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Realizing attractive interacting topological surface fermions:
A resonating topological-insulator–thin-film hybrid platform
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In this paper, we propose a practical way to realize topological surface Dirac fermions with tunable attractive
interaction between them. The approach involves coating the surface of a topological insulator with a thin-film
metal and utilizing the strong-electron phonon coupling in the metal to induce interaction between the surface
fermions. We found that for a given TI (topological insulator) and thin film, the attractive interaction between the
surface fermions can be maximally enhanced when the Dirac point of the TI surface resonates with one of the
quasi-2D quantum-well bands of the thin film. This effect can be considered to be an example of quantum-well
resonance. We also demonstrate that the superconductivity of the resonating surface fermions can be further
enhanced by choosing a strongly interacting thin-film metal or by tuning the spin-orbit coupling of the TI. This
TI–thin-film hybrid configuration holds promise for applications in Majorana-based quantum computations and
for the study of quantum critical physics of strongly attractively interacting surface topological matter with
emergent supersymmetry.
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I. INTRODUCTION

Topological insulators (TI) [1–8] belong to the class of
symmetry-protected topological phases, where the gapless
boundary states are protected by time-reversal symmetry
(TRS). One interesting feature of these surface states is that
their low-energy excitations can resemble a single flavor of
two-component massless Dirac fermions(Nf = 1/2). This is
unique because it is impossible to realize an odd number of
flavors of two-component Dirac fermions in a bulk lattice
because of the fermion doubling problem intrinsic to lattice
models [9,10]. Therefore topological surface provides an in-
teresting platform to study various interactions involving a
single flavor of two-component Dirac fermions, provided the
interactions do not break the time-reversal symmetry.

Of particular interest is when there is an effective attractive
interaction between the surface fermions. For a finite chemical
potential (i.e., when the Fermi level is above or below the
Dirac point), the U(1) symmetry breaking leading to the su-
perconducting phase can happen for arbitrarily weak attractive
interaction due to the Cooper instability at the surface. On
the other hand at the zero chemical potential (Fermi level
aligned with the Dirac point), the interaction strength must be
greater than a critical value for the phase transition to occur.
In both these cases, the resulting superconducting phase can
be of nontrivial topological character [11,12]. Specifically, it
implies that the vortex core of the superconductor can host
Majorana zero modes [13–17]. They are considered to be an
ideal candidate for fault-tolerant quantum computing because
of their non-Abelian statistics.
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Another interesting feature of the attractively interacting
surface fermions is that surface dynamics have an emergent
Lorentz symmetry when the chemical potential is zero. It has
been demonstrated that the effective field theory of the surface
states further exhibits emergent supersymmetry (SUSY) when
the coupling constant of the attractive interactions is tuned to
be quantum critical [18–23]. Supersymmetry is the symme-
try between bosons and fermions and had been speculated
to exist as a fundamental symmetry in elementary particle
physics. Emergent supersymmetry in lattice models is diffi-
cult to realize, at least in d > 1 spatial dimensions, because
fermions typically have more degrees of freedom than bosons
in lattices, a consequence of the fermion doubling problem.
However, at a quantum critical point of topological surfaces,
an emergent SUSY exists between the charge 2e bosons that
naturally emerge as quasiparticles and the two-component
Dirac fermions in the semi-metallic phase, both of which can
be strongly self-interacting and mutually interacting. There-
fore the topological surface provides an ideal platform to
study the dynamics of supersymmetric quantum matter.

However, realizing a topological surface with net attractive
interactions between them is not straightforward and can be
challenging. One reason is the unscreened nature of repul-
sive Coulomb interactions in an insulator. In addition, many
topological insulator materials do not have strong electron-
phonon interactions. In this paper, we propose coating the
3D TI surface with a metallic thin film as a practical way
to realize a ground state of interacting surface fermions with
net attractive interaction between them. A thin film is char-
acterized by the quasi-two-dimensional quantum-well bands
due to the quantum confinement of the electronic states in
the third dimension. Due to the screened nature of Coulomb
repulsion, the phonon-mediated attractive interaction can be
the dominant form of interaction between electrons at zero
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temperature. On depositing the thin film to the TI surface,
the 2D surface Dirac fermions and the quasi-2D quantum-
well fermions start hybridizing. These hybrid fermions are
a quantum superposition of the quantum-well states and the
TI surface states. Hence the hybrid fermions not only acquire
a helical spin-texture from the surface side but will also ex-
perience a net attractive interaction due to coupling with the
phonons in the thin film. In a way, hybridization causes the
surface Dirac cone to be exported to the thin film which results
in the helical Dirac fermions experiencing a phonon-mediated
attractive interaction between them. Alternatively, one can
show that the hybridization leads to variable or tunable attrac-
tive interactions among topological surface Dirac fermions.

We have observed that this attractive interaction between
the helical fermions is maximally enhanced when the Dirac
point of the TI surface resonates with one of the quantum-
well states of the thin film. While at resonance, there is no
clear distinction between the TI surface and the thin-film
states as the electronic states are strongly hybridized, we do
show that in the wide range of parameter space, the low en-
ergy physics effectively becomes that of strongly interacting
surface Dirac fermions. We study the superconductivity of
these resonating hybrid states at different thickness regimes.
Consider the ultrathin limit of the film, when only a single
quantum-well (QW) band crosses the Fermi level (we shall
call this the N = 1 limit, where N is the number of QW
bands crossing the Fermi level). Then we effectively have
a four-band model of the interacting helical hybrid states.
Following the bulk-boundary relations(BBR) of interactions
obtained before [24], we find that effective phonon-mediated
interaction scales as 1/D, D being the thickness of the film and
hence the interaction strength is at its strongest in the N = 1
ultrathin limit. We show that for a wide range of chemical
potentials, it is possible to construct an effective field theory
of attractively interacting two-component Dirac fermions. We
then studied possible ways of enhancing the superconducting
gap by tuning the bulk coupling constant of the thin film and
the Dirac velocity of the surface fermions.

When the thin-film thickness is increased further, in addi-
tion to the Fermi surfaces formed by the resonating hybrid
bands, there also exists Fermi surfaces formed by the QW
bands that were off-resonance. Therefore the superconducting
gap in this limit is formed not just due to attractive interaction
between the surface fermions but also because of the scat-
tering of the singlet pair of electrons from these background
off-resonance QW Fermi surfaces. In the very thick limit
(large-N limit), we explicitly show that the superconductivity
on these resonating hybrid bands is dominated by the scat-
tering of the singlet pair of electrons from the off-resonance
Fermi surfaces. However, the interaction between the surface
fermions can further enhance the surface superconductivity.
And when the interactions are sufficiently strong, the enhance-
ment can be very substantial.

It should be noted here that if one’s prime focus is mainly
to realize a topological superconducting phase, then it is not
necessary to have attractive interaction between the surface
fermions [12]. Superconductivity can be induced on the sur-
face by the proximity effect, implemented by depositing a
bulk s-wave superconductor on the TI surface. The interface
between the TI and the s-wave superconductor had been

shown to be in the topological superconducting phase even
though the surface electrons are noninteracting. As mentioned
before, the main objective of our work is to realize a plat-
form of strongly interacting surface fermions. The attractive
interactions between surface fermions can lead to emergent
SUSY at its QCP, a phenomenon that can potentially have a lot
of impacts on the fundamental understanding of the building
blocks of nature.

However, the TI–thin-film hybrid has richer physics over
the conventional proximity structures even if our objective is
only to realize a topological superconducting phase. Due to
the strong single-particle hybridization, there is a finite prob-
ability of finding the surface fermions on the thin-film side,
sometimes called the “topological proximity effect” [25–27].
Thus, in this structure, the topological superconducting phase
can proliferate across the interface, and can even be observed
on the thin-film side and not just at the interface, making it
easy to detect in the experiments [28].

We like to note here that the effect of tunneling of the
TI surface fermions on the superconductivity in the thin film
has been extensively studied in Refs. [29–31]. Reference [29]
studied the superconductivity in the monolayer thin-film–TI
hybrid as a function of tunneling strength and the chemical po-
tential. They found a suppression of the superconducting gap
in the thin film when the Fermi momentum of the thin-film and
the TI surface matched and nonhybridized surface fermions
were integrated out. Reference [31] found an enhancement
in the superconducting order when the Fermi level crosses
the bottom of the double-well hybrid bands. This result is
encouraging in the context of thin-film superconductivity.
However, the Lifshitz transition leading to the enhancement
results in two additional fermion surfaces and does not affect
the topological aspect of superconducting pairing.

The main focus of this paper on the other hand is to
understand Dirac fermions in the topological surface and
their interactions and pairing dynamics mediated by coated
thin films. When the superconductivity of noninteracting
surface fermions (before the tunneling is turned on) is con-
cerned, we find in this work that the superconductivity on
the surface fermions can be induced and greatly enhanced
if surface fermions are in resonance with electrons in thin
films. Although in the limit of resonance physically it is
not possible to entirely isolate the surface fermions from
the thin-film electrons, the effective field-theory descrip-
tion in the most interesting limit is simply of the form
of interacting Dirac fermions but with various substantially
renormalized parameters. These renormalization effects espe-
cially the fermion-field renormalization are one of the main
focuses of our studies and discussions below as they directly
set the strength of interactions mediated by the thin films.
These renormalization effects can either lead to surface su-
perconductivity that otherwise will not exist because of the
absence of direct pairing dynamics or further enhance the
well-known Fu-Kane proximity effects of noninteracting sur-
face fermions [12]. The induced surface fermion interactions
are also shown to follow explicitly the generic scaling law
indicated in the general bulk-boundary interaction relation
obtained in a previous paper [24].

Attractive interactions on the TI surface can also
be induced by coating it with a ferromagnetic(FMI)/
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antiferromagnetic(AFMI) insulator [32–34]. This causes the
surface fermions to couple with magnons resulting in an
effective fermion-fermion interaction mediated by magnons
under specific conditions. While this mechanism is not the
focus of our paper, it would be an interesting problem to do
a comparative study between the two mechanisms: electron-
phonon coupling and electron-magnon coupling, both in the
theoretical sense and experimental feasibility.

The paper is organized as follows. In Sec. II, we discuss
the single particle tunneling physics at the interface. We write
down the single-particle Hamiltonian for the hybrid fermions
on the helicity basis. In Sec. III, starting from the fundamen-
tal electron-phonon coupling Hamiltonian of the thin film,
we derive a general short-ranged pairing Hamiltonian that
explains the interactions of the hybrid fermions with one
another and with the thin-film electrons belonging to the
off-resonance bands. Here we find that the hybrid fermions
acquire an effective attractive interaction between them and
the interaction strength is renormalized by a Z factor. The Z
factor is essentially a measure of the probability amplitude of
the hybrid fermions to be in the thin-film side of the inter-
face. In Sec. IV, we study the evolution of this Z factor as a
function of the dimensionless detuning parameter δ̃ and find
that the attractive interaction between the surface fermions is
enhanced at the quantum-well resonance (δ̃ = 0). Section V is
dedicated to the mean-field approximation. Here we derive the
superconducting gap equation under the assumption that the
Debye frequency ωD � μ, where μ is the chemical potential.
Essentially, we assume that only electronic states near the
Fermi level are interacting. In Sec. VI, we consider the limit
when the surface states hybridize with the N = 1 QW band
of the thin film. We construct an effective theory followed by
exploring various ways to enhance the superconducting gap
in this limit. Section VII discusses the large-N limit of the
theory. Here we make connections to Fu-Kane’s model in the
perturbative limit of tunneling. In Sec. VIII, we studied the
evolution of the superconductivity on the resonating hybrid
states as a function of thickness (parameterized by the band
index N).

II. NONINTERACTING THEORY

1. Model Hamiltonian

We start by defining a minimal theoretical model to
understand the essential tunneling physics at the thin-film–
topological insulator interface. Let the thin-film–TI interface
be at z = 0. The topological insulator (TI) occupies the bottom
half-plane defined by z < 0. Consider a thin-film of thickness
d deposited over the TI surface, so that it occupies the space
0 < z < d .

Let us first write down a simple model for thin-film
electrons. In the XY plane, we apply periodic boundary con-
ditions. The electron confinement in the z direction is usually
characterized by an infinite well potential with its boundaries
at z = 0 and z = d . However, this model cannot permit tun-
neling of thin-film electrons to the TI side since the amplitude
of the electron wave function is zero at the interface. To
allow for tunneling, a simple way is to impose open boundary
conditions at the interface so that the amplitude is maximum at

the interface. As a result, the momentum in the z direction gets
quantized as kz = (n − 1/2)π/d , where n = 1, 2, . . . , and the
z dependence of the electron wave function becomes ψn(z) =√

2/d cos((n − 1/2)πz/d ). Thus the Hamiltonian governing
the dynamics of thin-film electrons deposited over the TI has
the form,

Htf =
∑
n,s

∫
d2k

(2π )2
c†

k,nhtf
k,nck,n, (1)

where

htf
k,n = εtf

k,nÎ =
[

h̄2k2

2m∗ + (n − 1/2)2 π2h̄2

2m∗d2

]
Î, (2)

where ck,n = [ck,n,↑ ck,n,↓] is the creation operator for an
electron at the nth quantum well state with in-plane momen-
tum k = (kx, ky) in the thin film. Î is just an identity matrix to
emphasize that htf is a 2×2 matrix in the spin-1/2 space.

The effective Hamiltonian that describes the surface states
of a topological insulator is

Hsurf =
∫

d2k
(2π )2

χ
†
k hsurf

k χk, (3)

where

hsurf
k = A0(sxky − sykx ) + E0,

where χ† = [χ†
↑ χ

†
↓] is the creation operator of the surface

electron. sx, sy are Pauli matrices in the spin-1/2 space. A0

describes the strength of spin-orbit coupling. E0 is the energy
at the Dirac point. Due to the presence of spin-orbit coupling,
the Hamiltonian does not have spin-rotation symmetry. Rather
it is diagonal in the helicity basis. The energy eigenstates in
the helicity basis are given by

εsurf
k,± = ±A0|k| + E0. (4)

Assuming that the tunneling process is spin-independent,
the simplest model that can describe the hybridization of the
surface states of the TI with the quantum well states of the
thin-film is given by

Ht = t
∫

d2r (χ†(r)�(r, z = 0) + H.c.). (5)

Here χ†(r) is the spinor field operator that creates a topologi-
cal surface electron at in-plane position r = (x, y). �(r) is the
spinor field operator thin-film electrons with open boundary
conditions. In the k space, the Hamiltonian is of the form

Ht = td
∑

n

∫
d2k

(2π )2
χ

†
k ck,n + H.c.,

td = t√
d

. (6)

We find that the effective tunneling strength scales as a
function of the thin-film thickness d as a result of quantum
confinement in the z direction. The surface area in the xy plane
given by LxLy is set to unity throughout this paper.

In this paper, we ignore the possibility of multi-band tun-
neling. This is a good approximation provided we work in the
limit where the energy difference between successive thin-
film QW bands is greater than the bulk energy gap of the
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FIG. 1. (a) TI–thin-film hybrid considered in this paper. (b) Left: schematic picture of the surface states of the topological insulator (red
lines). The gapped bulk bands are indicated by the green-shaded area. Here, m stands for the bulk energy gap. Right: schematic picture of the
effective 2D quantum-well bands of the thin-film considered in this paper. The chemical potential μ(dashed line) is set within the bulk energy
gap of the TI. We only consider the case when the N th band that is energetically closest to the Dirac point of the TI surface is separated from
the two adjacent QW bands by an energy separation much greater than the m, the bulk gap of the TI [see Eq. (7)]. In this limit, the tunneling
effects on the N ± 1 QW bands from the surface Dirac cone are negligible and can be conveniently ignored.

topological insulator. In this limit, there is effectively only
one QW band on which the tunneling effects due to TI sur-
face electrons are significant. Since the chemical potential is
aligned within the bulk energy gap of the TI, this QW band
will be the topmost conduction band of the thin film. In other
words, this band will be the one closest to the Dirac point
of the TI surface in terms of energy. Tunneling effects on
other QW bands are perturbative which is not the focus of our
study in this section. Quantitatively, the effective model that
we introduce in this paper works well only when the following
condition is satisfied,∣∣εtf

k=0,N − εtf
k=0,N±1

∣∣ � m, (7)

where m is the mass gap of the topological insulator and N is
the band index of the thin-film QW band that is energetically
closest to the Dirac point of the TI surface. Once this condition
is satisfied, we can conveniently ignore the tunneling effects
on all other n �= N bands. This setup is illustrated schemati-
cally in Fig. 1(b). Then the simplified effective Hamiltonian
of the electronic states involved in tunneling becomes,

Hhbd =
∫

d2k
(2π )2

[
c†

k,N htf
k,N ck,N + χ

†
k hsurf

k χk

+ td c†
k,Nχk + H.c.

]
. (8)

2. Hybridization at the interface

Turning on t results in thin-film electrons tunneling to the
TI surface side and vice versa. Tunneling effects will be sig-
nificant when t

|�E | > 1, where �E is the difference in energy
between the initial and the final state. In this case, a perturba-
tive treatment will not be sufficient. Here we shall understand
the effects of tunneling in a nonperturbative manner. The
full Hamiltonian is diagonalized exactly and the properties of
the resulting hybrid electrons are studied. To diagonalize the
Hamiltonian, we shall define a SU(2) space σi(i = x, y, z) to

model the spatial profile of the electrons. In this space, the
single-particle Hamiltonian in the momentum space becomes

hhbd
k =

(
htf

k,N td
td hsurf

k

)
= I ⊗ Mk,N + σz ⊗ δk,N + σx ⊗ Itd (9)

in the basis 

†
k,N = (c†

k,N,↑ c†
k,N,↓ χ

†
k,↑ χ

†
k,↓). Here δk,N

and Mk,N are 2×2 matrices in the spin-1/2 space with the
respective definitions:

δk,N = (
htf

k,N − hsurf
k

)
/2,

Mk,N = (
htf

k,N + hsurf
k

)
/2. (10)

Since we discuss the hybridization effect only on the N th band
in the thin film, the index N will be dropped from now on.
However, do note that the unitary matrix elements do depend
on the value of N which in turn is connected to the thickness
of the thin film. The Hamiltonian can be diagonalized in
the σ space by performing a unitary transformation with the
following unitary matrix:

Uk =
(

cos θk
2 sin θk

2

− sin θk
2 cos θk

2

)
, cos θk = δk√

δ2
k + t2

d

. (11)

The Hamiltonian after rotation attains the following diagonal
form,

Hhbd =
∫

d2k
(2π )2

[d†
k,t hk,t dk,t + d†

k,bhk,bdk,b], (12)

where d†
k,t (b) = [d†

k,t (b),↑ d†
k,t (b),↓] are two-component

spinors in the spin basis. hk,t (b) have the following definitions:

hk,t = Mk +
√

δ2
k + t2

d , (13a)

hk,b = Mk −
√

δ2
k + t2

d . (13b)
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FIG. 2. Energy spectrum of the N th band of the thin-film and the
surface Dirac cone before and after the tunneling is turned on. Here
N is set to unity. The definitions of the creation operators shown in
the picture are contained in the main text. See Eqs. (1), (3), and (15).

Here the index t and b represent the “top” and “bottom”
bands, respectively. This splitting is a result of the tunneling
of single-particle states between the two sides of the hy-
brid. In addition, we find that ht (b) are 2×2 matrices in the
spin-1/2 space. hk,t (b) has terms proportional to sxky − sykx

implying that the hybrid states acquired an emergent spin-
orbit coupling. Tunneling essentially resulted in hybridizing
the thin-film QW state and the TI surface state. Due to this
induced helical spin structure of the hybrid states, it is better
to write the full Hamiltonian on a helicity basis. We define the
following set of creation operators:

d†
k,t (b) = a†

k,t (b)�
†
k, �k = 1√

2

(
1 1

eiφk −eiφk

)
,

eiφk = ky − ikx

|k| , (14)

where a†
k,t (b) = [a†

k,t (b),+ a†
k,t (b),−]. Here (+) and (−) rep-

resent states with positive and negative helicity respectively.
In this helicity basis, the single-particle Hamiltonian has the
following diagonal representation:

Hhbd =
∫

d2k
(2π )2

[
a†

k,t,+εhbd
k,t,+ak,t,+

+ a†
k,t,−εhbd

k,t,−ak,t,− + a†
k,b,+εhbd

k,+ak,b,+

+ a†
k,b,−εhbd

k,b,−ak,b,−
]
, (15a)

εhbd
k,t,± = εtf

k,N + εsurf
k,±

2
+

√√√√(εtf
k,N − εsurf

k,±
2

)2

+ t2
d , (15b)

εhbd
k,b,± = εtf

k,N + εsurf
k,±

2
−

√√√√(εtf
k,N − εsurf

k,±
2

)2

+ t2
d . (15c)

Figure 2 shows an example of the energy spectrum before
and after the tunneling. Given that the condition in Eq. (7) is
satisfied, the tunneling effect on the thin QW bands of index
n �= N is perturbative and hence they are ignored. Therefore
the single-particle Hamiltonian of all these n �= N QW bands
is unaffected by the tunneling and retains the form given in
Eq. (1). The electronic states in these bands will play huge
role in the pairing physics especially in the large-N limit, as
we shall see later in this paper.

III. EFFECTIVE PAIRING HAMILTONIAN

We examined the physics of single-particle tunneling at the
thin film-TI hybrid in the preceding section. We discovered
that nonperturbative tunneling results in the hybridization of
the surface bands with the thin film’s resonant quantum-well
band. We now have a four-band model with single particle
states that are a linear superposition of the thin-film state and
the surface state. As a result, it is possible that the hybrid
states couple with the phonons in the thin film. The effective
short-ranged pairing Hamiltonian that explains the interac-
tions of the hybrid electrons with one another and with the
thin-film electrons belonging to the inner bands is derived
in this section starting with the fundamental electron-phonon
coupling Hamiltonian.

A. Phonon-mediated interaction potential
between thin-film electrons

1. 2D electron-phonon coupling Hamiltonian

Similar to electrons, phonons in the thin-film are also
spatially confined within the range z = 0 and z = d . As a
result, the phonon spectrum also gets quantized resulting
in the formation of 2D QW bands indexed by the inte-
ger l . We implement open boundary conditions at the thin
film-TI interface. The phonon spectrum becomes, Eph(q, l ) =
h̄c
√

q2 + ( (l−1/2)π
d )2, where l is an integer identifying the

confined slab phonon mode. The electron-phonon coupling
Hamiltonian in 3D has the form

He-ph = Gfp

∫
d2rdz �†(r, z) 
∇. 
�(r, z)�(r, z), (16)

where �(r) is the two-component electron field operator and
�i(r)(i = x, y, z) is the phonon field operator in the thin-film
with the following definitions:

�(r, z) =
∑

n

∫
d2k

(2π )2
ψn(z)eik.rck,n,

�i(r, z) =
∑

l

∫
d2q

(2π )2
φl (z)

eiq.r

2
√

Eph(q, l )
[bq,l,i + b†

−q,l,i],

(17)

where ψn(z) =
√

2
d cos( (n−1/2)πz

d ) and φl (z) =√
2
d cos( (l−1/2)πz

d ). Integrating out the z degrees of freedom,
we obtain the following effective 2D Hamiltonian:

He-ph =
∑
n,n′,l

gl
n,n′ (d )

∫
d2r �

†
n′ (r) 
∇. 
�l (r)�n(r). (18)

Here �n is the effective 2D electron field operator for an
electron with band index n. Similar definition holds for 
�l .
The scattering matrix gl

n,n′ (d ) is given by

gl
n,n′ (d ) = (−1)n+n′−l Gfp

π

√
2

d

[
l − 1

2(
l − 1

2

)2 − (n − n′)2

− l − 1
2(

l − 1
2

)2 − (n + n′ − 1)2

]
. (19)
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We find here that coupling with phonons can lead to interband
scattering of electrons in the thin film.

2. Pairing potential matrix

It is well known that coupling with phonons leads to an
effective electron-electron interaction that could be attractive
under certain conditions. The minimal BCS pairing Hamilto-
nian that emerges out of the coupling term in Eq. (18) has the
following form:

HI =
∑
n,n′

HI (n, n′)

= −
∑
n,n′

∫
d2k

(2π )2

d2p
(2π )2

,

×V n,n′
k,p c†

p,nsyc†T
−p,ncT

−k,n′syck,n′ , (20)

where the pairing potential Vn,n′ has the form

V n,n′
k,p =

{∑lmax
l=1

∣∣gl
n,n′ (d )

∣∣2, −ωD < ξk,n, ξp,n′ < ωD

0, else
. (21)

Here ωD is the Debye frequency of the thin film. ξk,n is
the single-particle energy of the thin-film electrons measured
from the chemical potential. The electron-phonon coupling
matrix gn,n′ is summed over all the slab phonon modes up
to lmax. It is the maximum value that a phonon mode could
have in the thin-film at a given thickness ′d ′. To find its value,
recall that Debye frequency sets the UV cutoff for the energy
of lattice vibrations. Hence lmax can be calculated by taking
the integer part of the expression d (kD/π ), where kD is the
Debye momentum. A comprehensive study of the thin-film
superconductivity with attractive interaction mediated by con-
fined phonons was conducted in Ref. [35].

An important consequence of the dimensional reduction
applied in the context of interactions [24] is that the effective
2D interaction potential acquires a scaling dependence on the
thin-film thickness as

V n,n′
k,p ∝ 1

d
. (22)

Thus the attractive interaction increases with reducing thick-
ness. This implies that the attractive interaction is maximum
in the ultrathin (N = 1) limit of the thin film. We shall use
this scaling relation in the later part of this paper in order to
enhance the attractive interaction between surface fermions.

B. The general interaction Hamiltonian
of the thin-film–TI hybrid

When the tunneling is turned on, the thin-film band which
is close to the Dirac point of the TI surface is hybridized. Let
N be the index of the band that is hybridized. As mentioned
before, we consider only the limit when the N ± 1 bands are
separated from the N th band by a magnitude of at least the
order of bulk energy gap of the TI [see Eq. (7)]. So, the effects
of hybridization on all these n �= N bands are ignored. Now
coming back to the N th band, hybridization with the surface
Dirac cone implies that the electronic states in that QW band
are no longer diagonal in the thin-film basis. The hybrid states
are in a linear superposition of the thin-film and the TI surface

states. The emergent excitations of this hybrid system are the
states d†

k,t (b) |0〉 in the spin basis. It is even easier to study the
interaction if we could rotate the states to the helicity basis
since the hybrid states are diagonal in the helicity basis. So we
project the interaction Hamiltonian HI of the resonant band
indexed by N into the basis spanned by ak,t (b),± states [defined
in Eq. (14)].

After the projection, the full Hamiltonian HI can be
divided into essentially three terms. The first term is the
Hamiltonian describing the attractive interaction between the
helical hybrid fermions. Secondly, we have the term describ-
ing attractive interaction between the hybridized fermions
and the trivial fermions of all the n �= N thin-film transverse
bands. Lastly, we have the interaction Hamiltonian for the
fermions in the thin-film unaffected by hybridization. In doing
this projection, terms that describe interband pairing between
the helical fermions have been ignored. This is a good approx-
imation in the BCS limit. We shall write down the three terms
in the Hamiltonian explicitly below:

HI = Hhbd-hbd
I + Hhbd-tf

I + Htf-tf
I . (23)

Now we shall derive these three terms in the Hamiltonian
starting from the fundamental s-wave pairing Hamiltonian
in the thin film. The details of the derivation are given in
Appendix A.

1. Hamiltonian for interaction between hybrid
fermions (Hhbd−hbd)

Here we shall derive the pairing Hamiltonian that describes
the attractive interaction between the helical hybrid fermions.
Before the tunneling was switched on, the interaction between
electrons in the N th band of the thin-film is described by the
following Hamiltonian:

HI (N, N ) = −
∫

d2k
(2π )2

d2p
(2π )2

×V N,N
k,p c†

p,N syc†T
−p,N cT

−k,N syck,N . (24)

Once the tunneling is switched on, the electronic states in
the N th band are hybridized and we have a four-band model
with a helical spin texture. So, it is better that the interaction
Hamiltonian be written down in the helicity basis. Before we
write down the Hamiltonian, we shall define the notations
used to identify all four hybrid bands. Let m, m′ run over the
band indices t (top) and b (bottom). Similarly, λ and λ′ run
over the + and − helicity branches. Using this set of indices,
we can write down the following interaction Hamiltonian that
describes all possible pairing interactions(except the interband
pairing) between the four hybrid bands:

Hhbd-hbd
I = −

∑
α,β

∫
d2k

(2π )2

d2p
(2π )2

ei(φp−φk )

× λλ′Jα,β

k,p a†
k,αa†

−k,αa−p,βap,β , (25a)

Jα,β

k,p = V N,N
k,p Zα

k Zβ
p . (25b)

Here α = (m, λ) β = (m′, λ′) is used as a shorthand notation
to denote the band indices. Note that λλ′ = −1 if the scatter-
ing is between bands of opposite helicity.
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Zα
k can be identified as the wave-function renormalization

of a hybridized electronic state as a result of tunneling with
respect to a thin-film state without tunneling. This implies that
Zα

k = 1 for a thin-film state and Zα
k = 0 for TI surface state

before the tunneling was turned on. They have the following
structure:

Z (t,±)
k = 1

2

⎛
⎜⎝1 + δk,±√

δ2
k,± + t2

d

⎞
⎟⎠,

Z (b,±)
k = 1

2

⎛
⎜⎝1 − δk,±√

δ2
k,± + t2

d

⎞
⎟⎠,

δk,± = 1

2

(
εtf

k,N − εsurf
k,±
)
. (26)

So we find here that, as a result of tunneling, a pairing po-
tential exists between the helical hybrid fermions and it is
proportional to the square of the renormalization factors of
the bands corresponding to the initial and final states of the
Kramers pair of electrons involved in pairing. This makes
physical sense because the Z factor determines the probabil-
ity that an electron is in the thin-film side of the interface.
Only the electrons in the thin-film side of the interface will
experience an attractive interaction mediated by phonons. If
Zα

k = 1 for an electronic state of momentum k and in a hy-
brid band indexed by α, the electronic state is completely
in the thin-film side of the interface and experience the full
attractive interaction. But in this case, the electronic state will
not have the helical spin texture induced by the TI surface.
On the other hand, if Zα

k = 0 for an electronic state in the
hybrid band, then the electron is entirely on the TI side of
the interface and does not experience an attractive interaction.
So we have to fine-tune the material parameters such that
both the effects, the helical spin texture, and the attractive
interaction are substantial. We shall show in this paper quanti-
tatively that this can be achieved by fine-tuning the thickness
to ’quantum well resonance’ at the Dirac point. A detailed
discussion of this phenomenon will be presented in the next
section.

2. Interaction between hybrid fermions and the thin-film
fermions in the n �= N band Hhbd-tf

In the limit that we are working, hybridization effects are
substantial only for the thin-film QW band at n = N . All
the other n �= N bands are much above or much below the
Dirac point of the TI surface so that the tunneling effects
due to surface fermions are negligible. But it is possible that
the hybrid fermions can still experience attractive interaction
with the thin-film electrons lying in all of the n �= N bands.
This effect is captured by the interband scattering terms of
the thin-film interaction Hamiltonian given in Eq. (20). Before
tunneling is introduced, it is possible that a singlet Cooper pair
of electrons in the N th band can scatter to any of the n �= N
bands. The Hamiltonian describing such a process can be read
out from the full interaction Hamiltonian given in Eq. (20) by

fixing n′ to N and letting n run over all n �= N .

∑
n �=N

HI (N, n) = −
∑
n �=N

∫
d2k

(2π )2

d2p
(2π )2

×V N,N
k,p c†

p,nsyc†T
−p,ncT

−k,N syck,N . (27)

Once the tunneling is switched on, the Cooper pair
cT
−k,N syck,N is projected to the helicity basis of the t and

b hybrid bands. In doing this, we arrive at an interaction
Hamiltonian that describes the attractive interaction between
the hybrid fermions and the off-resonance thin-film fermions.
Let us call the Hamiltonian by the name Hhbd-tf

I and has the
following definition:

Hhbd-tf
I = −

∑
n �=N

∑
α

∫
d2k

(2π )2

d2p
(2π )2

eiφp

× λKn,α
k,p c†

k,n(−isy)c†T
−k,na−p,αap,α, (28a)

Kn,α
k,p = V n,N

k,p Zn
kZα

p . (28b)

Note that Zn
k = 1 for all k and n �= N since it corresponds

to the renormalization factor of the thin-film electrons which
did not participate in tunneling. It has been included in the
expression only for the purpose of generality. So here we
find that even though the thin-film electrons in the n �= N
bands do not participate in tunneling, they do contribute to
the superconducting phase of the hybrid fermions.

3. Interaction between all the n �= N band thin-film
fermions (Htf-tf

I )

It is also important to consider the attractive interaction
between the electrons in the n �= N bands that were not part
of the tunneling. It is just the trivial BCS singlet pairing
Hamiltonian. It is found by summing over HI (n, n′) defined
in Eq. (20) for all n, n′ �= N . Let us call this Hamiltonian as
Htf-tf

I . It has the form

Htf-tf
I = −

∑
n,n′ �=N

∫
d2k

(2π )2

d2p
(2π )2

×V n,n′
k,p c†

p,nsyc†T
−p,ncT

−k,n′syck,n′ . (29)

The full interaction Hamiltonian of the TI–thin-film hybrid is
now the sum of all three terms as given in Eq. (23).

IV. Z FACTOR AND THE QUANTUM-WELL RESONANCE

In Sec. II, we studied the single-particle tunneling of elec-
tronic states in the topological surface to the QW thin-film
band lying closest to it. The tunneling effectively results in
the hybridization of the electronic states and leads to the
formation of four spin-split hybrid bands, with an emergent
helical spin texture for each of them.

In Sec. III, we found that these helical hybrid electrons can
couple with the confined phonons of the thin-film and could
result in an effective attractive interaction between them. The
effect of tunneling is taken into account in the interaction
strength by the renormalization factor Zα

k defined in Eq. (26).
For instance, one can show that the type of pairing between
two electrons with renormalization factors equal to unity will
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be trivial s-wave-like. This is because these electrons lie en-
tirely in the thin-film side and the tunneling effect on them
is negligible. The other extreme is when the renormalization
factor of the electrons is zero. This corresponds to the nonin-
teracting surface electrons.

From these intuitive arguments, one can anticipate that the
ideal choice for the renormalization factor of an electronic
state will be 1/2. It is at this limit the tunneling effect is
maximum. This implies that the surface states that are initially
noninteracting will acquire maximum attractive interaction in
this limit. This is because it is the tunneling that actually
induces an effective attractive interaction between surface
fermions. In order to realize this maximum tunneling effect,
the corresponding electronic states on both sides of the in-
terface must be degenerate. In other words, the electronic
states should be in quantum-well resonance. In this section,
we will show this explicitly by studying the behavior of the
renormalization factor as a function of the detuning parameter
defined at the Dirac point.

The renormalization factors were defined in Eq. (26) as a
function of the band indices and momentum k. Since there are
four hybrid bands, we have four renormalization factors for a
fixed momentum k. One can show that they follow a general
relationship:

Z (t,+)
k + Z (b,+)

k = 1,

Z (t,−)
k + Z (b,−)

k = 1 (30)

for any momentum state k. This implies that for a fixed helic-
ity if one hybrid band is on the thin-film side, the other band
lies on the TI surface side. We are mostly interested in the
interacting dynamics of the electronic states near the Dirac
point. Therefore we set the momentum k = 0 in the above
equations and study the evolution of the Z factors as a function
of the detuning parameter also defined at zero momentum. At
k = 0, there is a further simplification. We find that due to the
crossing of the two helicity branches at the Dirac point, the
respective Z factors turn out to be equal. That is,

Z (t,+)
k=0 = Z (t,−)

k=0 , and Z (b,+)
k=0 = Z (b,−)

k=0 . (31)

So at k = 0, we essentially have ended up with just two Z
factors subject to the constraint that their sum must be equal
to unity. We shall make the following redefinitions:

Zt = Z (t,±)
k=0 and Zb = Z (b,±)

k=0 (32)

so we have Zt + Zb = 1.

Now we shall define the detuning parameter at k = 0. It has
the form

δ̃(d ) = δk=0,N (d )

td
. (33)

Here δk is defined in Eq. (10) in Sec. II as a 2×2 matrix in the
spin space. But at k = 0, it turns out to be an identity matrix
that can be treated as a number. δ̃ essentially gives the energy
difference between the electronic state in the thin-film band
closest(indexed by n = N) to the Dirac point and the Dirac
point of the TI surface. When the energy difference is zero,
the electrons at k = 0 are in quantum-well resonance and the
tunneling effect will be maximum. Moving away from δ̃ = 0
is equivalent to detuning away from resonance. We defined the
detuning parameter at k = 0 because we are mostly interested

in studying the interacting dynamics of the electrons near the
Dirac point. In general, one can define a detuning parameter
for any general k. Here we use thin-film thickness d to tune
the detuning parameter.

From Eqs. (26) and (33), we could deduce the following
simple relationship between renormalization factors and the
dimensionless detuning parameter δ̃ at zero momentum,

Zt (δ̃) = 1

2

(
1 + δ̃√

1 + δ̃2

)
Zb(δ̃) = 1

2

(
1 − δ̃√

1 + δ̃2

)
.

(34)

Figure 3 shows the results. In (b), we plotted Zt and Zb as
a function of the detuning parameter. Figure 3(a) shows the
band spectrum of the thin-film and the TI surface at the three
different limits of detuning. When δ̃ � 0, Zb ≈ 1 and Zt ≈ 0.
This implies that the bottom hybrid band is the thin-film trans-
verse band while the top band is the surface Dirac cone. On the
other hand, when δ̃ � 0, the bottom band is the surface Dirac
cone and the top band is the thin-film transverse band. This is
clearly understood once we look at the band dispersion shown
in Fig. 3(a). In these two limits, the tunneling effects are
perturbative. One can notice that the renormalization factor
Zb, which follows the surface band when δ̃ � 0. is nearly
zero in this limit. Similar is the case with Zt when δ̃ � 0.
This implies that the surface electrons do not experience a
substantial attractive interaction when |δ̃| � 0.

However, as δ̃ → 0 from either side, things begin to
change. We find that both the renormalization factors ap-
proach 1/2 from either side. This clearly implies that the
tunneling gets stronger and is nonperturbative. One can trace
the surface Dirac cone by Zb when δ̃ < 0 and Zt when δ̃ > 0.
We see that both the quantities rise up as δ̃ approaches zero
and reach a maximum equal to 1/2 at δ̃ = 0. Recall that the
interaction strength between the helical fermions is propor-
tional to Z2. Thus this spike at δ̃ = 0 is clear evidence of the
surface fermions experiencing a maximum effective attractive
interaction at δ̃ = 0.

On the other hand, the electrons that used to be in the
thin-film side when tunneling was zero now experience com-
paratively weaker attractive interaction. This is evident if we
observe the evolution of Zb when δ̃ < 0 and Zt when δ̃ > 0.
The two renormalization factors reach a minimum at δ̃ = 0
implying that the effective attractive interaction got weaker.

In conclusion, by studying the evolution of the renormal-
ization factors as a function of the detuning parameter, we
showed that the effective attractive interaction acquired by the
surface fermions near the Dirac point is the strongest when
the thin-film QW band is in quantum-well resonance with
the surface Dirac cone. The fact that the Z factors approach
1/2 at resonance suggests that there is no clear difference
between the thin-film fermions and the surface fermions at
quantum-well resonance. This is clear evidence of our ear-
lier proposition that the electronic states at the quantum-well
resonance are hybridized. The eigenstates are a quantum
superposition of the thin-film and the surface states. They
acquire a helical spin structure from the surface side and an
effective attractive interaction between them from the thin-
film side. We shall be studying the superconductivity of these
helical hybridized fermions within the BCS mean-field theory
in the coming sections.
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FIG. 3. (a) Plot showing the evolution of the wave-function renormalization Z factors defined at the Dirac point, Zt and Zb [defined in
Eqs. (26) and (32)] corresponding to the top and the bottom hybrid bands respectively as a function of the detuning parameter δ̃. The black
dashed lines trace the Z factor of the surface fermions. The Z factor and hence the surface attractive interaction that is proportional to Z2

[Eq. (25b)] is maximized at resonance (δ̃ = 0). Also shown are the energy spectra of the thin-film QW band and the surface Dirac cone at three
different values of the detuning parameter before (b) and after (c) the tunneling is turned on. The arrowheads show the respective Dirac points
at which we calculated Zt and Zb of the top and bottom bands. The detuning parameter is tuned by fine-tuning the thin-film thickness.

V. EFFECTIVE MEAN-FIELD HAMILTONIAN AND THE GAP EQUATION

A. Mean-field approximation

Here we shall use the mean-field theory to decouple the four-fermion interaction Hamiltonian. Let �hbd
α (k) be the order

parameter on the helical hybrid band of index m(t or b) and helicity λ(=+ or −). Note that α = (m, λ). Similarly, define �tf
n

be the order parameter on the thin-film band of index n �= N . Now we apply mean-field approximation to the four-fermion
interaction Hamiltonian in Eq. (29),

�hbd
k,α =

∫
d2p

(2π )2

⎡
⎣ ∑

β={m′,λ′}
λ′eiφp Jα,β

k,p 〈ap,βa−p,β〉 +
∑
n �=N

Kn,α
k,p

〈
cT

p,n(isy)c−p,n
〉⎤⎦, (35a)

�tf
k,n =

∫
d2p

(2π )2

⎡
⎣ ∑

α={m,λ}
λeiφp Kn,α

k,p 〈ap,αa−p,α〉 +
∑
n′ �=N

V n,n′
k,p

〈
cT

p,n′ (isy)c−p,n′
〉⎤⎦, (35b)

HMF =
∫

d2k
(2π )2

⎡
⎣ ∑

α={m,λ}
λ�hbd

k,αe−iφk a†
k,αa†

−k,α +
∑
n �=N

�tf
k,nc†

k,n(−isy)c†T
−k,n

⎤
⎦. (35c)
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Note that the k-dependent phase factor follows the relation
e−iφ−k = −e−iφk , which means that it is odd under the inver-
sion. On the other hand, the order parameter field �hbd

−k,α =
�hbd

k,α is even. Putting these two results together, we find that
the superconductivity on the helical bands is of odd parity.
So we find that the helical fermions have an “effective” p-
wave pairing even though we started with a purely s-wave
interaction. This is because the spin rotation symmetry (SRS)
is broken by the induced spin-orbit coupling, while the time-
reversal symmetry is preserved [36–38]. On the other hand,
the pairing amplitude on the n �= N thin-film transverse bands
�tf

k,n is of even parity and has a spin-singlet order.

B. The superconducting gap equation

Using the mean-field theory, we derived the most general
expression for the superconducting order parameter on the
four helical hybrid bands and the remaining spin-degenerate
thin-film transverse bands. Note here that in our case, the
fundamental origin of the attractive interaction is the electrons
coupling to phonons. Since Debye frequency sets the UV
cutoff for phonon modes, only electrons whose energy lies
within the range [μ − ωD, μ + ωD] can experience the attrac-
tive interaction. Here μ is the chemical potential. Here we
focus on the limit ωD � μ. This puts a strict constraint on the
number of bands and the number of electrons participating in
the pairing interaction. Only those bands that cross the Fermi
level needed to be considered for pairing interaction. All those
bands that lie above the Fermi level can be ignored. Before
hybridization, the number of bands that cross the Fermi level
can be calculated by taking the integer value of the expression,
d/π

√
2mμ/h̄2 + 1/2. This integer will turn out to be the same

as N , the index of the band that is hybridized with the sur-
face Dirac cone. Hence before hybridization, we essentially
have 2N Fermi surfaces because the thin-film bands are spin-
degenerate.

Now the chemical potential should be set within the bulk
energy gap of the topological insulator. Once the thin-film is
deposited over the TI surface, the N th band is hybridized and
we effectively have a four-band model within the bulk gap.
By fine-tuning the chemical potential further, it is possible
that one can have the system with either three hybrid Fermi
surfaces or just one Fermi surface (see Fig. 5). In the latter
case, both the positive and negative helicity branches of the
top band lie above the Fermi level and therefore do not par-
ticipate in pairing. We shall derive the superconducting gap
equation for these two cases separately here.

1. Three hybrid Fermi surfaces + 2N − 2 thin-film Fermi surfaces

Now consider the case when the Fermi level is adjusted
such that the hybrid has three Fermi surfaces within the thick-
ness regime that we like to explore. We shall write down a gap
equation for this specific case. The innermost Fermi surface
(FS) was formed by the positive helicity branch of the t (top)
band while the next FS was formed by the negative helicity
branch of the t band. The outermost FS is formed by the
positive branch of the b (bottom) band. At this point, it is
more convenient to express the superconducting gap and the
coupling strength as functions of Fermi surface indices rather

than the band indices. In the weak-pairing limit (ωD � μ),
only electronic states very close to the Fermi surface take part
in pairing. Thus the electron renormalization factor that enters
the pairing potential matrix can be re-expressed in terms of the
Fermi momenta of the respective Fermi surfaces rather than
the band indices. To support this, let us define three quantities
Z1, Z2 and Z3 for the three Fermi surfaces such that

Z1 = Z (t,+)
kF1

, Z2 = Z (t,−)
kF2

,

Z3 = Z (b,+)
kF3

, (36)

where 1, 2, and 3 are the hybrid Fermi surface indices from
smallest to largest in terms of size. Thus kF1, kF2, and kF3

are the Fermi momenta on these three hybrid Fermi surfaces.
Since the renormalization factor depends only on the magni-
tude of momentum, Zi is the same for all electrons in the Fermi
surface indexed by i. The approximation we will do here is
that we assume Zi factor is the same for all the electronic
states lying within the energy window [−ωD, ωD] measured
from the chemical potential, given that the electronic states lie
near the ith hybrid Fermi surface. This approximation allows
us to re-express the interaction potential matrix in terms of
the Fermi surface indices rather than the band indices. Let us
define

J i, j
k,p = V N,N

k,p ZiZ j . (37)

J i j
k,p is the interaction matrix element that gives the scattering

strength of Cooper pair from the ith hybrid Fermi surface to
the jth hybrid Fermi surface. One can also redefine Knα

k,p in
terms of the Fermi surface indices. From Eq. (36), we have

Kn,i
k,p = V n,N

k,p ZnZi, (38)

where Kn,i
k,p determines the scattering of Kramer’s doublets

from the ith hybrid Fermi surface to the 2nth or (2n − 1)th
(n < N) thin-film Fermi surface. Here 2nth and (2n − 1)th
Fermi surfaces are formed by the helicity subbands of the
nth spin-degenerate band. Due to this spin-degeneracy, the
two helical Fermi surfaces overlap and hence the interaction
parameters are the same for both.

From the definition of V N,N
k,p in Eq. (21), we find that the

matrix elements J i, j
k,p and Kn,i

k,p are independent of momenta
for electronic states lying within the Debye frequency mea-
sured from the Fermi level and zero otherwise. That is, we can
write down the effective interaction potential in the following
simple way:

V n,n′
k,p = V n,n′

θ
(
ωD − ξ tf

k,n

)
θ
(
ωD − ξ tf

p,n′
)
,

J i, j
k,p = J i, jθ

(
ωD − ξ hbd

k,i

)
θ
(
ωD − ξ hbd

p, j

)
, (39)

Kn,i
k,p = Kn,iθ

(
ωD − ξ tf

k,n

)
θ
(
ωD − ξ hbd

p,i

)
,

where θ (x) is the Heavyside step function and the coupling
matrix elements V n,n′

, J i, j and Kn,i are independent of mo-
menta. Also ξ

tf(hbd)
k,n = ε

tf(hbd)
k,n − μ is just the energy of the thin

film(hybrid) fermions measured from the chemical potential,
involved in the interaction.

With these definitions, it is straightforward to derive the
superconducting gap equation. We shall also redefine the su-
perconducting order parameters of the hybrid fermions also in

144508-10



REALIZING ATTRACTIVE INTERACTING TOPOLOGICAL … PHYSICAL REVIEW B 109, 144508 (2024)

terms of the Fermi surface indices as follows:

�hbd
k,1 ≈ �hbd

k,t,+, �hbd
k,2 ≈ �hbd

k,t,−,

�hbd
k,3 ≈ �hbd

k,b,+. (40)

It has the form

�hbd
k,i −

3∑
j=1

∫
d2p

(2π )2

J i, j
k,p�hbd

p, j

2
√(

ξ hbd
p, j

)2 + (�hbd
p, j

)2

=
N−1∑
n=1

∫
d2p

(2π )2

Kn,i
k,p�tf

p,n

2
√(

ξ tf
p,n

)2 + (�tf
p,n

)2
, (41a)

�tf
k,n −

N−1∑
n′=1

∫
d2p

(2π )2

V n,n′
k,p �tf

p,n′

2
√(

ξ tf
p,n′
)2 + (�tf

p,n′
)2

=
3∑

i=1

∫
d2p

(2π )2

Kn,i
k,p�hbd

p, j

2
√(

ξ hbd
p,i

)2 + (�hbd
p,i

)2
, (41b)

ξ hbd
k,1 = εhbd

k,t,+ − μ, ξ hbd
k,2 = εhbd

k,t,− − μ,

ξ hbd
k,3 = εhbd

k,b,+ − μ, ξ tf
k,n = εtf

k,n − μ.

With the weak-pairing approximation discussed above, the
magnitude of the superconducting order parameters at
all the Fermi surfaces turns out to be momentum-independent.
The only possible momentum dependence on the gap mag-
nitude could come from the restriction set by the Debye
frequency. With this in mind, we shall define the parameters
�hbd

i and �tf
n such that

�hbd
k,i = �hbd

i θ
(
ωD − ξ hbd

k,i

)
,

�tf
k,n = �tf

n θ
(
ωD − ξ tf

k,n

)
, (42)

where θ (x) is the Heavyside step function. In all the future
computations, we shall be representing the order parameters
in dimensionless form as �̃hbd

i = �hbd
i /ωD and �̃tf

n = �tf
n/ωD

where ωD is the Debye frequency of the thin-film metal.
A schematic picture of the coupling of Cooper pairs of

electrons between different Fermi surfaces within the weak-
coupling approximation before and after the tunneling is
introduced is shown in Fig. 4.

2. One hybrid Fermi surface + 2N − 2 thin-film Fermi surfaces

Suppose that the Fermi level is fine-tuned to one hybrid
Fermi surface within the bulk gap. That is, both the helicity
branches of the top band are above the Fermi level (see Fig. 5).
Hence the top band does not contribute to the pairing at all.
It is only the positive(or the negative) helicity branch of the
bottom band that crosses the Fermi level. One can observe
that in the N = 1 limit when there are no QW bands crossing
the Fermi level, we effectively have a single band of helical
fermions subject to attractive interaction. We shall study this
limit more carefully in the next section.

Since there is just one hybrid band crossing the Fermi level,
the superconducting gap equation becomes far easier in this
limit. Consider that it is the positive helicity branch of the
b band that crosses the Fermi level. In this case, only the

FIG. 4. Schematic picture of the different Fermi surfaces in the
thin-film–TI hybrid before (a) and after (b) the tunneling is in-
troduced. Also shown are the possible coupling matrix elements
between the Fermi surfaces. In (a), the blue circles represent the
Fermi surfaces formed by the thin-film QW bands, while the red
circle corresponds to the Fermi surface formed by the surface Dirac
cone. Each Fermi surface is twofold degenerate. V n,n′

gives the
pairing matrix elements between the thin-film Fermi surfaces. The
electrons in the surface Dirac cone FS are noninteracting. After the
tunneling is introduced in (b), N th band is hybridized with surface
fermions. The tunneling effect on all the n �= N QW bands is ignored
in our effective model given the condition in Eq. (7) is satisfied.
So the Fermi surfaces formed by all the n < N QW bands remain
unaffected by tunneling, hence spin-degenerate. J i, j represents the
coupling matrix element between the ith and jth hybrid FS. Ki,n

represent the coupling matrix element between the ith hybrid FS and
nth thin-film Fermi surface. The definitions of the coupling matrix
elements are given in Eqs. (37)–(39).

coupling constant J 33
k,p survives. All the other elements vanish

in this limit. For the interaction with thin-film fermions, only
Kn,3 is needed to be taken into account. Hence in this limit,
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FIG. 5. Here we schematically show that by fine-tuning the
chemical potential, it is possible to obtain cases with either (1) one
Fermi surface or (2) three Fermi surfaces. The electrons on all these
Fermi surfaces are helical, that is the spin-states are locked to their
momentum direction. The arrowheads show the spin orientation of
the Fermi electrons. J i, j (where i, j = 1, 2, 3) represents the cou-
pling matrix element between the Fermi surfaces indexed by i and j.
Its exact definition is given in Eq. (37). For the single Fermi surface
case, the Fermi level crosses the positive helicity branch of the
“bottom” band and the coupling matrix element is J 3,3. Also shown
here is the definition of hybridized band indices. Here t (b) means the
“top” (“bottom”) band and “±” identifies the corresponding helicity.

the superconducting gap equation becomes

�hbd
k −

∫
d2p

(2π )2

J 3,3
k,p �hbd

p

2
√

ξ 2
p,3 + (�hbd

p

)2

=
N−1∑
n=1

∫
d2p

(2π )2

Kn,3
k,p�tf

p,n

2
√(

ξ tf
p,n

)2 + (�tf
p,n

)2
, (43a)

�tf
k,n −

N−1∑
n′=1

∫
d2p

(2π )2

V n,n′
k,p �tf

p,n′

2
√(

ξ tf
p,n′
)2 + (�tf

p,n′
)2

=
∫

d2p
(2π )2

Kn,3
k,p�hbd

p

2
√

ξ 2
p,3 + (�hbd

p

)2
, (43b)

where �hbd
k ≈ �hbd

k,b,+. Here too we define �hbd such that

�hbd
k = �hbdθ

(
ωD − ξ hbd

k

)
. (44)

VI. THE N = 1 FOUR BAND MODEL

Here we shall present our work’s simple yet most inter-
esting result. Consider the case when the thin-film transverse
band of quantum number N = 1 is in resonance with the Dirac
point of the topological insulator. Quantitatively from Eqs. (1)
and (4), we find that the following condition should be sat-
isfied: εtf

0,n=1 = εsurf
0,±. In other words, the detuning parameter

δ̃(d ) = 0. If the material parameters of the topological insula-
tor are fixed, then a practical way to achieve this condition is to
tune the thin-film thickness. So once the thickness is set and
the thin-film is deposited over the TI surface, the tunneling
results in the hybridization of the electronic states near k = 0

resulting in the formation of four hybrid bands. Since we
are in the N = 1 limit, there are no trivial (or off-resonance)
QW bands of index n �= N crossing the Fermi level. That
is, only the hybridized fermions are present near the Fermi
level. We know that the thin-film favors an effective attractive
interaction between electrons at zero temperature mediated by
phonons. Therefore we essentially have an effective model
with helical hybridized fermions interacting via an effective
attractive interaction between them. The full BCS interaction
Hamiltonian in this N = 1 limit attains the form

HI = Hhbd-hbd
I

= −
∑
α,β

∫
d2k

(2π )2

d2p
(2π )2

ei(φp−φk )

× λλ′Jα,β

k,p a†
k,αa†

−k,αa−p,βap,β . (45)

We have seen in the previous section that by fine-tuning the
Fermi level, we essentially have phases with either three hy-
brid Fermi surfaces or just one hybrid Fermi surface as shown
in Fig. 5. In this N = 1 limit, these are the only Fermi surfaces
present in the system. In the first part, we shall put forward
the theoretical model in the two cases separately. In the last
part, we shall tune various material parameters and look for
possible enhancement of the superconducting gap.

A. Theoretical models

1. Single Fermi surface model

Here we consider the case when the Fermi level is tuned
to one Fermi surface. This Fermi surface can be formed by
either the positive or negative helicity branch of the bot-
tom band. Since the interaction is mediated by the phonons,
only the electronic states that lie within the energy window
ωD measured from the Fermi level experiences an attractive
interaction. In this context, if the magnitude of the energy
difference between the chemical potential and the emergent
Dirac point of the bottom band is greater than the Debye fre-
quency, then only the positive(negative) helicity states of the b
band experience attractive interaction. The negative(positive)
branch is essentially noninteracting. Therefore the projected
Hamiltonian in the helicity basis resembles a single-band BCS
problem for “spinless fermions.” If the Fermi level crosses the
positive helicity branch as shown in Fig. 6 the Hamiltonian
attains the following simple form:

H =
∫

d2k
(2π )2

[
a†

k,α

[
εhbd

k,α − μ
]
ak,α

−
∫

d2p
(2π )2

J 3,3
k,p ei(φp−φk )a†

k,αa†
−k,αa−p,αap,α

]
,

where J 3,3
k,p is defined in Eq. (37). α = {b,+} is the band

index. Following the procedure explained in Section V, mean-
field Hamiltonian becomes

HMF =
∫

d2k
(2π )2

[�hbd
k e−iφk a†

k,αa†
−k,α + H.c.

]
,

�hbd
k =

∫
d2p

(2π )2
J 3,3

k,p eiφp〈ap,αa−p,α〉,

J 3,3
k,p = V N,N

k,p Z3Z3. (46)
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FIG. 6. Energy spectrum of the hybrid bands when the Dirac
point of the TI surface is resonating with the N = 1 thin-film QW
band. Here we show the case when the Fermi level (black dashed
lines) is tuned to a single Fermi surface and it crosses the positive
helicity branch of the b band. μb is the Fermi energy measured from
the emergent Dirac point of the bottom band (band index - (b,+)).
Its definition is given in Eq. (48).

Here N = 1 and J 3,3 is the renormalized interaction potential
between the helical fermions. Recall that V N,N is the thin-film
interaction potential matrix element between electrons in the
N th band. Z3 is the renormalization factor of the electrons in
the positive helicity branch of the bottom hybrid band at the
Fermi momentum kF . Z3 essentially calculates the probability
amplitude of a Kramer’s pair of fermions to be in the thin-film
side of the interface. Since the hybrid fermions are a linear
superposition of the thin-film and the TI surface states, they
acquire a helical spin texture from the TI surface side while
also experiencing an effective attractive interaction mediated
by the thin-film phonons. Since the k-dependent phase factor
e−iφk is odd under the inversion k → −k, the superconducting
order on the hybridized Fermi surface is of odd parity as
expected.

Here we shall present certain limits where simple analyti-
cal results for the superconducting gap can be derived. We will
also show a limit where the effective pairing essentially goes
back to singlet order. To identify these limits, let us define a
parameter called μb with the following definition,

μb = μ − εhbd
0,b,+ (47)

It is the difference in energy between the Fermi level and
the emergent Dirac point of the bottom band. μb = 0 implies
the Fermi level is aligned with the Dirac point and the Fermi
surface reduces to just a Fermi point. So one can call this term
an ’effective’ chemical potential of the bottom band. Let us
represent μb in dimensionless form by dividing it with the
tunneling strength td defined in Eq. (6). That is,

μ̃b = μb

td
. (48)

Here the thickness d is fixed. When μ̃b � 1, we find that the
energy dispersion of the states that cross the Fermi level is
essentially a linear function of k. That is, the energy of Fermi
electrons can be approximated as

εhbd
k,b,+ − μ ≈ +Ab|k| − μb. (49)

Ab = A0/2 is the effective spin-orbit coupling on the helical
fermions in the b band near the Dirac point. When the De-
bye frequency ωD < μb, only the positive helicity branch is
interacting. In this limit, one can solve Eq. (46) analytically to
arrive at a simple expression for the magnitude of the p-wave
pairing gap,

�hbd = 2ωDExp

[
− 4πA2

b

μbJ 3,3

]
. (50)

Note here that if μb < ωD, then both the negative and the
positive helicity branches of the b band fall within the energy
window [μb − ωD, μb + ωD]. This implies that the electronic
states of both helicities that fall within this window will be
interacting. The effective theory described in Eq. (46) does
not explain the full physics in this limit.

A rather interesting limit is when the chemical poten-
tial μb = 0. In this limit, hybrid electronic states of both
the helicity branches experience attractive interaction on an
equal footing. Therefore the triplet component of the or-
der parameter cancels out. That is, we essentially have a
purely singlet-pairing superconducting phase of helical Dirac
fermions. In the limit when ωD � td , the effective low-energy
interacting Hamiltonian in this limit has the form:

H =
∫

d2k
(2π )2

[
Ab d†

k,b[s × k.ẑ]dk,b

−
∫

d2p
(2π )2

Vk,p d†
p,bsyd†T

−p,bdT
−k,bsydk,b

]
,

Vk,p ≈ V 1,1
k,p

4
, (51)

where V 1,1
k,p is the thin-film phonon-mediated interaction po-

tential between the electronic states in the transverse bands
indexed by N = 1. Its definition is given in Eq. (21). The
factor of 4 is because in the limit when ωD � td , the renor-
malization factor is diagonal in the spin basis with both the
diagonal elements equal to 1/2. In other words, the electrons
involved in the interaction are in quantum-well resonance.
dk,b = [dk,b,↑ dk,b,↓] is the two-component spinor repre-
senting the annihilation operator for emergent Dirac fermions
of the b band in the spin basis. This effective theory has
extra emergent symmetries in contrast to the finite chemical
potential case. One can see that it has both the particle-hole
symmetry and the Lorentz symmetry. Since there are no Fermi
electrons in this limit to induce Cooper instability, the cou-
pling constant must be greater than a critical value for the
superconducting phase transition to happen [38]. The critical
value of the interaction strength is given by

Vc = 4πA2
b

ωD
. (52)

If the interaction strength is tuned to the quantum critical
point, the effective theory possesses emergent surface super-
symmetry (SUSY). So what we have here is essentially a
very practical platform to study the dynamics of the emergent
supersymmetric quantum matter.
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FIG. 7. Similar setup as in Fig. 6 but here we tuned the Fermi
level to three Fermi surfaces. td is the tunneling strength [defined in
Eq. (48)]. The numbers here represent the Fermi surface indices.

2. Three Fermi surface model

Now consider the case when the Fermi level is adjusted
in such a way that we effectively have three Fermi surfaces.
A schematic picture of such a possibility is shown in Fig. 7.
To realize a three Fermi surface model, the effective chemical
potential of the b band defined as μb in Eq. (47) has to be
greater than 2td . In this limit, the Fermi surface closest to the
Dirac point is formed by either positive or negative helicity
branches of the t band depending on the fine-tuning of the
chemical potential. This is indexed by 1. The second and third
Fermi surfaces are formed by the negative helicity branch
of the t band [band index: (t,−)] and the positive helicity
branch of the b band [band index: (b,+)], respectively. They
are indexed as 2 and 3, respectively. Since the attractive inter-
action is mediated by phonons, only the electronic states lying
within the energy window ±ωD measured from the chemical
potential actually experience an attractive interaction. Since
we are working in the limit where ωD � μ, the absolute value
of the chemical potential, essentially only the electrons in
and around the Fermi level take part in the interaction. Also
note that, since we are in the N = 1 limit, only the helical
hybrid fermions are present in the system. The mean-field
Hamiltonian then takes the form

HMF =
∫

d2k
(2π )2

[�hbd
k,1 e−iφk a†

k,t,+a†
−k,t,+

−�hbd
k,2 e−iφk a†

k,t,−a†
−k,t,−

+�hbd
k,3 e−iφk a†

k,b,+a†
−k,b,+ + H.c.

]
. (53)

Here we assumed that the Fermi level crosses the positive
helicity branch of the top band to form the Fermi surface that
is closest to the Dirac point as shown in Fig. 12(a). Also,
the energy difference between the Dirac point of the t band
and the Fermi level must be higher than the Debye frequency
for the above Hamiltonian to effectively describe the pair-
ing physics. Otherwise, the electrons in the negative helicity
branch of the t band near k = 0 will also be interacting. This

is not taken into account in the effective Hamiltonian defined
here.

As long as the three hybrid Fermi surfaces do not overlap
in the momentum space, the superconducting order on each
of them is of p-wave symmetry. It is evident from the phase
factor e−iφk = ky+ikx

|k| , which is odd in k. Notice that since
the Fermi surface indexed by 2 is formed by the negative
helicity branch of the t band, the sign of the order parameter
is negative. That is, it differs from the order parameter on the
positive helicity branch by a phase of π . If this Fermi surface
happens to overlap with a positive helicity branch of the b
band, which could happen in case the tunneling is zero or
negligible, then one can find that the triplet component of the
order parameter cancels out. In that case, we are left with an
even-parity spin-singlet pairing phase.

The superconducting gap equation satisfied by �hbd
i ’s is

similar to what is given in Eq. (41a). But since there are no
thin-film FSs, the RHS of Eq. (41a) vanishes. So we finally
obtain a simple form for the gap equation which we shall write
down below for clarity,

�hbd
k,i −

3∑
j=1

∫
d2p

(2π )2

J i j
k,p�hbd

p, j

2
√

ξ 2
p, j + (�hbd

p, j

)2
,

= 0 (54)

where i = 1, 2, 3. The matrix elements of Ĵ are given in
Eq. (37). It describes the scattering strength of Kramer’s dou-
blets from the Fermi surface indexed by i to j.

So we find here that we have to effectively solve a set of
three nonlinear coupled integral equations to find the super-
conducting order parameters in each Fermi surface. A simple
analytical solution as was done in the single Fermi surface
case is difficult to realize here.

B. Numerical results: solving the gap equation

The objective of this part of the section is to study the
evolution of the superconducting order in the N = 1 limit
as a function of various tuning parameters. Basically, our
goal is to look for various ways to enhance the superconduc-
tivity. The role of the thin film in this hybrid system is to
induce an effective attractive interaction between the helical
surface fermions. Therefore a straightforward way to enhance
the pairing interaction between the helical hybrid fermions
will be to tune the electron-phonon coupling strength of the
thin-film metal. In the case of a topological insulator, it is
the spin-orbit interaction that decides the Fermi velocity of
the surface Dirac fermions. So understanding the evolution
of the superconducting order as a function of the spin-orbit
coupling strength is important.

Here we begin by emphasizing again the role played by
quantum-well resonance in realizing a ground state with at-
tractively interacting helical fermions and in enhancing the
superconducting order. This is a continuation of the physics
discussed in Sec. IV. There we discussed how the effective
attractive interaction attained by the surface fermions through
tunneling reaches its maximum when the two systems are
in quantum-well resonance. We used the evolution of the Z
factors of the two hybrid bands as a function of the detuning
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FIG. 8. Resonance effect. Plots showing the emergence of topological superconductivity on the thin film-TI hybrid due to effective
attractively interacting surface fermions when the detuning parameter δ̃(d ) approaches zero. (a) shows the energy spectra of the TI surface
Dirac cone and the thin-film transverse band at three regimes of the detuning parameter before the tunneling is turned on. (c) shows the energy
spectra of the hybrid bands at the same three values of the detuning parameter after the tunneling is turned on. The grey horizontal line denotes
the Fermi level. The numbers denote the Fermi surface indices as defined in the main text. (b) shows the evolution of the superconducting order
parameters �hbd

i ’s on the three Fermi surfaces indexed by i = 1, 2, and 3 as a function of the detuning parameter before tunneling is turned
on. (d) shows the evolution of the same set of order parameters after tunneling is turned on.

parameter to prove this point. Having derived the pairing gap
equation, we can finally study how the pairing gap on the
Fermi surfaces evolves as a function of the detuning param-
eter. This will give a rather concrete idea of why we must tune
the thin-film thickness to quantum-well resonance for a given
N to study the interacting physics of surface fermions.

In short, we essentially write down the p-wave supercon-
ducting gap on the hybrid bands as a function of the three
tuning parameters,

�hbd
i ≡ �hbd

i (δ̃(d ), λ̃bulk, ṽ). (55)

Here λ̃bulk is the dimensionless form of the phonon-mediated
interaction strength of the 3D bulk counterpart of the metal
thin film. In terms of the electron-phonon coupling strength
G f p defined in Eq. (18),

λ̃bulk = mkbulk
F

2π2h̄2 G2
fp. (56)

kbulk
F is the bulk Fermi momentum of the metal for a given

chemical potential. In the calculations here, we shall only
tune the electron-phonon coupling strength of the metal while
keeping all other parameters constant. The dimensionless
detuning parameter is defined in Eq. (33). ṽ here is the dimen-
sionless form to represent the Fermi velocity of the surface
fermions. For the class of topological insulators that we con-
sider, it is proportional to the SOC strength of the TI. It has
the following definition:

ṽ = A0

h̄c
, (57)

where A0 is the SOC strength of the topological insulator and
c is the speed of light. Tuning down ṽ is essentially equivalent

to moving towards the flat band limit of the TI surface. Now
we shall study the evolution of the superconducting order
as a function of these dimensionless tuning parameters. For
numerical purposes, we shall be using material parameters
corresponding to Pb (lead) for the thin-film except in the
section where we tune the interaction strength.

1. Resonance effect

Here we shall study the evolution of the p-wave pairing
gaps as a function of the dimensionless detuning parameter at
k = 0 defined in Eq. (33). The detuning parameter is varied
by tuning the thin-film thickness. We shall solve the gap
equation both before and after the tunneling is turned on.
The Fermi level is set at 0.05 eV above the Dirac point of
the topological insulator. Essentially, we set the Fermi level
close to the Dirac point because we are tuning the detuning
parameter defined at k = 0. If the Fermi level is much above
or below the Dirac point, then the detuning parameter should
be defined at the Fermi momentum instead of at k = 0.

Figure 8 shows the results. Here the detuning parameter
is varied from −2 to 2. We have studied the evolution of
the pairing gaps �hbd

1 (red), �hbd
2 (green), and �hbd

3 (blue)
on the three Fermi surfaces(if present) before and after the
tunneling is switched on. Before the tunneling is turned on,
the innermost Fermi surface is formed by the surface Dirac
cone. The second and third Fermi surfaces are formed entirely
by the two helicity branches of the thin-film band and hence
they overlap. Essentially in this limit, the TI surface is non-
interacting, which means we are studying just the thin-film
superconductivity. The purpose is just to set a benchmark for
the study of the superconducting order once the tunneling
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is turned on. Therefore �hbd
1 is always zero. And we have

�hbd
2 = �hbd

3 . The triplet component of the order parameter
cancels out and we have the trivial s-wave superconducting
order as expected. When the detuning parameter is increased,
the thin-film band starts moving up. This is because, in our
convention, increasing the detuning parameter is equivalent to
reducing the thin-film thickness. At a particular thickness, the
bottom of the band crosses the Fermi level. Beyond this point,
there are no interacting Fermi electrons. Hence superconduc-
tivity vanishes as the detuning parameter is increased further.

Now when the tunneling is turned on, the surface band and
the thin-film band get hybridized. From the figure, we under-
stand that the pairing physics is not very different from the
zero-tunneling result when |δ̃| � 0. However, as we fine-tune
δ̃ to zero, we start seeing the effects of electronic hybridiza-
tion. The electrons in the innermost Fermi surface, which
essentially is the surface Dirac cone start interacting and a
superconducting gap opens up. The magnitude of the gap
increases as we fine-tune to δ̃ = 0 from the left side. One can
identify that �hbd

1 (the red points in the plot) is the effective
pairing gap on the Dirac cone. Note that the contribution to
the pairing gap also comes from the scattering of Cooper pairs
to the other two Fermi surfaces as well.

When the detuning parameter is increased further, the bot-
tom of the t hybrid band crosses the Fermi level. This means,
there is essentially a crossover from the three Fermi surface
to the single Fermi surface limit. Both the first and the second
Fermi surfaces vanish beyond this limit. When the tunneling
was zero, there was no superconductivity in this limit because
the surface was essentially noninteracting. But here we see
that a superconducting gap exists on the Fermi surface formed
by the Dirac cone (the blue-colored points on the plot). This is
clear evidence of the effective attractive interaction between
the surface Dirac fermions. Also, we see that the magnitude
of the gap decreases as the detuning parameter is tuned away
from zero. This clearly proves that the quantum-well reso-
nance is the ideal point to study the attractive interacting
physics of surface Dirac fermions.

2. Dependence on the interaction strength

In part 1, we understood the importance of quantum-
well resonance to realize a phase with attractively interacting
helical surface fermions. So from here onwards, we fine-
tune the thickness to quantum-well resonance at the Dirac
point. In this limit, the electronic states close to the Dirac
point on both sides of the interface are strongly hybridized.
There is no clear difference between the thin-film and the TI
surface fermions. These resonating hybrid fermions acquire
the emergent spin-orbit coupling from the thin-film side and
an effective attractive interaction from the thin-film side. We
effectively have helical fermions with an effective attractive
interaction between them.

Here we tune the electron-phonon coupling strength Gfp

of the thin-film metal and study the evolution of the pairing
gap on the hybrid Fermi surfaces. To represent the tuning pa-
rameter in a dimensionless form, we defined the bulk coupling
constant of the metal λ̃bulk in Eq. (56). We keep all other mate-
rial parameters including Debye frequency, effective electron
mass, etc. constant. Here we used the material parameters of

FIG. 9. Single hybrid Fermi surface limit (see Fig. 6 for the
energy spectrum). Plot showing the evolution of the superconducting
order parameter of the resonating hybrid electrons as a function of
the bulk coupling constant of the thin-film λ̃bulk [defined in Eq. (56)].
The evolution is studied at three different values of the effective
chemical potential expressed in a dimensionless form as μ̃b [defined
in Eq. (48)]. The SOC strength is fixed at A0 = 1.5 eV Å and the
tunneling strength td = 0.2 eV.

the Pb metal for numerical calculations. The cases of single
and three Fermi surfaces were considered separately. The
effective chemical potential was fine-tuned further for each
of the two cases to understand its significance.

a. Single Fermi surface. Figure 9 shows the results in the
case when the chemical potential is tuned to a single Fermi
surface. Here we plotted the magnitude of the p-wave su-
perconducting gap represented in a dimensionless form(with
respect to the Debye frequency) at three different chemical
potential values, μ̃b = 0.25, 0.50, and 0.75. Here chemical
potential is expressed in a dimensionless form as μ̃b = μb/td
where the tunneling strength td is fixed at td = 0.2 eV. The
chemical potential is set very close to the Dirac point because
the Fermi electrons then will be at quantum well resonance.
In addition, the electron band will be linear, resembling a
surface Dirac cone. The corresponding energy spectrum is
shown in Fig. 6. We set the spin-orbit coupling strength at
A0 = 1.5 eV Å. To arrive at this result, we numerically solved
Eq. (46) self-consistently at different values of the coupling
strength.

As expected, we find an exponential enhancement of
the superconducting gap as the coupling constant λ̃bulk

is increased. Increasing chemical potential also enhances
the superconducting gap. The results can be explained in
the following way. Since the chemical potential is set close
to the Dirac point (μ̃b < 1), the band is nearly linear when
it crosses the Fermi level. Hence the approximate analytical
expression for the pairing gap magnitude derived in Eq. (50)
works well in these cases. There we found that �hbd ∝
e−1/μbJ 3,3

. Here J 3,3 is proportional to the electron-phonon
coupling constant. Thus both the chemical potential and the
interaction strength have a similar enhancement effect on the
superconducting gap magnitude. This is in contrast to a 2D
quadratic electronic dispersion. There the density of states
is independent of the chemical potential. Note here that, if
μb � td , then the band is no longer linear. In this case, the
analytical result derived in Eq. (50) is no longer a good ap-
proximation. In addition, since the Fermi electrons lie away
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FIG. 10. Three hybrid Fermi surfaces (see Fig. 7 for the energy spectrum). Similar setting as in Fig. 9 but here the effective chemical
potential μ̃b > 2 for all the three cases. Thus we have three hybrid Fermi surfaces. The evolution of the SC order parameters on these three
Fermi surfaces has been studied as a function of the bulk interaction strength of the thin film.

from the quantum-well resonance, the tunneling effects will
be perturbative.

b. Three Fermi surfaces. Figure 10 shows the results when
the chemical potential is tuned to three Fermi surfaces. As
discussed before, the effective chemical potential, μb must
be of the order of 2td or greater than that to realize a three
Fermi surface model. The corresponding energy spectrum is
given in Eq. (7) Here we studied the evolution of the p-wave
pairing gaps on the three Fermi surfaces as a function of the
electron-phonon coupling strength of the thin-film metal at
three different values of the chemical potential. Here �hbd

i
(i = 1, 2, and 3) is the SC gap magnitude on the ith Fermi
surface. Here 1 is the closest and 3 is the farthest from the
Dirac point. They are represented in a dimensionless form
by dividing them with the Debye frequency of the thin-film
metal. We used the dimensionless parameter μ̃b to represent
the chemical potential. The tunneling strength and the spin-
orbit coupling strength of the TI surface are all fixed with the
same numerical values as in the single Fermi surface case.
We numerically solved the coupled set of superconducting gap
equations given in Eq. (54) to arrive at these results.

We see a much-anticipated enhancement in the supercon-
ducting gap magnitude as the interaction strength is increased.
We also notice that the magnitude of the superconducting gap
is substantially larger compared to the single Fermi surface
case for a given strength of interaction. This is because there is
a larger number of Fermi electrons involved in the interaction
for the three Fermi surface cases, leading to an enhancement
in the superconducting order.

3. Dependence on the spin-orbit coupling strength

Here we shall study the evolution of the superconducting
order on the helical hybrid bands as a function of the spin-orbit
coupling strength of the TI surface. As we did in the previous
part, the Dirac point of the TI surface is fixed at quantum-well
resonance with the N = 1 transverse band of the thin film. The
bulk interaction strength is fixed at λ̃bulk = 0.39. As before,
the tunneling strength is fixed at td = 0.2 eV. The spin-orbit
coupling strength is expressed in a dimensionless form given
by ṽ = A0/h̄c. The logic here is that for a given SOC strength
A0, the Dirac velocity of the surface fermions is given by v =

A0/h̄. So tuning the SOC strength is equivalent to tuning the
Dirac velocity of the surface fermions.

We study the SOC dependence for the two cases separately:
when the Fermi level is set to a single Fermi surface and when
the Fermi level is set to three Fermi surfaces. Even though we
expect a monotonic increase in the superconducting gap as
the SOC strength is decreased due to the obvious increase in
the density of states, we shall find here that it is not the
case. The change in the hybrid band structure has huge conse-
quences on the renormalization factors Zi which substantially
affects the pairing interaction.

a. Single Fermi surface. Here we shall study the evolution
of the pairing gap as a function of the spin-orbit coupling
parametrized by ṽ at different values of μ̃b. Since the magni-
tude of the superconducting gap in our case is mostly decided
by the density of states at the Fermi level and the renormal-
ization factor Z3, we have plotted both of them as a function
of ṽ. This helps us better understand the behavior of �̃hbd as
ṽ is tuned. The density of states at the Fermi level has the
following definition:

N hbd =
∫

d2k
(2π )2

δ
(
εhbd

k,b,+ − μ
)
. (58)

By tuning ṽ, we shall expect the density of states at the Fermi
level to increase thus enhancing the superconductivity. But
here we shall find that it is not always the case as evident
from Fig. 11. Here we plotted �hbd as a function of ṽ at two
different values of the dimensionless chemical potential μ̃b.
We find that the pairing gap increases when ṽ is reduced,
reaches a peak, and then decreases to zero in the flat band
limit when chemical potential μ̃b = 0.50 and μ̃b = 0.75. But
when chemical potential is very low(μ̃b = 0.25), the peak is
reached only when ṽ ≈ 0.

This rather surprising result has to do with the renormal-
ization factor in the interaction constant. It essentially gives
the probability amplitude of the given electronic state to be
in the thin-film side of the interface. Its definition is given in
Eq. (26). Here Z3 is defined as the renormalization factor of
the electrons on the Fermi surface. Since the Dirac point is
in resonance with the thin-film transverse band, Z3 is exactly
1/2 at k = 0. But if the Fermi momentum is much greater than
zero, then the renormalization factor changes from 1/2. This
is equivalent to detuning away from resonance. If the hybrid

144508-17



SARAN VIJAYAN AND FEI ZHOU PHYSICAL REVIEW B 109, 144508 (2024)

FIG. 11. Single Fermi surface model (see Fig. 6). (a) shows the evolution of the superconducting order parameter as a function of ṽ. Here
ṽ = A0

h̄c is used to represent the spin-orbit coupling strength of the TI in a dimensionless way. It also indicates the Dirac velocity of the surface
fermions. We study the pairing at three different values of the effective chemical potential μ̃ [definition given in Eq. (48)]. (b) shows the
evolution of the density of states at the Fermi level as ṽ is tuned. (c) shows the evolution of the Z factor of the hybrid Fermi electronic states
involved in pairing. It represents the probability amplitude of the Fermi electrons to be in the thin-film side of the interface. The expression is
given in Eq. (36). The tunneling strength is fixed at td = 0.2 eV.

band is adiabatically connected to the thin-film band at large
k, then Z3 → 1 at large Fermi momentum. On the other hand,
if the hybrid band is connected to the surface Dirac cone,
then Z3 → 1 at large Fermi momentum. This change in the
renormalization factor can substantially affect the magnitude
of the SC gap.

So what we observe here essentially is an interplay be-
tween the density of states at the Fermi level and the
renormalization factor of the electronic states on the thin-film
side. The density of states increases with decreasing ṽ in a
monotonic fashion for any value of μ̃b. This is evident from
the density of states plot in Fig. 11(b). The density of states
increases in a power law fashion in both cases of chemical
potential as the ṽ is lowered.

On the other hand, the renormalization factor Z3 decreases
as ṽ is lowered [see Fig. 11(c)]. This can be explained in the
following way: Here the Fermi level crosses the positive helic-
ity branch of the bottom band (band index: (b,+)]. Consider
the large ṽ limit, which is defined as the limit when Z3(ṽ) >

1/2. In this limit, the electrons in this band are adiabatically
connected to the thin-film band at a large k limit, where they
are out-of-resonance. So if the Fermi level crosses this band at
large k, then Z3 ≈ 1. Also, notice that the range of momentum
states around the Dirac point which experience strong hy-
bridization decreases as ṽ is increased. As a result of these two
factors, one can see why Z3 increases when ṽ is increased. On
the other hand, in the limit of ṽ when Z3(ṽ) < 1/2, the hybrid
band under consideration [band index: (b,+)] is adiabatically

connected to the noninteracting surface Dirac cone. This is the
reason why Z3 → 0 as ṽ → 0. At Z3(ṽ) = 1/2, the electrons
in the Fermi surface are in quantum-well resonance.

The variation in Z3 will be more substantial for cases with
higher chemical potential than those with lower ones. Due to
the higher chemical potential, the Fermi electrons are detuned
away from resonance and hence the Z3 factor will be different
from 1/2. This is the reason why we see a peak in the pairing
gap for μ̃b = 0.50 and 0.75 [Fig. 11(a)]. On the other hand,
Z3 ∼ 1/2 for μ̃b = 0.25 at all values of ṽ, implying that the
electrons lying in the Fermi surface are in quantum-well reso-
nance throughout. As a result, the monotonic behavior of the
density of states N hbd is also reflected in the evolution of the
pairing gap.

b. Three Fermi surfaces. Here we study the evolution of
the p-wave pairing gaps on the three FSs as a function of ṽ.
Just like in the previous case of a single FS, the tunneling
strength and the thin film’s material parameters are kept fixed.
Note that since the tunneling results in a two-level splitting
of the top and bottom bands at k = 0 by a factor of 2td , the
effective chemical potential μb [defined in Eq. (47)] should be
of the order of 2td or greater than that to realize a three Fermi
surface model. In other words, the dimensionless parameter
μ̃b � 2. See the energy spectrum in Fig. 7 for details.

In our calculations, we fix the effective chemical potential
at μ̃b = 2.25. We fix the tunneling strength at td = 0.2 eV.
The results are shown in Fig. 12(a). Here we plotted the
p-wave superconducting gaps on the three FSs as a function
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FIG. 12. Three Fermi surface model (see Fig. 7). Similar setup as in Fig. 11 but here the Fermi level is set to three Fermi surfaces. The
effective chemical potential is fixed at μ̃b = 2.25. In (b), we plotted the density of states at the Fermi level of the three Fermi surfaces as a
function of ṽ. The exact definition of Ni (i = 1, 2, and 3) is given in Eq. (59). In (c), we plotted the Z-factors of the Fermi electrons on the
three Fermi surfaces.

of the SOC strength of the TI surface, represented in a di-
mensionless form as ṽ [defined in Eq. (57)]. As before, we
numerically solved the self-consistent superconducting gap
equations defined in Eq. (54) to calculate the pairing ampli-
tudes on the three Fermi surfaces. The pairing gaps have been
represented in a dimensionless form by dividing it with the
Debye frequency of the thin-film metal. In Fig. 12(b), we
plotted the density of states at the Fermi level for each Fermi
surface as a function of ṽ. The definitions are given by

N hbd
1 =

∫
d2k

(2π )2
δ
(
εhbd

k,t,+ − μ
)
,

N hbd
2 =

∫
d2k

(2π )2
δ
(
εhbd

k,t,− − μ
)
, (59)

N hbd
3 =

∫
d2k

(2π )2
δ
(
εhbd

k,b,+ − μ
)
,

where N hbd
i (i = 1, 2, and 3) implies the density of states at

the Fermi surface indexed by i with i = 1 being the closest to
the Dirac point. In Fig. 12(c), we plotted the renormalization
factor Zi (i = 1, 2, and 3) of the three Fermi surfaces. We
studied the variation of the renormalization factors of the
Fermi electrons on each Fermi surface as a function of ṽ.

Similar to what we saw in the single Fermi surface case,
the magnitude of the SC gaps on the three Fermi surfaces is
determined by the interplay of the electron density of states
at the Fermi level and the renormalization factors Zi. One can
notice here by observing the Figs. 12(a) and 12(c) that it is
the Z-factors in three FSs that play the dominant role here.

To realize a three-Fermi surface model, we require μ̃b � 2.
Thus the Fermi momentum of the second and third FSs are
already much greater than zero. Thus the tunneling effect on
these Fermi electrons becomes lesser and lesser significant as
the spin-orbit coupling strength is tuned up, no matter what the
absolute value of the tunneling strength is. In addition, we also
notice that the two Fermi surfaces get closer with increasing ṽ.
This is also reflected in the magnitude of the pairing gap. We
find here that |�̃hbd

2 − �̃hbd
3 | → 0 as ṽ → 1. One can notice

here that the triplet component of the pairing amplitude, which
is proportional to the difference in the pairing amplitude on
the positive and negative helicity branches for a given k,
vanishes as a result. Thus as ṽ → 1, the tunneling effect on
the two Fermi surfaces is negligible, effectively leading to a
trivial singlet pairing order on the two Fermi surfaces which
essentially overlaps. On the other hand, the electrons on the
1st Fermi surface have their Z factor nearly equal to 1/2,
implying the electronic states are near resonance even if we
increase ṽ. This is because the Fermi momentum is very close
to zero. But notice here that the density of states N1 is nearly
zero as ṽ is increased. This implies that the superconducting
gap is dominated by the scattering of Cooper pairs from the
other two Fermi surfaces, rather than the intra-band scattering.

When ṽ is decreased, we are effectively moving toward the
flat band limit of the TI surface. The density of states at each
hybrid Fermi surface shows a monotonic increase as expected.
However, this is not reflected in the SC gap magnitude. We
find here that the pairing amplitude on the third Fermi surface
vanishes in the limit ṽ → 0. On the other hand, the pairing
amplitudes on the first and the second Fermi surfaces con-
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verge. That is, we observe that |�̃hbd
1 − �̃hbd

2 | → 0 as ṽ → 0.
This implies that the two Fermi surfaces overlap to form the
trivial thin QW band and the superconductivity on them will
turn out to be of the trivial s-wave order. Since the supercon-
ductivity on the third Fermi surface vanishes as ṽ → 0, the
topological superconductivity is absent in the flat band limit.

So in conclusion, we explored the evolution of the pairing
gaps as a function of the SOC strength on the three Fermi
surfaces at a fixed chemical potential and tunneling strength.
We found that in the limit of large ṽ(ṽ → 1), the second
and the third Fermi surfaces overlap and the pairing on them
is of spin-singlet order. The SC pairing on the innermost
Fermi surface still maintains the p-wave character. Thus the
topological character is still maintained. In the limit when
ṽ → 0, we found that the electrons in the third Fermi surface
lie entirely on the TI surface side. Hence they are effectively
noninteracting. The first and the second Fermi surfaces over-
lap and we effectively have singlet pairing superconductivity
on them. Hence in the flat band limit, the hybrid is no longer
topological.

VII. THE LARGE-N LIMIT

Here we consider the situation when the thin-film band
which is in quantum-well resonance with the surface Dirac
point has its band index N very much greater than one. Phys-
ically, this limit can be realized by increasing the thickness of
the thin film. This is because, the energy difference between
the successive quantum well bands, |εk,n − εk,n−1| ∝ 1/d2.
In this situation, given that the Fermi level is adjusted close
to the Dirac point, there will be N − 1 off-resonance degen-
erate thin-film bands crossing the Fermi level. Hence after
hybridization, we shall have 2N − 2 off-resonance Fermi sur-
faces plus one or three hybrid Fermi surfaces. When N � 1,
we anticipate that the dominant contribution to the supercon-
ducting gap on the hybrid bands is coming from the scattering
of the singlet pair of electrons from the trivial thin-film Fermi
surfaces. The pairing between the helical fermions of the
hybrid bands will only have a negligible effect on the pairing
gap on off-resonance thin-film bands in this limit. Effectively,
one can describe this limit as equivalent to an external s-wave
pairing field acting on the hybrid bands. So this is similar to
the well-known superconducting proximity effect but in the
momentum space.

In the first part, we shall derive an analytical expression for
the pairing gap on the hybrid Fermi surface(s) by employing
the large-N approximation. Using this, we essentially study
how far the interaction between the hybrid fermions can en-
hance the superconducting gap on the hybrid Fermi surface.

In the last part of this section, we show that the momentum
space proximity effect smoothly transforms into the real space
proximity effect in the perturbative limit of tunneling. The
surface interaction only gives a higher order correction to the
proximity-induced superconducting gap.

A. Momentum space proximity effect

Consider the case when the Fermi level is adjusted such
that it crosses just a single hybrid Fermi surface. So we have
2N − 2 off-resonance Fermi surfaces and one hybrid Fermi
surface. The exact gap equation in the limit when ωD � μ is

given in Eqs. (43b) and (43a). In the large-N limit, we could
make substantial simplifications to arrive at an analytical ex-
pression. Recall that in all our calculations, we considered
the attractive interaction in the thin film to be mediated by
confined phonons as explained in Sec. III A. But as N → ∞
which is attained by increasing the film thickness, it is a good
approximation to replace the confined phonons with the bulk
phonons. This essentially makes the interaction potential V n,n′

k,p
isotropic. In the limit when the thickness d → ∞, the inter-
action potential is defined in Eq. (21) attains the following
isotropic form:

V n,n′
k,p ≈ G2

fp

d

(
1 + δn,n′

2

)
θ
(
ωD − ξ tf

k

)
θ
(
ωD − ξ tf

p

)
,

where δn.n′ here is the Dirac-delta function. Since the interac-
tion potential is isotropic, the superconducting gap will also
turn out to be the same on all the thin-film QW bands. Now
we shall plug this back into Eq. (43b). Also in the large-N
limit, scattering of Cooper pairs from the hybrid Fermi surface
will have only a negligible effect on the s-wave thin-film
superconducting gap. This means the second term in the LHS
of Eq. (43b) is neglected. With all these approximations, we
obtain the following simple analytical form for the thin-film
s-wave superconducting gap:

�tf ≈ 2ωD exp

[
− d

G2
fpN tf(N − 1/2)

]
,

where �tf
n = �tf

n′ = �tf,∀n, n′ � N. (60)

Here we used �tf for the s-wave superconducting gap on
the thin-film bands. N tf = m

2π h̄2 is the density of states at the
Fermi level of a thin-film transverse band, given the electronic
dispersion is quadratic. Now let us plug this back into the gap
equation for the magnitude of the effective p-wave supercon-
ducting order parameter on the hybrid Fermi surface. After
doing some algebra, we get

�hbd = Z3�tf

1 − λ̃hbdln 2ωD
�hbd

,

where λ̃hbd = J 3,3N hbd. (61)

Here λ̃hbd is the dimensionless coupling strength of interaction
between the helical hybrid fermions. N hbd is the density of
states at the hybrid Fermi surface. J 3,3 defined in Eq. (37)
is the renormalized interaction potential between the hybrid
fermions. Z3 in the numerator is the renormalization factor
of the hybrid Fermi electrons [defined in Eqs. (26) and (36)].
This factor comes from the scattering matrix element Kn,3

that determines the scattering of singlet pair of electrons from
the off-resonance thin-film Fermi surface to the hybrid Fermi
surface.

Let us analyze the large-N result given in Eq. (61) more
carefully. The numerator and the denominator come from dif-
ferent sources. The numerator is essentially the contribution
to the superconducting gap due to the scattering of singlet-pair
electrons from the off-resonance thin-film Fermi surfaces. The
denominator is due to the attractive interaction between the
helical hybrid fermions. Hence it is this term that actually
results in the Cooper instability on the hybrid Fermi surface.
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FIG. 13. An illustration of the enhancement effect on the su-
perconducting gap on the hybrid Fermi surface due to the surface
interaction. Here x = �hbd/ωD, the SC gap on the hybrid Fermi
surface is taken as a variable. yprxmt(x) (blue) takes into account the
contribution to the pairing gap due to the scattering of cooper pair
from the off-resonance thin-film Fermi surfaces. yhbd(x) (red) is the
contribution to the SC gap due to interaction between the hybrid
fermions. The exact solution is at the point where the two curves
cross each other.

The numerator could open up a gap but does not lead to actual
Cooper instability.

The numerator in the above expression is analogous to
the proximity-induced superconductivity observed in several
TI-SC heterostructures [12]. In the proximity effect, the su-
perconducting gap opens up on the Dirac cone due to the
tunneling of Cooper pairs across the junction. The difference
here is that the coefficient Z here is nearly equal to 1/2.
In fact, as we shall demonstrate soon, the numerator turns
out to be the proximity-induced superconducting gap in the
perturbative limit of tunneling. The difference we notice in
the resonance regime is that we observe an enhancement in the
superconducting gap due to the attractive interaction between
the helical hybrid fermions. The amount of enhancement is
determined by the coupling strength λ̃hbd.

Figure 13 below illustrates this enhancement effect on the
p-wave pairing gap due to the interaction between the helical
fermions. To do this, we defined the following functions:

yhbd(x) = 1 − λ̃hbdln
2

x
, (62a)

yprxmt(x) = Z3�̃tf

x
. (62b)

Here we replaced �hbd/ωD in Eq. (61) by a variable x.
So �tf is also represented in a dimensionless form as �̃tf =
�tf/ωD. yhbd(x) is the contribution to the pairing gap due to
the interaction between hybrid fermions. yprxmt(x) is the con-
tribution due to the momentum-space proximity effect. The
actual value for x is found by solving the equation yhbd(x) =
yprxmt(x). We shall call the actual solution by x0. One can
call the solution to the equation yprxmt(x) = 1 as the proxim-
ity limit of the superconductivity. This would have been the
actual solution if the coupling constant λ̃hbd = 0. Then we
plotted the function yhbd(x) at different values of the coupling

FIG. 14. Here we solved the superconducting gap equation in the
large-N limit [Eq. (13)] and plotted the SC order parameter �hbd

(blue curve) as a function of the coupling strength between the hybrid
fermions λ̃hbd. The red dashed lines show the contribution to the SC
gap due to the momentum space proximity effect. The black dashed
line shows the solution solely due to the Cooper instability on the
hybrid Fermi surface.

constant λ̃hbd in Fig. 13. Here we find that as the coupling
constant is increased, the crossing point moves farther away
from the proximity limit. This shows strong evidence of en-
hancement in the superconducting order due to interaction
between hybridized fermions

To further emphasize this enhancement effect due to
interaction between the hybrid fermions, we solved the
equation yhbd(x) = yprxmt(x) and plotted the resulting super-
conducting order parameter magnitude �̃hbd as a function of
the hybrid coupling constant λ̃hbd. The results are shown in
Fig. 14. Here the red dashed lines are the proximity limit of
the superconductivity obtained by solving yprxmt = 1, while
the black dashed lines give the BCS limit of the hybrid FS
given by yhbd(x) = 0. The enhancement due to the surface
interaction exists even in the weakly interacting limit. As λ̃hbd

approaches unity, we find that the order parameter attains an
exponential form.

But there are practical limitations in enhancing λ̃hbd to
strongly interacting limit. The interaction potential J 3,3 is
predetermined by the bulk coupling constant of the thin film.
At resonance, it is of the form J 3,3 = Z2

3V N,N ≈ V N,N/4,
which means it is always less than Kn,3 for any n. So the only
tunable parameter is the density of states at the Fermi level
given by N hbd. If the energy dispersion of the hybrid band is
linear when it crosses the Fermi level, then N hbd = μb

2πA2
b

[refer

to Eq. (50)]. Ideally, one could tune down the SOC strength of
the TI surface to enhance the surface interaction. However,
as we discussed in Sec. VI B, reducing the SOC strength will
detune the Fermi electrons away from resonance for a fixed
chemical potential, driving the Fermi surface back to the per-
turbative limit of tunneling. In short, what we like to convey
here is that there are practical limitations in increasing the
coupling strength λ̃hbd. So in the large-N limit, the dominant
contribution to the superconducting gap on the hybrid Fermi
surface comes from the momentum space proximity effect due
to the off-resonance thin-film bands. There is an enhancement
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due to the Cooper instability on the hybrid Fermi surface, but
that is not very substantial compared to the proximity effect.

B. Perturbative limit of tunneling:
connection to the Fu-Kane model

Here we shall consider the perturbative limit of tunneling
by detuning away from the quantum-well resonance of the
TI-thin-film hybrid. Our objective here is to show that the
momentum space proximity effect discussed in the previous
section transforms into the real-space superconducting prox-
imity effect in the perturbative limit of tunneling.

The perturbative regime is characterized by the limit δ̃ �
0. Here δ̃ is the dimensionless detuning parameter at k = 0
defined in Eq. (33). So for convenience, we shall define a new
parameter to study the perturbative limit given by

t̃ = 1

δ̃
, (63)

where we can call t̃ as the dimensionless tunneling strength.
This quantity essentially gives the probability amplitude of an
electronic state in the thin-film side to tunnel to the TI surface
and vice versa.

In the perturbative regime, the single-particle hybridization
effects are negligible. This implies that we should treat the
surface fermions and the thin-film fermions separately. This is
evident from the discussions we had in Sec. IV regarding the Z
effect. There we saw that on tuning δ̃ → −∞, the top hybrid
band transforms to the surface Dirac cone and the bottom
hybrid band transforms to the thin-film band. Correspondingly
Zb approaches unity while Zt approaches zero. It happens the
other way when δ̃ → +∞.

Now we shall see how the expression for �hbd derived in
the large-N limit at quantum-well resonance [see Eq. (61)]
changes when detuned to the perturbative limit. We shall be
studying the perturbative limit for the case when δ̃ � 0. But
the qualitative conclusions do not change when δ̃ � 0 also. If
the Fermi momentum of the surface Dirac cone is very small,
then Z3 is essentially equal to Zb defined in Eq. (34). For
clarity, let us rewrite the expression again here. When Fermi
momentum of the surface Dirac cone kF ≈ 0,

Z3 = Zb(δ̃) = 1

2

(
1 − δ̃√

1 + δ̃2

)
, (64)

Now expanding Z3 in powers of t̃ , we arrive at

Z3 = t̃2 + O(t̃4). (65)

Thus Z3 scales as t̃2 in the perturbative limit of tunneling. Re-
call that the coupling strength λ̃hbd determines the interaction
between the surface fermions. Since there is no hybridization
in this limit, let us call λ̃hbd as λ̃surf. This is to emphasize
that the coupling constant determines the attractive interaction
strength between the surface fermions. Since the interaction
potential is proportional to the square of the Z factor, we see
that in the perturbative limit,

λ̃surf = αt̃4, (66)

where α = V N,NN surf. Here N is the index of the thin-film
band that is closest to the TI surface. N surf is the density of
states at the Fermi level of the surface Dirac cone. Plugging

this back to the Eq. (61), the expression for the superconduct-
ing gap at the surface Dirac cone when expanded in powers of
t̃ has the form

�surf ≈ t̃2�tf

[
1 + αt̃4 ln

2ωD

t̃2�tf
+ · · ·

]
. (67)

It is straightforward to find out that the first term is exactly the
gap opening on the Dirac cone due to the superconducting
proximity effect. Since the first term is proportional to the
square of the tunneling strength, it has the most dominating
effect on the SC gap magnitude on the surface. The second
term is the lowest order correction to the gap magnitude due
to a possible Cooper instability on the TI surface. We can see
here that it has only a negligible contribution to the SC gap
opening in the weak tunneling limit.

In conclusion, by tuning our effective theory to the per-
turbative limit of tunneling, we could make connections to
Fu-Kane’s proposal. The momentum-space proximity effect
we discovered in the large-N limit at the resonance transforms
smoothly to the real-space proximity effect in the perturbative
limit of tunneling. We also found that even in the perturbative
limit, there is still an effective attractive interaction between
surface fermions mediated by the thin-film phonons. But this
effect is so weak that the dominant contribution to the super-
conducting gap at the TI surface comes from the proximity
effect.

VIII. GENERAL N DEPENDENCE

In the previous sections, we studied the superconducting
phase of the TI-thin-film hybrid in the two extreme limits of
N , the N = 1 limit, and the large-N limit. Here we shall probe
the superconducting order parameter on the hybrid Fermi
surfaces as a function of N . Tuning N is implemented by
increasing the thin-film thickness. For each N , the thickness
is further fine-tuned so that the Dirac point of the TI surface
is at quantum-well resonance with the N th band of the thin
film. So essentially we are studying the thickness dependence
of the superconducting order parameter when the hybrid is
fine-tuned to quantum-well resonance.

Given that the hybrid is at quantum-well resonance for a
given N . It is the following three quantities that would play
a significant role as N is tuned: thin-film interaction potential
matrix V n,n,(n, n′ are thin-film band indices), the number of
off-resonance thin-film Fermi surfaces (equals 2N − 2 for a
given N) and the effective tunneling strength td . Recall from
Eq. (21) that the thin-film interaction potential scales as 1/d
as a function of thickness. So even for a fixed bulk coupling
constant λ̃bulk, the interaction potential in the thin-film de-
creases as a consequence of the electron confinement. But
this is compensated by the increase in the number of bands
that cross the Fermi level as thickness is tuned. This results
in a jump in the superconducting order parameter each time
a new band crosses the Fermi level. These two features have
been studied extensively in the context of thin-film supercon-
ductivity in previous works [35]. Recall from Eq. (6) that the
electron confinement in the thin-film leads to 1/

√
d scaling

behavior of the tunneling strength. Thus the effect of tunneling
decreases with increasing thickness. Even though we would
still see a splitting of the energy state at the Dirac point, the
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FIG. 15. Plot showing the evolution of the magnitude of SC order parameter on the single hybrid Fermi surface (blue points) as a function
of N . For each N , the thin-film is at quantum-well resonance with the Dirac point of the TI surface. The effective chemical potential μ̃b [defined
in Eq. (48)] is fixed at μ̃b = 0.25 for each N . �tf0 is the SC order parameter on the N th band of the thin-film before the tunneling was switched
on. Also shown here are the energy spectra of the hybrid bands at the two limits, N = 1 and 10. The dashed lines represent the Fermi level.
The spin-orbit coupling of the TI surface, A0 = 1.5 eV Å.

magnitude of the splitting substantially decreases at large N .
Hence the evolution of the superconducting order parameters
on the hybrid Fermi surface(s) as a function of N will be a
result of the interplay of these three factors. We shall study the
N dependence for the single hybrid Fermi surface and three
hybrid Fermi surfaces separately.

For numerical calculations, we used the material parame-
ters of Pb for thin film. The spin-orbit coupling strength of the
TI surface is fixed at A0 = 1.5 eV Å.

A. Single hybrid Fermi surface

Figure 15 shows the results when the Fermi level is tuned
to one hybrid Fermi surface. Here the dimensionless effective
chemical potential μ̃b [see Eq. (48)] is fixed at μ̃b = 0.25.
Note that fixing μ̃b requires fine-tuning the Fermi level every
time N is increased. This is because the tunneling strength
changes with thickness and μ̃b = μb/td . So since we keep μ̃b

fixed, the absolute value of the chemical potential is not con-
stant and changes with N . The p-wave superconducting gap
on the hybrid Fermi surface for a given N is found by solving
the coupled self-consistent gap equation given in Eqs. (43a)
and (43b) numerically. We calculated the SC order parame-
ter value for N values ranging from 1 to 10 by fine-tuning
the thickness to quantum-well resonance for each N . Here
�t f 0(Grey) is the s-wave superconducting order parameter on
the N th transverse band of the thin-film before the tunneling

was turned on. This can be found easily using the same set of
coupled equations by just setting tunneling strength to zero.

Here we find an enhancement in the gap magnitude as
N is increased from one. But from N = 3 onwards, we find
that the order parameter saturates to a constant value and
it is a fraction of the thin-film gap magnitude. This implies
that the superconducting order on the hybrid Fermi surface
approaches the large-N limit right from N = 2 onwards. From
our discussions in the previous section on the large-N limit,
we can conclude that the superconducting order from N = 2
onwards is dominated by the scattering of singlet pairs of
electrons from the off-resonance thin-film bands. So to con-
clude, at intermediate N we find an enhancement in the pairing
gap due to the off-resonance thin-film Fermi surfaces which
start appearing as N is increased from one. At large N , the
superconducting gap saturates to a constant value and is fixed
by the thin-film superconducting gap due to the momentum
space proximity effect.

B. Three hybrid Fermi surfaces

Figure 16 shows the results when the Fermi level is
tuned to three hybrid Fermi surfaces limit. From our previ-
ous discussions on the three hybrid Fermi surfaces model in
the N = 1 limit, we understand that μ̃b � 2 to realize this
model. Hence we set μ̃b = 2.25 for all N . We solve the cou-
pled self-consistent equations given in Eqs. (41a) and (41b)
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FIG. 16. Similar setting as in Fig. 15. The difference here is that the effective chemical potential μ̃b is set to μ̃b = 2.25 for all N . So we
have three hybrid Fermi surfaces at quantum-well resonance.

numerically for a given N at quantum-well resonance. �hbd
i

gives the magnitude of the p-wave superconducting order
parameter on the ith hybrid Fermi surface with i = 1 being
the closest one to the Dirac point.

Unlike the single Fermi surface case, here the three super-
conducting order parameters decrease with increasing N and
then saturate to a constant value. Since we have three hybrid
Fermi surfaces in the N = 1 limit, the density of states is
sufficiently high compared to the single Fermi surface case.
So in this case, it is the 1/d scaling of the interaction potential
that has a dominating effect on the superconducting order in
the intermediate N limit than the increase in the number of
off-resonance bands.

As N is increased, we observe that the superconducting gap
on the second and the third Fermi surfaces start converging to
the thin-film gap value. This can be attributed to the 1/

√
d

scaling of the tunneling strength. The tunneling gets weaker
as N is increased so that the electrons lying away from k = 0
experience only a perturbative effect. This is evident from the
energy spectrum of the hybrid bands in the N = 1 and the N =
10 limits shown in Fig. 16. As a result, the second and the third
Fermi surfaces overlap and become degenerate. So the triplet
component of the order parameter in the Zeeman basis cancels
out and we are left with a trivial s-wave superconducting order
on these two Fermi surfaces. In short, the two Fermi surfaces
essentially became off-resonance. However, the pairing gap
on the first Fermi surface is still of p-wave symmetry. Hence
the hybrid is still in the topological phase.

So to conclude, the superconducting order parameter on
the three hybrid Fermi surfaces decreases with increasing N
at intermediate values of N . This is a result of the 1/d scaling
of the interaction potential. As N is increased further, it is
only the Fermi surface closest to the Dirac point that exhibits
topological superconductivity. The other two Fermi surfaces
which turn out to be at the off-resonance overlap and hence the
superconducting order on them becomes trivial s-wave-like.

IX. CONCLUSION

In this paper, we proposed a TI-thin-film hybrid as a prac-
tical platform to realize a system with attractively interacting
surface fermions. By depositing the thin-film on top of the
TI surface, we essentially allowed the surface electrons to
be exported to the interacting thin film. We found that for a
given thin-film and the topological insulator, when the surface
fermions resonate with the quantum-well states of the thin
film, the interaction between surface fermions is maximally
enhanced.

Then we studied the superconductivity of these resonating
hybrid states in the N = 1 limit. In this limit, we effectively
have a four-band model of interacting helical hybrid fermions.
By fine-tuning the Fermi level in this limit, we showed that
it is possible to construct an effective low-energy theory
of a single flavor of two-component Dirac fermions subject
to attractive interaction, whose quantum critical point pos-
sesses emergent supersymmetry (SUSY). Then we studied the
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evolution of the superconducting gap as a function of the
interaction strength of the thin film and the effective speed
of light of the surface fermions. We find an enhancement
of the superconducting gap when the interaction strength is
increased. On the other hand, the evolution of the supercon-
ducting gap as the TI surface is tuned to the flat band limit is
rather nonmonotonic. We showed that when the Fermi level
is tuned to the single Fermi surface limit, as a result of the
interplay between the density of states at the Fermi level and
the renormalization factor in the interaction strength Z3, the
superconducting gap shows a peak at an intermediate value of
ṽ and then dies off to zero in the flat band limit. However, if
the effective chemical potential μ̃b ≈ 0, the peak is seen in the
flat band limit.

We also showed that in the large-N limit, the supercon-
ductivity of the resonating hybrid fermions is dominated
by the scattering of the singlet pair of electrons from the
off-resonance thin-film bands. This effect is similar to the
superconducting proximity effect but in the momentum space.
However, interaction among the surface fermions can further
enhance the superconducting gap. In the strongly interact-
ing limit of the surface, the enhancement effect can be very
significant.

We also studied the general N dependence of the super-
conducting gap on the resonating helical hybrid bands. We
found that when the Fermi level is tuned to three hybrid
Fermi surfaces, the dominating effect is the 1/d scaling of

the thin-film interaction potential. The consequence of this
scaling relation is that at resonance, the attractive interaction
between the surface fermions is also at its maximum when
N = 1.

Apart from the theoretical interest in realizing a ground
state of attractively interacting surface fermions, the pro-
posed model also has practical applications in the context
of Majorana-based quantum computation. Given that at res-
onance, the topological superconductivity is observed in the
thin-film side of the interface also, enhances the feasibility
of experimental detection [28]. Moreover, the amplitude of
the superconducting order can be systematically adjusted by
manipulating either the material’s intrinsic properties or the
geometric dimensions, as thoroughly discussed within the
confines of this paper. Such findings could pave the way for
tangible advancements in quantum information technologies.

APPENDIX

First, let us project the Hamiltonian to the d†
k,N,t (b) |0〉

states. This is made possible by the unitary transformation
dk = Uk
k,N given in Eq. (11). Here the two-component thin-
film spinor ck,N can be projected out of the four-component 


using the relation ck,N = 1+σz

2 
k,N . Putting these two relations
together, we get a relation connecting the c basis with the d
basis. Then the singlet pair creation operator in the thin-film
basis c†

k,N syc†T
−k,N transforms as

c†
k,N (−isy)c†T

−k,N = d†
kUk

1 + σz

2
(−isy)

1 + σz

2
U T

−kd†T
−k

= (
d†

k,t d†
k,b

)⎛⎝ cos2 θk
2 (−isy) − cos θk

2 sin θk
2 (−isy)

− sin θk
2 cos θk

2 (−isy) sin2 θk
2 (−isy)

⎞
⎠(d†T

−k,t

d†T
−k,b

)
, (A1)

where d†
k,t (b) = (d†

k,t (b),↑ d†
k,t (b),↓) are the two-component

spinors in the spin-1/2 space representing the creation opera-
tors of the top(bottom) band. cos θk

2 and sin θk
2 are nothing but

the projection of the “top” and “bottom” hybrid states into the
thin-film state. That is,

cos
θk

2
= 〈0| ck,N d†

k,t |0〉 sin
θk

2
= 〈0| ck,N d†

k,b|0〉. (A2)

Remember that both these matrices have off-diagonal ele-
ments in the laboratory spin basis due to the induced spin-orbit
coupling on these bands. The exact expression of cos θk is
given in Eq. (11).

The off-diagonal elements in the above matrix suggest the
possibility of inter-band pairing. Since we are only interested
in the weak pairing limit where only the pairing between
the Fermi electrons is considered, the interband pairing does
not occur in this limit. The weak-pairing approximation al-
lows us to treat the pair creation operators for the top and
bottom bands separately. Let us define P̂t and P̂b as the pair
creation operators for the top and bottom bands, respectively.

We have

P̂k,t = d†
k,t cos2 θk

2
(−isy)d†T

−k,t , (A3a)

P̂k,b = d†
k,b sin2 θk

2
(−isy)d†T

−k,b. (A3b)

Due to the induced helical spin structure of the hybrid bands,
the corresponding single-particle Hamiltonian is diagonal in
the helicity basis. As we said before, in the weak-pairing limit,
the study of interaction will be easier if we project the inter-
action Hamiltonian also into the helicity basis. To implement
this, let us write down the unitary matrix in the spin-1/2 space
that can rotate the coordinates from the laboratory spin basis
to the helicity basis,

d†
k,t (b) = a†

k,t (b)�
†
k, �k = 1√

2

(
1 1

eiφk −eiφk

)
. (A4)

Now we shall plug this back into the set of pair creation
operators defined above. Here we observe that the matrices
cos2 θk

2 and sin2 θk
2 are diagonal in the helicity basis. This is

because the only way an off-diagonal term can appear in these
matrices is through the spin-orbit coupling term of the TI
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surface. With this information and after doing some algebra, we get

P̂k,t = (
a†

k,t,+ a†
k,t,−

)(Zt
k,+ 0
0 −Zt

k,−

)(
e−iφk a†

−k,t,+
e−iφk a†

−k,t,−

)
, (A5a)

P̂k,b = (
a†

k,b,+ a†
k,b,−

)(Zb
k,+ 0
0 −Zb

k,−

)(
e−iφk a†

−k,b,+
e−iφk a†

−k,b,−

)
, (A5b)

Zt
k,± = 1

2

⎛
⎜⎝1 + δk,±√

δ2
k,± + t2

d

⎞
⎟⎠, (A5c)

Zb
k,± = 1

2

⎛
⎜⎝1 − δk,±√

δ2
k,± + t2

d

⎞
⎟⎠, (A5d)

δk,± = 1

2

(
εtf

k,N − εsurf
k,±
)
. (A5e)
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