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Josephson junction arrays as a platform for topological phases of matter
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Two-dimensional arrays of superconductors separated by normal metallic regions exhibit rich phenomenology
and a high degree of controllability. We establish such systems as platforms for topological phases of matter,
and in particular chiral topological superconductivity. We propose and theoretically analyze several minimal
models for this chiral phase based on commonly available superconductor-semiconductor heterostructures. The
topological transitions can be adjusted using a time-reversal-symmetry breaking knob, which can be activated
by controlling the phases in the islands, introducing flux through the system, or applying an in-plane exchange
field. We demonstrate transport signatures of the chiral topological phase that are unlikely to be mimicked by
local nontopological effects. The flexibility and tunability of our platforms, along with the clear-cut experimental
fingerprints, make for a viable playground for exploring chiral superconductivity in two dimensions.
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I. INTRODUCTION

Junctions between two superconductors separated by
a normal region exhibit rich physics. These so-called
superconductor-normal-superconductor (SNS) Josephson
junctions (JJs) allow dissipationless current to flow through
the normal region, whose direction is determined by the
phase difference between the two superconductors [1].
In the last decades, this fundamental unit has been
extended to two-dimensional (2D) arrays of JJs [2,3].
Among the myriad of phenomena observed in JJ arrays are
the superconductor-insulator transition [4–6], achieved
by varying the ratio between the Josephson coupling
between islands to the charging energy of the islands,
and the Berezinskii-Kosterlitz-Thouless transition driven by
proliferation of vortices which turn the superconductor to a
normal metal [7,8].

Meanwhile, and in a seemingly unrelated trajectory, topol-
ogy has become one of the prevalent themes in modern
condensed matter physics [9]. The prime example is the quan-
tum Hall effect, whose remarkable experimental features are
extremely robust to imperfections [10]. This robustness orig-
inates from the chiral edge modes that are protected by the
topology of the bulk. The superconducting analog of this state
is the chiral p-wave superconductor, with the canonical model
being the px + ipy superconductor [11–14]. The universal,
model-independent features of this topological phase are the
appearance of chiral Majorana edge modes and the existence
of Majorana bound states in vortex cores. These two features
establish two-dimensional p-wave superconductors as an in-
triguing novel state of matter.

There have been several reports of possible chiral
topological superconductivity in naturally occurring mate-
rials [15–17]. However, a clear-cut identification of the
topological nature requires tunability—the ability to switch
the topological phase on and off—which is lacking in these
materials. Much effort has therefore been devoted to engi-
neered platforms. One of the pioneering proposals introduced
by Fu and Kane [18] relied on inducing the superconducting

proximity effect to the surface of a three-dimensional topolog-
ical insulator. This remarkable idea poses two challenges: it is
not tunable, and it is hard to realize experimentally [19]. It was
later suggested to use more conventional materials [20,21],
but these also come with their experimental complications due
to either vortices or material restrictions. Several other intrigu-
ing ideas have also been put forward in recent years [22–30].

Our goal in this manuscript is to lay the groundwork for
combining the physics of Josephson junction arrays with topo-
logical matter [31]. We propose realistic and viable platforms
that give rise to two-dimensional topological superconductiv-
ity, in arrays of superconducting islands separated by normal
conducting regions with spin-orbit coupling.

To demonstrate the opportunities available in this plat-
form, we analyze several minimal models. We supplement
the heuristic arguments with numerical tight-binding simula-
tions, establishing the existence of superconducting gapped
chiral phases. We introduce three possible ways to form
topological superconductivity: phase control (Sec. II), where
we find in analogy to previous analysis in one dimension
(1D) [32–36] that phase winding is essential; orbital magnetic
fluxes (Sec. III); and in-plane exchange field (Sec. IV). While
the experimental implementation of the three proposals we
discuss here may differ significantly, they are all intimately
related. In the first proposal, we exert external control over
the phases of the superconductor. In the second proposal,
the application of a magnetic field induces phase differences
between the superconducting islands by creating vortices. Fi-
nally, the presence of spin-orbit coupling in the third proposal
allows us to view the application of a Zeeman (or exchange)
field as an effective orbital vector potential. We conclude by
demonstrating simple and practical experimental signatures of
the topological superconducting phases.

II. PHASE-CONTROLLED JOSEPHSON
JUNCTION ARRAYS

A useful starting point for the considerations we apply is
inspired by the formation of topological superconductivity
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(a) (b)

FIG. 1. Chiral topological superconductivity in a phase-controlled Josephson junction array. (a) The proposed configuration, consisting of a
spin-orbit coupled 2DEG (blue) covered by superconducting islands (gray). The islands form a superlattice with the repeating superconducting
phases {0, 0, φ1, φ2}; the unit cell is shown in a black frame. (b) Topological phase diagram of the model as a function of the phases φ1 and
φ2. Colors indicate the Chern number C, whereas the intensity corresponds to the bulk gap relative to the pairing gap �. The topologically
nontrivial states with C = ±1 appear only in regions where phase winding occurs, which are marked by solid lines for clarity. Notice that
the chirality (the sign of the Chern number) flips when changing the phases from forming a vortex to an antivortex in each unit cell. In the
tight-binding model, each island is represented by a single site, and the parameters are t = 1, � = 0.5, μ = 1.15, η = 0.5, and λ = 0.2π .

on the surface of a three-dimensional topological insula-
tor [18,37]. The presence of a single Fermi surface forces
the superconducting state to be topological, such that each
vortex core carries one Majorana mode at zero energy, and
the superconducting state is encircled by a chiral edge mode.
In the system we consider, the normal state is a stand-alone
two-dimensional system in which there are two Fermi sur-
faces, and the spin-orbit coupling makes the radii of these
surfaces unequal. When superconductivity is induced in such
a system without coupling the two Fermi surfaces, two copies
of a topological superconductor will be formed with opposite
chiralities. Then, each vortex will carry two Majorana modes.
An array of vortices will then form a tight-binding array
of sites, with each sites carrying two Majorana modes. The
interaction between the normal and superconducting regions
will then couple the Majorana modes with intra- and intersite
tunneling. When tuned properly, this coupling will create a 2D
topological superconductor.

We now construct a model for a topological supercon-
ductor that is based on these premises. We consider a 2D
electron gas (2DEG) with Rashba spin-orbit coupling. We
then selectively introduce superconducting islands arranged
in a square lattice, as shown in Fig. 1(a), and assume full
control of the phase of each island and the Josephson coupling
of nearest-neighboring islands. The islands form a periodic
structure, with a supercell which we take to have four islands.

Based on the considerations above, as well as on previ-
ous results in related models [18,32,35], we seek a phase
configuration that includes a vortex, i.e., a phase winding of
2π , within each cell. The periodicity of the phases implies
that when properly defined, the net phase winding over a
unit cell must vanish, such that each unit cell would include
both a vortex and an antivortex. Furthermore, our choice of
phase configuration should avoid a symmetry that forbids a
superconductor with a nonzero Chern number and chiral edge
states. Such symmetries include time-reversal symmetry, mir-
ror symmetries, and combinations of these symmetries with
partial unit cell translations.

With these considerations in mind, we assign the four
islands of the unit cell the phases of of {0, 0, φ1, φ2}, and
choose the intracell Josephson couplings to be larger than the

inter-cell ones. A proper choice of φ1, φ2 breaks time-reversal
symmetry and introduces phase windings into the unit cells,
while the variation of the Josephson couplings breaks mirror
symmetries. In practice, the strength of the Josephson cou-
pling is to be controlled by the width of the normal regions
between the superconducting islands.

We model the system using the tight-binding method on a
square lattice. The topological invariant characterizing this 2D
class D system is the integer-valued Chern number C, which
counts the number of chiral Majorana edge modes [38–41].
The number C may be evaluated explicitly in momentum
space [42,43]. It is also informative, and much easier, to
calculate its parity,

(−1)C =
∏

�k∈TRIM

Pf[�H(�k)], (1)

where TRIM are the time-reversal-invariant momenta, H is
the Bogoliubov–de Gennes Hamiltonian, � is the antiunitary
particle-hole operator, and Pf(·) is the Pfaffian.

Within a tight-binding model, the normal state, which is a
2DEG with Rashba spin-orbit coupling, is described by the
following discrete Hamiltonian,

H0 =
∑

m,n;s,s′
−μm,nc†

m,n,scm,n,s + [ − c†
m,n,s

(
t x
m,neiλσy

)
ss′cm+1,n,s′

− c†
m,n,s

(
t y
m,ne−iλσx

)
ss′cm,n+1,s′ + H.c.

]
, (2)

where c, c† are electronic creation and annihilation opera-
tors, the indices m, n label the sites in the x, y directions,
s, s′ ∈ {↑,↓} are the spin indices, σ are Pauli matrices in
spin space, μm,n is the (site-dependent) chemical potential,
t is the nearest-neighbor hopping amplitude, and λ is the
spin rotation angle due to Rashba spin-orbit coupling. The
hopping is modulated, to generate the varying strength of the
Josephson coupling: within the unit cell it is t , and between
unit cells it is ηt where η < 1. The full Hamiltonian is given
by H = H0 + HSC. Here the superconducting part is

HSC = �
∑

m,n

eiφm,n c†
m,n,↑c†

m,n,↓ + H.c., (3)
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(a) (b)

FIG. 2. Four phase-biased islands. (a) Energy spectrum (lowest 40 levels) as a function of the phase bias φ, showing many Andreev bound
states. When the phase winds (φ > π/2), the lowest Andreev bound states are close to zero energy. (b) Wavefunction of the lowest-energy
state at φ = 3π/4, showing anisotropic localization at the junction between the four islands. The tight-binding parameters are t = 1, λ = π/5,
μ = −3, � = 0.3.

where � is the pairing potential and the site-dependent phase
configuration φm,n is illustrated in Fig. 1(a). We use the
momentum-space representation to calculate topological in-
variants and energy gaps. This Hamiltonian is somewhat
simplified in having the unit cell for the superconducting
islands of the same size as the unit cell of the normal part.
However, we do not expect this simplification to affect the
analysis of the topological properties of the system, which are
our main focus here.

Remarkably, by varying φ1 and φ2, we observe two distinct
topologically nontrivial phases, for which C = ±1, as shown
in Fig. 1(b). These phases differ in their opposite chirality.
They possess an excitation gap which is a significant fraction
of the induced pairing gap �. In practice, we expect this gap to
depend on many parameters of the system, such as the widths
of the normal regions separating the superconducting islands.

To facilitate understanding the subgap spectrum, we begin
by considering a single unit cell, and model the four islands
within it as many sites (20 × 20) separated by a few sites (2 in
each direction) without superconductivity. The entire system
is deposited on a spin-orbit coupled medium. The energy
spectrum of the four-island system is shown in Fig. 2(a). At
zero phase bias, we observe Andreev bound states starting
around the energy �/2. These states are merely a result of the
finite normal region. As φ grows, the Andreev bound states
penetrate deeper into the gap, until at φ = π/2—the onset
of phase winding—the lowest state reaches zero energy. We
then observe several states at low energies that can be thought
of as the discrete version of the Caroli-de Gennes-Matricon
states appearing in vortex cores. Remarkably, for a range of
phase differences between π/2 and π , the vortex carries a pair
of states close to zero energy, whose distance from the other
states is rather large (a significant fraction of �). Then, the
low-energy spectrum of the array may be described in terms
of two Majorana bands, which originate from the coupling
of these two states in nearest-neighboring vortices. Notice
that the lowest states are in no way topologically protected.
At φ = π , we effectively get a single π Josephson junction
between the upper and lower islands, resulting in many states
close to zero energy. Figure 2(b) shows the wave function
(local density) of the lowest-energy state at φ = 3π/4 (i.e.,

with phase winding). This state is localized at the junction
between the four islands, with a larger weight at the junction
between the φ, −φ islands.

The particular phase configuration we presented, described
by φ1 and φ2, is just an example for a broader principle,
namely the construction of a two-dimensional topological
superconductor with a nonzero Chern number by the com-
bination of a periodic, vortex-carrying phase pattern, with
Rashba spin-orbit coupling. As expected, the Chern number
switches sign when both phases switch signs (φ1 → −φ1,
φ2 → −φ2), corresponding to time reversal, or when the two
phases are exchanged, φ1 → φ2, φ2 → φ1, corresponding to a
mirror operation. These symmetries constrain the shape of the
phase diagram, as evident also in the numerical results shown
in Fig. 1(b). However, our setup is by no means limited to just
this type of configuration; see Appendix. B.

We notice that certain regions in the phase diagram in
Fig. 1(b) are gapless. The appearance of gapless lines in
the transitions between phase with different Chern numbers
is well understood, but the seemingly extended regions in
parameter space where gapless phases emerge are not a priori
expected. Upon closer inspection, we find that these regions
have a finite Fermi surface at zero energy, implying that they
are not nodal superconductors (in which the gap closes only
at an isolated point in the Brillouin zone). As we demonstrate
in Fig. 3, this behavior is consistent with gapless supercon-
ductivity, where the single-particle energy gap vanishes but
the pair correlations remain nonzero [44–46]. Such a situation
is known to occur in superconductors with many magnetic
impurities or large current, and our platform provides another
setup to study this phase.

To understand the origin of the gapless phase in our system,
it is useful to start from the point of view of Majorana bound
states in vortex cores, as in Fig. 2. When a vortex is present,
the low-energy spectrum consists of two coupled Majorana
bound states, whose energies are slightly shifted from zero.
Our system can therefore be modeled as a square lattice with
two states per site, making it a two-band model. The only
symmetry present is particle-hole, which in real space we can
take to be τxK, where τ j are the Pauli matrices acting in the
2 × 2 band space and K refers to complex conjugation. The
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FIG. 3. Gapless superconductivity in the phase-controlled
Josephson junction array of Fig. 1. Setting φ1 = −φ2 = φ, we
calculated the single-particle energy gap (blue) and the pair
correlation function (green). For both quantities, we looked for
the lowest values across the two-dimensional Brillouin zone. At
a certain region (shaded), the single-particle gap vanishes while
the pair correlation function remains finite at all momenta. This
is the characteristic behavior of a gapless superconductor. (Inset)
E = 0 Fermi surface at φ = 3π/4 (marked by a dash line) inside the
gapless phase.

most general Hamiltonian allowed by this symmetry, assum-
ing only nearest-neighbor hopping, is

H = (a0 sin kx + b0 sin ky)τ0 + (a1 sin kx + b1 sin ky)τx

+ (a2 sin kx + b2 sin ky
)
τy + (

a3 sin kx + b3 sin ky + c)τz

(4)

where the coefficients a j, b j, c are real. The corresponding
spectrum is

E (kx, ky) = a0 sin kx + b0 sin ky ± [(a1 sin kx + b1 sin ky)2

+ (a2 sin kx + b2 sin ky)2

+ (a3 sin kx + b3 sin ky + c)2]1/2. (5)

To find a gapless phase, we need to solve E (kx, ky) = 0; this
is a single equation with two variables, kx and ky, and in
general the solution is a curve. In the absence of a0 and b0,
finding a solution would require all terms in the square root
to vanish at the same time (since they are all non-negative).
This would impose many constraints on the coefficients and
is thus not expected to have a solution generically. However,
having a0, b0 �= 0 (which happens naturally for systems with
a superconducting phase gradient) relaxes this strict condition
and makes the gapless phase generic if all coefficients are of
the same order of magnitude. We note that if, for example, the
Majoranas are very far away from zero energy, as in the case
without a vortex, c is much larger than the other coefficients
and generically we will not find a gapless phase.

III. VORTEX LATTICE FORMED BY FLUX

Motivated by the results of the previous section, we now
ask whether a chiral topological state can be induced with-
out controlling the phase of each island directly. Rather,
the phases are to be controlled by subjecting the sample to

an out-of-plane magnetic flux, such that a vortex lattice is
formed [47,48]. Since the basic building block we used in
the previous section was a unit cell with phase winding, it is
reasonable to expect a similar mechanism to work when flux
is applied.

We demonstrate this concept using the special case of f =
1/2 superconducting flux quanta per plaquette, in an array in
which the London length is much larger than the unit cell. In
such an array, the magnetic field is approximately uniform,
with a flux of h/4e per plaquette, but the vortices form a
vortex lattice with a doubled unit cell, breaking the translation
symmetry of the original lattice. Every second plaquette hosts
a vortex, and the vortices form a checkerboard lattice [47,48].
Taking into account the frustration of some of the bonds
due to the vector potential, one can extract the superconduct-
ing phases corresponding to this vortex configuration. As in
Sec. II, we place the islands on top of a spin-orbit coupled
2DEG.

In the proposed configuration, the creation of a chiral topo-
logical superconductor again requires all mirror symmetries to
be broken, such that vortices are distinguished from antivor-
tices. We again do that by creating a distinction between the
unit cells and their surrounding, as illustrated in Fig. 4(a): each
island is split into four sites, and the tunneling between them
are not homogeneous.

In the tight-binding simulation, the hopping is modulated
as depicted in Fig. 4(a). In addition, to take into account
the effect of the magnetic field on the electrons, we use the
Peierls substitution [49], which makes the hopping along the
x direction complex (we use the gauge �A = Byx̂):

c†
m,n,s(teiλσy )ss′cm+1,n,s′ → −c†

m,n,s(tei π f
2 neiλσy )ss′cm+1,n,s′ .

(6)

The flux also induces a nonuniform phase configuration,
which in our gauge is {0, 7π/4, π/4, π/2} with the order
being {blue, gray, purple, green} in the notation of Fig. 4(a).

By tuning the tunneling amplitudes between the sites in
each island, we observe gapped topological, gapped nontopo-
logical, and gapless phases [see Fig. 4(b)]. We find a 2D
topological phase whose gap is an appreciable fraction of the
induced pairing gap �. Again, in practice, we expect this gap
to depend on many parameters of the system, such as the
widths of the normal regions separating the superconducting
islands.

We notice that the unit cell required to model this min-
imal system consists of eight islands. That is because the
Aharonov-Bohm flux per plaquette is 1/4 in units of h/e (the
nonsuperconducting flux quantum), and therefore the mag-
netic unit cell describing the normal tunneling is composed of
four plaquettes. The overall topological phase results from the
breaking of time-reversal symmetry both by this Aharonov-
Bohm effect and by the superconducting phase winding. The
theoretical analysis becomes slightly more complicated due
to the orbital effect, but on the other hand, the experimental
realization is a bit simpler compared to the individual phase
control scheme proposed in Sec. II.

The possibility of controlling the phases in a JJ array,
either directly or by external magnetic flux, opens up another
research avenue related to topology. We envision a system
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(a) (b)

FIG. 4. Chiral topological superconductivity in a Josephson junction array with applied magnetic flux. (a) Proposed configuration, where
each island (square) is described by four sites (circles). The islands are connected to their neighbors by Josephson coupling tJ, and the intraisland
tunneling is either t (solid lines) or t ′ (dashed lines). The islands’ phases (depicted by green, gray, blue, or purple shading) are chosen in
accordance with the checkerboard vortex lattice appropriate for h/4e flux per plaquette (vortices are shown as winding arrows). (b) Topological
phase diagram as a function of t/t ′, featuring gapped topological (blue), gapped nontopological (gray), and gapless (white) phases. The diagram
shows the parity of the Chern number C (which is −1 for the topologically nontrivial phases), multiplied by the bulk energy gap in units of the
pairing gap �. The tight-binding parameters t = 1, � = 0.1, μ = 0.42, λ = 0.4π , and tJ = t .

with alternating phase gradients, such that the phase gradient
is πg1 in even rows and πg2 in odd rows. If g1 �= g2, the phase
pattern becomes periodic if g1 and g2 are rational. If either g1

or g2 is irrational, then the phase pattern is aperiodic, and the
vortices form a quasicrystal. Furthermore, if the conditions of
a topological state are met, then each vortex hosts a Majorana
zero modes, and we get a 2D quasicrystal of Majoranas. Such
a setup can be thought of as a superconducting analog of the
Hofstadter butterfly [50–52] without needing large magnetic
fields. The unique features related to Hofstadter physics are
rarely observed in experiment [51,53–57], thus the possibility
of finding them in a rather simple setup highlights the various
opportunities offered by JJ array.

IV. ISLAND ARRAYS SUBJECTED TO AN IN-PLANE
EXCHANGE FIELD

There is another valuable experimental knob that is acces-
sible in JJ arrays and that we have not used so far, and that
is an in-plane exchange field. Such a field can be induced by
applying an external magnetic field or by coupling the system
to a ferromagnet that induces an exchange field. We notice
that for thick samples, external in-plane fields also have orbital
effects, which alter the phases of the islands [58,59]; therefore,
it might be preferable to use a ferromagnet such as EuS [60].
Superconductivity generally survives under much larger fields
when they are applied in-plane than out-of-plane [1]; this
experimental knob allows us to study the unique properties
of the time-reversal-broken phase of JJ arrays. In this section,
we show that by controlling the geometry of the island array
and the orientation of the in-plane field, a chiral topological
superconducting phase emerges.

In a Rashba 2DEG uniformly covered by a superconductor,
only an out-of-plane magnetic field can open a topological
gap [20]. The underlying reason for this is that for an in-plane
field, one can always find a momentum direction along which
the field-free Hamiltonian commutes with the Zeeman term,
and therefore a gap will not open. In other words, the Brillouin

zone contains a point that will not gap out. Here we argue
that JJ arrays provide a natural way to overcome this problem:
the periodic modulation they correspond to is able to mix this
point with higher-momentum states and thus gap it out.

To illustrate our approach, consider first a highly
anisotropic system comprising an array of long superconduct-
ing wires with spin-orbit coupling. When applying a magnetic
field along the wires’ axis and tuning the chemical potential
properly, they all become 1D topological superconductors,
with Majorana zero modes at their edges [61,62]. We choose
the lattice layout such that these zero modes form a decorated
honeycomb lattice [63]. If we then allow tunneling between
the wires, the effective model is a Majorana honeycomb with
next-nearest-neighbor hopping. This model is well studied in
the context of Kitaev’s model for a Z2 spin liquid, and in the
superconducting case, it corresponds to a gapped topological
phase [64].

We note that platforms consisting of adatoms on the sur-
face of a superconductor, arranged in the same decorated
honeycomb form proposed here, may also be utilized to cre-
ate two-dimensional topological superconductivity. The array
we propose here is sparse and therefore expected to have
less strain effects compared to a dense array of adatoms.
Recent experiments employed atomic scanning tunneling
microscopy (STM) manipulation to arrange ferromagnetic
chains, showing signatures of topological phases [65] and
arrays of adatoms with topological properties have recently
been fabricated [66].

We now make the model more realistic by replacing the
wires with superconducting islands deposited on top of a
Rashba 2DEG; see Fig. 5(a). The size of the islands and
the spacings between them are all design parameters at our
disposal. To make contact with the intuitive wire-based pic-
ture, we consider slightly elongated islands; however, we have
verified that square islands yield very similar results. The unit
cell repeats itself in a triangular lattice.

We simulate the system using the same tight-binding meth-
ods described in Sec. II and add an exchange term to the
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(a) (b)

FIG. 5. Chiral topological superconductivity in a Josephson junction array with an in-plane exchange field. (a) The proposed configuration,
with superconducting islands (gray) deposited on top of a Rashba 2DEG (blue). Several unit cells are indicated in frames, and they repeat
themselves in a brick-wall lattice. An in-plane exchange field B is applied at an angle θ with respect to the horizontal axis x̂. (b) Topological
phase diagram as a function of B and θ . Colors indicate the Chern number C, whereas the intensity corresponds to the bulk gap relative to
the pairing gap �. We find that θ = π

2 , 3π

2 , i.e., along the elongated islands (ŷ), are most favorable for a chiral topological state (C = ±1)
with a large gap. In the tight-binding simulation, we modeled islands that are twice as long as they are wide, and used the parameters t = 1,
μS = −1.2 (chemical potential in the superconducting regions), μN = 3.3 (chemical potential in the normal regions), � = 0.2, and λ = 0.2π .

Hamiltonian,

Hex = B
∑

m,n;s,s′
c†

m,n,s(σx cos θ + σy sin θ )ss′cm,n,s′ . (7)

We model the superconducting structure as

HSC =
∑

m,n

�m,nc†
m,n,↑c†

m,n,↓ + H.c., (8)

where �m,n = � in the islands depicted in Fig. 5(a) and zero
elsewhere. We find gapped topological regions in parameter
space [see Fig. 5(b)]. In this configuration, we find that the
preferred direction of the magnetic field is ŷ (notice that the
x̂ and ŷ directions are not equivalent due to the triangular
lattice). This can be seen as a remnant of the toy-model con-
struction, where the system is most robust when the field is
applied along the 1D wires. As in the phase-controlled setup
of Sec. II, we find extended regions of gapless superconduc-
tivity in the phase diagram.

V. EXPERIMENTAL SIGNATURES

We now address question of how one can tell whether a
superconductor under investigation is topological. Following
early ideas [67–70], we focus on transport experiments and
propose a simple setup for detecting chiral superconductivity.
We note, before going to details, that the existence of an edge
mode that surrounds the system makes the identification of 2D
topological superconductivity easier in principle than that of
its 1D counterpart.

The measurement setup we consider is shown in Fig. 6(a).
The 2D topological superconductor is connected to four leads,
at the left (L), right (R), top (T), and bottom (B). We assume
that leads L, T, and B are tunnel coupled to the system,
whereas lead R is strongly coupled to the system. In the
nontopological phase, single electrons cannot tunnel into the
system, and therefore we expect the low-energy conduc-
tance to be very low. In the topological phases, on the other
hand, current can flow along the edge by virtue of the chiral
Majorana mode, and therefore the conductance from L to
either T or B (depending on the chirality) will be nonzero.
Since lead R is strongly connected to the system, all

leftover current is collected there, leading to a very asym-
metric chirality-dependent behavior. This phenomenology is
indeed seen in our transport simulations [71], as demonstrated
in Fig. 6(b).

The simple setup discussed above already showcases the
unusual and highly nonlocal signatures of the topological
phase. One can go a step further towards a true interference
experiment, for example by coupling the R lead very weakly
to the system. Then, the current measured at the T and B leads
will correspond to a coherent summation over all possible
trajectories leading to them. In this scenario, we expect the
currents to be sensitive to the number of vortices present
in the bulk: each of these vortices carries a localized zero-
energy Majorana bound state, and thus their parity controls
the boundary conditions of the chiral Majorana mode that
surrounds the system. Inserting a discrete vortex can be done
by controlling the phases in the islands or by changing an
external magnetic field. Furthermore, in this setup one can
also create domain walls, for example by flipping the signs
of φ1 and φ2 in a certain region of the system, opening the
door to interference experiments akin to the idea of Ref. [69].

Other electric probes of chiral topological superconductiv-
ity have also been proposed. Using STM, it may be possible
to measure the density of states at the edges and ascertain
the existence of an edge mode [72]. Likewise, when driving
current through a chiral superconductor, it will inevitably be
copropagating at one of the edges (say, the upper edge) and
counter-propagating at the other (say, the lower edge). There-
fore, the edge mode’s velocity at the upper edge will be larger
(corresponding to a smaller density of states) than its coun-
terpart at the lower edge, which is a measurable Doppler-like
effect [72]. A momentum-conserving tunneling measurement
allows for directly probing the dispersion relation of the edge
modes.

Beyond charge transport, heat transport measurements also
provide valuable information on the nature of topological
systems [73]. A prime example is the half-quantized thermal
Hall conductivity that was observed in the fractional quantum
Hall regime [74]. In the case of 2D p-wave superconductors,
we expect a similar phenomenology: the heat transport should
be directional, due to the chiral nature of the system, and the
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L

T

B

R

(a) (b)

FIG. 6. Transport signatures of chiral topological superconductivity. (a) Proposed measurement setup: a variant of the phase-controlled
island array of Sec. II is contacted by three tunnel probes (L, B, T) and one strongly coupled lead (R). We envision the L lead as the source
and the rest as drains. The chiral edge mode appearing in the topological phase is illustrated in dashed lines. (b) Transport simulation results at
zero bias voltage as a function of φ. The nonlocal conductances GLB and GLT onset only in the topological phases, and they appear for Chern
numbers C = +1, −1 respectively, due to the chiral nature of the edge mode. The inset shows the local conductance GLL, which also onsets
only in the topological phase (the C = 0 phase is fully gapped), but does not differentiate between the chiralities C = ±1. The tight-binding
parameters are the same as in Fig. 8, and we use a lattice of 300 × 300 unit cells. The left, top, and bottom leads are four sites wide, whereas
the right lead is ten sites wide.

thermal conductivity should be quantized, providing a direct
measurement of the Chern number [75–78]. We note, how-
ever, that such measurements are typically more challenging
experimentally than charge transport measurements.

As mentioned above, it is possible to introduce vortices
into the system. For a chiral topological superconductor, each
vortex host Majorana bound state(s). In principle, these vor-
tices can be moved around: by controlling the phases of
the islands, the positions of the Majorana bound states are
manipulated. Since these states are predicted to be mutual
non-Abelian anyons, this could serve as the starting point
of experiments aimed at uncovering non-Abelian exchange
statistics.

VI. CONCLUSION

Much progress has been made in recent years in the field
of topological superconductivity, particularly in quasi-1D sys-
tems [79,80]. In 1D setups, the hallmark of the topological
phase is the existence of localized Majorana zero modes at the
edges [58,59,81–85]. Although both theory and experiment
are well developed, the distinction of topological effects from
nontopological ones in experiments is challenging [86–89].
In particular, impurities in quasi-1D can easily mimic the
signatures of Majorana zero modes, making it hard to agree
on the interpretation of experimental data. On the contrary, 2D
topological superconductors exhibit chiral edge modes, rather
than localized states, and are therefore expected to provide
much more compelling experimental signatures, especially in
nonlocal conductance.

We have introduced several platforms for 2D chiral
topological superconductivity based on arrays of Josephson
junctions. We have also shown that straightforward transport
measurements can provide unique and robust signatures of
these topological phases, unlike zero-bias conductance peaks
in localized Majorana zero modes which can be ambigu-
ous. JJ arrays are well developed and have been studied
for many years, and therefore we expect our proposal to

be within experimental reach. Naturally, more detailed mod-
eling of the particular materials of choice will be needed
to provide quantitative predictions. However, as the main
requirement for our scheme is strong spin-orbit coupling,
several existing and well-established material platforms seem
like natural candidates: InAs and InSb quantum wells in
proximity with Al [58,84,90], HgTe quantum wells in prox-
imity with Nb [85,91], thin transition metal dichalcogenides
layers [92,93] and LaAlO3/SrTiO3 or LaAlO3/KTaO3

interfaces [94,95].
The island arrays we propose are highly tunable, as they

offer numerous experimental knobs: gate voltages (densities),
phase control, and in-plane exchange field. Furthermore, the
island structure has another inherent advantage: it facilitates
studying the superconductor-insulator transition [96] in a con-
trollable manner [6,8,97,98]. In this manuscript we assumed
the Josephson coupling energy between islands is much larger
than the charging energy of each island; therefore, the phase
of each island is well-defined, and the system remains su-
perconducting. When increasing the charging energy, vortex
proliferation will drive the system into an insulating phase.
This highly versatile platform will therefore allow one to
study the insulating side of the px + ipy superconductor,
which is expected to be very exotic [99–103]. Detailed inves-
tigation of possible spin-liquid phases in this system is left for
a future study.
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FIG. 7. Two-dimensional topological superconductivity from
an array of parallel one-dimensional topological superconductors.
When each 1D system is tuned to the critical point, it hosts two
gapless Majorana modes. Coupling these left- and right-movers (blue
and green arrows) appropriately, as shown by the dashed lines, results
in a gapless chiral edge mode.

APPENDIX A: WIRE CONSTRUCTION

Here we present an additional point of view on construct-
ing a two-dimensional topological superconductor, comple-
mentary to the one described in Sec. II. This point of view is
inspired by the wire construction of an integer quantum Hall
state [105,106]. It starts from one-dimensional topological
superconductivity that is entirely phase-controlled. Schemes
for creating such systems were proposed in Refs. [33–36,107].
The key idea is combining a discrete superconducting vortex
with a spin-orbit coupled material.

Concretely, we consider here the quasi-1D model of
Ref. [35], where the topological phase transition is controlled
by two phase differences. A transition between topological

and trivial phase may be induced by fine-tuning the parame-
ters of the model (phase differences, chemical potential, the
strength of the spin-orbit coupling, etc.). At the transition
point, the gap closes, and the system hosts two counter-
propagating Majorana modes, a left-mover and a right-mover.
When a two-dimensional plane is formed as an array of
parallel such one-dimensional systems, the resulting two-
dimensional phase depends on the coupling of these systems.
If the left-mover of the i’s system is only coupled to the right-
mover of the i + 1, then the coupling will gap both modes,
leaving at low energy only the chiral modes of the outermost
wires. Then, the resulting 2D system is in a chiral topological
state [108,109]. Figure 7 visualizes this idea.

We note that, in order to get a chiral topological phase (a
2D gapped phase with a nonzero Chern number), all mirror
symmetries must be broken. Our spin-orbit coupled system
has the mirror symmetry Mx = (x → −x)σx, and therefore
a uniform 1D systems are not sufficient for constructing a
2D phase: they respect this symmetry. For this reason, in the
islands model we present in Sec. II, we explicitly break the
mirror symmetries about all axes.

APPENDIX B: THREE-ISLAND UNIT CELL

As an example of a unit cell different from the one shown
in Fig. 1, we consider a three-island unit cell, as depicted
in Fig. 8(a). As in the model analyzed in the main text, the
Josephson coupling within each unit cell, t , is larger than that
between unit cells, t ′. Figure 8(b) shows the topological phase
diagram of the model. We find very similar features to the
phase diagram of Fig. 1(b): the chiral states appear only when
the three phases wind. The same symmetries apply to this
diagram; in particular, flipping the phases must flip the Chern
number.

(a) (b)

FIG. 8. 2D topological superconductivity in a phase-controlled Josephson junction array where each unit cell contains three islands. (a) The
proposed geometry: 2DEG (blue) with superconducting islands (gray, green, and purple, with the color coding representing the superconducting
phases) on top. The unit cell is depicted in a black frame. (b) Topological phase diagram of the model as a function of the phases φ1 and φ2.
Colors indicate the Chern number C, whereas the intensity corresponds to the bulk gap relative to the pairing gap �. As in the model of Fig. 1,
the topologically nontrivial states with C = ±1 appear only in regions where phase winding occurs, which are marked by solid lines for clarity.
The tight-binding parameters in the simulation are t = 1, t ′ = 0.5, μ = −1, � = 0.5, λ = 0.3π , and the two left islands in each unit cell form
an angle θ = 0.3π with respect to the right island.
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