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Subtlety of modes trapped by vortices in a topological superconducting heterostructure
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In a topological superconducting heterostructure comprising an s-wave superconductor and a semiconductor
with Rashba spin-orbit coupling, several distinct modes emerge when an external magnetic field is applied:
Majorana zero-energy modes, trivial Caroli–de Gennes–Matricon modes, and edge modes. We find three subtle
properties of the modes under the fine tuning of the external magnetic field and Rashba spin-orbit coupling.
(1) The spatial configuration of Majorana zero-energy modes undergoes a dramatic change when flipping the
direction of magnetic field. (2) In the topological nontrivial regime, the Caroli–de Gennes–Matricon modes and
edge modes exhibit spatial oscillatory behavior across the entire sample scale and approach zero energy as the
strength of the Rashba spin-orbit coupling decreases. (3) In the topological trivial regime, another type of zero-
energy mode may also manifest at the vortex center. The key distinction from the Majorana zero-energy mode is
its lack of spatial coherence and no coexistence of edge modes. These properties highlight the modes’ sensitivity
to the tuning parameters and impose constraints on the experimental determination of Majorana zero-energy
modes.
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I. INTRODUCTION

The realization of topological superconductivity, a crucial
avenue for the topological quantum computation [1–3], has
been proposed in various schemes. Intrinsic p-wave super-
conductors, such as Sr2RuO4 [4], naturally offer a platform
for hosting Majorana zero-energy modes, which are their own
antiparticles and obey non-Abelian braiding statistics [5,6].
However, the stringent experimental conditions and the rarity
of natural p-wave superconductors has limited progress in this
field. Recent advancements have been made based on the Fu-
Kane theory [7]. The semiconductor with Rashba spin-orbit
coupling or topological surface states contacting to an s-wave
superconductor via the superconducting proximity effect
mimics a spinless p + ip superconductor. Notable examples
include Rashba semiconductor InSb/Nb nanowires [8,9], the
topological insulator Bi2Te3/NbSe2 [10,11], and the topolog-
ical crystalline insulator Sn1−xInxTe [12–15]. Furthermore,
Majorana zero-energy modes (MZMs) have also been demon-
strated to exist in superconducting vortices [16–19]. The
presence or absence of a second-order kinetic term gives
rise to completely opposite topological parameter regions, de-
pending on whether an odd or even number of Fermi surfaces
is involved.

In general, the presence of MZM within a vortex is often
accompanied by several other types of modes, namely, edge
modes (EMs), Caroli–de Gennes–Matricon modes (CdG-
MMs) [20,21], and vortex core modes (VCMs). We call all
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trivial bound states located in the vortex core center VCMs.
CdGMMs are peaked at the place rC ≈ |n|/kF from the vortex
core center with their energy estimated to be EC ≈ n�2/EF ,
where n, kF , EF , and � are the nonzero half-integer/integer
angular momentum, the Fermi velocity, the Fermi energy, and
the superconducting order parameter, respectively. In the pres-
ence of disorder or external fields, CdGMMs may also emerge
with zero energy [22–24], which can introduce obstructions
when experimentally trying to identify MZMs.

In this paper we undertake a numerical investigation of
the Bogoliubov–de Gennes (BdG) equation within the con-
text of a fully gapped Rashba spin-orbital coupling (SOC)
s-wave superconductor, featuring Zeeman splitting induced
either through an external magnetic field or contact with a
magnetic insulator. We explore the localization of MZMs
within the vortex, revealing that they are not exclusively
peaked at the vortex center. Of particular interest is the domi-
nance of spin-down components of MZMs characterized by
angular momentum l = ±1, a behavior that emerges when
the direction of the Zeeman field (ZF) is inverted relative to
the chirality of momentum (p± = |p|e±iθp). Then the spatial
distribution of these MZMs closely resembles that of CdG-
MMs. In the topological nontrivial regime, we find CdGMMs
and EMs exhibit spatial oscillatory behavior across the entire
sample scale and approach zero energy as the strength of the
SOC decreases. In the topological trivial regime, the trivial
zero-energy VCMs emerge when the SOC is weak. To ex-
perimentally verify MZMs and VCMs, the spatial coherence
and coexistence of EMs can be checked. The structure of this
paper is organized as follows. In Sec. II we introduce the
theoretical model. In Sec. III we present detailed numerical
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results along with straightforward explanations of the various
aforementioned novel phenomena. In Sec. IV we delve into
discussions and present our conclusions.

II. THEORETICAL MODEL

For a type-II superconductor, if the magnitude of the mag-
netic field is significantly smaller than the upper critical field,
denoted as H � Hc2, a condition where the separation be-
tween distinct vortices greatly exceeds the coherence length
ξ , and the effective Zeeman effect is much larger than the
orbital effect for the experimental platform with large effec-
tive g factor ∼−200 [25], we can safely neglect the direct
coupling of electrons to the magnetic field in the kinetic
energy term [20]. Consequently, we can formulate the single-
particle effective Hamiltonian for the conduction bands of a
Rashba SOC type-II superconductor at temperatures above the
superconducting transition temperature under the influence of
a magnetic field. Hereafter, we adopt h̄ = 1 for simplicity, and
the Hamiltonian is given by

H0 = p2

2m∗ − μ + α(σx py − σy px ) + Bzσz. (1)

Here, m∗ represents the effective mass of a conduction-band
electron, μ is the chemical potential, α characterizes the
strength of the Rashba SOC, known for its spin-momentum
locking properties [26,27], Bz denotes the effective Zeeman
coupling due to the magnetic field along the z direction, and
σ represents the Pauli matrix for spin. This model closely
resembles that of the conduction band of a semiconductor
with SOC interfacing with a magnetic insulator [17,28]. No-
tably, due to the presence of the kinetic energy term, two
spin-orbit-split Fermi surfaces emerge, distinguishing it from
the model of Dirac surface states in a topological insulator,
where an odd number of bands cross the Fermi level [7].
If we eliminate the spin-momentum locking term, i.e., by
replacing (σx py − σy px ) with (σx py + σy px ), or by reversing
the direction of the Zeeman field, the spin and position of
MZMs within the vortex become distinct, as shown later.

The corresponding BdG equations, formulated within the
Nambu space representation {c↑, c↓, c†

↓,−c†
↑}T below the su-

perconducting transition temperature, can be expressed as(
H0 �s(r)

�†
s (r) −σyH∗

0 σy

)
�(r) = E�(r). (2)

Here, �(r) = [u↑(r), u↓(r), v↓(r),−v↑(r)]T represents the
quasiparticle wave function. It is worth noting that there exists
a band gap within the bulk until the topological critical con-
dition B2

z = �2
s + μ2 is satisfied [17,28–30]. MZMs emerge

within the vortex in the topological parameter regime where
B2

z > �2
s + μ2. If the spin-diagonal kinetic energy term is

absent, the topological condition reverses [17,28]. This sys-
tem exhibits a preservation of spin-orbit-pseudospin rotation
symmetry, and the BdG Hamiltonian commutes with the oper-
ator Jz = Lz + 1

2 (σz − τz ), where Lz signifies the z component
of orbital angular momentum, and τ is the Pauli matrix in
Nambu space. Consequently, the BdG equations can be de-
coupled into different angular momentum channels, with the

corresponding spinor wave function expressed as

�(r) = eilθ [ul
↑(r), ul+1

↓ (r)eiθ , vl−1
↓ (r)e−iθ ,−vl

↑(r)]T . (3)

Given that the BdG equations adhere to particle-hole symme-
try, a nondegenerate zero-energy solution can only exist in
the l = 0 angular momentum channel. Nonetheless, nonzero-
angular-momentum contributions from the spin-down compo-
nents of MZM (u1

↓, v−1
↓ ) do influence the spatial configuration

of MZM.

III. NUMERICAL RESULTS AND ANALYSIS

For the sake of computational simplicity, we adopt a two-
dimensional circular geometry with a hard wall located at a
radius r = R. Within this setup, a single vortex is situated
at the center, precisely at r = 0. In the experimental terms,
one can envision R as half the distance separating adjacent
vortices. Within the vortex, the superconducting order param-
eter assumes the following form: �s(r, θ ) = � tanh(r/ξ )eiνθ ,
where ξ denotes the coherence length, and ν represents
the vorticity of the vortex. To solve the radial BdG equa-
tions numerically, we employ an expansion of the spinor wave
function in terms of a set of orthogonal normalized bases
denoted as φl j (r) = √

2Jl (al jr/R)/[RJl+1(al j )], where Jl sig-
nifies the lth-order Bessel function, and al j corresponds to the
jth zero of Jl . These bases automatically satisfy the boundary
conditions, specifically, φl j (R) = 0. Consequently, the radial
BdG equations can be reduced to the following form:⎛
⎜⎜⎜⎜⎝

T +
l Sl �l 0

S†
l T −

l+1 0 �l+1

�
†
l 0 −T −

l−1 −Sl−1

0 �
†
l+1 −S†

l−1 −T +
l

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ul
n↑

ul+1
n↓

vl−1
n↓

−vl
n↑

⎞
⎟⎟⎟⎟⎠ = Enl

⎛
⎜⎜⎜⎜⎝

ul
n↑

ul+1
n↓

vl−1
n↓

−vl
n↑

⎞
⎟⎟⎟⎟⎠

(T ±
l )i j = (

a2
l j/2m∗R2 ± Bz − μ

)
δi j,

(Sl )i j = α

∫ R

0
rφ∗

li(r)(∂r + l + 1

r
)φl+1 j (r)dr,

(�l )i j =
∫ R

0
r� tanh(r/ξ )φ∗

li(r)φl−1 j (r)dr. (4)

Henceforth, unless otherwise specified, we adopt the follow-
ing parameter values: m∗ = 0.5, μ = 0, α = 0.5, � = 0.1,
ν = 1, ξ = 1, and R = jmax = 80.

A. Majorana zero modes

In Fig. 1 we present plots of the quasiparticle energy across
various angular momentum channels, along with the corre-
sponding probability density |�|2 = |u↑|2 + |u↓|2 + |v↓|2 +
|v↑|2. Notably, a distinct MZM manifests itself exclusively
in the l = 0 channel. What is intriguing is that the positions
of MZMs exhibit marked disparities depending on the direc-
tion of the applied ZF. Under negative ZF, a MZM resides
precisely at the core center of the vortex, while under posi-
tive ZF, the MZM encircles the core. More intriguingly, the
strength of the SOC can adjust the position of the second
MZM. As SOC strength increases, the second MZM moves
closer to the vortex center, mirroring the behavior of the first
MZM. To elucidate this off-center phenomenon, we consider
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FIG. 1. (a), (b) The quasiparticle energy at different angular mo-
mentum channels from −3 to 3, and (c), (d) density of probability of
MZMs under different ZFs, (a), (c) Bz = −0.2 and (b), (d) Bz = 0.2.

the scenario where ZF is sufficiently large, rendering SOC
and superconductivity negligible. In this case the BdG matrix
becomes diagonal and spin essentially becomes a well-defined
quantum number, leading to spin-angular-momentum locking.
Simultaneously, the position becomes intertwined with angu-
lar momentum. Notice that the zero-energy solution exists
only when T +

0 = a2
0 j/R2 + Bz = 0 for negative ZF or T −

1 =
a2

1 j/R2 − Bz = 0 for position ZF. Obviously, these two cases
lead to different contributions from angular momentum and

spin (u0
↑, u1

↓). As the strength of the SOC increases, leading
to enhanced coupling between spin-up and spin-down compo-
nents of MZM, there is a notable consequence: the component
of spin-up in the second MZM becomes more pronounced.
Consequently, this results in a greater localization of the MZM
at the very center of the vortex core. It is noteworthy that the
existence of zero-energy solutions is contingent upon specific
values of ZF (as seen in Fig. 4). This phenomenon is indeed
a finite-size effect, a subject that has been extensively dis-
cussed [29]. In sufficiently small materials, the zero-energy
modes may be quenched in finite-size systems due to the
interplay between the two edges [31]. However, the off-center
effect we observed stems from the kinetic energy term rather
than finite-size considerations.

B. Edge modes and CdGM modes

In addition to the MZM, we observe the appearance of two
different kinds of modes with discrete energy known as EMs
and CdGMMs in nonzero-angular-momentum channels under
the influence of negative ZF, as depicted in Fig. 2. The gap
between these two kinds of modes can be finely tuned by ad-
justing the strength of the SOC. When the SOC is sufficiently
weak, EMs and CdGMMs become degenerate, and the EMs
seamlessly evolve into CdGMMs. In the case of positive ZF,
a similar situation arises but with one distinction: the state
with higher energy corresponds to VCMs instead of CdGMMs
in the |l| = 1 channel, as shown in Fig. 3. This discrepancy
can be attributed to the differential contributions of angular
momentum, akin to what we observed in the case of MZMs.
Notably, the presence of a minigap between the VCMs and
MZMs plays a vital role in shielding the MZMs from the
adverse effects of finite temperature and disorder. Hence, the
magnitude of this minigap holds paramount significance in

FIG. 2. (a), (d) The quasiparticle energy and density of possibility of (b), (e) EM and (c), (f) CdGMM at l = 1 channel under negative ZF
Bz = −0.2 with (a)–(c) α = 0.5 and (d)–(f) α = 0.1.

144512-3



XIN-HAI TU, XIAN-GANG WAN, AND NING HAO PHYSICAL REVIEW B 109, 144512 (2024)

FIG. 3. (a), (d) The quasiparticle energy and density of possibility of (b), (e) EM and (c), (f) VCM at l = 1 channel under positive ZF
Bz = 0.2 with (a)–(c) α = 0.5 and (d)–(f) α = 0.1.

the quest to observe non-Abelian statistics of quasiparticles
within this system. The slopes of the EMs exhibit an interest-
ing behavior: they have opposite directions for two opposite
ZFs. This behavior signifies that electrons can only move in
a clockwise or anticlockwise direction at the system’s edge,
indicating the occurrence of the quantum anomalous Hall
effect [32,33].

C. Vortex core modes with zero energy

In the trivial parameter region B2
z < �2

s + μ2 = 0.1, there
consistently exists an energy gap within the system, as
illustrated in Fig. 4. However, it is worth noting that this gap
does not precisely close at Bz = 0.1 due to the finite-size
effect mentioned earlier. It is understandable that the gap
closure occurs earlier under negative ZF than under posi-
tive ZF, resulting in distinct oscillation patterns. For cases of
weak SOC, the gap expands, in stark contrast to the behavior

FIG. 4. Evolution of energy of the ground state at l = 0 chan-
nel with ZF 0.5 > |Bz| > 0. Two interlaced oscillation patterns are
formed in the topological parameter region B2

z > �2
s + μ2. A large

gap exists in the trivial parameter region B2
z < �2

s + μ2.

observed in the topological parameter region. Simultaneously,
the finite-size effect becomes more pronounced. Surprisingly,
an unexpected zero-energy state emerges within the trivial
parameter region that, under the influence of negative ZF,
should have remained fully gapped. Remarkably, this zero-
energy state is identified as VCMs possessing an unexpected
zero-energy feature, as depicted in Fig. 5. To provide an
explanation for this phenomenon, we consider a scenario in
which both the strength of the SOC and the off-diagonal
superconducting order parameter are exceedingly weak, such
that α = 0 and (�l )i 	= j = 0. Under these conditions, the BdG
matrix can be effectively simplified into a block-diagonal
form, leading to a condition for the existence of zero-energy
states given by

Bz = a2
1 j − a2

0 j

2R2
−

√(a2
1 j + a2

0 j

2R2

)2

+ �2
0. (5)

The maximum negative value of Bz occurs in the smallest j =
1 case, where Bz>−�0. When the separation between two
adjacent vortices significantly exceeds the coherence length,

FIG. 5. The quasiparticle energy and density of possibility of
zero-energy mode at l = 0 channel with α = 0.1 and Bz = −0.089.
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FIG. 6. The wave function of MZM with α = 0.5 and Bz = −0.2
and zero-energy VCM with α = 0.1 and Bz = −0.089.

that is, when 2R 
 ξ , the phenomenon of penetration can be
safely disregarded. In this regime, not only do the CdGMMs
possess zero energy, but the VCMs can also exhibit zero
energy due to the finite-size effect. As demonstrated in Fig. 6,
the oscillation pattern disappears in VCMs, presenting a fea-
sible method for distinguishing between MZMs and VCMs in
experimental observations.

IV. DISCUSSION AND CONCLUSION

Among the subtle difference between these different
modes, we primarily highlight two novel effects: the off-
centered effect of MZMs and the penetration effect of VCMs.
We contend that a zero-energy mode, whether off-centered
or centered, may or may not be a MZM. Based on our
comprehensive study, we propose four key requirements to
mitigate the interference from trivial bound states in experi-
ment. Weak magnetic field: It is imperative that the strength of
the magnetic field remains substantially smaller than the upper
critical field, denoted as H � Hc2. This condition ensures
that the vortex cores are sufficiently small and the separation
between adjacent vortices is adequately large. Strong SOC:
A strong SOC is essential to suppress both the off-centered
effect and the penetration effect, thus enabling clearer ob-
servations of nontrivial modes. Detection of nontrivial EMs:
Experimentally, the presence of nontrivial edge modes should
be unequivocally observed by applying a local magnetic field.
Gradually decaying interference fringes: To further confirm
the presence of nontrivial modes and distinguish them from
trivial ones, one should look for the appearance of interference
fringes that gradually decay with increasing distance from
the vortex core center. By satisfying these four requirements,
researchers can significantly enhance the reliability of their

experimental observations and gain deeper insights into the
fascinating world of topological superconductivity.

Here we discuss briefly the effects of SOC, superconduct-
ing order parameter, and impurity for these bound states. In
general, the wave function of the bound state can be written
as ψ (r) ∼ exp[− ∫

�(r)dr/h̄vF ]Jl (ar). The Fermi velocity is
related to the strength of SOC as vF = h̄kF /m − αh̄kF in our
case. One can see that a more extended oscillatory pattern
will be caused when the SOC or superconducting order pa-
rameter decreases. With impurity, the topological nontrivial
MZM is robust enough in the vortex based on particle-hole
symmetry. A local small perturbation cannot destroy this
symmetry or shift the nondegenerate zero-energy MZM to a
finite energy that must emerge simultaneously with another
negative-energy state. Meanwhile, the unprotected VCM ap-
pearing at the trivial region still survives under weak impurity
potential but is destroyed under strong impurity scattering.
Besides, such strong impurity potential could push the triv-
ial CdGMMs to zero energy with zero charge to imitate the
spectroscopic signatures of MZMs [24].

In summary, our study has demonstrated that a vortex
within a topological superconducting heterostructure has the
capability to trap several distinct types of modes, including
MZMs, CdGMMs, VCMs, and EMs. The characteristics of
these modes exhibit subtleties contingent on the precise tuning
of various parameters, such as the direction of the ZF and the
strength of the Rashba SOC, and others. Our investigations
have placed important constraints on the experimental verifi-
cation of MZMs, shedding light on the intricate nature of these
exotic quasiparticle states.
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