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Monte Carlo spin simulations of magnetic noise: The search for pivoting
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Superconducting quantum interference devices (SQUIDs) show great promise as quantum bits (qubits) but
continue to be hindered by flux noise. The flux noise power spectra of SQUIDs go as 1/ f α , where α is the
temperature-dependent noise exponent. Experiments find 0.5 � α � 1. Furthermore, experiments find that the
noise power spectra versus frequency at different temperatures pivot about or cross at a common point for each
SQUID. To try to better understand the results and motivated by experimental evidence that magnetic moments
on the surface of SQUIDS produce flux noise, we present the results of our Monte Carlo simulations of various
spin systems on 2D lattices. We find that only spin glasses produce α ∼ 1 at low temperature. We find that
aliasing of the noise power spectra at high frequencies can lead to spectral pivoting if it is in proximity to a knee
at a slightly lower frequency. We show that the pivot frequency depends on the method of site selection and how
often the magnetization is recorded. The spectral pivoting that occurs in our simulations is due to aliasing and
does not explain the spectral pivoting of experiments.
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I. INTRODUCTION

Superconducting quantum interference devices (SQUIDs)
can be used as quantum bits (qubits). While SQUIDs hold
great potential for quantum computing, they suffer from noise
and decoherence. One of the main sources of decoherence
is 1/ f flux noise [1]. 1/ f noise is characterized by noise
power spectra that go as 1/ f α , where f is frequency and α

is the noise exponent. The noise exponents for SQUIDs lie in
the range 0.5 � α � 1 for 1 K � T � 20 mK [2–4], where
the noise exponent increases as temperature decreases. Fluc-
tuating magnetic moments were proposed as a source of
flux noise in SQUIDs [2]. This is consistent with exper-
imental evidence of surface spins on normal metals [5]
and superconductors [6]. Sendelbach et al. measured a 1/T
temperature-dependent flux through SQUIDs, which is indica-
tive of paramagnetic spins [6]. Fluctuations of these surface
spins cause flux noise because SQUIDs are highly sensitive
magnetometers. Furthermore, cross correlations between fluc-
tuations in the flux and the inductance in DC SQUIDs indicate
that the spins interact ferromagnetically [7].

Additional evidence for surface spins comes from density
functional theory (DFT) calculations of the oxide layer on the
aluminum surface of SQUIDs. Since SQUIDs are exposed
to air, it is reasonable to expect oxygen to be adsorbed on
the surface below approximately 40 K. O2 is paramagnetic,
and DFT calculations show that oxygen retains a magnetic
moment of 1.8 µB after being adsorbed on the surface of sap-
phire (α-Al2O3) [8]. DFT also finds a low barrier (∼10 mK)
for spin reorientation so that spins rotate easily in the easy
plane that is perpendicular to the O2 molecular bond [8,9]. In
addition, these calculations indicate that the coupling between
adsorbed oxygen molecules is ferromagnetic [8]. Monte Carlo
simulations of ferromagnetically coupled O2 on the surface
of sapphire are able to produce 1/ f noise consistent with
experiment at higher temperatures [8]. Evidence of paramag-

netic oxygen spins on SQUIDs come from x-ray absorption
spectroscopy (XAS) and x-ray magnetic circular dichroism
(XMCD) experiments that were carried out on thin films of
aluminum and niobium, which are typical SQUID materials
[9]. The experiments [9] confirm the DFT predictions [8] that
the bond axis of O2 is tilted 55◦ away from the surface normal.

Surface treatments that remove or prevent oxygen adsorp-
tion on SQUIDs reduce flux noise by a factor of four or
five [9]. A protective coating of nonmagnetic ammonia (NH3)
prevents the adsorption of O2 since NH3 has a higher binding
energy to Al2O3. Ultraviolet irradiation of SQUIDs in an ul-
trahigh vacuum removes adsorbed oxygen [9]. Although flux
noise is reduced with these treatments, it is not eliminated.

There is still the question as to how surface spins produce
1/ f noise. The Dutta-Horn model of 1/ f noise [10] is the
most common explanation for 1/ f -type noise. The model
assumes that independent, thermally activated processes exist,
where each process individually produces a Lorentzian power
spectra. A distribution of barrier heights that is slowly varying
on the order of kBT leads to a range of relaxation times and
hence, 1/ f noise. In the case of spins, spin flips can result
from spins hopping in and out of traps with different preferen-
tial spin orientations [11] or hopping between a local moment
state and the conduction band at the interface between a metal
and an insulator [12]. De Sousa proposed that magnetic noise
arises from spin flips of paramagnetic dangling bonds at the
amorphous semiconductor/oxide interface [13]. A range of
relaxation times can also come from interactions between
spins [14–17]. Faoro and Ioffe invoked spin diffusion via
RKKY interactions between spins. Chen and Yu suggested
that interacting surface spins can be modeled as a spin glass
[15] while De proposed a model with small spin clusters
in which the spins have ferromagnetic RKKY interactions
[16,17]. These theoretical models of spins on the surface of
SQUIDs have indeed been able to produce 1/ f flux noise
[11–17].
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While it is well established that surface spins are a
source of 1/ f flux noise, there are still mysteries associated
with this noise. For example, why is the noise exponent
close to 1? While Ising spin-glass models yield α � 1 [15],
ferromagnetic spin system simulations find α > 1 at low
temperatures [8].

Another puzzle comes from experiments using Nb
SQUIDs. In this case, when the noise power spectra are plot-
ted as a function of frequency on a log-log plot, the curves
for different temperatures cross or intersect in the vicinity of a
single “pivot” frequency [3]. As a result, as the temperature
decreases, the low-frequency noise increases and the high-
frequency noise decreases. The noise near the pivot frequency
is rather constant as a function of temperature. For SQUIDs
with different geometries, the power spectra for each device
still pivot. The pivot frequency is different for each SQUID,
and there is no clear relation between geometry and pivot
frequency. Other experiments involving SQUIDs of various
materials also find spectral pivoting [4].

Furthermore, Anton et al. [3] integrated the (extrapolated)
flux noise power spectra S�( f ) over the frequency f from
f1 = 10−4 Hz to f2 = 109 Hz to obtain the mean-square flux
noise 〈�2〉. They found that the mean-square flux noise in-
creased by two to three orders of magnitude as the temperature
increased from 0.1 K to 4 K.

Several models have been proposed to explain spectral
pivoting. Spin diffusion can explain pivoting if the system is
close to a phase transition where the diffusion coefficient is
dependent on temperature [18]. The result is a range of fre-
quencies where power spectra cross as in experiment. Monte
Carlo simulations of Heisenberg spins in a cluster model can
also produce spectral pivoting [19]. This model bases the
probability of spin flips on changes in free energy instead
of internal energy as in the standard Monte Carlo method.
This has the effect that lower entropy spin configurations are
more favored. This model produces 1/ f α power spectra at
low frequency and 1/ f 2 power spectra at high frequency. The
power spectra do not intrinsically pivot. To get crossing, the
1/ f α parts of the power spectra are extended via extrapolation
into the high-frequency range.

In an effort to understand spectral pivoting and what types
of interactions lead to the noise exponent α ∼ 1, we per-
formed Monte Carlo simulations of spins on 2D lattices since
both DFT simulations [8] and experiments [9] indicate spins
can produce flux noise. Since oxygen spins have an easy-plane
anisotropy perpendicular to the O2 bond [8], we test various
interacting spin models with different anisotropies.

Although we find that spectral pivoting can occur in Monte
Carlo simulations of classical XY and Heisenberg spins, the
pivoting in our simulations is an artifact of the simulations.
In plots of noise power versus frequency, a high-frequency
pivot occurs because the low-frequency knees are close in
frequency to the high-frequency aliasing of the power spectra,
and thus the simulations do not explain the experimentally
observed pivoting. The low-frequency knee refers to the
crossover from a flat noise spectrum at low frequencies to
1/ f α at higher frequencies with the noise exponent α > 0.

Aliasing refers to a well-known phenomenon in signal pro-
cessing. Suppose a signal is sampled at equal time intervals
�. Then we can define a Nyquist frequency fc = 1/(2�).

If we Fourier transform the time series, the result has com-
ponents with frequencies outside the frequency range − fc <

f < fc that spuriously contribute to the Fourier transformed
signal in the range between − fc and fc [20]. We say that the
true power spectrum from frequencies outside that range are
“folded” into the range. As a simple example, consider two
waves: g1(t ) = exp(2π i f1t ) and g2(t ) = exp(2π i f2t ) where
f2 = f1 + (m/�) where m is a positive integer so that f2 >

f1. It is easy to show that g1 = g2 at time intervals of �. So
the higher-frequency signal g2(t ) will contribute to the Fourier
transformed signal at lower frequencies such as f1. In our
simulations, aliasing appears as a minimum or flattening of
the noise power spectra at fc.

In addition to trying to better understand spectral pivoting,
we also use this paper to explain some of the challenges and
pitfalls of Monte Carlo simulations and what happens when
there are deviations from the standard procedure. The paper
is structured in the following manner. In Sec. II, we describe
the Hamiltonians of the spin models, how the simulations are
performed/equilibrated, and how the noise power is analyzed.
In Sec. III, we present our results on noise exponents, noise
amplitudes, and why pivoting occurs in our simulations.

II. METHOD

A. Spin models

The Ising, XY, and Heisenberg Hamiltonians of the 2D spin
systems are given by

HIsing = −
∑
〈i, j〉

Ji jsi · s j, (1)

HXY = −
∑
〈i, j〉

Ji jsi · s j, (2)

HHeis. = −
∑
〈i, j〉

Ji jsi · s j − A
∑

i

(ni · si )
2, (3)

where si and s j are classical spins of length 1 on nearest-
neighbor sites i and j, respectively. Ji j is the spin exchange
coupling. A positive value for Ji j indicates a ferromagnetic in-
teraction. The second term in Eq. (3) is a spin anisotropy term.
For each site i, there is a local anisotropy axis ni. To model
the disorder of the SQUID surface, ni points in a direction that
varies randomly from site to site. The random-axis anisotropic
model was proposed by Harris to describe magnetism in an
amorphous material [21].

If the anisotropy A is positive, then ni is the easy axis for
spins; if the anisotropy A is negative, then ni is normal to the
easy plane for spin orientation.

Six spin models were simulated: noninteracting spins
(Ji j = 0, A = −1), ferromagnet (Ji j = 1), Poisson ferromag-
net (〈Ji j〉 = 1, σ 2

Ji j
= 0.2), antiferromagnet (Ji j = −1), spin

glass (〈Ji j〉 = 0, σJi j = 1), and spin-glass ferromagnet (〈Ji j〉 =
0.5, σJi j = 1). While one would think that the problem of a
noninteracting anisotropic Heisenberg spin could be solved
exactly, this is not the case. However, one can make various
approximations to the solution [22]. For the Poisson ferromag-
net, the couplings Ji j are chosen in the following way [8]. First
random integers Ci j are drawn from a Poisson distribution
with a mean of 5. Then the couplings are given by Ji j = 0.2 Ci j
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TABLE I. All six types of spin exchange couplings Ji j and the
corresponding spins models that were simulated.

Interaction Spin models

Noninteracting Heisenberg, A = −1
Ji j = 0
Spin glass 〈Ji j〉 = 0, σJi j = 1 Heisenberg, A = 0

Heisenberg, A = −10
XY

Ising
Antiferromagnet Ji j = −1 Heisenberg, A = 0

Heisenberg, A = −10
XY

Poisson ferromagnet 〈Ji j〉 = 1, σ 2
Ji j

= 0.2 Heisenberg, A = 0
Heisenberg, A = −10

XY
Ferromagnet Ji j = 1 Heisenberg, A = 0

Heisenberg, A = −10
XY

Spin-glass ferromagnet 〈Ji j〉 = 0.5, σJi j = 1 Heisenberg, A = 0
Heisenberg, A = −10

XY

so that for the Poisson ferromagnet, 〈Ji j〉 = 1 and σ 2
Ji j

= 0.2.
The temperature for this system is measured in units of 〈Ji j〉.

For the spin glass and spin-glass ferromagnet, Ji j is chosen
from a Gaussian distribution with a variance σ 2

Ji j
and the

temperature is measured in units of σJi j . One way to obtain
the random interactions associated with a spin glass is via
RKKY interactions [14]. Spins trapped in local moment states
at the interface between a metal and an insulator [12] could
interact via RKKY oscillations in the conduction electron gas
of the metal. However, spins associated with adsorbates such
as oxygen molecules on the surface of the native metal oxide
are too far away from the conduction electrons of the metal
to interact with each other via RKKY interactions [8]. The
interactions and the corresponding simulated spin models are
summarized in Table I.

B. Simulation details

We perform simulations with spins occupying every site of
a 16 x 16 square lattice. The system is initialized with ran-
domly oriented spins. For anisotropic systems, each run has a
unique, but random, set of anisotropic axes. A spin is allowed
to reorient itself according to the Metropolis algorithm [23].
In this algorithm, a trial move consists of first choosing a
spin on the lattice at random. The initial energy of this site
Ei is calculated from the local field produced by its nearest
neighbors and the local anisotropy. A new orientation of the
spin is chosen from a random distribution for the Heisenberg
and XY systems. For the Heisenberg systems, the distribution
is random on the unit sphere (the distribution is uniform in
φ and cos θ ). For XY systems, the distribution is random
on the unit circle (uniform distribution in φ). In the case of
Ising systems, the spin is flipped. The final energy E f of this
site with the new spin orientation is calculated. If the final
energy is less than the initial energy, then the new spin orien-
tation is accepted. However, if the final energy is greater than

the initial energy, then the flip is accepted with probability
exp[−(E f − Ei )/(kBT )]. A random number is generated from
a uniform distribution between 0 and 1; if it is less than the
Boltzmann factor, then the new orientation is accepted. This
process continues for the remaining sites within the lattice.
The time it takes for one sweep through the lattice is one
Monte Carlo step (MCS).

The system is equilibrated as described later in Sec. II E.
The total magnetic moment of this system is obtained by
summing over all the spins in the lattice and is given by m =∑N

i=1 si, where N is the number of sites. After equilibration,
the total magnetic moment of the lattice is recorded at every
Monte Carlo step. The system is cooled from its initial random
spin configuration at T = 10 to T = 0.5.

C. Site selection

For every sweep through the lattice of N spins, N spins
are offered the chance for reorientation, but only M spins are
at different sites. There are two typical methods of selecting
sites.

The “every-site method” involves giving each site in the
lattice one opportunity to reorient, i.e., M = N . This is the
method used in this paper. In the “random-site method,” M
sites are chosen for reorientation at random. With this method,
it is possible to select several sites more than once and some
not at all.

We would expect simulations of magnetic noise to pro-
duce white noise power spectra at high temperatures. For
the “every-site method,” this is true. The power spectrum
of Heisenberg spins in the high-temperature limit using the
“random-site method” goes as 1/ f , and the 1/ f noise power
spectra is entirely due to the site selection method. For a given
model, the power spectra at different temperatures with the
“random-site method” pivot at a lower frequency compared to
the “every-site method.”

D. Time steps

One time step in a standard Monte Carlo simulation is
one Monte Carlo step (MCS). To simulate a slower recording
rate, the total magnetic moment time series can be recorded
after several MCS. A comparison of recording every time
step and every 10 time steps is shown in Fig. 1. Although
the maximum frequency of the power spectra when recording
every 10 time steps is smaller than for recording every time
step, the total noise power for both cases is equal. At a given
temperature, the total noise power is equal to the variance of
the total magnetic moment time series, which is dimension-
less. This means that the noise power Sx( f ) has units of MCS.
Recording every 10 time steps causes the aliasing to occur at
a lower frequency, but the location of the low-frequency knee
remains unchanged. The effect is that the pivoting frequency is
decreased. Unless otherwise noted, the time steps are recorded
at 1 MCS intervals.

(One might be tempted to record the time series more
often than one MCS in an effort to extend to frequencies
higher than 0.5 MCS−1. However, in real physical systems,
all spins evolve simultaneously so it would be unphysical to
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FIG. 1. Noise power Sx ( f ) of the x component of the total mag-
netic moment vs. frequency. Noise power spectra averaged over 10
segments for the 2D (a) isotropic (A = 0) Heisenberg ferromag-
net (Ji j = 1) and (b) noninteracting (Ji j = 0), anisotropic (A = −1)
Heisenberg models from recording the total magnetic moment at
every time step and every ten time steps at T = 1. The units of noise
power are MCS, because the total noise power is dimensionless.

record the total magnetic moment before all spins are given
the opportunity to reorient.)

E. Equilibration

The test for equilibration follows Bhatt and Young’s pro-
cedure for the equilibration of Ising spin glasses [24]. Two
independent replicas of each system with the same exchange
couplings and orientation of anisotropic axes are created and
run in parallel. The initial spin configurations for the two
replicas are different and random. For the set of spins {si} with
N lattice sites, the spin autocorrelation function for the replica
n, after an equilibration time t0, is

Q(n)(t ) = 1

N

N∑
i=1

s(n)
i (t0) · s(n)

i (t0 + t ), (4)

where the summation is over all lattice sites. The spin-glass
susceptibility for replica n is calculated as the second moment
of this overlap and then averaged over 200 different realiza-
tions of bonds and anisotropy axes. This disorder average is

denoted by [. . .]av,

χ
(n)
SG (t ) = 1

N

⎡
⎣(

N∑
i=1

s(n)
i (t0) · s(n)

i (t0 + t )

)2
⎤
⎦

av

. (5)

The equilibration time t0 is chosen from the sequence
1, 3, 10, 30, 100, 300, . . . , etc. The idea is to compare s(n)

i (t0)
to s(n)

i (t0 + t ) as t → ∞ to see whether s(n)
i (t0 + t ) has lost its

“memory” of s(n)
i (t0). In practice, the comparison is done as

t → 3t0. The spin-glass susceptibility in Eq. (5) is averaged
over a length of time t0,

χ
(n)
SG = 1

Nt0

⎡
⎣2t0−1∑

t=t0

(
N∑

i=1

s(n)
i (t0) · s(n)

i (t0 + t )

)2
⎤
⎦

av

. (6)

The summation over t starts at t0 so that the distribution of
Qn(t ) is Gaussian. The correlation of the spins at shorter times
makes the distribution deviate from a Gaussian.

For small values of t0 and when the system is at low
temperatures, there are few spin fluctuations, so Q(n)(t ) ∼ 1
and χ

(n)
SG (t ) ∼ N . This is in agreement with simulations.

We can also calculate χ
(n)
SG in the high-temperature limit.

We start with two Heisenberg spins s1 and s2 of length 1
that represent s(n)

i (t0) and s(n)
i (t0 + t ), respectively, in Eq. (6).

Without loss of generality, we choose one spin to be along the
z axis. The average square of the dot product is calculated as

〈(s1 · s2)2〉Heis. = 〈
s2

1s2
2 cos2(θ )

〉
= 〈cos2(θ )〉, (7)

where θ is the angle between s1 and s2. The angle θ is also the
polar angle of the spin. In our simulations, cos(θ ) is chosen
from a uniform distribution, so Eq. (7) can be simplified,

〈(s1 · s2)2〉Heis. = 〈cos2(θ )〉

= 1

2

∫ 1

−1
cos2(θ )d ( cos(θ ))

= 1

3
. (8)

We repeat the process for an XY spin with an angle φ between
spins that is chosen from a uniform distribution,

〈(s1 · s2)2〉XY = 〈
s2

1s2
2 cos2(φ)

〉
= 〈cos2(φ)〉

= 1

2π

∫ 2π

0
cos2(φ)dφ

= 1

2
. (9)

For Ising spins,

〈(s1 · s2)2〉Ising = 〈(±s1s2)2〉
= 〈

s2
1s2

2

〉
= 1. (10)
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From Eqs. (8)–(10), we can see that for spins with m
components,

〈(s1 · s2)2〉 = 1

m
. (11)

Combining Eq. (11) with Eq. (6), for high temperatures, we
get χ

(n)
SG = 1

m , which is seen in simulations.
We then define the average of the two single replica sus-

ceptibilities

χSG = 1
2

(
χ

(1)
SG + χ

(2)
SG

)
(12)

as the two times spin-glass susceptibility.
The spin-glass susceptibility may also be calculated from

the spin overlap of the two different replicas. The mutual
overlap between the spins s(1)

i and s(2)
i of the two replicas is

Q(t ) = 1

N

N∑
i=1

s(1)
i (t0 + t ) · s(2)

i (t0 + t ). (13)

The spin-glass susceptibility is calculated from the spin over-
lap,

χSG = 1

Nt0

⎡
⎣2t0−1∑

t=t0

(
N∑

i=1

s(1)
i (t0 + t ) · s(2)

i (t0 + t )

)2
⎤
⎦

av

. (14)

For all temperatures, as the equilibration time is ap-
proached, the spin-glass susceptibilities converge; the two
times susceptibility χSG [Eq. (12)] approaches the true sus-
ceptibility from above and the replica susceptibility χSG

[Eq. (14)] from below.
After sufficiently long equilibration times, χSG and χSG

agree. We define the system to be equilibrated if

�χSG = |χSG − χSG|
1
2 (χSG + χSG)

(15)

is less than 5% for three consecutive times in the t0 sequence;
then we declare it equilibrated at the fourth time. For example,
if the last three equilibration times are t1 = 3000, t2 = 10 000,
t3 = 30 000, then the equilibration time t4 = 100 000. At each
temperature, the initial equilibration time is 1 × 105 MCS, and
it is increased if the system is not equilibrated.

F. Noise power

The time series of each component of the total magnetic
moment is given by ma(t j ), where a = x, y, z. The devia-
tion from the average is δma(t j ) = ma(t j ) − ma(t j ). The noise
power spectral density can be determined from the Fourier
transform of the autocorrelation function of the time series.
The autocorrelation is given by

Ca(tk ) = 1

Nτ

Nτ −1∑
j=0

δma(t j )δm∗
a (t j − tk ), (16)

where δm∗
a (t j − tk ) is the complex conjugate of δma(t j − tk ).

For a discrete time series ma(t j ) of length Nτ , the discrete
inverse Fourier transform is given by

δma(t j ) = 1

Nτ

Nτ −1∑
k=0

m̃a( fk )e2π i fkt j/Nτ , (17)

where m̃a( fk ) is the Fourier transform of the time series. Using
Eq. (17), the autocorrelation function becomes

Ca(tk ) = 1

N3
τ

Nτ −1∑
j=0

[(
Nτ −1∑
l=0

m̃a( fl )e
2π i fl t j/Nτ

)

×
(

Nτ −1∑
n=0

m̃∗
a ( fn)e−2π i fn (t j−tk )/Nτ

)]
. (18)

This can be simplified to

Ca(tk ) = 1

N2
τ

Nτ −1∑
n=0

|m̃a( fn)|2e2π i fntk/Nτ . (19)

Taking the Fourier transform of Eq. (19) gives the peri-
odogram estimate [20] for computing the noise power Sa( fk )
for the axes a = x, y, z,

Sa( fk ) = 1

Nτ

1

N
|m̃a( fk )|2, (20)

where the power spectra is divided by N so that Sa( fk ) is the
noise power per site for spin component a. The power spectra
are normalized so that at a given temperature, the total noise
power is equal to the variance of the total magnetic moment
time series divided by the number of sites.

The Fourier transform m̃a( fk ) is computed using the C
subroutine library FFTW [25]. At a given temperature, the
time series δma(t j ) for a given run is split into either 10 or
100 segments (blocks) of equal length. The power spectrum is
found for each segment and is averaged over these segments
to give a smoother power spectrum. At each temperature, the
spectra are averaged over 200 independent runs. The power
spectra used in all plots shown in this paper are averaged over
100 segments.

III. RESULTS

A. Low-frequency knee

At lower frequencies of the power spectra, there are
“knees” where the power spectra transition from A2/ f α to
white noise at low frequency as shown in Fig. 2. The fre-
quency of the knee decreases as the temperature decreases.

The low-frequency knee is due to finite-size effects of the
lattice [26]. The correlation length increases as the tempera-
ture approaches the transition temperature Tc associated with
the relevant order parameter. The relaxation time increases as
the correlation length increases, so the system takes longer to
equilibrate. In previous simulations of the ferromagnetic Ising
model and five-state Potts model, it was found that the knee
frequency is proportional to the system’s minimum relaxation
rate τ−1, i.e., the system’s maximum relaxation time [26].
This means that as the temperature decreases and approaches
Tc, the knee frequency decreases. Since the relaxation time
increases with system size, we expect the knee frequency to
decrease with system size [26]. (So, in real materials or de-
vices where the lattice size is huge, one does not see a knee in
the noise power spectrum.) One should look at the noise in the
relevant order parameter to see the knee frequency decrease.
The order parameters are magnetization for the ferromagnetic
systems, staggered magnetization for the antiferromagnetic
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FIG. 2. Noise power Sx ( f ) of the x component of the total mag-
netic moment of a 2D isotropic (A = 0) Heisenberg ferromagnet
(Ji j = 1) vs. frequency. The low-frequency knee of the power spec-
trum averaged over 100 segments is shown for T = 2.

systems, and the spin-glass order parameter q for spin-glass
systems. We investigate this below.

According to the Mermin-Wagner-Hohenberg theorem
[27,28], two-dimensional Heisenberg spin systems should not
undergo a phase transition. The order parameters of the fer-
romagnet, antiferromagnet, and spin-glass systems show that
Heisenberg systems exhibit ordering at a positive Tc. This dis-
crepancy is because the Mermin-Wagner-Hohenberg theorem
holds in the thermodynamic limit, while these simulations are
for finite lattices. Simulations show that as the system size
increases, the value of Tc decreases toward zero. This system
size dependence is shown in Fig. 3. We define the magnetic
susceptibility of the total magnetic moment per site as

χtotal = 1

kBT

(〈∣∣∣m

N

∣∣∣2
〉
−

〈∣∣∣m

N

∣∣∣〉2
)

, (21)

where we set kB = 1, T is temperature, N is the number of lat-
tice sites, and the magnitude of the total magnetization |m| =√

m2
x + m2

y + m2
z . As the system size increases, the peaks in

the magnetic susceptibility occur at lower temperatures.

FIG. 3. Magnetic susceptibility of the magnitude of the total
magnetic moment per site vs. temperature for the 2D Heisenberg
Ferromagnet as a function of system size.

FIG. 4. Noise power Sx ( f ) of the x component of the total mag-
netic moment of a 2D isotropic (A = 0) Heisenberg ferromagnet
(Ji j = 1) vs. frequency. Labeled regions of the power spectrum aver-
aged over 100 segments at T = 2.

B. Aliasing

At higher frequencies near 0.5 MCS−1, there is an upturn
of the noise power due to aliasing that is shown in Fig. 4.
The aliasing is due to the periodicity of the factor e−2π i f t used
in the Fourier transform [20]. When calculating the discrete
Fourier transform, frequency components of the power spectra
that are greater than 0.5 MCS−1 are translated into the range
0 MCS−1 < f < 0.5 MCS−1 [20]. As we explain later in this
section, under certain conditions, this aliasing can cause spec-
tral pivoting where the power spectra at different temperatures
cross within a narrow range of frequency.

C. Noise exponents

To determine the noise amplitude (A2) and the noise expo-
nent (α), the function A2/ f α is fit to the region of the power
spectra that is linear on a log-log plot and that lies between the
low-frequency knee and high-frequency upturn due to aliasing
as shown in Fig. 4. More details about this fitting process
can be found in Appendix A. In performing fits, A2/ f α is
fit to the 10-averaged power spectra, so the fits are linear on
log-log plots. Each x, y, and z component of the spin results
in a power spectrum, and the amplitudes and exponents are
determined for each component. The noise amplitudes and
exponents as a function of temperature are shown in Figs. 5
and 6, respectively. In Fig. 6, the shaded region indicates the
experimental range of noise exponents where 0.5 � α � 1
and 1 � T � 2. (The lower bound of T � 1 is set by the
energy scale of the exchange constant Ji j .) From the plot of
noise exponents, we can see that the spin-glass systems are
the most consistent with experiment.

D. Pivoting

If the knee and aliasing upturn are close in frequency,
then the two regions around these features overlap, and the
frequency range of the power law fit is reduced. This effect is
shown in Fig. 7 for the isotropic Heisenberg ferromagnet at
T = 10.
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FIG. 5. Noise amplitude averaged over spin components as a
function of temperature for (0.5 � T � 10).

Another effect of the aliasing upturn being close to the
knee is that the power spectra at different temperature pivot
about a common frequency as seen in Figs. 8 and 9. In
Fig. 8, the noise power as a function of frequency is shown
for different temperatures for the isotropic ferromagnetic,
isotropic antiferromagnetic, isotropic spin glass, and non-
interacting anisotropic (A = −1) Heisenberg spin models.
Since the power spectra for the antiferromagnetic spin sys-
tem do not cross at a common frequency, they do not pivot.
The power spectra for the isotropic ferromagnetic, isotropic
spin glass, and noninteracting, anisotropic (A = −1) sys-
tems pivot at high temperature. To examine this further, in
Fig. 9, the noise power as a function of frequency is shown
for the Heisenberg ferromagnet for 0.5 � T � 10. Over this
large range of temperature, the power spectra does not pivot.
The inset of Fig. 9 shows pivoting for the high-temperature
range 4 � T � 10. Figure 10 shows the pivoting of the power
spectra for the 2D Ising spin glass for 1.7 � T � 2.3. The
anomalous high-temperature pivoting of power spectra for
4 � T � 10 is presented in Appendix B for the 2D Ising spin
glass.

FIG. 6. Noise exponents averaged over spin components as a
function of temperature for (0.5 � T � 10). The shaded region in-
dicates the experimental range of 0.5 � α � 1 and 1 � T � 2.

FIG. 7. Noise power Sx ( f ) of the x component of the total mag-
netic moment of a 2D isotropic (A = 0) Heisenberg ferromagnet
(Ji j = 1) vs. frequency. Black lines indicate the frequency fit range
of the noise power spectra averaged over 100 segments at T = 10
and T = 1.
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FIG. 8. Noise power Sx ( f ) of the x component of the total magnetic moment vs. frequency. Spectral pivoting of power spectra averaged over
100 segments of the 2D (a) noninteracting (Ji j = 0) anisotropic (A = −1), (b) isotropic (A = 0) spin glass (〈Ji j〉 = 0, σJi j = 1), (c) isotropic
(A = 0) antiferromagnetic (Ji j = −1), (d) isotropic (A = 0) Poisson ferromagnetic (〈Ji j〉 = 1, σ 2

Ji j
= 0.2), (e) isotropic (A = 0) ferromagnetic

(Ji j = 1), and (f) isotropic (A = 0) spin-glass ferromagnetic (〈Ji j〉 = 0.5, σJi j = 1) Heisenberg models for 1 � T � 10.

Spectral pivoting occurs for all systems tested except for
the Heisenberg antiferromagnets with A = 0 and A = −1 as
well as the XY antiferromagnet (see Fig. 8). Spectral pivoting
is most evident at high temperatures well above the magnetic
transition temperature Tc. This is consistent with experiments
on flux noise where there is no conclusive evidence for a
magnetic phase transition, indicating that the experimentally
observed pivoting occurs at temperatures above any magnetic
phase transition.

For our simulated spin systems that exhibit pivoting, as
their temperature decreases, the spins change their orienta-
tions more slowly; the low-frequency noise power increases,
and the noise power at high frequencies decreases. Note that

the total noise power, i.e., the integrated area under spectral
density curve, is the same for all temperatures for the non-
interacting Heisenberg model with anisotropy A = −1 and
spin-glass models with Tc = 0 is zero. As a result, increasing
noise power at low frequencies means decreasing noise power
at high frequencies.

We find that that the crossing frequency of the power
spectra has a weak temperature dependence of the form
fc = B · T + f0. For noninteracting Heisenberg spins with
anisotropy A = −1, B = 0.023 and f0 = −0.16 for 0.5 �
T � 2.5. For comparison, B = 0.11 and f0 = −0.12 for the
isotropic Heisenberg ferromagnet for 1.25 � T � 2.5. Spec-
tral pivoting is an artifact that occurs at high temperature

144510-8



MONTE CARLO SPIN SIMULATIONS OF MAGNETIC … PHYSICAL REVIEW B 109, 144510 (2024)

FIG. 9. Noise power Sx ( f ) of the x component of the total mag-
netic moment of a 2D isotropic (A = 0) Heisenberg ferromagnet
(Ji j = 0) vs. frequency. Spectral pivoting of the power spectra av-
eraged over 100 segments for 0.5 � T � 10. The inset shows the
power spectra averaged over 100 segments for 4 � T � 10.

where the knee and aliasing regions are close to each other
as seen in the inset of Fig. 9. At low temperatures where the
knee and aliasing are not close, we do not see pivoting, which
can be seen in Fig. 9.

By changing a few simulation parameters, the pivoting
can be affected. The pivoting of the power spectra of the

FIG. 10. Noise power S( f ) of the total magnetic moment of a 2D
Ising spin glass (〈Ji j〉 = 0, σJi j = 1) vs. frequency. Spectral pivoting
of power spectra averaged over 100 segments for 1.7 � T � 2.3.

FIG. 11. Noise power Sx ( f ) of the x component of the total
magnetic moment of a 2D isotropic (A = 0) Heisenberg ferromagnet
(Ji j = 1) vs. frequency. Spectral pivoting of x component of the
power spectra averaged over 100 segments resulting from recording
the magnetic moment time series (a) at every time step using the
“every-site method,” (b) at every time step using the “random-site
method,” and (c) at every tenth time step using the “every-site
method.”

Heisenberg ferromagnet when recording the magnetic mo-
ment at every time step using the “every-site method” is
shown in Fig. 11(a). Using the method of randomly selecting
sites for reorientation outlined in Sec. II C results in a lower
crossing frequency by lowering the frequency where aliasing
occurs as shown in Fig. 11(b). Recording the magnetic mo-
ment time series every ten time steps as described in Sec. II D
also lowers the crossing frequency compared to recording the
magnetic moment time series at every time step as shown in
Fig. 11(c).
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FIG. 12. Total noise power (
∫ 0.5 MCS−1

0 MCS−1 Sx ( f )df ) of the total
magnetic moment vs. temperature of the 2D isotropic (A = 0) fer-
romagnetic (Ji j = 1), noninteracting (Ji j = 0) anisotropic (A = −1),
and isotropic (A = 0) antiferromagnetic (Ji j = −1) Heisenberg mod-
els for 0.5 � T � 10.

E. Mean-square flux noise

As we mentioned earlier, the mean-square flux noise is
given by

〈�2〉 =
∫ f2

f1

S�( f )df . (22)

In experiments by Anton et al., the mean-square flux noise
in SQUIDs was found to increase with increasing tem-
perature with f1 = 10−4 Hz and f2 = 109 Hz [3]. In our
simulations, the mean-square flux noise is equivalent to the
total noise power with f1 = 0 MCS−1 and f2 = 0.5 MCS−1.
The total noise power is calculated for the isotropic fer-
romagnetic, noninteracting anisotropic, and isotropic anti-
ferromagnetic Heisenberg systems for 0.5 � T � 10. The
total noise power as a function of temperature is shown in
Fig. 12.

In our simulations, only the Heisenberg antiferromagnet
shows a total noise power that increases with tempera-
ture, though the curvature of the plot differs from that of
Anton et al. [3]. Furthermore, Anton et al. [3] find that the
mean-square flux noise increases by two to three orders of
magnitude as the temperature increases from 0.1 K to 4 K
while our antiferromagnetic simulations find an increase of
less than one order of magnitude.

IV. SUMMARY AND DISCUSSION

Monte Carlo simulations of various spin models with
nearest-neighbor exchange were carried out on 2D lattices
to determine which interactions yield α ∼ 1 at low tem-
peratures as well as to find cases of spectral pivoting. We
find that the spin-glass systems produce noise exponents
that best match experiment [2–4]. In simulations, pivoting
at high frequencies occurs as a result of the proximity of a
low-frequency knee and the aliasing of the noise power spec-
tra. In experiments, aliasing can be avoided by using low-pass
filters [29]. This paper does not explain pivoting seen in
experiments but it can explain the pivoting we see in some

simulations. We note that in our simulations pivoting is most
evident at temperatures high compared with the magnetic
transition temperature. Presumably this is consistent with ex-
periments where there is no consistent evidence of a magnetic
transition.

This paper also does not explain why the mean-square
flux noise increases with temperature in the experiment by
Anton et al. [3]. We find that this increase is characteristic
of antiferromagnetic interactions between spins, for which
there is no other experimental evidence. Furthermore, the
increase in the mean-square flux noise is 2 to 3 orders of
magnitude in experiment compared to less than one order of
magnitude in simulations. One way to interpret the experi-
mental results would be to say that it implies an increase by
a couple of orders of magnitude in the number of spins as the
temperature increases; this is an interpretation that would be
difficult to explain in the context of most spin models that have
a fixed number of spins. Thus, the experimental findings imply
that additional sources of flux noise become more prominent
with increasing temperature. What these additional sources
are is unknown.
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APPENDIX A: FITTING

The process for fitting A2/ f α to the noise power spec-
tra to determine the noise exponent starts with dividing the
noise power spectra into frequency segments as shown in
Fig. 13(a). The segments from fi to fi+1 range from i =
1 to i = Nsegments − 1. The segments follow the condition
fi+1/ fi = 100.1. The function A2/ f α is fit to each segment
starting at the lowest-frequency segment.

The relative change in the noise exponent between the cur-
rent segment and the previous one is calculated. An example
of the relative change is shown in Fig. 13(b). If the relative
change is less than 1% and the noise exponent is greater than
0.2, then the frequency range of the segment is noted. The
lower and upper limits of the new frequency fit range are
found by combining all of these segments. In the figure, this
is shown by two vertical dotted lines. A fit is performed in this
region.

The percent error of the fit is the percent difference be-
tween A2/ f α evaluated at a particular f and the noise power
at f from the data. The percent error is evaluated for all
frequency data points within the fitted frequency range and is
shown in Fig. 13(c). A new frequency range is defined by the
maximum and minimum frequencies corresponding to percent
differences of less than 0.03% as shown by vertical dotted
lines.

This frequency range is shortened by increasing the lower
limit by 30% and decreasing the upper limit by 20%. By
reducing the frequency range, the fit region will not be within

144510-10



MONTE CARLO SPIN SIMULATIONS OF MAGNETIC … PHYSICAL REVIEW B 109, 144510 (2024)

FIG. 13. Fitting method using the power spectrum averaged over
100 segments of the isotropic (A = 0) Heisenberg ferromagnet (Ji j =
1) at T = 0.9. (a) Segmented power spectra: noise power Sx ( f )
of the x component of the total magnetic moment vs. frequency.
(b) Relative change in exponent vs. frequency for the segmented
power spectra. (c) Percent error between the power spectra fit and
data vs. frequency. (d) Noise power Sx ( f ) of the x component of
the total magnetic moment vs. frequency. The data segment used for
fitting is shown in black.

the knee and aliasing regions. These percentages that were
found by trial and error work well for all models presented.
The final fit of A2/ f α is performed within this new frequency
range. The power spectra and final fit region of the power
spectra are shown in Fig. 13(d).

FIG. 14. Noise power S( f ) of the total magnetic moment of a 2D
Ising spin glass (〈Ji j〉 = 0, σJi j = 1) vs. frequency. Spectral pivoting
of power spectra averaged over 100 segments for 4 � T � 10.

APPENDIX B: HIGH-TEMPERATURE PIVOT OF THE
ISING SPIN GLASS

As seen in Figs. 8 and 9 in Sec. III D, the noise power
spectra tend to pivot at high temperature. The noise power as
a function of frequency at high temperature for the 2D Ising
spin glass is shown in Fig. 14. Although the power spectra
pivots, the noise exponent is negative. This is because Ising
spin flips are always 180◦ rotations. At high temperature,
Ising spins have a high probability of flipping at every time
step, which increases the noise at f = 0.5 MCS−1. In the
infinite-temperature limit, the power spectrum would be a
delta function peaked at f = 0.5 MCS−1.

APPENDIX C: CROSSING CONDITION

The experimental results of Anton et al. indicate that at
high temperatures, the temperature dependence of the noise
amplitude can be described by A2(T ) = A2

0T γ and the noise
exponent can be described by α(T ) = α0 ln(T ) + α1 [3].
Monte Carlo simulations also find that these relations hold at
high temperature. In addition, in both theory and experiment,
the crossing frequency fc as a function of temperature does
not change significantly. This can be expressed as

dS( f , T )

dT

∣∣∣∣
f = fc

= 0. (C1)

Using S( f , T ) = A2(T )/ f α(T ), we can relate the noise ampli-
tudes to noise exponents,

dS( f , T )

dT

∣∣∣∣
f = fc

= d

dT

(
A2(T )

f α(T )

)∣∣∣∣
f = fc

=
(

A2(T )
d

dT

1

f α(T )
+ 1

f α(T )

d

dT
A2(T )

)∣∣∣∣
f = fc

=
(

A2(T )

(
− ln( f )

f α(T )

dα(T )

dT

)
+ A2

0

f α(T )
T γ−1γ

)∣∣∣∣
f = fc

144510-11



MICKELSEN, WU, AND YU PHYSICAL REVIEW B 109, 144510 (2024)

= −S( fc) ln( fc)
α0

T
+ S( fc)

T
γ

= 0. (C2)

This gives the crossing condition

γ = α0 ln( fc). (C3)
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