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We show that spectral form factors of unconventional gapped superconductors have singularities occurring
periodically in time. These are the superconductors whose gap function vanishes somewhere in momentum
space (Brillouin zone) but whose fermionic excitation spectrum is fully gapped. Many, although not all, of
these superconductors are topologically nontrivial. In contrast, conventional fully gapped superconductors have
featureless spectral form factors which are analytic in time. Some gapless superconductors may also have
singularities in their spectral form factors, but they are not as ubiquitous and their appearance may depend on
the details of the interactions among fermionic particles which form the superconductor and on the underlying
lattice where the particles move. This work builds on the prior publication [S. Gaur, V. Gurarie, and E. A.
Yuzbashyan, Phys. Rev. B 106, L220506 (2022)] where Loschmidt echo of topological superconductors, related
but not identical to spectral form factors, was studied. It follows that spectral form factors could be used as a test
of the structure of the superconducting gap functions.
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Spectral form factor is a way to characterize the energy
spectrum of quantum systems. It is defined as a trace of the
evolution operator

Z = tr e−iĤt =
∑

n

e−iEnt , (1)

and can be written as a sum over all the energy levels En of a
quantum system. It is closely related to the thermal partition
function of a quantum system, coinciding with its formal
analytic continuation to the complex values of temperature.

Fourier transform of the absolute value square of the
spectral form factor produces the correlation between energy
levels of the system∫

dt eiωt |Z|2 = 2π
∑
nm

δ(ω − En + Em). (2)

Behavior of the spectral form factors in quantum many-body
systems attracted some attention recently [1,2].

Spectral form factors are related, although not identical, to
the Loschmidt echo, which can be defined as the expectation
of the evolution operator with respect to a state which is not
an eigenstate of the Hamiltonian Z = 〈�|e−iĤt |�〉. It was
proposed some time ago that the singularities in the Loschmidt
echo as a function of t may reflect the nature of the Hamilto-
nian Ĥ as well as of the state |�〉, in particular serving as a
probe of whether |�〉 and the ground state of Ĥ correspond
to different quantum phases [3–5]. However, this has not been
unambiguously demonstrated. In the recent publication [6] it
was shown that the Loschmidt echo of topological supercon-
ductors may also have singularities, dependent on the initial
state |�〉.

In this work we propose to look instead at spectral form
factors of topological superconductors. In contrast to the
Loschmidt echo, those depend only on the Hamiltonian itself
and reflect its properties. We show that spectral form factors
in unconventional gapped superconductors have singularities

which occur periodically in time, while their conventional
counterparts have featureless spectral form factors. It follows
that spectral form factors could be used as a test of the struc-
ture of the superconducting gap functions. Combined with
the new proposals which make it possible to measure spectral
form factors in some atomic systems [1], this makes spectral
form factors interesting observables to study.

More precisely, consider the gap function �(p), where p
is the (quasi)momentum. In unconventional and especially in
topological superconductors it cannot be nonzero everywhere.
Rather it vanishes at points, lines, or surfaces in the momen-
tum space or in the Brillouin zone. Consider the spectrum
of Bogoliubov quasiparticles E (p) for those values p where
�(p) = 0. Suppose E− is the minimum of E (p) for all such
p. If �(p) vanishes at a single point, then we obviously
cannot minimize E (p) and instead take E− to be equal to
E (p) calculated at this point. Then the singularities occur at
times tn = π (1 + 2n)/(2E−) where n is an arbitrary integer.
We show that the nature of the singularities depends on the
dimensionality of space and is given by

∂ lnZ
∂t

∼ ln |t − tn| (3)

in two-dimensional superconductors and

∂ lnZ
∂t

∼
√

|t − tn| (4)

in three-dimensional superconductors.
For superconductors whose underlying fermionic particles

move on a lattice, the singularities could also occur at tn =
π (1 + 2n)/(2E+), where E+ is the maximum of the excitation
spectrum computed where �(p) = 0 (if E+ is different from
E−). The existence of these singularities is not as ubiquitous
as that of the ones associated with E−.

We would like to emphasize that to see this behavior it is
important to look at the Hamiltonians of interacting fermions,
as opposed to the Bogoliubov–de Gennes Hamiltonians with a
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given gap function. While we end up using mean field theory
to calculate spectral form factors, the gap function in the
resulting effective Bogoliubov–de Gennes Hamiltonian turns
out to depend on the time interval t over which the spectral
form factor is defined. This is reminiscent of the gap function
dependent on the temperature when calculating thermal parti-
tion functions of superconductors.

Let us now demonstrate this by first studying the example
of the two dimensional px + ipy (often abbreviated as p + ip)
superconductor. Specifically, we have in mind attractively in-
teracting identical fermions with the Hamiltonian [7,8]

H =
∑

p

ε(p)â†
pâp − λ

V

∑
p,k,q

k · q â†
p
2 +kâ†

p
2 −kâ p

2 −qâ p
2 +q. (5)

Here,

ε(p) = p2

2m
− μ (6)

is the kinetic energy of these interacting spinless fermions, λ

is the interaction constant, and V is the volume of the system.
These fermions are known to form a px + ipy paired fermionic
superfluid, which for brevity we will refer to as a p-wave
superconductor. It is a class D superconductor [9] which is
topological if μ > 0 and has a gap as long as μ �= 0. The
Bogoliubov–de Gennes (BdG) Hamiltonian of this supercon-
ductor takes the following standard form

Ĥ =
∑

p, py>0

(â†
p â−p)

(
ε(p) �(p)

�̄(p) −ε(p)

)(
âp

â†
−p

)
. (7)

Here �(p) = (px + ipy)�p and �̄(p) = (px − ipy)�̄p are the
gap functions. �p and �̄p are the magnitudes of the gap
functions (the subscript p emphasizes that these are p-wave
gap functions). To avoid double counting, the summation over
p is restricted to py > 0. Below, all the sums over p for p-wave
superconductors will be restricted in this way.

Let us use the BdG Hamiltonian to calculate the spectral
form factor. To do that, we diagonalize the BdG Hamiltonian
for each p. Its eigenvalues ω±(p) are

ω±(p) = ±E (p), (8)

where

E (p) =
√

ε(p)2 + p2�̄p�p. (9)

Therefore the trace of its evolution operator is

Z =
∏

p

Sp, Sp = e−itE (p) + eitE (p) = 2 cos (tE (p)). (10)

Before proceeding to study Z , let us briefly discuss its analytic
properties. Each factor Sp is obviously an analytic function of
time t . However, if Sp vanishes for some values of p at some
critical time t = tc with all Sp remaining nonzero if t deviates
from tc, this could make Z nonanalytic at tc (we postpone
the discussion whether Sp can indeed behave in this way until
later). Indeed, suppose Sp vanishes at t = tc if p = pc. Quite
generally we should expect that in the vicinity of p = pc and
t = tc, Sp has the following expansion

Sp ≈ C(t − tc + α|p − pc|2), (11)

where α and C are some complex constants (we will see later
that, even though it may not be obvious right now, the factors
Sp are generally complex valued). This immediately leads to

∂ lnZ
∂t

=
∑

p

∂ ln Sp

∂t
≈

∑
p

1

t − tc + α|p − pc|2
. (12)

On the right-hand side above, the approximate expression
for Sp valid with p in the vicinity of pc and t − tc small is
substituted. The sum above is obviously a singular function
of time at t = tc, with the details of the singularity dependent
on the dimensionality of space and on whether pc is zero or
nonzero. This makes lnZ as well as Z itself a nonanalytic
function of time at t = tc (note an obvious similarity between
the thermal free energy and lnZ introduced above).

Let us now go back to Eq. (10). For a Hamiltonian Eq. (7)
with given �p, �̄p, and ε(p), Eq. (10) gives the answer for
its spectral form factor. However, in a superconductor, �p

and �̄p are not fixed beforehand but must be determined
self-consistently, by matching the Hamiltonian Eq. (5) with
the BdG Hamiltonian Eq. (7). To understand how to do
it, let us recall that to calculate thermal partition function
tr exp(−Ĥ/(kBT )), we must determine �p and �̄p by solving
the gap equation. In a p-wave superconductor, it takes the
form

1

V

∑
p

p2 tanh
[ E (p)

2kBT

]
E (p)

= 1

λ
, (13)

where T is the temperature and kB is the Boltzmann constant.
This equation is solved for the product �̄p�p which enters
E (p). The solution to this equation can be used, for example,
to calculate the thermal partition function of the supercon-
ductor. In order to adapt this to calculating the spectral form
factor, we replace 1/(kBT ) → it , with the result

i

V

∑
p

p2 tan
[ tE (p)

2

]
E (p)

= 1

λ
. (14)

This should be understood as an equation to determine
�̄p�p, which should then be substituted into Eq. (10). See
Appendix A for the steps necessary for a formal derivation of
Eq. (14) from the Hamiltonian Eq. (7).

In principle, there could be many solutions of the Eq. (14).
To find the one we should use, we should identify the solution
which gives the largest contribution to the spectral form factor.
One strategy to do it could consist of first finding the solution
of Eq. (13) for the temperatures T where the solution �̄p�p

is nonzero, and then analytically continuing to the imaginary
values of T . We will leave the detailed study of the solutions
of Eq. (13) for future work.

Now observe that this equation predicts that the product
�̄p�p must not be real. Indeed, if it is real, the left-hand
side of this equation is necessarily imaginary, while the right-
hand side is real. Similar situation occurs in evaluation of the
Loschmidt echo where one also finds [6] that �̄ and � are not
complex conjugates of each other. With �̄p�p being complex,
E (p) is also generally complex.

As a result, the factors cos(tE (p)) generally do not vanish
at any t . The exception to that is p = 0 where E (0) = |ε(0)| =
|μ|, and is independent of �̄p�p. Quite remarkably, this takes
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us to the previously discussed scenario given by Eq. (11) with
pc = 0. Specifically, for t close to any of the values tn given
by

tn = π

2|μ| (1 + 2n), (15)

with an arbitrary integer n, we can write

Sp = 2 cos(tE (p)) ≈ C(t − tn + αp2). (16)

Here

C = 2(−1)n+1|μ|, (17)

and

α = π

(
1

2
+ n

)
�̄p�pm − μ

2μ2|μ|m . (18)

Importantly, α is complex due to �̄p�p being complex. Note
that this matches the conjectured form Eq. (11).

Working in the large V limit and replacing summation over
p with integration we find

1

V

∂ lnZ
∂t

= 1

4π

∫
p d p

t − tn + αp2
. (19)

The integral above is taken over p varying from 0 to infinity,
although we must remember that only the approximate value
for the expression being integrated is written above valid
for small p only. In particular, that means that the integral
above can be cut off at some momentum scale, avoiding any
divergencies at large p. It is then straightforward to see that
the leading singularity is

1

V

∂ lnZ
∂t

≈ − 1

8πα
ln |t − tn|. (20)

The expression here is approximate, valid when t is in the
vicinity of tn. Therefore we arrive at a conclusion advertised
earlier. The spectral form factor for the two-dimensional (2D)
p-wave chiral superconductor has periodic logarithmic singu-
larities which occur at times tn, defined above in Eq. (15).

It is important for this argument that α is complex and is
not real, which in turn is related to �̄p�p being complex.

Let us contrast this behavior with that of attractively inter-
acting spin-1/2 fermions obeying the Hamiltonian

Ĥ =
∑

p

∑
σ=↑,↓

ξp â†
p,σ âp,σ

− λ

V

∑
p,q,k

â†
k
2 +p,↑â†

k
2 −p,↓â k

2 −q,↓â k
2 +q,↑, (21)

and forming a conventional s-wave superconductor. Its
Bogoliubov–de Gennes Hamiltonian takes the form

Ĥ =
∑

p

(â†
p↑ â−p↓)

(
ε(p) �s

�̄s −ε(p)

)(
âp↑

â†
−p↓

)
. (22)

Here �s, �̄s are momentum-independent s-wave gap func-
tions. The spectral form factor takes the same form Eq. (10)
but with the spectrum

Es(p) =
√

ε(p)2 + �̄s�s. (23)

Here �̄s�s is controlled by the gap equation almost identical
to the one for the p-wave superconductor, given by

i

2V

∑
p

tan
[ tEs (p)

2

]
Es(p)

= 1

λ
. (24)

The main point is that, just like in case of Eq. (14), the solu-
tion of this equation necessarily corresponds to �̄s�s being
complex. As a result, Es(p) is complex. Unlike in case of the
p-wave superconductor, Es(p) is complex for all p without
exceptions. As a result, none of the factors Sp defined in
Eq. (10) vanish for any time t , and the spectral form factor
Z is analytic at all times.

We see that the key distinction between s-wave and 2D
p-wave superconductors was the presence, in case of the latter,
of a point p = 0 in the gap function �(p) = (px + ipy)�p

where it vanishes. Furthermore, despite having to analytically
continue the solution of the gap Eq. (13) to imaginary tem-
perature 1/T → it , we expect that the analytically continued
gap function must also vanish as p → 0. Indeed, from the
structure of the Hamiltonian Eq. (5) the p-wave gap function
must satisfy

�(p) = −�(−p). (25)

This enforces that the gap function must always vanish at
p = 0 even if it is a solution of the analytically continued gap
Eq. (14). More generally, the key necessary condition for a
nonanalytic spectral form factor is that the gap function �(p)
vanishes at certain values of p, not only at finite temperature,
but also when analytically continued to imaginary values of
temperature.

A good second example of a p-wave superconductor is
class DIII three-dimensional (3D) topological superconductor
[9] (Helium III B phase) with the Bogoliubov–de Gennes
Hamiltonian

Ĥ =
∑

p

(â†
p â−p)

(
ε(p) ipμσ yσμ�p

−ipμσμσ y�̄p −ε(p)

)(
âp

â†
−p

)
,

(26)

where σ y and σμ are Pauli matrices acting on the spin indices
of the operators âp and â†

p. Its spectrum is also given by
Eq. (9), but with p being the 3D vector. By analogy with the
previous analysis leading to Eq. (19), we immediately find

1

V

∂ lnZ
∂t

= 1

2π2

∫
p2 d p

t − tn + αp2
∼

√
|t − tn|. (27)

On the other hand, let us examine 2D spin-singlet chiral d-
wave superconductor, which belongs to the symmetry class
C. The corresponding Bogoliubov-de-Gennes Hamiltonian is

Ĥ =
∑

p

(â†
p↑ â−p↓)

(
ε(p) �(p)

�̄(p) −ε(p)

)(
âp↑

â†
−p↓

)
, (28)

with �(p) = (px + ipy)2�d , �̄(p) = (px − ipy)2�̄d . What
sets this example apart from others is that while the gap
function vanishes at p = 0, it is not automatically obvious
that the gap function analytically continued to imaginary
temperature would still vanish in this limit. To elucidate
this further, we suppose that the gap function consists of
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both d-wave and s-wave pieces, �(p) = �s + (px + ipy)2�d ,
�̄(p) = �̄s + (px − ipy)2�̄d . With rotationally invariant in-
teractions, the gap equation should decouple into two separate
equations for �s, �̄s and for �d , �̄d . If �s is equal to zero
for any temperature T , its analytic continuation to imaginary
values of T should also be zero. At the same time, just as
earlier, �̄d�d becomes a complex number, with the spectrum
given by E (p) =

√
ε2(p) + p4�̄d�d/2. leading to the follow-

ing singularity in the spectral form factor (below β is real,
while α is complex)

1

V

∂ lnZ
∂t

= 1

2π

∫
p d p

t − tn + βp2 + αp4
∼ ln |t − tn|. (29)

However, if �s is nonzero at some range of temperature,
then it may still be nonzero after the analytic continuation
1/(kBT ) → it . Then the superconductor will have a nonsin-
gular spectral form factor. To decide whether a particular
superconductor of this form will have singularities in its spec-
tral form factor we need to examine the original Hamiltonian
of the interacting fermions which led to this superconductor
and see if any s-wave pairing is possible in addition to the
d-wave pairing. Therefore, the singularities in this case are
not as ubiquitous as in the p-wave case. All superconductors
that we looked at so far were gapped to fermionic excitations.
Let us now look at an example of a gapless superconductor. As
an example, consider a 3D p-wave spin-triplet superconductor
which has the Bogoliubov-de-Gennes Eq. (7) with the gap
function which behaves as

�(p) = (px + ipy)�p. (30)

This gap function vanishes if px = py = 0, for all pz. Further-
more, given ε(p) = p2/(2m) − μ with μ > 0, the excitation
spectrum

E (p) =
√(

p2

2m
− μ

)2

+ (
p2

x + p2
y

)
�̄p�p (31)

vanishes at px = py = 0, pz = √
2mμ. Suppose just as in the

previous examples, once the temperature is made imaginary,
�̄p�p becomes complex, but otherwise no other terms appear
in the gap function. However, unlike the previous examples
of gapful superconductors, setting px = py = 0, we find that
E (pz ) now ranges from zero to infinity. As a result, the spec-
tral form factor Z (t ) is now an analytic function of time t .

Now it is further possible to imagine that the fermions
which formed this superconductor move on a lattice, as op-
posed to a continuous space. If so, then E (pz ) at px = py = 0
now has a maximum somewhere as pz is varied. Denoting
the maximum E+ it is straightforward to see that this would
lead to singularities in the spectral form factor occurring at
times tn = π (2n + 1)/(2E+). These arguments show that sin-
gularities are possible even in gapless superconductors, but
they are not as ubiquitous and their existence requires some
assumptions.

Note, however, that if μ < 0, then the resulting supercon-
ductor is gapful, although not topological. It will still have
singularities controlled by E− = |μ|.

Coming back to the gapful (topological) superconduc-
tors, we can rely on the classification of the topological

superconductors [9] to see that there are five distinct classes
of topological superconductors of interest, three in the two-
dimensional space and two more in the three-dimensional
space. We can summarize the behavior of their spectral form
factors in the following table.

Class Gap function Spectral form factor

D, 2D (px + ipy )�p
∂ lnZ

∂t ∼ ln |t − tn|
C, 2D (px + ipy )2�d

∂ lnZ
∂t ∼ ln |t − tn|

DIII, 2D (σ z px + ipy )�p
∂ lnZ

∂t ∼ ln |t − tn|
DIII, 3D ipμσ yσμ�p

∂ lnZ
∂t ∼ √|t − tn|

CI, 3D vanishes on surfaces ∂ lnZ
∂t ∼ √|t − tn|

The first two entries as well as the fourth entry in the table
above were already worked out above. In particular, class D
and class DIII superconductors are p-wave and the singular-
ities in their spectral form factor are ubiquitous. The class C
superconductor may have singularities in their spectral form
factor if its gap equation excludes the possibility of an addi-
tional s-wave gap function. The last entry refers to the class CI
topological spin-singlet superconductor in three dimensions
[10]. It is in the same class as the conventional s-wave spin-
singlet superconductor and therefore will have singularities
in the spectral form factor only if its gap equation excludes
the possibility of an additional s-wave gap function. If this
is excluded, then working out its singularities relies on the
understanding that its gap function vanishes on 2D surfaces in
its 3D Brillouin zone. Starting from the point on the surface
where E (p) has its minimum, following the arguments given
here it is easy to see that

∂ lnZ
∂t

∼
∫

d2q1dq2

t − tn − αq2
1 − βq2

2

. (32)

Here q1 is the coordinate parametrizing the surface and q2 is
the direction perpendicular to the surface, α is real while β is
complex. By analogy with Eq.(28) we find

∂ lnZ
∂t

∼
√

|t − tn|, (33)

just as stated in the table above. Therefore, we see that the
type of the singularity in the spectral form factor which
occurs in topological superconductors depends only on the
dimensionality of space. Finally, as was already mentioned
at the beginning, we would like to remark that spectral form
factors nowadays are accessible to measurement in experi-
ments, using the techniques of atomic physics. For example,
if the superconductor is realized by means of cold ions [11],
its spectral form factor could, in principle, be measured by
directly evolving a random initial product state up to some
time t and measuring the distribution of Cooper pairs in the re-
sulting state via a protocol proposed and developed in Ref. [1]
(see Appendix B for the further exposition of this method).
Therefore, spectral form factors can be used as a probe of the
structure of the superconducting order parameter.

We would like to thank E. Yuzbashyan for inspiring dis-
cussions. V.G. was supported by the Simons Collaboration
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APPENDIX A: REAL-TIME GAP EQUATION
FOR S-WAVE SUPERCONDUCTORS

Here we present the derivation of the real-time gap equa-
tion for the s-wave spin-singlet superconductor. The gap
equations for other types of superconductors can be derived
similarly. We begin with the Hamiltonian Eq. (21) for the
spin-1/2 attractively interacting fermions. We are interested
in calculating the spectral form factor, that is the quantity

Z = tr e−iĤt . (A1)

Let us set up the coherent path integral for the purpose of this
calculation.

Z =
∫

DψDψ̄ exp

(
i
∫ t

0
dτ

∫
d3x

{ ∑
σ=↑,↓

(
iψ̄σ ψ̇σ

− ∇ψ̄σ ∇ψσ

2m
+ μψ̄σψσ

)
+ λψ̄↑ψ̄↓ψ↓ψ↑

})
. (A2)

It is well known that in order to represent the spectral form
factor, the fermionic fields ψ and ψ̄ must satisfy the boundary
conditions

ψσ (t ) = −ψσ (0), ψ̄σ (t ) = −ψ̄σ (0). (A3)

As standard in the theory of superconductivity we introduce
the Hubbard-Stratonovich field �s, which results in

Z =
∫

D�sD�̄s eiW , (A4)

where

eiW =
∫

DψDψ̄ eiS,

S =
∫ t

0
dτ

∫
d3x

{ ∑
σ=↑,↓

(
iψ̄σ ψ̇σ − ∇ψ̄σ∇ψσ

2m

+μψ̄σ ψσ

)
− �̄sψ↓ψ↑ − �sψ̄↑ψ̄↓ − �̄s�s

λ

}
.

(A5)

We calculate the integral over �s and �̄s in the saddle-point
approximation. Varying W over �̄s(r, τ ) at some time τ and
at some position r, we find

1

Z

∫
DψDψ̄

(
ψ↓(r, τ )ψ↑(r, τ ) + 1

λ
�s(r, τ )

)
eiS = 0.

(A6)

We will look for the solution of this equation in terms of
�s(r, τ ) and �̄s(r, τ ), which are constant in space and time
and so, from now on, denote them simply as �s and �̄s. This
gives

�s = − λ

Z

∫
DψDψ̄ ψ↓(r, τ )ψ↑(r, τ )eiS. (A7)

We note that recasting this equation, and the corresponding
equation for �̄s, in the operator formalism gives

�s = −λ tr (e−iĤBdG (t−τ )ψ̂↓(r)ψ̂↑(r)e−iĤBdGτ ),

�̄s = −λ tr (e−iĤBdG (t−τ )ψ̂
†
↑(r)ψ̂†

↓(r)e−iĤBdGτ ). (A8)

Here ĤBdG is the Bogoliubov–de Gennes Hamiltonian which
follows from the action S in Eq. (A5). Note that, perhaps unex-
pectedly, the equation for �̄s is not the complex conjugate of
the equation for �s, therefore as pointed out in the main text of
this article, �̄s�s does not have to be real. To proceed further,
we need to calculate the anomalous Green’s function which
appears on the right-hand side of Eq. (A7). This is computed
by taking advantage of the functional integral over ψ , ψ̄ being
Gaussian. We rewrite the action S by using the Nambu nota-
tions in the frequency and momentum space. The frequencies
as always are discrete and have the fermionic Matsubara form,
to ensure the antiperiodic boundary conditions Eq. (A3):

ωn = π

t
(1 + 2n). (A9)

We define

ψp,ωn = 1√
V

∫ t

0
dτ

∫
d3x ψ (r, τ ) eiωnτ−ip·r, (A10)

ψ (r, τ ) = 1

t
√

V

∑
ωn,p

ψp,ωn e−iωnτ+ip·r.

We find

S = 1

t

∑
p,ωn

(ψ̄p,ωn,↑ ψ−p,−ωn,↓)

×
⎛
⎝ωn − p2

2m + μ −�s

−�̄s ωn + p2

2m − μ

⎞
⎠(

ψp,ωn,↑
ψ̄−p,−ωn,↓

)

− tV

λ
�̄s�s. (A11)

To calculate the anomalous Green’s function we invert the
matrix ⎛

⎝ωn − p2

2m + μ −�s

−�̄s ωn + p2

2m − μ

⎞
⎠

−1

= 1

ω2
n − ( p2

2m − μ
)2 − �̄s�s

×
⎛
⎝ωn + p2

2m − μ �s

�̄s ωn − p2

2m + μ

⎞
⎠ (A12)

and read off the anomalous Green’s function from the upper
right corner of this matrix. We find

1

Z

∫
DψDψ̄ ψ↓(r, τ )ψ↑(r, τ )eiS

= − i

tV

∑
n

∑
p

�s

ω2
n − ( p2

2m − μ
)2 − �̄s�s

. (A13)
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Therefore, the saddle-point Eq. (A6) becomes

i

tV

∑
n

∑
p

1

ω2
n − ( p2

2m − μ
)2 − �̄s�s

= 1

λ
. (A14)

Summation over the Matsubara frequencies can now be car-
ried out explicitly, with the result

i

2V

∑
p

tan
[ tEs (p)

2

]
Es(p)

= 1

λ
, (A15)

where

Es(p) =
√(

p2

2m
− μ

)2

+ �̄s�s. (A16)

This is the real-time gap equation which appears as Eq. (25)
in our paper. Given the solution �̄s�s of this equation, we
can calculate the spectral form factor by following Eq. (10).
Following a very similar blueprint we can also derive Eq. (14)
from the Hamiltonian Eq. (7).

Note that if instead we had been interested in computing
the thermal partition function tr e−Ĥ/(kBT ), we would have
employed the imaginary-time formalism. It largely coincides
with the formalism described here, and differs only by the
replacement it → 1/(kBT ) where T is temperature and kB

Boltzmann constant, and by the analytic continuation of the
time τ used above to imaginary values. It would have resulted
in

kBT

V

∑
n

∑
p

1

ω2
n + ( p2

2m − μ
)2 + �̄s�s

= 1

λ
, (A17)

where

ωn = πkBT (1 + 2n), (A18)

instead of Eqs. (A9) and (A14). Carrying out the summation
over the Matsubara frequencies results in

1

2V

∑
p

tanh
[Es (p)

2kBT

]
Es(p)

= 1

λ
, (A19)

which is the standard thermal gap equation [8,12].

APPENDIX B: MEASURING THE SPECTRAL
FORM FACTOR

Spectral form factors are new types of observables which
only recently came within reach of experiment. It may not be
obvious that they can be measured experimentally. We would
like to present here a brief overview of the measurement
techniques which were recently suggested in the literature.

The simplest object to measure would be the Loschmidt
echo. That could be defined as

E = |〈ψ |e−iĤt |ψ〉|2. (B1)

If the system under study is equivalent to a number of inter-
acting spins, or qubits, and if there is experimental control
over each of these spins, one could prepare the initial state
|ψ〉 (assuming it is a product state), evolve it in time, and find
the probability that after that evolution it is still the same state
|ψ〉 as initially. This program was carried out in a system of

cold ions [5], where the state of each ion can be addressed
independently.

Spectral form factor cannot be measured using this ap-
proach as it is given by

|Z|2 =
∣∣∣∣∣
∑

n

〈n|e−iĤt |n〉
∣∣∣∣∣
2

. (B2)

Here |n〉 could be the eigenstates of Ĥ or any other complete
set of orthonormal states. Instead, an alternative approach was
proposed in Ref. [1] which allows to measure it. Just as in
the example above, this approach still requires that the system
under study consists of interacting spins or qubits.

In this work we study interacting fermions. However, all
the relevant Hamiltonians presented here can be mapped into
a system of interacting spin. The mapping, which has exten-
sively been discussed in the literature previously, consists of
defining the Anderson pseudospin operators. For the s-wave
Hamiltonian Eq. (21) the Anderson pseudospin operators are
defined by

Ŝ+
p = â†

p,↑â†
−p,↓, Ŝ−

p = â−p,↓âp,↑, (B3)

Ŝz
p = 1

2 (â†
p,↑âp,↑ + â†

−p,↓â−p,↓ − 1). (B4)

It is straightforward to check that they satisfy SU(2) algebra,
as required for spins. In terms of these, the Hamiltonian be-
comes

Ĥ = 2
∑

p

ε(p)Ŝz
p − λ

V

∑
k,q

Ŝ+
k Ŝ−

q . (B5)

Within mean-field theory, this Hamiltonian reduces to

Ĥ = 2
∑

p

ε(p)Ŝz
p − �

∑
k

Ŝ+
k − �̄

∑
k

Ŝ−
k , (B6)

where � satisfies a gap equation almost identical to Eq. (25):

i

2V

∑
p

tan [tEs(p)]

Es(p)
= 1

λ
. (B7)

The absence of a factor of 2 in Eq. (B7) when compared to
Eq. (25) is due to a small difference between the spin system
and the original interacting fermions. As can be readily seen,
a spin-flip excitation corresponds to exciting two Bogoliubov
quasiparticles (with the opposite spin and the same excitation
energy) in the superconductor. This does not affect the quali-
tative features of the spectral form factor.

We can now aim at creating a spin system obeying
Eq. (B5). A version of the spin system equivalent to a p-wave
superconductor Eq. (5) obeys the Hamiltonian

Ĥ =
∑

p

ε(p)Ŝz
p − λ

V

∑
k,q

k · q Ŝ+
k Ŝ−

q (B8)
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with the identification

Ŝ+
p = â†

pâ†
−p, Ŝ−

p = â−pâp, (B9)

Ŝz
p = 1

2 (â†
pâp + â†

−pâ−p − 1). (B10)

Ref. [11] addressed the question of how the Hamiltonian
Eq. (B8) can be created in a cold ion system where each spin
(qubit) can be independently controlled and measured, at least
in principle. The question remains how this addressability can
be used to measure spectral form factors.

This question was resolved in another work [1]. That work
proposed a protocol towards measuring the spectral form fac-
tor. The protocol itself is not elementary. It consists of the
following steps. If the Hilbert space of a quantum many-
body system can be represented by a collection of N qubits,
remarkably the square of the absolute value of the spectral
form factor can be measured in terms of the probabilities
|〈s|U †e−iĤtU |0〉|2. Here |0〉 is the state where all qubits are
initialized in the “all spin-up” state, 〈s| is the state where the
jth qubit points up if s j = 0 or down if s j = 1. U = ∏N

j=1 u j

and u j is a unitary SU(2) rotation of the jth qubit. It can be

shown that

|tr e−iĤt |2

=
∫ ⎡

⎣∏
j

du j

⎤
⎦ ∑

si=0,1

(−2)−
∑N

j=1 s j |〈s|U †e−iĤtU |0〉|2.

(B11)

Here the integrals du j are over the SU(2) group’s Haar
measure.

To implement this proposal, it is envisioned that a system
of spins is initialized in the “all spin-up” state. Subsequently
it is rotated by a random rotation U , evolved in time, rotated
again by U †, and the spins are measured producing the data
of s j . This is repeated many times and (−2)−

∑
j s j is averaged

over many realizations of U as well as many repetitions of
the same experiment. Since the quantum mechanical prob-
ability of observing an outcome of a set of s j is given by
|〈s|U †e−iĤtU |0〉|2, it should be clear that this procedure will,
upon averaging over many measurements, produce the spec-
tral form factor as long as Eq. (B11) is correct.

The derivation of Eq. (B11) is given in Ref. [1].
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