from the patterns
of dimerized couplings between the single or double-chain
building blocks. Of particular interest are the HOTSC phases
that arise from a competition between the topology of single-
and double-chain blocks, which are absent for square latices.
Finally, we show that the ability to create MSH islands of
triangular, trapezoidal, or hexagonal shape provides an un-
precedented tool to manipulate the existence and location of
Majorana zero modes. Importantly, advances in atomic ma-
nipulation techniques [9] have made the quantum engineering
of the MSH systems we describe, and hence the resulting
HOTSC phases, a real possibility for the near future.

II. MAGNETIC-SUPERCONDUCTOR HYBRID MODEL

Topological superconductivity in 2D magnet-
superconductor hybrid systems arises from the interplay of a
broken time-reversal symmetry, a Rashba spin-orbit coupling,
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FIG. 1. (a) Schematic view of the MSH system with double-
chains of magnetic adatoms: dark blue circles represent sites of the
superconducting substrate lattice and green circles with red arrows
denote the magnetic adatoms. (b) Topological phase diagram of
the MSH system, with strong topological phases colored according
to their Chern number. Regions with potential HOTSC phases are
shown in a striped pattern. Edge gap closings are shown in gray.
Zero-energy LDOS for a finite-sized island of magnetic adatoms
shown in (a), in the (c) strong topological C = 1 phase reflecting
the existence of a chiral edge modes, and (d) in a HOTSC phase,
showing the presence of characteristic Majorana corner modes. Pa-
rameters used for (c) and (d) are (μ, λ, �, JS) = (2, 0.8, 1.2, 4)t and
(μ, λ, �, JS) = (3.2, 0.8, 1.2, 2.1)t, respectively.

and a hard (s-wave) superconducting gap [23–25]. A Rashba
spin-orbit coupling is naturally induced by the broken
inversion symmetry on the surface of the superconducting
substrate, and placing magnetic adatoms on the surface breaks
time-reversal symmetry. We therefore consider the following

Hamiltonian to describe the MSH system [23–25]:

H = − t
∑
r,δ,α

c†
r,αcr+δ,α − μ

∑
r,α

c†
r,αcr,α

+ iλ
∑
r,δ
α,β

c†
r,α ([δ × σ] · ẑ)α,βcr+δ,β

+ �
∑

r

(c†
r,↑c†

r,↓ + cr,↓cr,↑)

+ J
∑

R
α,β

′c†
R,α[SR · σ]α,βcR,β . (1)

Here c†
r,α is the creation operator for an electron of spin-

α at site r on the 2D triangular lattice, −t is the hopping
strength between nearest-neighbor sites (which are separated
by a lattice vector δ), μ is the chemical potential, λ is the
strength of the Rashba spin-orbit coupling, σ is a vector of
spin-1/2 Pauli matrices, � is the s-wave superconducting
order parameter, and J is the magnetic exchange interaction
between the adatom spin SR and the conduction electrons at
site R. As such, the primed sum runs over only the sites of the
triangular lattice that are decorated with an adatom, as shown
in Fig. 1(a). Furthermore, we treat the adatoms as classical
spins since Kondo screening is suppressed by the hard su-
perconducting gap [26,27]. For our calculations we consider
adatoms that are ferromagnetically aligned out of the plane of
the superconducting substrate, as shown in Fig. 1(a), and take
the superconducting pairing and Rashba spin-orbit coupling
to be of strength � = 1.2t and λ = 0.8t , respectively. While
this value of � appears relatively large, we note that, due
the presence of the magnetic adatoms, the actual gap in the
electronic spectrum is significantly smaller, and varies across
the phase diagram. The specific value of � was chosen for
illustrative convenience in our discussion of the topological
phase diagram and to minimize finite-size effects in the LDOS
calculations for the spatially localized MZMs. However, we
find that the qualitative nature of our results, and specifically
the existence of multiple HOTSC phases, is independent of
the specific value of � (see Appendix A).

As a Bogoliubov–de Gennes (BdG) superconductor Hamil-
tonian without time-reversal symmetry, the model in Eq. (1)
belongs to class D of the Altland-Zirnbauer classification of
free fermion band topology [28–30]. Two-dimensional strong
topological phases in class D are classified by the Chern
number, an integer invariant defined as

C = 1

2π i

∫
B.Z.

d2k Tr (Pk[∂kx Pk, ∂ky Pk]),

Pk =
∑

En(k)<0

|ψn(k)〉 〈ψn(k)| ,
(2)

where En(k) and |ψn(k)〉 are, respectively, the single-particle
energies and states of the BdG Hamiltonian, k is the crystal
momentum, and both the trace and the index n run over spin,
magnetic-sublattice, and Nambu degrees of freedom.

While the presence of a nonzero spin-orbit coupling and
a uniform ferromagnetic structure of the adatoms is suffi-
cient to induce strong topological superconductivity in MSH
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systems, the emergence of a HOTSC phase requires additional
ingredients. In particular, it was previously shown [18] that
the dimerized couplings between magnetic adatoms resulting
from a spatial modulation in their arrangement on the sur-
face can give rise to extrinsic, boundary-obstructed HOTSC
phases. Such phases are separated from trivial phases by tran-
sitions at which gap closings occur on some, but not all, edges
of the MSH system [21,22]. Such phases are less stable than
intrinsic HOTSCs, as the MSH system can be trivialized by
purely edge perturbations. However, this boundary sensitivity
can also be an intriguing feature since it enables heightened
tunability of the MZMs that we discuss below.

Following Ref. [18], we consider MSH structures in which
adatom chains oriented along the x-direction are arrayed and
patterned in the y-direction, and restrict our attention to re-
peating patterns of two adjacent adatom chains followed by
an empty row of superconducting substrate [see Fig. 1(a)].
As was previously shown [18], the individual 1D chains of
adatoms can enter a 1D strong topological superconductor
phase having MZM end states and a nontrivial Z2 bulk in-
variant (Altland-Zirnbauer class D) [31]. Uniform arrays of
such chains in 2D can produce weak TSC phases that possess
gapless edge states on certain edges that are protected by
translation symmetry in the stacking direction [32]. We show
below that breaking this translation symmetry via dimeriza-
tion gaps out the weak TSC boundary modes, leaving unpaired
MZM corner modes. Hence, dimerized couplings of a stack of
these chains can produce the HOTSC phases [18].

III. TOPOLOGICAL PHASES OF THE MSH MODEL

In Fig. 1(b) we present the topological phase diagram of the
MSH model. We will now describe the variety of topological
phases that appear. Before discussing the HOTSC phases of
the MSH model described above, we briefly review the salient
features of the strong topological phases. The strong phases
are characterized by a nonvanishing Chern number C and
phase transitions where the Chern number changes are accom-
panied by bulk gap closings. In the phase diagram in Fig. 1(b)
we observe strong TSC phases having Chern numbers ranging
from C = −2 to C = 5. The solid black lines bounding these
phases correspond to bulk gap closings at high symmetry
points in the Brillouin zone. All finite-size MSH islands in any
of these strong TSC phases possesses chiral edge modes along
all edges, irrespective of edge termination or the presence of
disorder that preserves the bulk gap. The edge states generate
a nonvanishing zero-energy local density of states along the
edges, as shown Fig. 1(c), obtained from the Hamiltonian of
Eq. (1) in the C = 1 phase (for details, see Ref. [18]).

In contrast, a HOTSC phase is identified by the emergence
of MZMs at the corners of finite-size islands — the so-called
Majorana corner modes — as shown in Fig. 1(d), obtained
from the Hamiltonian of Eq. (1). Contrary to strong TSC
phases, the existence of HOTSC phases and thus the presence
or absence of Majorana corner modes, sensitively depends on
the details of the edge termination. As such, we must carefully
consider the edges that can be realized in a finite-size island
of magnetic adatoms due to the underlying triangular lattice
of the superconducting surface.

FIG. 2. Phase diagrams of (a) an isolated single adatom chain
and (b) an isolated double adatom chain. Dark gray and white regions
indicate topological and trivial phases, respectively. Insets show the
corresponding zero-energy LDOS of single and double chains in the
topological regime. Parameters used are � = 1.2t and λ = 0.8t .

To address this, we note that MSH islands of magnetic
adatoms placed on a triangular lattice can possess three dif-
ferent types of edges, one along each of the x-, y-, and
y′-directions, as shown in Fig. 1(a). We refer to these types
of edges as x-, y-, and y′-edges, respectively. While the x-
and y′-edges are straight edges, the y-edge is formed by a
zig-zag arrangement of magnetic adatoms, an arrangement
that is instrumental in determining the mechanisms for the
emergence of HOTSC phases, as we show below. Moreover,
in contrast to strong TSC phases, HOTSC phases are bounded
by gap closings on edges, rather than bulk gap closings. The
regions in the phase diagram where such gap closings occur
sensitively depend on the type of edge termination. Hence,
to identify the edge transitions, we must carry out a careful
analysis of the phase diagram for each of the x-, y-, and
y′-edges. To this end, we consider the HOTSC phases of two
different types of MSH islands: those with x- and y-edges
(Sec. III A) and those with x- and y′-edges (Sec. III B).

As we show below, the topology of the HOTSC phases
for different MSH island geometries arises from either the
topology of the single adatom chain or that of a pair of coupled
adatom chains located on adjacent rows that together form a
nontrivial 1D TSC [called a double-chain, see Fig. 1(a)]. The
phase diagrams of (isolated) single- and double-chains pos-
sess large regions with 1D strong Z2 topological phases that
are equivalent to the Kitaev chain [31], as shown in Figs. 2(a)
and 2(b), respectively. In these 1D strong TSC phases, the
respective single or double chains host MZMs at their ends,
as shown in the insets of Figs. 2(a) and 2(b) where we show
the corresponding zero-energy LDOS. We hence expect that
HOTSC phases of MSH islands can occur in all of regions
of the phase diagram where either the single- or double-chain
is topological, and where the MSH system does not exhibit a
strong topological phase; such regions are marked as regions
I to IV in Fig. 1(b). We will now show in detail how our
expectation is borne out in the phase diagram of our model.

A. HOTSC phases of MSH islands with x- and y-edges

While the phenomenological pattern of HOTSC phases
emerging in MSH systems having different edge termina-
tions is complex, we will now detail the general underlying
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(a) (b) (c) (d)

(e) (f) (g) (h)
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FIG. 3. (a)–(d) Four different edge terminations of MSH islands with x- and y-edges and (e)–(h) the corresponding phase diagrams: (a,e)
single-chain termination, pointing out (SO) (b,f) single-chain termination, pointing in (SI) (c,g) double-chain termination, pointing out (DO)
and (d,h) double-chain termination, pointing in (DI). HOTSC phases are denoted by pink regions, strong topological phases with nonzero
Chern numbers by light gray regions, and edge gap closings by dark gray regions and lines.

mechanisms for these HOTSC phases and explicitly demon-
strate how the HOTSC phases arise from the interplay
between the stacking and coupling of the basic single- or
double-chain units described above.

We begin by considering MSH islands with x- and y-edges.
For such an island geometry, several types of edge termina-
tions are possible since the x-edge of the island can terminate
either on a single adatom chain or on a double adatom chain.
Furthermore, for each of these choices of x-edge terminations,
the associated y-edges can point either in or out at the cor-
ners, as illustrated in Figs. 3(a) to 3(d). We refer to these
four different terminations of rectangular islands as single out
(SO) [Fig. 3(a)], single in (SI) [Fig. 3(b)], double out (DO)
[Fig. 3(c)], or double in (DI) [Fig. 3(d)] terminations. The
corresponding phase diagrams in Figs. 3(e) to 3(h) reveal that
HOTSC phases can occur in all regions I to IV [see Fig. 1(b)],
depending on the edge termination.

The microscopic mechanism underlying the HOTSC
phases can be understood by considering the phase diagrams
of isolated single and double adatom chains, as shown in
Figs. 2(a) and 2(b), respectively. By overlaying the phase
diagram of the single chain [see Fig. 2(a)] and the double
chain [see Fig. 2(b)] with the phase diagram in Fig. 1(a), as
shown in Figs. 4(a) and 4(b), respectively, we find that only
the single adatom chain is topological in regions I to III, while
both the single and double-chains are topological in region
IV. This suggests that the single chain is the fundamental
building block underlying the HOTSC phases in regions I
to III, while the HOTSC phases in region IV may depend
on the interplay between the topological phases of both the

single- and double-chains. In the following, we will therefore
consider these two cases separately.

1. HOTSC phases in regions I-III:
The single adatom chain building block

The origin of the HOTSC phase in regions I to III of the
phase diagram can be understood by considering an MSH
island with x- and y-edges built from topological single-chains
(which themselves extend along the x-axis). Each of the single
topological chains exhibits a single MZM at their end. Stack-
ing these chains along the y-axis can generate the different

0 1 2 3

(a) (b)

0 1 2 3 4 5
0

1

2

3

4

5

FIG. 4. Topological phase diagram of (a) a single adatom chain
[see Fig. 2(a)] and (b) a double adatom chain [see Fig. 2(b)] overlaid
with the phase diagram of Fig. 1(a). Topological phases of the single-
chain and double-chains are denoted by purple regions.
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Unpaired
MZM

Hybridized
MZMs

(a) (b)

(c) (d)

FIG. 5. Different ways to pair up the MZMs at the ends of
adatom chains when they are in the topological phase. (a) Single-
chains are topological, and MZMs hybridize via vertical intrapair
couplings, (b) Single-chains are topological, and MZMs hybridize
via interpair couplings, (c) Double-chains are topological, and their
MZMs hybridize when two double-chains are pointing at each other,
(d) Single- and double-chains are topological, so an MZM from a
double-chain can pair with an MZM from a single-chain.

terminations shown in Figs. 3(a) to 3(d). The corresponding
phase diagrams shown in Figs. 3(e) to 3(h), reveal that the
HOTSC phases in regions I to III are sensitive only to whether
the x-edge boundary terminates at a single or a double chain,
but are independent of whether the final row points in or out.

To understand these regions of the phase diagrams let us
first consider a system with a single chain termination, as
depicted in Figs. 3(a) and 3(b). Region I in the corresponding
phase diagrams of Figs. 3(e) and 3(f) possesses one trivial and
one HOTSC phase that are separated by a phase transition at
which the gap along the y-edge closes; we refer to this as a
y-edge transition (an explanation of how edge gap closings are
identified is given in Appendix B). The HOTSC phase in this
region arises from an intrapair coupling (i.e., the coupling be-
tween the two chains located on adjacent rows) that is stronger
than the interpair coupling, i.e., the coupling between chains
that are separated by an empty row. The two MZMs within
each pair of chains thus strongly hybridize and annihilate (i.e.,
they move into the bulk continuum). Consequently, only the
MZMs belonging to the ends of the single-chains at the top
and bottom of the MSH island remain (as they do not couple
to any other MZMs) and persist as Majorana corner modes,
as schematically shown in Fig. 5(a). In contrast, in the trivial
phase, the relative strength of the intrapair and interpair cou-
plings are reversed, such that the MZMs of chains separated
by an empty row hybridize, and fuse into a bulk state, as
schematically shown in Fig. 5(b), thus leaving no unpaired
MZMs and rendering the system trivial. Finally, at the y-edge
phase transition separating the trivial and HOTSC phases, the
intrapair and interpair couplings become equal and the MZMs
from each of the individual chains couple along the y-edge,
resulting in the formation of a gapless dispersive mode.

Following this reasoning, it becomes immediately clear
that the trivial and topological phases in region I are in-
terchanged between MSH islands with a single-chain and a
double-chain termination. This can easily be seen from the
schematic rendering of the MSH systems in Figs. 5(a) and
5(b): when an additional (topological) chain is added to the
top of the MSH system in Fig. 5(a), and the termination
is thus changed to a double-chain termination, the MZMs
of the original single-chain and the added chain hybridize,
thus rendering the system trivial. On the other hand, when
a single-chain is added to the top of the MSH system in
Fig. 5(b), this chain adds unpaired MZMs that are located
in the corners of the MSH system, thus rendering it in the
HOTSC phase. We note that this result is a general feature
of a boundary-obstructed extrinsic phase: the topological and
trivial phases exchange places in the phase diagram when the
edge termination is changed, but the distinction between the
two phases survives [22].

The mechanism that generates the HOTSC phases in re-
gions II and III is similar to that in region I. However, while
region I is divided into two regions where either the intra-
pair coupling is stronger than the interpair coupling, or vice
versa, in regions II and III the interpair coupling is always
stronger than the intrapair coupling. Moreover, in contrast to
region I, the phase transitions between HOTSC and trivial
phases in regions II and III are accompanied by a gap closing
along the x-edge (we refer to these as x-edge transitions).
These transitions occur when the single-chains themselves
undergo a topological phase transition, and thus we expect
that the x-edge transition lines in the phase diagram should
approximately coincide with the phase transition lines of the
isolated single-chains, as shown in Fig. 4(b). In region III, this
x-edge transition occurs over an extended region of the phase
diagram (i.e., it is not simply a 1D line). This extended region,
however, does not represent a topological phase as the x-edge
remains gapless simply because of an accidental crossing of
trivial bands at the Fermi level.

2. Competing HOTSC phase in region IV:
Interplay of single- and double-chains as building blocks

We next consider the origin of the HOTSC phase in region
IV of the phase diagram, a region in which both the isolated
single and double adatom chains can be topological, as shown
in Fig. 4. To understand the competition and interplay between
the two types of nontrivial chains we begin by considering
MSH islands with a double-chain termination along the x-
edge. For such a system, each double chain takes the form
of a long trapezoid that is stacked in an alternating manner as
depicted in Fig. 5(c). Moreover, as follows from the LDOS
shown in the inset of Fig. 2(b), the MZMs of the topological
double-chains are localized at the sharp outermost corners of
this trapezoid. When the long sides of two such trapezoids
face each other, the MZMs hybridize strongly, thus annihilat-
ing such that the composite system forms a trivial state, as
illustrated for the bulk double-chains in Fig. 5(c). Thus, when
the MSH island is terminated with a trapezoidal double chain,
such that the long side of the trapezoid is outward facing [thus
realizing a DO termination as shown in Fig. 3(c)], isolated
MZMs remain at the corners of the system [as shown in
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Fig. 5(c)], thus reflecting the existence of the HOTSC phase,
as shown in region IV of the phase diagram in Fig. 3(g).

In contrast, if the x-edge termination of the MSH system
is of the DI type [see Fig. 3(d)], all MZMs of the double-
chain blocks hybridize, yielding a trivial phase in region
IV, in agreement with the results shown in Fig. 3(h). Thus,
for the DO and DI terminations, the double-chain forms the
topological building block and its alternating stacking pro-
duces staggered inter-double-chain couplings that generate
the HOTSC phase. However, unlike the single-chain mech-
anism in regions I to III, both the stacked structure of the
adatom chains as well as the triangular geometry of the lattice
(giving rise to trapezoidal double chain units) are required to
generate the HOTSC phase.

Finally, we discuss the existence of the HOTSC phase in
region IV for MSH systems with SO and SI terminations.
This case is the most complicated as it involves the inter-
play of both the single- and double-chain units. We begin
by noting that MSH islands with SO and SI terminations
can be constructed by adding a single chain to the x-edges
of a system with DO and DI terminations, respectively. As
such, the topology of the resulting systems with SO and SI
terminations can be understood by considering the interaction
between the double-chain termination and the added single-
chain. For example, an MSH island with a DO termination is
in a HOTSC phase in region IV of the phase diagram, thus
possessing Majorana corner modes [see Fig. 5(c)]. If we add
a single-chain (transforming the system into one with an SO
termination) and that chain is trivial, the original DO termina-
tion Majorana corner modes will persist and the system will
remain in the HOTSC phase. On the other hand, if the added
chain is topological, then the additional MZMs will hybridize
with the existing corner MZMs and render the system trivial,
as shown in Fig. 5(d).

Thus, for an SO terminated MSH system, region IV is
divided into a trivial and topological region which correspond
approximately to those regions where the single chain is
topological or trivial, respectively [see Fig. 4(a)]. Moreover,
this argument immediately implies that these two phases are
separated by a gap closing along the x-edge, corresponding to
the topological phase transition of an isolated single chain.
Indeed the x-edge transition line in region IV corresponds
approximately to the phase transition line of the isolated
single-chain, as shown in Fig. 4(a). This line of reasoning
thus explains the results shown in Figs. 3(e) and 3(f): the
single-chain is trivial to the left of the x-edge transition line,
yielding a HOTSC phase for the SO terminated system in this
region, while to the right of the transition, it is topological,
thus yielding a trivial phase. The situation is just reversed
for an SI-terminated MSH system, since the DI-terminated
system (in contrast to the DO-terminated system) is trivial in
region IV: thus adding a topological (trivial) single-chain to
the trivial DI-terminated system will yield an SI-terminated
system in the HOTSC (trivial) phase.

B. MSH islands with x- and y′-edges

As a final example we consider MSH island geometries
that possess both x- and y′-edges. An explicit realization
is a parallelogram MSH island, shown in Fig. 6(a), whose

FIG. 6. (a) A parallelogram MSH island shown in light gray,
overlaid with the zero-energy LDOS in the HOTSC phase revealing
Majorana corner modes at both acute and obtuse angle corners.
(b) Zoom-in of (a), showing one acute angle corner. Topological
phase diagram for an parallelogram MSH island with (c) a single-
chain termination, and (d) a double-chain termination along the
x-edge. Parameters used in (a) and (b) are JS = 2t and μ = 3.2t .

edges are aligned with the bond-direction of the underlying
hexagonal lattice. In a HOTSC phase, such an MSH islands
exhibits Majorana corners modes at both acute and obtuse
angle corners, as shown in Figs. 6(a) and 6(b). The HOTSC
phases of such an island occur in regions II and III of the
phase diagram [see Figs. 1(b), 6(c) and 6(d)]. This implies
that the mechanism governing the HOTSC phases relies on the
topological phase of the isolated single chain, and the relative
strength between intrapair and interpair chain couplings that
we defined above. Note that, because of the island geometry,
the strengths of the intrapair and interpair couplings in the
various regions of the phase diagram are different from MSH
islands that have x- and y-edges. In region II, only the double-
chain terminated system exhibits a HOTSC phase, implying
that the interpair coupling is the dominant one in this region.
In region III, MSH systems with single- and double-chain
terminations exhibit complementary HOTSC phases, and the
corresponding topological phase transitions are accompanied
by gap closings along the y′-edge. Additionally, since this
system does not have zigzag edges, the staggered coupling
between topological double-chains discussed above for the
MSH island with x- and y-edges cannot be realized, and hence
no HOTSC phases are found in region IV. Rather, this region
exhibits a weak TSC phase [32], implying a near uniform
interpair and intrapair coupling along the y′-edge. This mech-
anism for the emergence of a weak TSC phase is thus similar
to that found for rectangular MSH islands located on an un-
derlying square lattice of the superconductor, as discussed in
Ref. [18].

Using a combination of x- and y′-edges, it is also pos-
sible to form triangular, trapezoidal, and hexagonal islands
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FIG. 7. Zero-energy LDOS for different MSH island geometries:
(a) a trapezoidal island, (b) a triangular island, (c) a hexagonal
island formed by stacking of two trapezoids, and (d) a hexagonal
island with a single adatom chain inserted in the middle. Parameters
used for (a,b) and (c,d) are (μ, λ, �, JS) = (5, 0.8, 1.2, 3.5)t and
(μ, λ, �, JS) = (4, 0.8, 1.2, 2.5)t, respectively.

as shown in Fig. 7. For MSH islands with trapezoidal ge-
ometries, the corners of the island are identical to corners of
the parallelogram, where x- and y′-edges meet. Hence, these
MSH islands possess the same phase diagrams as those for the
parallelogram island shown in Figs. 6(c) and 6(d). We note
that a trapezoidal island [see Fig. 7(a)] can be transformed
into a triangular one [see Fig. 7(b)] by adding successively
shorter chains to the top x-edge. As such, the distance between
the two Majorana corner modes on the top of the system is
reduced with each successive chain, such that they eventually
hybridize and annihilate. Thus, a triangular MSH island, as
shown in Fig. 7(b) exhibits only a single set of Majorana
corner modes at the bottom edge, but none at the top corner.
At first glance it may appear that this arrangement of MZMs
violates the C3 symmetry of the triangular lattice, but this
symmetry is already broken by the adatom decoration and
therefore does not preclude such arrangements.

The hexagonal island shown in Fig. 7(c) exhibits two dif-
ferent types of corners: the corners at the top and bottom of
the hexagon are formed when x- and y′-edges meet, and thus
again exhibit Majorana Corner modes. In contrast, the middle
corners are formed by two y′-edges, and thus do not exhibit
MZMs. Indeed, such a hexagon can be formed by combin-
ing two oppositely oriented trapezoids, which lays plain the
reason for the absence of MZMs on the middle corners: the
MZMs of the sharp corners of the two trapezoids strongly hy-
bridize at these corners and thus annihilate. However, one can

construct a modified, nearly hexagonal island that possesses
MZMs at the middle corners by inserting an additional single
adatom chain hosting MZMs in the center of the hexagon, as
shown in Fig. 7(d).

IV. DISCUSSION

Our results show that MSH systems with a triangular
(superconducting) surface lattice, which are experimentally
relevant for the engineering of MSH systems [11], exhibit a
richer HOTSC phase diagram than was previously found for
square lattices [18]. These HOTSC phases are extrinsic in
nature, and thus sensitively depend on the edge termination
of an MSH island. For an MSH island with x- and y-edges,
we identified four different edge terminations, labeled SI,
SO, DI, and DO. The qualitatively new feature in triangular
lattices is that the existence of HOTSC phases depends on
the system’s termination along the x-edge as well as along
the y-edge. The latter arises from the fact that on a triangular
lattice, both the single- and double-chain are basic building
blocks for the MSH system, while on a square lattice, it is only
the former. It is the competition and interplay between the
topological nature of the single- and double-chain blocks that
gives rise to HOTSC phases that are sensitive not only to the
x-edge, but also to the y-edge termination. The sensitivity of
extrinsic HOTSC phases to the edge terminations also results
in a phase diagram for an MSH island with x- and y′-edges
that is qualitatively different from that with x- and y-edges.
More generally, we find that the existence of Majorana corner
modes can be custom-designed by creating corners in MSH
islands made by the intersection of different edges, such as in
a MSH triangle, which possesses corners made of x- and y′-
edges as well as of two y′-edges. Our results demonstrate that
MSH systems with experimentally relevant triangular lattice
structure possess a plethora of HOTSC phases, which opens
unprecedented possibilities for the quantum engineering of
HOTSC phases and the patterning of MZMs by using atomic
manipulation techniques to alter edge terminations.
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APPENDIX A: TOPOLOGICAL PHASE DIAGRAM FOR
SMALLER SUPERCONDUCTING ORDER PARAMETER

In Fig. 8 we present the topological phase diagram of an
MSH island with x- and y-edges for values of the supercon-
ducting order parameter and Rashba spin-orbit coupling, � =
0.9t and λ = 0.6t , which are different from the ones used in
the main text. In particular, � here is smaller than the one used
for the results in Fig. 1(b). Despite these different parameters,
the phase diagrams shown in Fig. 8 and in Fig. 1(b) are
qualitatively, and to a large extent quantitatively, very similar.
In particular, although the boundaries of the strong topological
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FIG. 8. Phase diagram of an MSH island with x- and y-edges for
� = 0.9t and λ = 0.6t . The regions in which HOTSC phases can
occur, depending on the choice of edge termination, are indicated by
vertical stripes.

superconducting phases are slightly shifted, the regions in
which higher order superconducting phases can occur persist
in the phase diagram. This supports our conclusion that the
emergence of HOTSC phases are a general feature of MSH

systems with a stacked magnetic structure on an underlying
triangular superconducting surface.

APPENDIX B: BOUNDARIES OF THE HOTSC PHASE
AND EDGE GAP CLOSINGS

To obtain the boundaries of the HOTSC phase in the phase
diagram of Fig. 1(b), and, in particular, those parameters for
which an x-, y-, or y′-edge gap closing occurs, we consider
the Hamiltonian of Eq. (1) in a ribbon geometry with periodic
boundary condition (PBC) along the respective edge direction.
This allows us to Fourier transform the system along the
edge direction, and to then obtain the excitation spectrum
as a function of the momentum along the ribbon’s edge. We
thus obtain the ribbon’s excitation spectrum as a function of
the momentum along the edge, allowing us to identify the
parameters for which the gap along the edge closes. To find
the excitation spectrum along the x-edge, we diagonalize a
4Ny-by-4Ny Hamiltonian matrix. Similarly, we diagonalize
24Nx-by-24Nx matrices to find y-edge gap closings and 12Nx-
by-12Nx matrices to find y′-edge gap closings. The different
matrix size arises from the different sizes of unit cells for the
various ribbon geometries. For the results shown above, we
used Nx = 116 and Ny = 276.
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