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Superfluid stiffness within Eliashberg theory: The role of vertex corrections
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In this work we consider the superfluid stiffness of a generically non-Galilean-invariant interacting system
and investigate under what conditions the stiffness may nonetheless approach the Galilean-invariant value
n/m. Within Eliashberg theory we find that the renormalized stiffness is approximately given by n/m in the
case when the l = 0 and 1 components of the effective Fermi-surface projected interaction are approximately
equal over a range of frequencies. This holds, in particular, when the interaction is peaked at zero momentum
transfer. We examine this result through three complementary lenses: the δ(ω) term in the conductivity, the
phase dependence of the Luttinger-Ward free energy, and the coupling of the amplitude and phase sectors
in the Hubbard-Stratonovich collective mode action. From these considerations we show that the value of
the stiffness is determined by the strength of renormalization of the current vertex and that the latter can be
interpreted as the shift of the self-consistent solution due to flow of the condensate, or alternatively as coupling
of the phase mode to l = 1 fluctuations of the order parameter. We highlight that even though the superfluid
stiffness in some non-Galilean systems approaches the Galilean value, this is not enforced by symmetry, and
in general the stiffness may be strongly suppressed from its BCS value. As a corollary we obtain the generic
form of the phase action within Eliashberg theory and charge and spin Ward identities for a superconductor with
frequency-dependent gap function.

DOI: 10.1103/PhysRevB.109.144505

I. INTRODUCTION

The superfluid stiffness Ds(T ) is one of the key character-
istics of a superconductor: it determines the strength of the
δ-functional contribution to the optical conductivity and the
energy cost of phase fluctuations. In two dimensions (2D),
Ds has the dimension of energy and we explicitly define it
via σ (ω → 0) = e2πDs(T )δ(ω) + · · · or, equivalently, via
Econd = (1/8)Ds[∇φ(r)]2, where Econd is the condensation
energy per unit volume, and φ(r) is the phase of a supercon-
ducting order parameter �(r) = �eiφ(r) [1,2].

In a clean Bardeen-Cooper-Schrieffer (BCS) superconduc-
tor, Ds(T = 0) = EF /π , where EF is the Fermi energy [3,4].
For a parabolic dispersion this reduces to Ds(T = 0) = n/m,
where n is the total electron density and m the bare electron
mass. In a dirty BCS superconductor, Ds is reduced and can be
substantially smaller than in the clean case [2,5,6]. At a small
EF (the low-density limit), Ds can become smaller than the
bound-state energy of two fermions in a vacuum E0. In this
situation the system displays, even at weak coupling, Bose-
Einstein condensation (BEC) behavior where bound pairs of
fermions are formed at Tp ∼ E0, while actual superconduc-
tivity with a macroscopic phase coherence sets in at smaller
Tc ≈ (π/8)Ds(Tc) ∼ EF [4,7].1

The subject of this paper is the analysis of the superfluid
stiffness at T = 0 in strongly coupled clean superconductors,
with special attention to systems in the vicinity of a quantum
critical point (QCP), where superconductivity emerges out of

1A more accurate expression is Tc ∼ EF / log log E0/EF .

a non-Fermi liquid (NFL). We will not discuss here disorder
effects [8] nor the behavior at small EF . We assume that
EF is larger than the fermion-boson interaction strength and
analyze the behavior of the stiffness within Eliashberg theory.
To shorten notations, below we label Ds(T = 0) simply as Ds.

Our primary goal is to understand the interplay between
the contributions to Ds from the quasiparticle residue 1/Z and
from the renormalization of the current vertex. Without vertex
renormalization, Ds is renormalized down from the BCS value
to Ds ∼ EF /Z and is substantially reduced at strong coupling,
when the quasiparticle residue is small. It was argued, how-
ever [9], that in a Galilean-invariant system, 1/Z is exactly
canceled out by vertex renormalization due to a special Ward
identity, which states that the renormalization factor for the
current vertex is exactly Z . As a result, Ds = DGal

s is unaf-
fected by interactions and remains the same as for a BCS
superconductor (DGal

s = n/m at T = 0).
Our goal is to understand the interplay between 1/Z and

vertex renormalizations in systems near a QCP. A frequently
used low-energy model for such systems is one of fermions
near the Fermi-surface Yukawa coupled to soft dynamical
bosonic collective fluctuations in the corresponding spin or
charge channel. The bosonic dynamics plays a crucial role
for the pairing and non-Fermi-liquid behavior in the normal
state [10,11]. This dynamical model is, however, non-Galilean
invariant, even if a fermionic dispersion can be approximated
as parabolic, because the dynamical term in the bosonic prop-
agator is not invariant under a Galilean boost in which the
momentum q of a boson remains unchanged while the fre-
quency ω shifts to ω + vq, where v is the velocity of the
boost. Meanwhile, a QCP towards spin or charge order and
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superconductivity near it can develop already in a Galilean-
invariant system. For the latter, one then has to add additional
four-fermion interactions, e.g., an effective interaction medi-
ated by two dynamical bosons (the Aslamazov-Larkin–type
terms). It is a priori unclear how these additional interactions,
which are generally less singular near a QCP than the direct
Yukawa coupling with a soft boson, account for the cancella-
tion of the 1/Z factor in the stiffness.

We argue that near cancellation happens already without
the additional terms. The key here is the observation that for
a Galilean-invariant system, a spin or charge order emerges
with q = 0 [12], hence, soft bosonic excitations carry small
momenta q. We argue that in this situation, the leading term
in the renormalization of the current vertex is the same as
in the renormalization of one of the components of the spin
vertex (σ i

αβc†
k,α

ck,β at the bare level). The fully renormal-
ized spin vertex is related to the self-energy by the Ward
identity, associated with the global spin conservation, and
cancels out 1/Z . This holds for both Galilean-invariant and
Galilean-non-invariant systems. The subleading terms, which
distinguish between the renormalizations of the current and
spin vertices, are small in q and remain nonsingular at a
QCP. For a Galilean-invariant system, these subleading terms
cancel out by additional, less singular interaction terms in the
fermion-boson Hamiltonian.

In this communication we discuss the interplay between
Z and the renormalization of the current vertex near a q = 0
QCP in some detail. We obtain a generic expression for Ds

for interacting fermions near a QCP and show under which
condition it reduces to the BCS result Ds = n/m. This con-
dition (the equivalence between two functions of Matsubara
frequency) is satisfied for a Galilean-invariant system, but
also approximately holds for a non-Galilean-invariant system.
We call these systems effectively Galilean. We obtain how
Ds changes once the condition is violated and illustrate this
for the case of fermions interacting with a boson with prop-
agator χ (q,�m) ∝ 1/(ω2

D + ω2
m + (cq)2). We use the boson

velocity c as a control parameter and show within Eliashberg
theory how the renormalization of Ds evolves between the
limits of large c, when the scattering is predominantly in
forward direction, and small c, when scattering by any q is
equally probable. We show that in the first case Ds ≈ n/m,
while in the second case Ds is reduced to ∼(n/mZ ). This
last result holds for the interaction mediated by an Einstein
phonon.

These results appear naturally when the superfluid stiffness
is identified with the prefactor for the δ(ω) term in the optical
conductivity. We also show how the fully dressed Ds emerges
in the Luttinger-Ward (LW) description of a superconductor
with coordinate-dependent phase φ = q · r or, equivalently,
of a superconductor with a nonzero total momentum q of a
pair. The key issue we discuss here is how the corrections
to the current vertex emerge in this approach. We show that
they originate from the change of the fermionic self-energy
due to the phase twist exp(iq · r) and that the existence of
such corrections is a general feature of linear response in
the LW formalism. We also show how the fully renormalized
superfluid stiffness can be derived within the Hubbard-
Stratonovich (HS) formalism in the context of the phase
action.

FIG. 1. Self-energy diagram within the Eliashberg framework.
The solid line is the full Nambu Green’s function, and the wavy
line is the interaction V . Vertex corrections to the self-energy are
neglected as they are small for the typical frequency and momentum
scales contributing to �̂ [10,12–14].

We restrict our analysis primarily to the cases when su-
perconductivity emerges near a q = 0 QCP and soft bosonic
excitations are peaked at q = 0. For a QCP with a finite Q
[e.g., towards (π, π ) antiferromagnetic order], the renormal-
ization of the current vertex is unrelated to that of the spin
vertex, and in general the fully dressed superfluid stiffness
scales with 1/Z .

The structure of the paper is as follows. In Sec. II, we
outline the model and provide a brief review of the Eliashberg
theory of superconductivity. In Sec. III, we explicitly calculate
the superfluid stiffness within Eliashberg theory as the weight
of the δ function in the DC conductivity, with a particular
focus on the role of vertex corrections and the notion of
effective Galilean invariance. In Sec. IV, we recontextualize
Eliashberg theory in terms of the LW functional and employ
this description to naturally obtain the superfluid stiffness, in-
cluding vertex corrections. Finally, in Sec. V, we make contact
with the HS description of Eliashberg theory and present the
associated phase action, including the important role played
by coupling of phase and amplitude gap fluctuations. Some
technical aspects are discussed in Appendixes A–E. In par-
ticular, in Appendix B we explicitly derive Ward identities
for charge, spin, and momentum for a superconductor with
a frequency-dependent gap.

II. MODEL

We consider a model of fermions described by a Matsubara
action

S = −
∑

k

ψ̄kσ (iεn − ξk )ψkσ

− 1

2

∫
dx dx′V (x − x′)ψ̄σ (x)ψσ (x)ψ̄σ ′ (x′)ψσ ′ (x′), (1)

where the effective interaction V (x − x′) is mediated by a
soft dynamical boson. The notations are k = (εn, k) and x =
(τ, x). We assume the fermion dispersion ξ and interaction
V to be rotationally invariant. We define Nambu spinors
�(x) = (ψ↑(x), ψ̄↓(x)) with Green’s function Ĝ(x, x′) ≡
−〈�(x)�̄T (x′)〉. Eliashberg theory approximates the matrix
self-energy by the one-loop self-consistent expression (Fig. 1)

�̂(x, x′) = V (x − x′)τ̂3Ĝ(x, x′)τ̂3

=
(−i�(x, x′) + χ (x, x′) φ(x, x′)

φ∗(x′, x) −i�(x, x′) − χ (x, x′)

)
,

(2)

where φ represents the pairing vertex while � and χ are,
respectively, the odd and even parts of the normal-state
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self-energy.2For a particle-hole symmetric system, χ can be
neglected (see Appendix C), and we do so henceforth. The
self-energy can be compactly expressed as

�̂(x, x′) = −i�(x, x′)τ̂0 + φ(x, x′)τ̂1. (3)

For a translationally invariant system, the equations for � and
real pairing amplitude φ can be written in momentum space

�̂(k) = T
∑

k′
V (k − k′)τ̂3Ĝ(k)τ̂3. (4)

The dependence of the self-energy on the magnitude of
momentum is weak within Eliashberg theory, due to the sepa-
ration of momentum scales between fermions and bosons (see
below), allowing us to approximate

�̂(k) → �̂n(kF ), V (k − k′) → Vn−n′ (kF − k′
F ). (5)

Then

�̂n(kF ) = −i�nτ̂0 + φnτ̂1. (6)

Within the same approximation, the Nambu Green’s function
takes the form

G(k) = −i(εn + �n)τ̂0 − ξkτ̂3 − φnτ̂1

(εn + �n)2 + ξ 2
k + φ2

n

. (7)

We can now directly perform the integral over ξk and obtain
the Fermi-surface projected Eliashberg equations:

i�̂n(kF )τ̂3 = πνT
∑

n′

∮
FS

dk′
F

Sd−1
Vn−n′ (|kF − k′

F |)ĝn′ (k′
F )

(8)
with Sn the surface area of the n sphere and ν the density
of states per spin at the Fermi surface (we keep dimension
d arbitrary, but will later apply the results to d = 2). Here,
ĝn(kF ) is the ξ -integrated Green’s function weighted with τ̂3

[15–17]:

ĝn(kF ) ≡ i

π

∫
dξ τ̂3Ĝn(ξ, kF ) ≡ gn(kF )τ̂3 + fn(kF )τ̂2. (9)

For simplicity of presentation we consider s-wave super-
conductivity, in which case we obtain the isotropic Eliashberg
equations

�̃n = εn + πνT
∑

n′
V l=0

n−n′
�̃n′√

�̃2
n′ + φ2

n′︸ ︷︷ ︸
gn

,

φn = πνT
∑

n′
V l=0

n−n′
φn′√

�̃2
n′ + φ2

n′︸ ︷︷ ︸
fn

, (10)

where we have defined �̃n = εn + �n and the Fermi-surface
average of the interaction

V l=0
m ≡

∮
FS

dkF

Sd−1

∮
FS

dk′
F

Sd−1
Vm(|kF − k′

F |). (11)

2We have assumed time-reversal symmetry so that the normal-state
self-energy of the two spin species are equal.

It will also be convenient to define the related quantities3

Zn ≡ 1 + �n

εn
≡ �̃n

εn
, �n ≡ φn

Zn
, (12)

which obey equations

�n = πνT
∑

n′
V l=0

n−n′
�n′ − εn′

εn
�n√

ε2
n′ + �2

n′

,

Zn = 1 + πνT

εn

∑
n′

V l=0
n−n′

εn′√
ε2

n′ + �2
n′

. (13)

We see that there is only one self-consistent equation for �n,
while Zn is a functional of �n [11]. Equations (10) and (13)
are the central equations that define the equilibrium theory.

There are two approximations used in derivation of the
Eliashberg equations. First, Eq. (5) is valid when bosons are
slow modes compared to fermions, i.e., for the same fre-
quency, a typical bosonic momentum is much larger than a
typical fermionic momentum. This approximation is justified
when the fermion-boson coupling is much smaller than the
Fermi energy. Second, vertex corrections are neglected. For
fermions interacting by exchanging soft collective bosons,
these corrections are, in most cases, O(1) parameterwise,
but are small numerically [10,12–14]. We emphasize in this
regard that a typical frequency and a typical momentum of a
soft boson in the self-energy diagram are such that vF q 
 ω.
In this limit, a correction to the boson-fermion vertex in the
self-energy diagram is related to the derivative of the self-
energy over the momentum, which is at most logarithmic
at a QCP, and is [10] weaker than the derivative over fre-
quency, which has a power-law divergence at a QCP. This
reasoning, however, does not hold for the corrections to the
external current and density vertices, as for them the incoming
momentum q = 0, while ω is finite. In this situation, vertex
corrections are generally of order of the frequency derivative
of the self-energy at k = kF and are large and singular near a
QCP.

III. SUPERFLUID WEIGHT IN THE CONDUCTIVITY

Given a solution to Eqs. (10) and (13) we may calculate
the conductivity in the superconducting state, from which the
superfluid stiffness can be extracted. In this section, we outline
the calculation of the superfluid stiffness from the conduc-
tivity within the Eliashberg paradigm, comparing the generic
result with that for an exactly Galilean-invariant system.

The optical conductivity can be expressed in terms of the
retarded velocity-velocity correlator J [18]. In the supercon-
ducting state σ ′(ω) has a delta-function piece

σ ′(ω) = e2πδ(ω) Re JR(ω, q = 0) + · · · . (14)

We then identify the superfluid stiffness via Ds ≡
− Re JR(ω → 0, q = 0). The low-energy velocity-velocity

3Note that, strictly speaking, Z−1
n is not the quasiparticle residue

Z−1
res ≡ 1 + (∂�/∂εn)εn→0.
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FIG. 2. Diagrams contributing to the optical conductivity:
(a) Paramagnetic velocity-velocity bubble determining the weight of
the δ function in the optical conductivity. The dot represents the bare
current vertex, while the shaded vertex represents the renormalized
current vertex. (b) Bethe-Salpeter equation for the renormalized cur-
rent vertex. The dot is the bare current vertex vF , and the shaded
vertex is the renormalized vertex vF �̂n. The thick lines are the full
Green’s functions of the theory, whereas the wavy line is the interac-
tion V (k − k′).

correlator is expressed in terms of the Nambu Green’s
functions Ĝ by the diagram in Fig. 2(a) as4

Ĵ (Q) = −T
∑

k

tr[γkĜK+Q�̂K+Q,K ĜK ], (15)

where Q = (i�m, 0) and K = (iεn, k). Here γk is the bare
velocity vertex and �K+Q,K the renormalized velocity vertex
within the ladder approximation [Fig. 2(b)] satisfying the
Bethe-Salpeter equation

�̂K+Q,K = γ̂k + T
∑

K ′
VK−K ′ τ̂3ĜK ′+Q�̂K ′+Q,K ′ ĜK ′ τ̂3. (16)

The vertex correction is evaluated within the ladder approxi-
mation, consistent with the Eliashberg scheme for calculation
of the self-energy.5Nonladder vertex correction diagrams,
e.g., crossed diagrams, are suppressed to the same degree as
vertex corrections to the self-energy. The bare velocity vertex
is the conventional γ̂k = ∇kξkτ̂0. Near the Fermi surface this
is simply γ̂k = vF τ̂0. For a rotationally symmetric interaction,
in the q → 0 limit, the renormalized current vertex must also
be proportional to vF , allowing us to split the renormalized
vertex into a product of vF and a rotational scalar, which
only depends on frequency: �̂K+Q,K = vF �̂n+m,n, where n
and m stand for εn and �m. The matrix �̂n+m,n obeys the

4Below we employ the computational scheme in which we first
integrate over the dispersion ξk and then over frequency. In this
scheme, the diamagnetic term is canceled by the high-energy con-
tribution from the fermion bubble. For this reason we focus only on
the low-energy paramagnetic velocity-velocity correlator.

5Within our treatment we do not consider the backaction of super-
conductivity on the bosonic action.

Bethe-Salpeter equation in the form

�̂n+m,n = τ̂0 + νT
∑

n′
V l=1

n−n′

×
∫

dξk τ̂3Ĝn′+m(ξk )�̂n′+m,n′ Ĝn′ (ξk )τ̂3, (17)

where we have defined the generalized l = 1 harmonic of the
interaction [cf. Eq. (11)](

v2
F

d
δi j

)
V l=1

m ≡
∮

FS

dkF

Sd−1

∮
FS

dk′
F

Sd−1
vF jv′

F jVm(|kF − k′
F |).

(18)
Within the Eliashberg theory, particle-hole symmetry re-

stricts solutions of Eq. (17) to be of the form

� = �(0)τ̂0 + �(1)τ̂1 (19)

(see Appendix A for details). There is no coupling to the phase
sector, and we are able to safely take the limit �m → 0 (at
T = 0) without encountering any nonanalyticity. In terms of
the renormalized vertex �̂n = �̂n,n the general expression for
the superfluid stiffness is

Ds = v2
F

d
νT

∑
n

(
�00

n �(0)
n + �01

n �(1)
n

)
, (20)

where

�μν
n ≡

∫
dξ tr[τ̂ μĜn(ξ )τ̂ ν Ĝn(ξ )]. (21)

Explicitly evaluating the fermionic bubbles one finds

�00
n = 2π�2

n

Zn
(
ε2

n + �2
n

)3/2 , �01
n = i2π�nεn

Zn
(
ε2

n + �2
n

)3/2 (22)

so that

Ds = v2
F

d
2πνT

∑
n

�n

Zn
(
ε2

n + �2
n

)3/2

(
�n�

(0)
n + iεn�

(1)
n

)
.

(23)
Equation 23 is a general result for the superfluid stiffness
within Eliashberg theory. At T → 0, T

∑
n → ∫

dεn/(2π ).
In the Galilean-invariant case, there is a special Ward

identity relating the fully renormalized current vertex to the
self-energy as

�̂n+m,n ≡ 1 + i
�̂n+m − �̂n

�m
. (24)

This relation is obtained from a combination of the Ward
identity for conservation of momentum, and the identity j =
e(k/m) allowing the renormalized current vertex to be ex-
pressed in terms of the renormalized momentum vertex (see
Appendix B 2 d). At �m → 0, this reduces to

�̂n+m,n = �̂n ≡ 1 + i
∂�̂n

∂εn
. (25)
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In components, �(0)
n = 1 + ∂�n

∂εn
and �(1)

n = i ∂φ̂n

∂εn
Using these

formulas, we obtain

Ds = DGal
s = v2

F

d
2πνT

∑
n

�n

Zn
(
ε2

n + �2
n

)3/2

×
(

�n

[
1 + ∂�n

∂εn

]
− εn

∂φn

∂εn

)
. (26)

We now use Eq. (12) and rewrite

∂φn

∂εn
= �n

εn

(
1 + ∂�n

∂εn

)
− �n

εn
Zn + Zn

∂�n

∂εn
. (27)

Inserting this into Eq. (26), we obtain

DGal
s = 2πνv2

F

d
T
∑

n

�n(
ε2

n + �2
n

)3/2

(
�n − εn

∂�n

∂εn

)
. (28)

At T = 0, replacing 2πT
∑

n by
∫

dεn, we obtain

DGal
s = νv2

F

d

∫
dεn

�n(
ε2

n + �2
n

)3/2

(
�n − εn

∂�n

∂εn

)
. (29)

The integrand is a total derivative:

DGal
s = v2

F

d
ν

∫
dεn

d

dεn

(
εn√

ε2
n + �2

n

)
. (30)

Evaluating the integral we then obtain

DGal
s = 2νv2

F

d
= n

m
. (31)

This result implies that in an interacting Galilean-invariant
system, the superfluid stiffness retains its bare value [19].

To understand how and when Eq. (23) differs from the
Galilean-invariant result in a generic case, when there is no
Ward identity relating �̂n+m,n to the self-energy, we recall
that there are Ward identities for a generic system of interact-
ing fermions associated with global charge conservation and
global spin conservation. The latter, for the vector of matrix
spin vertex σ i

αβ�̂
(sp)
n+m,n, is of interest to us. Specifically, the

matrix �̂
(sp)
n+m,n obeys the Bethe-Salpeter equation

�̂
(sp)
n+m,n = 1 + νT

∑
n′

V l=0
n−n′

×
∫

dξk τ̂3Ĝn′+m(ξk )�̂(sp)
n′+m,n′ Ĝn′ (ξk )τ̂3 (32)

whose solution is the same as for �̂n+m,n in the Galilean-
invariant case:

�̂
(sp)
n+m,n ≡ 1 + i

�̂n+m − �̂n

�m
(33)

(see Appendix B for details). In the limit �m → 0,
when �̂

(sp)
n+m,n = �̂

(sp)
n , this reduces to �

(sp),(0)
n = 1 + ∂�n

∂εn
and

�
(sp),(1)
n = i ∂φn

∂εn
. We emphasize that these relations hold for

both the Galilean-invariant case and non-Galilean-invariant
case. We also note that Eq. (33) holds only for the spin vertex.
For the charge vertex, the equation is somewhat different (see
Appendix B).

Comparing with Eq. (17) for the current vertex �̂n+m,n,
we see that the only difference in these equations is that
the equation for �̂(sp) involves the l = 0 harmonic while the
one for �̂ involves the l = 1 harmonic. As a consequence,
the superfluid stiffness in a non-Galilean system retains its
free-fermion value n/m when the harmonics V l=0,1

n are equal
for all frequencies. We call such a system effectively Galilean
invariant.

There is one fundamental difference between an effectively
Galilean-invariant and a truly Galilean-invariant system. In
the first, the cancellation between fermionic Z and vertex
correction occurs between terms involving only quasipar-
ticles in the vicinity of the Fermi surface. In a generic
Galilean-invariant system, the special Ward identity estab-
lishes the relation between properties of the system near and
far away from the surface. So while Ds = n/m in an effectively
Galilean-invariant system, the reason why interaction-driven
corrections cancel out is in general quite different from that in
a truly Galilean-invariant system.

We now investigate in more detail how the vertex cor-
rections restore the Galilean value of Ds when V l=0

n = V l=1
n .

The role of the vertex corrections in the effectively Galilean-
invariant case can be elucidated by the following three cases:

(a) A frequency-independent self-energy (such as from an
instantaneous interaction) and � ∼ const. This is the
BCS case.

(b) A matrix self-energy of the form �n ∼ εn,� ∼ const.
This is the case of superconductivity out of a Fermi
liquid away from a QCP.

(c) A matrix self-energy in which both �n and Zn are
strongly frequency dependent. This is the case of su-
perconductivity out of a NFL at a QCP.

For case (a), Z = 1 and both vertex corrections �(0) − 1
and �(1) vanish, giving

Ds = D(0)
s = v2

F

d
2πνT

∑
n

�2(
ε2

n + �2
)3/2

T =0−→ n

m
. (34)

Indeed, one can easily verify that Z = �(0) = 1 and �(1) = 0
is the solution of Eqs. (13) and (17) for any instantaneous
interaction, and thus all BCS-like local interactions are ef-
fectively Galilean invariant. For the vertex correction, this
follows from the fact that all components of

∫
dεn′ (Ĝn′,n′ )2

vanish, either because the integrand is odd in εn′ or because
it can be reexpressed such that the both fermionic poles lie in
the same half-plane, and the integral vanishes after closing the
integration contour in the other half-plane.

For case (b), the expression for Ds is

Ds = v2
F

d
2πνT

∑
n

�2(
ε2

n + �2
)3/2

(
1 + ∂�n/∂εn

Z

)
. (35)

The constant factor in the last bracket cancels out because for
�n ∝ εn, Z = 1 + �n/εn = 1 + ∂�n/∂εn.

For case (c), �n/εn �= (∂�n/∂εn) and thus Z and 1 +
∂�n/∂εn no longer cancel. One needs to include the fre-
quency derivative of the pairing vertex on equal footing
with ∂�n/∂εn to get the cancellation of Z and reproduce
Ds = n/m.
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We also note that for all cases (a)–(c) the relation Ds =
n/m holds independent of the fermionic dispersion. This is,
of course, only approximately true as in linearizing about the
Fermi surface we have neglected corrections of order �/EF

to Ds. These corrections cancel out only in the truly Galilean-
invariant case, where the relation Ds = n/m is exact.

We now consider how the stiffness gets modified when
V l=0

n−n′ �= V l=1
n−n′ . We define V l=1

n−n′ = V l=0
n−n′ + δVm and �̂n =

�̂
(sp)
n + δ�̂n (in the limit when external bosonic frequency

�m → 0). The vertex δ�̂n obeys the modified Bethe-Salpeter
equation

δ�̂n = νT
∑

n′

(
V l=0

n−n′

∫
dξ τ̂3Ĝk′δ�̂n′ Ĝk′ τ̂3

+δVn−n′

∫
dξ τ̂3Ĝk′ �̂

(sp)
n′ Ĝk′ τ̂3

)
. (36)

Splitting δ�̂n into components we obtain for the stiffness

Ds = DGal
s + v2

F

d
2πνT

∑
n

�n

Zn
(
ε2

n + �2
n

)3/2

× (
�nδ�

(0)
n + iεnδ�

(1)
n

)
. (37)

If the difference between V l=1
n−n′ and V l=0

n−n′ is small for all rele-
vant frequencies, this will be a small correction of order δV .
This is the case for interactions which are dominated by small-
angle scattering, as then scattered particles do not distinguish
between different harmonics. That small-angle scattering
leads to approximate relations between the renormalized cur-
rent and spin vertices has previously been appreciated in the
normal state [20,21].

As an example, consider an interaction mediated by a prop-
agating boson with mass ωD and dispersion cq:

Vm(q) = g2χ0

�2
m + ω2

D + c2q2
. (38)

For fermions on the Fermi surface q2 = |kF − k′
F |2 =

2k2
F (1 − cos θ ), where θ is the angle between kF and k′

F . We
can then write

Vm(q) = Vm(θ ) = g2χ0

2c2k2
F

1

am − cos θ
(39)

with am = 1 + (�2
m + ω2

D)/(2c2k2
F ) and express

V l=0
m = g2χ0

2c2k2
F

∮
FS

dkF

Sd−1

∮
FS

dk′
F

Sd−1

1

am − cos(θ − θ ′)
(40)

and

V l=1
m = d

g2χ0

2c2k2
F

∮
FS

dkF

Sd−1

∮
FS

dk′
F

Sd−1

cos θ cos θ ′

am − cos(θ − θ ′)
. (41)

In d = 2 we have

V l=0
m = g2χ0

2c2k2
F

1√
a2

m − 1
, V l=1

m = g2χ0

2c2k2
F

(
am√

a2
m − 1

− 1

)
(42)

so

δVm = g2χ0

2c2k2
F

⎛
⎝√am − 1

am + 1
− 1

⎞
⎠

= − g2χ0

2c2k2
F

⎛
⎜⎜⎜⎝1 − 1√

1 + 4c2k2
F

�2
m+ω2

D

⎞
⎟⎟⎟⎠ (43)

and

δVm/V l=0
m = −2

1 +
√

am−1
am+1

= −1

1 +
√

1 + 4c2k2
F

�2
m+ω2

D

. (44)

The relevant frequencies �m are of order �m. The charac-
teristic scale for the latter is the gap function at zero frequency
at T = 0, which we label simply by �. We see that δVm/V l=0

m
is small when the velocity c is large enough such that ckF 

(�2 + ω2

D)1/2. This is the limit of small-angle scattering. We
furthermore note that in this limit, δVm is determined by
scattering to large angles and remains nonsingular at a QCP
even if we set �m → 0. As a consequence, δDs = Ds − DGal

s
also remains nonsingular. For a Galilean-invariant system, this
nonsingular δDs cancels exactly with contributions coming
from interactions with noncritical bosons.

A near cancellation between � and Z factors in Ds for
small-angle scattering θ is similar to the near cancellation
between self-energy and Maki-Thompson contributions to
optical conductivity in the normal state, in a similar situa-
tion of small momentum scattering (these are the insertions
of self-energy and vertex corrections into the conductivity
bubble) [22–24]. Like there, in our case the net result for
the difference between Ds and DGal

s contains the additional
factor 1 − cos θ ≈ θ2/2 compared to what one would get
by including only Z or only �. Furthermore, for the truly
Galilean-invariant case, the already reduced contribution to
the optical conductivity cancels out by additional, Aslamazov-
Larkin–type diagrams [24–26]. The same happens in our case:
for a Galilean-invariant system the already reduced Ds − DGal

s
is canceled out by other contributions to δ(ω), term in the con-
ductivity, likely also Aslamazov-Larkin–type contributions. It
is also possible that for a convex Fermi surface there is an
additional reduction of Ds − DGal

s when all contributions to
the δ(ω) term in the conductivity are added together [27,28].
We do not dwell on this issue here.

At ckF ∼ �, δVm/V l=0
m = O(1), i.e., Ds differs from DGal

s .
A particularly extreme example where cancellation is absent
is the case of c = 0, when V l=1 = 0. This case describes, in
particular, the pairing mediated by a soft Einstein phonon. At
T = 0, we have

Ds = DGal
s

∫
dε

�2(ε)

Z (ε)[ε2 + �(ε)2]3/2
∼ DGal

s /Z (�). (45)

Near a QCP, Z (�) is large [29] and Ds is substantially smaller
than DGal. For the phonon pairing, DGal

s ∼ EF , while Z (�) ∼
ḡ2/(ωD�), where ḡ = (g2χ0m)1/2. At small ωD, Z (�) 
 1.
The actual stiffness is Ds ∼ EF �ωD/ḡ2. Eliashberg theory for
electron-phonon interactions is valid as long as Eliashberg
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parameter λE = ḡ2/ωDEF remains small. Using that at small
ωD, Tc and � are both of order ḡ [30,31], the stiffness can be
reexpressed as Ds ∼ Tc/λE . We see that, as long as Eliashberg
theory is under control, the dressed stiffness remains larger
than Tc. In this situation, phase fluctuations are weak and
Eliashberg Tc nearly coincides with the actual Tc. However,
at the boundary of applicability of Eliashberg theory, Ds be-
comes comparable to Tc and phase fluctuations cannot be
neglected.

IV. SUPERFLUID STIFFNESS IN THE
ELIASHBERG-LUTTINGER-WARD DESCRIPTION

While the superfluid stiffness appears naturally as a trans-
port property in the conductivity, it can also be obtained
directly from the thermodynamic properties of the system. In
particular, it parametrizes the free-energy cost associated with
twisting the phase boundary conditions of the superconduct-
ing state [2,32,33]. In this section, we obtain the superfluid
stiffness directly from the LW variational free energy for the
Green’s function in the Nambu representation. Our particu-
lar interest here is to understand how the renormalization of
the current vertex appears in this approach. We show that it
emerges naturally already within the one-loop approximation
because of the change of the self-energy due to the phase twist.
We argue that the emergence of corrections to the current
vertex is a general feature of the linear response in the LW
formalism, reflecting the conserving nature of the approach.

Luttinger and Ward showed that a many-body system can
be described by the variational free energy [34]

β�[Ĝ] = −Tr ln(−Ĝ−1) − Tr
[
Ĝ−1

0 Ĝ
] + �[Ĝ], (46)

where G, the fully dressed Green’s function, is to be mini-
mized over, and �[Ĝ] is the LW functional, which can be
obtained diagrammatically as the sum of all two-particle ir-
reducible vacuum skeleton diagrams. This description has the
following properties:

(i) The equilibrium Green’s function Geq minimizes �.
(ii) The self-energy is the functional derivative of the LW

functional �, �̂ = δ�/δĜ.
(iii) The minimal value of � is the equilibrium free energy,

Feq = �[Geq].
The variational free energy � is also known as the Baym-

Kadanoff functional [35,36] and is very closely related to
the two-particle irreducible effective action, in that �(2PI) =
β�LW on the Matsubara axis [37].

Eliashberg theory corresponds to the one-loop approxima-
tion for the diagrammatic series for the LW functional �[Ĝ]
[38–40]. Within the one-loop approximation,

�[Ĝ] = 1

2

∫
dx dy V (x − y)Tr[τ̂3Ĝ(x, y)τ̂3Ĝ(y, x)]. (47)

Minimizing the free energy leads to the Eliashberg equa-
tions (4) for the matrix self-energy.

The superfluid stiffness of a superconductor can be ob-
tained by considering the energy cost associated with phase
twists of the ground state. Since the generator of the broken
U(1) symmetry is simply τ̂3 in the Nambu basis we consider
the free energy of the superconducting state as a function of a

phase twist

�(x) → eiQ·rτ̂3�(x) (48)

imposed on the Nambu spinors. In terms of the LW variational
free energy we define a modified functional

�Q[Ĝ(x − x′)] ≡ �[eiQ·rτ̂3 Ĝ(x − x′)e−iQ·r′ τ̂3 ] (49)

to be minimized over Green’s functions with self-energies of
the form6

�̂n(kF ) = −i�n(kF )τ̂0 + φn(kF )τ̂1. (50)

The superfluid stiffness, twice the coefficient of the Q2 term
in FQ ≡ �Q[Ĝeq(x − x′)], can then be obtained as

Ds ≡ d2

dQ2
FQ

∣∣∣∣
Q→0

. (51)

Functionally, the relation between � and �Q is that we replace

Ĝ−1
0 → Ĝ−1

0 − vF · Q − Q2

2m
τ̂3 + · · · (52)

in the LW variational free energy. Within our evaluation
scheme (performing the integration over ξk first) the diamag-
netic term ∝ Q2τ̂3 can be neglected (see Appendix D). The
Q2 in the action is then entirely due to the source term vF · Q.
Noting this, we can straightforwardly evaluate the derivatives
in Eq. (51) using the saddle-point equation and obtain

Ds = −T
∑

k

tr

(
dĜ−1

0

dQ

dĜ
dQ

)

= −iπνT
∑

n

∮
FS

dkF

Sd−1
vF tr

(
τ̂3

dĝ

dQ

)
, (53)

where in the second equality we have used the definition of
the ξk-integrated Green’s function (9). We now define the first-
order variation of ĝ due to Q via

ĝn(kF ) = ˆ̄gn + ivF · Qδĝn + · · · (54)

in terms of the Q = 0 solution ˆ̄gn. This allows us to compactly
express the superfluid stiffness as

Ds = v2
F

d
πνT

∑
n

tr(τ̂3δĝn) = v2
F

d
2πνT

∑
n

δgn. (55)

What remains is to calculate δĝn. We start by noting that
the integration over the dispersion ξk can be performed for
arbitrary �̂n(kF ) and yields (see Appendix C)

ĝn(kF ) = ϒn(kF )τ̂3 + φn(kF )τ̂2√
ϒn(kF )2 + φn(kF )2

, (56)

where we have defined ϒ = � + �n and � = εn + ivF · Q.
We now introduce, by analogy with Eq. (13),

Zn(kF ) ≡ ϒn(kF )

�n(kF )
, �n(kF ) ≡ φn(kF )

Zn(kF )
. (57)

6This is what makes this functional correspond to twisted boundary
conditions.
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Using these notations, we express ĝn in a form independent of
Z as

ĝn(kF ) = �n(kF )τ̂3 + �n(kF )τ̂2√
�n(kF )2 + �n(kF )2

. (58)

We see that the gap equation separates into a self-consistency
condition for � and functional definition of Z in terms of �,
as in the isotropic case. It is now straightforward to obtain
the first-order correction to the ξk-integrated Green’s function
δgn by defining �n(kF ) = �̄n + ivF · Qδ�n + · · · , with �̄n

the equilibrium solution. Expanding Eq. (58) to first order in
vF · Q, we obtain

δgn = �̄n(
ε2

n + �̄2
n

)3/2 (�̄n − εnδ�n) (59)

and therefore

Ds = v2
F

d
2πνT

∑
n

�̄n(
ε2

n + �̄2
n

)3/2 (�̄n − εnδ�n). (60)

Note the similarity to Eq. (23).
We now make explicit the relation between the variation of

the self-energy due to Q and the renormalized current vertex
�̂n which appears in Eq. (23) in the previous section. Similar
to Eq. (27), we can use Eq. (57) to reexpress δ� in terms of
δ� and δφ via

δφn = �̄n

εn
(1 + δ�n) − �̄n

εn
Z̄n + Z̄nδ�n. (61)

Using Eq. (61) we rewrite the superfluid stiffness as

Ds = v2
F

d
2πνT

∑
n

�̄n

Z̄n
(
ε2

n + �̄2
n

)3/2 (�̄n + �̄nδ�n − εnδφn).

(62)
We now expand the Nambu self-energy, Eq. (8), to first order
in vF · Q as

�̂n(kF ) = ˆ̄�n + ivF · Qδ�̂n + · · · . (63)

Equating the first-order terms using Eqs. (54) and (56) and
splitting δ�̂n in components as

δ�̂n = −iδ�nτ̂0 + δφnτ̂1, (64)

we find

iδ�̂nτ̂3 = πνT
∑

n′
V l=1

n−n′

(
∂ ĝn′

∂ϒn′
(1 + δ�n′ ) + ∂ ĝn′

∂φn′
δφn′

)
.

(65)
The definition of the ξk-integrated Green’s function (9) im-
plies the identities7

∂ ˆ̄g

∂ϒ
= 1

π

∫
dξ τ̂3Ĝ(ξ )Ĝ(ξ ),

∂ ˆ̄g

∂φ
= i

π

∫
dξ τ̂3Ĝn(ξ )τ̂1Ĝn(ξ ). (66)

7Order of limits does not matter here as this is a gapped state.

This allows us to rewrite Eq. (65) as

1 + iδ�̂n = 1 + νT
∑

n′
V l=1

n−n′

×
∫

dξ τ̂3Ĝn′ (ξ )[1 + iδ�̂n′]Ĝn′ (ξ )τ̂3. (67)

Equation 67 is identical to Eq. (17) with the identification
�̂n ≡ 1 + iδ�̂n, and we may rewrite Eq. (62) as

Ds = v2
F

d
2πνT

∑
n

�̄n

Z̄n
(
ε2

n + �̄2
n

)3/2

× (
�̄n�

0
n + iεn�

1
n

)
(68)

in agreement with Eq. (23). All the results of Sec. III then
follow.

We see from the above analysis that in the LW formalism
the correction to the current vertex is equivalent to the first-
order change in the self-energy due to the phase twist exp(iQ ·
r) (up to a constant factor). This is a general feature of linear
response in the LW formalism, and it reflects the conserving
nature of the LW (and Baym-Kadanoff) approach.

V. HUBBARD-STRATONOVICH DESCRIPTION
AND THE PHASE ACTION

As a final perspective, we now employ the HS formulation
of Eliashberg theory [41,42] to derive the superfluid stiffness
in the context of the phase action. We start by presenting and
commenting on the final result and then provide its derivation.
The action for the phase mode θ (i�m, q) to order q2 is given
by

Sθ = 1

2

∑
q

θ−q
(
2ν�2

m + Dsq
2
)
θq. (69)

This form is identical to the BCS phase action, however, Ds is
the fully renormalized stiffness. Note that the prefactor of the
�2

m term remains the same as in BCS theory. We argue below
that this term comes from high energies, where fermions are
free quasiparticles.

We now derive Eq. (69) starting with the HS decoupling of
Eq. (1) in the Nambu basis

Sbos[�̂] = − 1

2

∫
dτ dτ ′dx

1

V (x − x′)
tr[�̂(x, x′)τ̂3�̂(x′, x)τ̂3]

− Tr ln[−β(Ĝ−1 − �̂)]. (70)

One can verify that the saddle-point equations of Eq. (70)
are the Eliashberg equations (4). The phase mode θ enters as
parametrization of the HS field

�̂ττ ′ (x) = eiθτ (x)τ̂3�̂L(x − x′)e−iθτ ′ (x)τ̂3, (71)

where �̂L contains only longitudinal fluctuations around the
saddle-point solution:

�̂L = �̂sp − iδ�τ̂0 + δφτ̂1 ≡ �̂sp + δ�̂L. (72)

We compute the phase action by making use of the gauge
invariance of the theory [18]. Let us define Û = eiθ τ̂3 such
that �̂ = Û �̂LÛ †. The first term of the bosonic action (70)
is invariant under application of Û . For the trace-logarithm
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term, we may use the cyclic property of the trace to rewrite it
in terms of �̂L and the gauge-transformed quantity Û †G−1Û .
One can verify that this amounts to replacing the partial
derivatives in the inverse Green’s function with covariant
derivatives

∂τ → Dτ = ∂τ + i∂τ θ τ̂3, ∇ → D = ∇ + i∇θ τ̂3. (73)

The action is then compactly written as

Sbos = Ssp + SHS[δ�̂L] − Tr ln{−β(Ĝ−1[Dτ , D] − δ�̂L )},
(74)

where8

Ĝ−1[Dτ , D] ≈ Ĝ−1
sp − (i∂τ θ τ̂3 + vF · ∇θ ), (75)

and Ĝ−1
sp is the inverse of the saddle-point Green’s func-

tion (the solution of the Eliashberg equations). Performing
a second-order expansion in derivatives and in longitudinal
fluctuations leads to the Gaussian action

Sbos = S(b)
θ + S(b)

L + Sc, (76)

where S(b)
θ is the bare phase action, S(b)

L the bare action for the
longitudinal mode, and Sc the coupling term. The bare phase
action is

S(b)
θ = 1

2

∑
q

(
κ (b)�2

m + D(b)
s q2

)|θq|2, (77)

where the constants κ (b) and D(b)
s are given by

κ (b) = −T
∑

k

tr[Ĝsp(k)τ̂3]2, D(b)
s = v2

F

d
ν
∑

k

tr[Ĝsp(k)]2,

(78)
and we recall that k = (ξk, εn) and

∑
k = T

∑
n

∫
dξk .

In explicit form, we have for κ (b)

κ (b) = −ν

∫
dεn

2π

∫ �

−�

dξk
tr[(−i�̃n − ξk τ̂3 − φnτ̂1)τ̂3]2(

�̃2
n + φ2

n + ξ 2
k

)2

= 2ν

∫
dεn

2π

∫
dξk

�̃2
n − ξ 2

k + φ2
n(

�̃2
n + φ2

n + ξ 2
m

)2 . (79)

It is natural to do the integration over ξk first as this integral
can be evaluated exactly. This integration, however, should
be done with care as the full integral over ξk and εn is not
uniformly convergent. To regulate the integral, we introduce
a UV cutoff �, and then take it to infinity at the end of the
calculation (see Ref. [43] and Appendixes B and E). The inte-
gration is dominated by energies |ξk| ∼ �, for which fermions
are essentially free particles, and yields κ (b) = 2ν.

For D(b)
s we have

D(b)
s = v2

F

d
ν

∫
dεn

2π

∫
dξk

tr[(−i�̃n − ξk τ̂3 − φnτ̂1)]2(
�̃n

2 + φ2
n + ξ 2

k

)2

= 2
v2

F

d
ν

∫
dεn

2π

∫
dξk

ξ 2
k + φ2

n − �̃2
n(

�̃2
n + φ2

n + ξ 2
m

)2 . (80)

8As discussed before, the diamagnetic term can safely be dropped
when performing integration over the momentum first.

Here we replaced
∫ �

−�
dξk by

∫∞
−∞ dξk as the integral over

|ξk| > � cancels out with the diamagnetic contribution. Eval-
uating the integral over ξ , we obtain

D(b)
s = v2

F

d
ν

∫
dεn

�2
n

Zn
(
�2

n + ε2
n

)3/2 . (81)

This is the expression for the stiffness without vertex correc-
tions.

Next, the longitudinal action is

SL = −1

2
T 3

∑
kk′q

V −1
k−k′ tr[δ�̂k,k+qτ̂3δ�̂k′+q,k′ τ̂3]

+ 1

2
T 2

∑
kk′

tr[Ĝsp(k)δ�̂kk′ Ĝsp(k′)δ�̂k′k]

≡ 1

2
T 3

∑
kk′q

δ�
μ

k,k+q

[
T −1

kk′q

]μν
δ�ν

k′+q,k′ , (82)

and the coupling term is

Sc = T
∑

kq

θq(�mtr[Ĝsp(k + q)τ̂ 3Ĝsp(k)δ�̂k,k+q] + ivF

· qtr[Ĝsp(k + q)Ĝsp(k)δ�̂k,k+q])

≡ T
∑

kq

θqδ�
μ

k,k+q

(
�m(Cω )μk,k+q + ivF · q · (Cq)μk,k+q

)
,

(83)

where we have expanded δ�̂ in Pauli matrices δ�̂ =∑
μ δ�μτ̂μ and introduced the couplings

(Cω )μk,k+q = 1

2
tr[Ĝsp(k + q)τ̂ 3Ĝsp(k)τ̂ μ],

(Cq)μk,k+q = 1

2
tr[Ĝsp(k + q)Ĝsp(k)τ̂ μ]. (84)

Upon integrating out the longitudinal modes δ�̂L the effec-
tive phase action can be written in terms of bare constants
κ (b), D(b)

s and vertex corrections δκ, δDs:

Sθ = 1

2

∑
q

(
[κ (b) + δκ]�2

m + [
D(b)

s δi j + δDi j
s

]
(q)i(q) j

)|θq|2

+ O(q4), (85)

where

δκ = lim
q→0

T 2
∑
kk′

(Cω )μk,k+qT μν

k,k′,q(Cω )νk′+q,k,

δDi j
s = lim

q→0
T 2

∑
kk′

vF v′
F

[
i(Cq)μk,k+q

]
T μν

k,k′,q

[
i(Cq)νk′+q,k

]
.

(86)

Since T μν

k,k′,q is nonsingular at q → 0, we can safely set q = 0
in the integrands. One can verify that limq→0(Cω )μk+q,k = 0

(see Appendix A), hence, δκ = 0. For δDi j
s we obtain

δDi j
s = −v2

F ν2

d
δi j

∑
nn′

�0μ
n T l=1

μν (εn, ε
′
n)�ν0

n′ , (87)
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FIG. 3. Relation between the Bethe-Salpeter equation for the
renormalized current vertex and the T matrix in the ladder ap-
proximation. Explicitly, the renormalized vertex is a quasiparticle
contribution containing the bare vertex, and a vertex correction com-
ing from the collective modes.

where �μν
n is the same as in Eq. (36), and we have defined, in

analogy with V l=1,(
v2

F

d
δi j

)
T l=1

μν (εn, ε
′
n)

≡
∮

FS

dkF

Sd−1

∮
FS

dk′
F

Sd−1
vF jv′

F jTμν (εn, kF ; ε′
n, k′

F ). (88)

The relation between the T and V is shown diagrammat-
ically in Fig. 3: V is the interaction and T is the full T
matrix in the longitudinal channel, the propagator of longitu-
dinal fluctuations. One can see by inserting the Bethe-Salpeter
equation for the T matrix, Fig. 4, into this relation that the
Bethe-Salpeter equation for the vertex (16) is obtained. We
thus find that Eq. (87) is the contribution to stiffness from
corrections to the current vertex, and then combining Eqs. (87)
and (80) we reproduce Eq. (23) for the full Ds. From this
perspective, vertex corrections to superfluid stiffness involve
fluctuations in the l = 1 longitudinal sector, although in the
far off-shell region (i.e., far from the pole in the T matrix).

To recapitulate, we have shown that within the Eliashberg
theory, the phase action is generically of the BCS-type form
(69); the only difference is in the value of the superfluid stiff-
ness Ds. This superfluid stiffness contains the renormalization
of the effective mass (the Z factor) and the renormalization
from the corrections to the current vertex. The mass renormal-
ization factor is present already in the bare stiffness computed
using HS decoupling. Vertex corrections arise when we in-
clude the coupling to longitudinal gap fluctuations.

VI. CONCLUSION

In this work, we have calculated the superfluid stiffness
for a family of 2D non-Galilean-invariant models within the
Eliashberg approximation. We showed explicitly, by calcu-

FIG. 4. Bethe-Salpeter equation for the T matrix in the ladder
approximation. Solid lines are the full Nambu Green’s functions.
When restricted to the longitudinal sector T is the collective mode
propagator for Gaussian longitudinal fluctuations.

lating the delta functional contribution to the conductivity,
that in some cases the stiffness approaches its Galilean-
invariant value DGal

s = n/m, despite the absence of Galilean
invariance in the model. In particular, when the l = 0 and
1 harmonics of the interaction on the Fermi surface are
identical, the renormalization of the current vertex is fully
determined by the Ward identity for the spin vertex, up to
corrections of order O(�/EF ). In this situation, the frequency-
dependent renormalization of the current vertex cancels out
the frequency-dependent renormalization of the quasiparticle
mass, and the stiffness remains the same as in the Galilean-
invariant case. We labeled such systems as having effectively
Galilean-invariant superfluid response.

As an example, we considered a set of models with boson-
mediated interaction in the density-density channel, strongly
peaked at zero momentum transfer, and isotropic but other-
wise arbitrary fermionic dispersion. For such systems, the l =
0 and 1 harmonics of the interaction are nearly identical and
differ by O(θ2

sc), where θsc is a characteristic scattering angle.
We showed that these systems are effectively Galilean invari-
ant with Ds ≈ n/m + O(θ2

sc). For a truly Galilean-invariant
system, the relation DGal

s = n/m is restored by going beyond
the single-boson exchange and including Aslamazov-Larkin–
type diagrams. We also argued that for arbitrary dispersion
the O(θ2

sc) term in Ds vanishes only when the boson velocity
is taken to infinity, corresponding to an instantaneous action.

We discussed one qualitative difference between an effec-
tively Galilean-invariant system and a truly Galilean-invariant
one. In a Galilean-invariant system, the relation Ds = n/m
is due to the existence of a special Ward identity relating
the renormalized current vertex and spin vertices exactly.
This Ward identity results from the combination of the Ward
identity for momentum conservation and the precise relation
j = ek/m and thus depends on the behavior of particles both
near and far from the Fermi surface. In contrast, the stiffness
of an effectively Galilean-invariant system approaches n/m
by fine tuning of the low-energy interaction parameters of
the model so that the relation between current and spin is
approximately satisfied. Thus, while the value of the stiffness
is approximately the same, the underlying physics is generally
quite different.

We also argued that for both Galilean-invariant and non-
Galilean-invariant systems with a frequency-dependent gap
function, one must include the contribution to the stiffness
from the anomalous component of the renormalized current
vertex, which is given by the frequency derivative of the
pairing vertex. This contribution must be included on an equal
footing with the usual renormalizations to the normal current
vertex. The presence of the anomalous contribution to Ds

reflects the fact that in the superconducting state, in addition
to the usual diagram renormalizing the normal current vertex,
one must take into account the Doppler shift of the pairing
vertex due to the flow of the condensate.

To further elucidate the nature of the vertex corrections
we presented complementary perspectives on the stiffness by
obtaining the above results from the LW functional and the
HS decoupling of our model.

In the LW description of Eliashberg theory, corresponding
to keeping only the lowest-order diagram in the LW func-
tional, the correct prescription for calculating linear response

144505-10



SUPERFLUID STIFFNESS WITHIN ELIASHBERG … PHYSICAL REVIEW B 109, 144505 (2024)

is to minimize the free energy in presence of the external fields
and take derivatives of the minimal free energy over the fields
to get the associated susceptibilities. Then at the end of the
calculation one may set the external fields to zero. This is
the sense in which the LW formalism produces “conserving
approximations” when the LW functional is truncated at any
order. Performing the calculation in this way, we showed that
the required vertex corrections to the external current vertex
appear naturally as the shift of the self-energy due to the phase
winding �̂ ∼ (∂Ĝ−1/dQ), exactly reproducing the results of
the diagrammatic calculation.

In the HS description, we extracted the stiffness from
the phase action of an Eliashberg superconductor. Using the
gauge invariance of the action, we showed that the Gaussian
action for the phase sector includes the bare phase action as
well as a coupling to the l = 1 longitudinal modes. Upon
integrating out the longitudinal modes we showed that the
phase action within Eliashberg theory takes the generic form
S = 1

2

∫
dτ dr(2ν|∂τ θ |2 + Ds|∇θ |2). Here, Ds is the same

stiffness as obtained in the previous sections, with the vertex
corrections arising from the longitudinal mode propagators
evaluated at q = 0, i�m → 0. On the other hand, the coef-
ficient of the (∂tθ )2 is unrenormalized from its bare value,
reflecting its origin as coming from fermions away from the
Fermi surface which are agnostic to emergence of a pairing
vertex at low energy.

For clarity and simplicity of presentation, this work fo-
cused on s-wave superconductivity in rotationally symmetric
systems. The general considerations still apply when either
of these constraints are relaxed, but the calculations become
more involved as one needs to evaluate products of velocities
and form factors of a non-s-wave gap along the Fermi surface.
The formalism may also be extended to the case of multiband
superconductors in which case one must calculate additional
susceptibilities, vertex corrections, and interaction channels
due to the presence of band indices. In general, effects which
break Galilean invariance in the vicinity of the Fermi surface
will suppress the stiffness unless the interaction channels obey
a particular relation. This includes effects which are known to
strongly affect transport such as Fermi-surface anisotropy [28]
or umklapp scattering [44]. Nonetheless, where the dominant
interactions only cause small-angle scattering on the Fermi
surface, an “effective Galilean-invariance” condition may still
be satisfied as the interactions are almost local on the Fermi
surface and thus cannot resolve the global shape of the Fermi
surface or the umklapp nature of interactions. The situation is
likely even more involved in 4e superconductors [45].

The key result of our work is that an effectively Galilean-
invariant value of the stiffness in a non-Galilean-invariant
system requires a specific relationship between the low-
energy interaction channels of the system, which is not
guaranteed by the symmetries of the system. Indeed, inter-
action via Einstein phonons is an example of a system which
strongly violates these conditions. Therefore, we expect that
generically the superfluid stiffness of a quantum critical su-
perconductor, where the pairing vertex is strongly frequency

dependent and the Z factor is large, may be strongly reduced
from the Galilean-invariant value DGal

s ≈ n/m. We discuss
specific examples in a separate paper [46], where we analyze
the stiffness for underlying quantum-critical models.
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APPENDIX A: FERMION BUBBLES IN THE LIMIT
OF ZERO EXTERNAL MOMENTUM

Consider the bare fermionic bubble in Eliashberg theory

�
μν
n+m,n ≡

∑
k

tr[τ̂ μĜn+m(k)τ̂ μĜn(k)], (A1)

where the Nambu Green’s function is

Ĝk = −i�̃n − ξ τ̂3 − φnτ̂1

Dk
, Dk ≡ �̃2

n + ξ 2 + φ2
n . (A2)

In the quasiclassical approximation this can be expressed via
the integrals

I (1)
n+m,n ≡ ν

∫
dξ

1

Dn+mDn
= πν

Sn+mSn(Sn+m + Sn)
,

I (2)
n+m,n ≡ ν

∫
dξ

ξ 2

Dn+mDn
= πν

Sn+m + Sn
, (A3)

where S2
n = �̃2

n + φ2
n . Explicitly,

�
μν
n+m,n = c(1);μν

n+m,nI (1)
n+m,n + c(2);μν

n+m,nI (2)
n+m,n,

c(1);μν
n+m,n ≡ tr[τ̂ μ(i�̃n+m + φn+mτ̂1)τ̂ ν (i�̃n + φnτ̂1)],

c(2);μν
n+m,n = tr[τ̂ μτ̂3τ̂

ν τ̂3] = 2 diag(1,−1,−1, 1)μν. (A4)

Explicitly evaluating the traces we find for c(1)

c(1);00
n+m,n = c(1);11

n+m,n = 2(φn+mφn − �̃n+m�̃n), (A5)

c(1);01
n+m,n = c(1);10

n+m,n = 2i(φn+m�̃n + φn�̃n+m), (A6)

c(1);22
n+m,n = c(1);33

n+m,n = −2(φn+mφn + �̃n+m�̃n), (A7)

c(1);23
n+m,n = −c(1);32

n+m,n = 2(φn+m�̃n − φn�̃n+m), (A8)

and the remaining elements are zero. Thus, � is block
diagonal

�̂n+m,n =
(

�̂L
n+m,n 0
0 �̂T

n+m,n

)
with longitudinal block

�̂L
n+m,n = 2πν

Sn+mSn(Sn+m + Sn)

(
φn+mφn − �̃n+m�̃n + Sn+mSn i(φn+m�̃n + φn+m�̃n)

i(φn+m�̃n + φn+m�̃n) φn+mφn − �̃n+m�̃n − Sn+mSn

)
(A9)
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and transverse block

�̂T
n+m,n = 2πν

Sn+mSn(Sn+m + Sn)

(−φn+mφn − �̃n+m�̃n − Sn+mSn (φn+m�̃n − φn�̃n+m)
−(φn+m�̃n − φn�̃n+m) −φn+mφn − �̃n+m�̃n + Sn+mSn

)
. (A10)

In the m → 0 limit these reduce to

�̂L
n = 2πν

Znζ 3
n

(
�2

n i�nεn

i�nεn −ε2
n

)
, �̂T

n+m,n = − 2πν

Znζn

(
1 0
0 0

)
,

(A11)
where ζ 2

n = ε2
n + �2

n.

APPENDIX B: WARD IDENTITIES IN A
SUPERCONDUCTOR WITH FREQUENCY-DEPENDENT

GAP FUNCTION

In this Appendix, we derive Ward identities associated
with charge and spin conservation in a superconductor with
frequency-dependent gap function.

Ward identities are special relations between vertices and
self-energies, imposed by the conservation laws. For a sys-
tem of fermions with U(1) charge (gauge) symmetry and
SU(2) spin symmetry, they ensure that the total charge of
the system (and, hence, the total number of fermions) and
each component of the total spin do not change with time.
In practical terms, we focus on Ward identities which re-
late two-fermion spin and charge density vertices at zero
transferred momentum and a finite transferred frequency to
the fermionic self-energy. The relations are particularly sim-
ple in Eliashberg-type theories, in which the self-energy
�(k, εn) has much stronger dependence on frequency than on
fermionic momentum, and the latter can be neglected. On the
Matsubara axis we then approximate �(k, εn) ≈ �n. Within
the same approximation, spin and charge vertices �ch and
�sp can also be treated as functions of frequency only. Each
vertex depends on Matsubara frequencies and spin projections
on the incoming and outgoing fermions, �ch = �ch

n+mα,nβ and
�sp = �

sp
n+mα,nβ .

For completeness, we also derive the Ward identity associ-
ated with the conservation of momentum.

1. Normal state

We define �n in the normal state via G−1(k, εn) = iεn −
�n − ξk , where ξk is the fermionic dispersion. The relations
between �ch, �sp, and �n are [22,23,47,48]

�ch
n+mα,nβ = δαβ�, �

sp
m+n,α,mβ = σαβ�, (B1)

where

� = 1 + i
�n+m − �n

�m
. (B2)

The bosonic �m is the difference between outgoing and in-
coming fermionic frequencies.

To set the stage for our analysis in the superconducting
state, we present the diagrammatic proof of this relation.
For this we note that within Eliashberg theory the fermionic
self-energy is obtained within the one-loop approximation,
as a convolution of the fermionic propagator and the effec-
tive frequency-dependent “local” interaction V l=0

n−n′ , which is

Vn−n′ (kF − k′
F ) integrated over the Fermi surface. Within the

same computational scheme, the vertex �ch is obtained by
summing up ladder series of vertex corrections, with the same
V l=0

n−n′ . For �sp, the analysis is more nuanced: ladder series hold
when Vn−n′ (kF − k′

F ) is of density-density form, i.e., when
spin projection (up or down) is conserved along the interaction
line. If Vn−n′ (kF − k′

F ) is a spin-spin interaction with spin σ

matrices in the vertices, one has to add additional Aslamazov-
Larkin–type terms to get the proper series for �(sp) [49]. For
simplicity, below we assume that the effective interaction is of
the density-density type. The ladder series in Fig. 5 yields the
following integral equation for �n+m,n:

�n+m,n = 1 + νT
∑

n′
V l=0

n−n′�n′+m,n′

∫
dξkGn′+m(ξk )Gn′ (ξk ),

(B3)
where ν is the density of states at the Fermi level. The self-
energy is given by

�n = νT
∑

n′
V l=0

n−n′

∫
dξkGn′ (ξk ) = − i

2
νT

∑
n′

V l=0
n−n′sgnn′.

(B4)
The product of the two Green’s functions in Eq. (B3) can be
decoupled as

Gn′+m(ξk )Gn′ (ξk ) = [Gn′+m(ξk ) − Gn′ (ξk )]

× i

�m + i(�n+m − �n)
. (B5)

Substituting into Eq. (B3), we obtain

�n+m,n = 1 + iνT
∑

n′
V l=0

n−n′

∫
dξk

�n′+m,n

�m + i(�n′+m − �n′ )

× [Gn′+m(ξk ) − Gn′ (ξk ))]. (B6)

One can straightforwardly verify that �n+m,n from Eq. (B2) is
the solution of this equation. Indeed, substituting this �n′+m,n′

into the right-hand side of Eq. (B6) we find that it reduces to

1 + i

�m
νT

∑
n′

V l=0
n−n′

∫
dξk[Gn′+m(ξk ) − Gn′ (ξk )]. (B7)

FIG. 5. Ladder series for the renormalized vertex �, solid lines
are the full Nambu Green’s functions, and the wavy line is the
interaction.
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FIG. 6. Dressed polarization bubble including the renormalized
vertex �.

Using Eq. (B4), we reexpress this as

1 + i
�n+m − �n

�m
, (B8)

which is exactly �n+m,n.
Using the Ward identities, one can straightforwardly

demonstrate that charge and spin correlators (the polarization
bubbles) vanish at a zero incoming momentum and a finite
incoming frequency, as should be the case for a conserved
quantity X . (The choice of zero momentum and a finite fre-
quency implies that one probes a variation of the total X in
the sample between different times. For a conserved X , there
is no such variation.) The fully dressed polarization bubble is
shown in Fig. 6. In explicit form,

�(q = 0,�m) = νT
∑

n

∫
dξk�n+m,nGn+m(ξk )Gn(ξk ).

(B9)
It is natural to integrate over ξk first as this integration is
straightforward. One cannot, however, integrate over ξk in
infinite limits as at large frequencies, when εn > �n and
T
∑

n → (1/2π )
∫

dεn, the Green’s function approaches the
unrenormalized form Gn(ξk ) = 1/(iεn − ξk ) and the double
integral

∫
dεndξk/(iεn − ξk )2 diverges logarithmically. The

physically sound way to regularize the divergence is to restrict
the ξk integration to |ξk| < � and set � → ∞ only at the end
of the calculation. Carrying out the integration over ξk this
way, we obtain

�ch(q = 0,�m) = �sp(q = 0,�m)

= ν

(
1 − �m�n+m,n

�m + i�n+m − �n

)
= 0 (B10)

as it should be.

2. Superconducting state

As in the main text, for definiteness we consider s-wave
superconductivity, in which case the pairing vertex φn and the
gap function �n are independent on the angle along the Fermi
surface. We also set T = 0 to avoid complications due to
discreteness of Matsubara frequencies. We keep the notations
�n, etc., with the understanding that �n = �(εn), where εn is
a continuous variable along the Matsubara axis.

a. Distinction between charge and spin correlations

We argue below that in a superconductor charge and spin
correlators have to be treated differently as the first one

acquires an additional contribution from coupling to phase
fluctuations. The distinction between spin and charge corre-
lators can be seen already for a BCS superconductor. Both
spin and charge polarization bubbles have to vanish at zero
incoming momentum and a nonzero incoming frequency �m,
and we show below that this is indeed the case. However, to
prove this for the charge case, extra care is needed.

Specifically, for a BCS superconductor, it is tempting to
neglect the interaction and express spin and charge correlators
as bubbles made of free-fermion Nambu Green’s functions.
For the charge bubble this gives

�ch
free(q = 0,�m)= ν

2π

∫
dεn

∫ �

−�

dξktr[Ĝn+m,α (ξk )Ĝn,α (ξk )]

(B11)
and for the spin case we have

�
sp,ii
free (q = 0,�m) = ν

2π

∫
dεn

∫ �

−�

dξktr

× [σ i
αβ Ĝn+m,α (ξk )Ĝn,βσ i

βα (ξk )], (B12)

where i = x, y, z. For definiteness, we set i = z below.
Let us set continuous �m to be finite but infinitesimally

small. One can easily verify that for a nonzero �, the limit
�m → 0 is entirely regular, and one can just set �m = 0 in the
calculations. Using Eq. (7) from the main text for the Green’s
function in Nambu representation and identifying φn in a BCS
superconductor with �n, we obtain

�ch
free(q = 0,�m → 0) = ν

π

∫
dεn

∫ �

−�

dξk

(
ξ 2

k − �2 − ε2
n

)
(
ξ 2

k + �2 + ε2
n

)2

(B13)
and

�
sp,zz
free (q = 0,�m → 0) = ν

π

∫
dεn

×
∫ �

−�

dξk

(
ξ 2

k + �2 − ε2
n

)
(
ξ 2

k + �2 + ε2
n

)2 . (B14)

In Gorkov’s notations of normal and anomalous Green’s func-
tions Gn(ξk ) = −(iεn + ξk )/(ξ 2

k + ε2
k + �2) and Fn(ξk ) =

�/(ξ 2
k + ε2

k + �2), the polarization bubbles are

�ch
free(q = 0,�m → 0) = ν

π

∫
dεn

∫ �

−�

dξk ([Gn(ξk )]2

− [Fn(ξk )]2), (B15)

and

�
sp,zz
free (q = 0,�m → 0)

= ν

π

∫
dεn

∫ �

−�

dξk ([Gn(ξk )]2 + [Fn(ξk )]2). (B16)

The two polarization bubbles differ in the sign of the F 2 term.
The integration over εn and ξk in Eqs. (B13) and (B14) can

be carried out in any order, and the results are

�
sp,zz
free (q = 0,�m → 0) = 0, �ch

free(q = 0,�m → 0) = −2ν.

(B17)
We see that �

sp,zz
free (q = 0�m → 0) vanishes, as expected, but

�ch
free(q = 0�m → 0) remains finite.
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FIG. 7. Diagrams formed from products of normal (G) and
anomalous (F) Green’s functions diagrams contributing to the
coupling of the spin and charge vertices to the particle-particle
susceptibility.

Because charge conservation must be satisfied, there must
be another contribution to charge polarization, which cancels
the free-fermion contribution, as was pointed out by Nambu
[50]. Such a contribution has been identified in other contexts
as well, e.g., in the analysis of A1g Raman scattering in a
BCS superconductor [51–53]. The argument is that charge
fluctuations are linearly coupled to phase fluctuations of the
superconducting order parameter and this gives rise to the ex-
tra contribution �ch

ex (q,�m) = S2(q,�m)χpp(q,�m), where
S(q,�m ) is the coupling and χpp(q,�m) is the propagator
of phase fluctuations. The coupling S(�m) is generated by
the triangular diagram, consisting of the original charge ver-
tex, one normal and one anomalous Green’s function, and
the four-fermion interaction V (see Fig. 7). This coupling
vanishes at �m = 0, but at a finite �m, S(�m) ∝ V �m/�.
Naively, this would imply that the extra contribution is irrel-
evant at �m → 0. However, phase fluctuations are massless,
and their propagator χpp(0,�m) ∝ ν(�/V �m)2. As a result,
�ch

ex (q,�m) is independent of �m and is of order ν, like
the free-fermion �ch

free(q = 0,�m → 0). We now compute
explicitly the prefactor in �ch

ex (q = 0,�m → 0) ∼ ν. We first
compute the particle-particle propagator. Within the ladder
approximation (the same in which the BCS gap equation has
been obtained)

χpp(q,�m) = 2
�pp(q,�m)

1 − V l=0�pp(q,�m)
, (B18)

where the overall factor 2 is due to spin summation and

�pp(q,�m)

= ν

π

∫
dεn

∫ �

−�

dξk (Gn(ξk )G−n(ξk ) + [Fn(ξk )]2), (B19)

where V l=0 > 0 is an attractive interaction in the s-wave chan-
nel. Using V l=0�pp(0, 0) = 1 and expanding in �m, we obtain

χpp(0,�m) = 2ν

(
2�

V l=0ν�m

)2

. (B20)

We next compute the coupling S(�m). There are two topolog-
ically different triangular diagrams involving products of G

and F Fig. 7. For the charge side vertex, they add up and yield

S(�m) = V l=0 ν

2π

∫
dεn

∫ �

−�

dξk
��m(

ξ 2
k + ε2

n + �2
)2

= νV l=0 �m

2�
. (B21)

We then obtain

�ch
ex (q = 0,�m → 0) = 2ν

(
νV l=0�m

2�

)2(
2�

νV �m

)2

= 2ν.

(B22)
Combining with Eq. (B17), we find that �ch

free(q = 0,�m →
0) + �ch

ex (q = 0,�m → 0) = 0, as it should be because the
total charge is the conserved quantity.

For the spin correlator, the two contributions to the
coupling S(�m) cancel out at order �m. Then there is no ad-
ditional �m-independent contribution to the spin propagator,
consistent with the vanishing of �

sp,zz
free (q=0,�m→0). From a

physics perspective, this is a consequence of the fact that spin
fluctuations do no couple linearly to phase fluctuations.

Below we extend the analysis of a BCS superconductor to
the case when the effective four-fermion interaction is a dy-
namical Vn−n′ . A dynamical interaction gives rise to fermionic
self-energy �n, and also the pairing vertex φn and the gap
function �n become functions of frequency. The proof of
the Ward identities in this situation is more involved, and for
the charge correlator it is further involved by the necessity
to include the coupling to phase fluctuations. For this reason,
we consider Ward identities associated with spin and charge
conservation separately.

b. Ward identity for �
(sp)
n+m,n

As before, we use matrix Nambu notations and write
the self-consistent one-loop equation for the matrix �̂n =
−i�nτ̂0 + φnτ̂1 and the ladder equation for the matrix
�̂

sp,ii
n+mα,nβ = σ i

αβ�̂n+m,n, where �̂n+m,n = �
(0)
n+m,nτ̂0 + �

(1)
n+m,nτ̂1

[see Eqs. (6) and (19) in the main text]. The equations for �̂n

and �̂n+m,n are formally the same as Eqs. (B3) and (B4), but
now have matrix form

�̂n = νT
∑

n′
V l=0

n−n′

∫
dξ τ̂ 3Ĝk′ τ̂3 (B23)

and

�̂n+m,n = 1 + νT
∑

n′
V l=0

n−n′

×
∫

dξk τ̂3Ĝn′+m(ξk )�̂n′+m,n′ Ĝn′ (ξk )τ̂3. (B24)

Splitting �̂ into components and taking the limit of �m → 0,
we obtain the set of two coupled equations, as schematically
depicted in Fig. 8,

�
(0)
n+m,n =1+ ν

2π

∫
dεn′

∫
�
−�dξk�

(0)
n′+m,n′

ξ 2
k + φ2

n′ − �̃2
n′(

ξ 2
k + φ2

n′ + �̃2
n′
)2 V l=0

n−n′ + 2i
ν

2π

∫
dεn′

∫
�
−�dξk�

(1)
n′+m,n′

�̃n′φn′(
ξ 2

k + φ2
n′ + �̃2

n′
)2 V l=0

n−n′ , �
(1)
n+m,n,

�
(1)
n+m,n = ν

2π

∫
dεn′

∫ �

−�

dξk�
(1)
n′+m,n′

ξ 2
k − φ2

n′ + �̃2
n′(

ξ 2
k + φ2

n′ + �̃2
n′
)2 V l=0

n−n′ − 2i
ν

2π

∫
dεn′

∫ �

−�

dξk�
(0)
n′+m,n′

�̃n′φn′(
ξ 2

k + φ2
n′ + �̃2

n′
)2 V l=0

n−n′ . (B25)
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FIG. 8. Bethe-Salpeter equation in the ladder approximation for the renormalized normal �0 and anomalous �1 vertices. The spin and
charge diagrams differ in their spin structure and thus the symmetry of vertices under reversal of the direction of the legs. In particular, the
relative sign of between two anomalous diagrams in each right-hand side differs for the spin and charge channels.

We assume that the dynamical interaction vanishes in the limit of large frequency transfer. The double integral over ξk and εn′

is then ultraviolet convergent, and the integration over ξk can be extended to infinite limits. Integrating over ξk in each term in
Eq. (B25), we reduce it to

�
(0)
n+m,n = 1 + ν

2

∫
dεn′�

(0)
n′+m,n′

�2
n′

Zn′
(
�2

n′ + ε2
n′
)3/2 V l=0

n−n′ + i
ν

2

∫
dεn′�

(1)
n′+m,n′

εn′�n′

Zn′
(
ε2

n′ + �2
n′
)3/2 V l=0

n−n′ ,

�
(1)
n+m,n = −ν

2

∫
dεn′�

(0)
n′+m,n′

ε2
n′

Zn′
(
ε2

n′ + �2
n′
)3/2 V l=0

n−n′ − i
ν

2

∫
dεn′�

(1)
n′+m,n′

εn′�n′

Zn′
(
ε2

n′ + �2
n′
)3/2 V l=0

n−n′ . (B26)

We assume and verify that the solution of these equations is the matrix extension of Eq. (B2):

�̂n+m,n = τ̂0 + i
�̂n+m − �̂n

�m

�m→0−→ τ̂0 + i
d�̂n

dεn
. (B27)

Using �̂n = −i�nτ0 + iφnτ1, we rewrite Eq. (B27) in components

�
(0)
n+m,n = 1 + d�n

dεn
, �

(1)
n+m,n = i

dφn

dεn
. (B28)

Substituting these forms into the right-hand side of Eq. (B26) and using Eq. (27) from the main text,

dφn

dεn
= �n

εn

(
1 + d�n

dεn

)
− �n

εn
Zn + Zn

d�n

dεn
, (B29)

we obtain after simple algebra

�
(0)
n+m,n = 1 + ν

2

∫
dεn′

�n′
(
�n′ − εn′ d�n′

dεn′

)
(
�2

n′ + ε2
n′
)3/2 V l=0

n−n′ , �
(1)
n+m,n = −i

ν

2

∫
dεn′

εn′
(
�n′ − εn′ d�n′

dεn′

)
(
�2

n′ + ε2
n′
)3/2 V l=0

n−n′ . (B30)

Note that the quasiparticle residue Zn cancels out between Eqs. (B26) and (B30). Using

�n′
(
�n′ − εn′ d�n′

dεn′

)
(
�2

n′ + ε2
n′
)3/2 = d

dεn′

(
εn′(

�2
n′ + ε2

n′
)1/2

)
,

εn′
(
�n′ − εn′ d�n′

dεn′

)
(
�2

n′ + ε2
n′
)3/2 = − d

dεn′

(
�n′(

�2
n′ + ε2

n′
)1/2

)
, (B31)

integrating by parts, and replacing dVn−n′/dεn′ by −dVn−n′/dεn, we obtain

�
(0)
n+m,n = 1 + d

dεn

[
ν

2

∫
dεn′

εn′(
�2

n′ + ε2
n′
)1/2

]
, �

(1)
n+m,n = d

dεn

[
ν

2

∫
dεn′

�n′(
�2

n′ + ε2
n′
)1/2

]
. (B32)

The self-energy and the pairing vertex are given by Eqs. (10) and (12) from the main text:

�n = ν

2

∫
dεn′

εn′(
�2

n′ + ε2
n′
)1/2 , φn = ν

2

∫
dεn′

�n′(
�2

n′ + ε2
n′
)1/2 . (B33)

Comparing Eqs. (B32) and (B33), we see that the relations (B28) are satisfied. These relations are spin Ward identities for a
superconductor with frequency-dependent gap function.
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FIG. 9. Ladder series contributing to the spin and charge correlators to first order in the q = 0, i�m → 0 limit in terms of Gorkov’s normal
and anomalous functions. For the spin correlator the side vertex is σ z while for the charge correlator is σ 0. This causes terms containing
anomalous propagators at only one side vertex to differ in sign between the spin and charge series since [F̂ , σ̂0] = 0 while {F̂ , σ̂ z}.

We next use these Ward identities to prove that �sp,ii(q = 0, �m → 0) vanishes, as is required by global spin conservation.
To first order in the interaction V l=0

n−n′ , the ladder diagrams for �sp,ii(q,�m) in a superconductor are shown in Fig. 9. The full
spin-polarization bubble, expressed in terms of renormalized vertices, is shown in Fig. 10. In analytical form,

�sp,ii(q = 0,�m → 0) = ν

π

∫
dεn

∫ �

−�

dξk
ξ 2

k − Z2
n

[(
ε2

n − �2
n

)
(1 + d�n/dεn) + 2εn�ndφn/dεn

]
[
ξ 2

k + Z2
n

(
�2

n′ + ε2
n′
)]2 . (B34)

Integrating over ξk in the same was as we did in the normal state and then taking the limit � → ∞, we obtain

�sp,ii(q = 0,�m → 0) = ν

[
2 −

∫
dεn

�2
n(1 + d�n/dεn) − �nεndφn/dεn

Zn
(
�2

n + ε2
n

)3/2

]
. (B35)

Expressing dφn/dεn via Eq. (B29), we rewrite Eq. (B35) as

�sp,ii(q = 0,�m → 0) = ν

[
2 −

∫
dεn

�n
(
�n − εn

d�n
dεn

)
(
�2

n + ε2
n

)3/2

]
. (B36)

Using Eq. (B31) we reexpress the integrand in the right-hand of Eq. (B36) as the full derivative:

�sp,ii(q = 0,�m → 0) = 2ν

[
1 −

∫ ∞

0
dεn

d

dεn

εn(
�2

n + ε2
n

)1/2

]
. (B37)

We see that �sp,ii(q = 0,�m → 0) indeed vanishes.

c. Ward identity for �ch
n+m,n

We now repeat the calculations of the previous section in the charge channel, for the vertex �̂ch
n+mα,nβ = δαβ�̂n+m,n, �̂n+m,n =

τ̂3(�(0)
n+m,nτ̂0 + �

(1)
n+m,nτ̂1). The Bethe-Salpeter equation for �̂n+m,n is

�̂n+m,n = 1 + νT
∑

n′
V l=0

n−n′

∫
dξkĜn′+m(ξk )τ̂3�̂n′+m,n′ Ĝn′ (ξk )τ̂3. (B38)

Again, working in the small-�m limit we can express this in components, as schematically depicted in Fig. 8,

�
(0)
n+m,n = 1 + ν

2π

∫
dεn′

∫ �

−�

dξk�
(0)
n′+m,n′

ξ 2
k − �̃2

n − φ2
n(

�̃2
n + φ2

n + ξ 2
k

)2 V l=0
n−n′ + i�m

ν

2π

∫
dεn′

∫ �

−�

dξk�
(1)
n′+m,n′

φn
[
1 + d�n

dεn

] − �̃n
dφn

dεn(
�̃2

n + φ2
n + ξ 2

k

)2 V l=0
n−n′ ,

�
(1)
n+m,n = ν

2π

∫
dεn′

∫ �

−�

dξk�
(1)
n′+m,n′

1

�̃2
n + φ2

n + ξ 2
k

V l=0
n−n′ − i�m

ν

2π

∫
dεn′

∫ �

−�

dξk�
(0)
n′+m,n′

φn
[
1 + d�n

dεn

] − �̃n
dφn

dεn(
�̃2

n + φ2
n + ξ 2

k

)2 V l=0
n−n′ . (B39)

Integrating over ξk, we find

�
(0)
n+m,n = 1 + i�m

ν

4

∫
dεn′�

(1)
n′+m,n′

�n′
[
1 + d�n′

dεn′

]
− εn′ dφn′

dεn′

Z2
n

(
ε2

n′ + �2
n′
)3/2 V l=0

n−n′ , �
(1)
n+m,n = ν

2

∫
dεn′�

(1)
n′+m,n′

1

Zn′

√
ε2

n′ + �2
n′

V l=0
n−n′

− i�m
ν

4

∫
dεn′�

(0)
n′+m,n′

�n′
[
1 + d�n′

dεn′

]
− εn′ dφn′

dεn′

Z2
n

(
ε2

n′ + �2
n′
)3/2 V l=0

n−n′ . (B40)
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Note that there is no term with �(0) in the right-hand side of the first equation. We again use Eq. (27) to rewrite

�n′

[
1 + d�n′

dεn′

]
− εn′

dφn′

dεn′
= Zn

(
�n − d�n

dεn

)
. (B41)

Substituting into Eq. (B40), we obtain

�
(0)
n+m,n = 1 + i�m

ν

4

∫
dεn′�

(1)
n′+m,n′

�n′ − d�n′
dεn′

Zn′
(
ε2

n′ + �2
n′
)3/2 V l=0

n−n′ ,

�
(1)
n+m,n = ν

2

∫
dεn′�

(1)
n′+m,n′

1

Zn′

√
ε2

n′ + �2
n′

V l=0
n−n′ − i�m

ν

4

∫
dεn′�

(0)
n′+m,n′

�n′ − d�n′
dεn′

Zn′
(
ε2

n′ + �2
n′
)3/2 V l=0

n−n′ . (B42)

One can straightforwardly verify that at �m → 0, the solution of these equations is

lim
�m→0

�
(0)
n+m,n = 1 + ν

2

∫
dεn′�n′

�n′ − d�n′
dεn′(

ε2
n′ + �2

n′
)3/2 V l=0

n−n′ = 1 + d�n

dεn
, lim

�m→0
�

(1)
n+m,n = ν

i�m

∫
dεn′

�n′√
ε2

n′ + �2
n′

V l=0
n−n′ = 2φn

i�m
.

(B43)
Note that for this solution the last term for �1 can be dropped in Eq. (B43).

We can now verify that �ch(q = 0, i�m → 0) vanishes as required by global charge conservation. The ladder diagrams
contributing to the bubble are still given by Figs. 9 and 10, but the side vertices are now spin δ functions. Analytically, the full
�ch(q = 0, i�m → 0) is expressed as

�ch(q = 0, i�m → 0) = ν

2π

∫
dεn′

∫ �

−�

dξk2

⎡
⎣(1 + d�n′

dεn′

) (
ξ 2

k − �̃2
n′ − φ2

n′
)

(
�̃2

n′ + φ2
n′ + ξ 2

k

)2 + 2φn′

i�m

i�m

2

Zn′
(
�n′ − εn′ d�n′

dεn′

)
(
�̃2

n′ + φ2
n′ + ξ 2

k

)2

⎤
⎦. (B44)

Substituting �
(0)
n+m,n and �

(1)
n+m,n at �m → 0 from Eq. (B43) and doing the integrals as in the normal state, we find

�ch(q = 0, i�m → 0) = ν

⎛
⎝−2 +

∫
dεn′�n′

�n′ − εn′ d�n′
dεn′(

ε2
n′ + �2

n′
)3/2

⎞
⎠ = 0. (B45)

In the last line we used that the integrand is a total derivative.
We thus verify that the particle density is conserved if the
relation between the vertex function and the self-energy is
given by Eq. (B43).

With some extra effort, one can extend the analysis to finite
�m and show that the solution of Eq. (B42) is

�̂n+m,n = τ̂0 + i
τ̂3�̂n+mτ̂3 − �̂n

�m
(B46)

or in components

�
(0)
n+m,n = 1 + �n+m − �n

�m
, �

(1)
n+m,n = −i

φn+m + φn

�m
.

(B47)
This result has been obtained by Nambu [50] by different
means. As we said, at �m → 0 these relations reduce to

�
(0)
n+m,n

�m→0−→ 1 + d�n

dεn
, �

(1)
n+m,n

�m→0−→ −i
2φn

�m
. (B48)

Comparing Ward identities for spin and charge vertices,
Eqs. (B28) and (B48), we see that the ones for �(0) are iden-
tical, while the ones for �(1) are different. In particular, for
the spin vertex �(1) vanishes for frequency-independent gap,
while for the charge vertex it remains finite and moreover is
singular at �m → 0. As we said, the origin for the difference

is in the fact that charge fluctuations couple linearly to mass-
less phase fluctuations and spin fluctuations do not couple to
phase fluctuations.

d. Ward identity for momentum conservation

For completeness, we also consider the Ward identity asso-
ciated with translational invariance, i.e., with conservation of

FIG. 10. Bubble diagram for the renormalized spin or charge
correlator at q = 0. The normal �0 and anomalous �1 vertices are
solutions of the Bethe-Salpeter equations (B24) and (B38) for spin
and charge, respectively. The diagrammatic formulation of the vertex
renormalization is shown in Fig. 8.
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the total momentum. Let us consider a model with action

S =
∑
n,p

�̄(p, τ )[−∂τ + Ĥ (p)]�(p, τ )

+ 1

2

∑
k,k′,q

∫
dτ dτ ′V (t − t ′, q)�̄

(
k + q

2
, τ
)
τ̂3

× �
(

k − q
2
, τ
)
�̄
(

k′ − q
2
, τ ′

)
τ̂3�

(
k + q

2
, τ ′

)
,

(B49)

where � are Nambu spinors and we allow for the possi-
bility of a time-dependent interaction due to exchange of
bosons. The local symmetry transformation associated with
translational invariance and appearing in Noether’s theorem is
�(p, τ ) = eiα(τ )·p� ′(p, τ ) for the Nambu spinors. Under such
a change of variables the action changes as

S[ψ̄, ψ] = S[ψ̄ ′, ψ ′] + δS[ψ̄ ′, ψ] + O(α2), (B50)

where

δS =
∫

dτ α(τ ) · ∂t

∑
p

pψ̄ (p, τ )ψ (p, τ )

− i
1

2

∑
k,k′,q

dτ dτ ′q · [α(τ ) − α(τ ′)]V (t − t ′, q)ψ̄

×
(

k + q
2
, τ
)
τ̂3ψ

(
k − q

2
, τ
)
ψ̄
(

k′ − q
2
, τ ′

)
× τ̂3ψ

(
k + q

2
, τ ′

)
. (B51)

This defines, through Noether’s theorem, the total momentum
of the system 〈P(τ )〉 via

δS ≡ i
∫

dτ α(τ) · ∂t P(τ ). (B52)

Note that only for an instantaneous interaction is the total
fermionic momentum separately conserved. This simply re-
flects the fact that the bosons mediating the interaction may
carry momentum too.

In the usual fashion [54] one may obtain a Ward identity
by considering such a symmetry transformation within the
functional integral. Specifically consider the following expec-
tation value, where we perform a change of coordinates in the
functional integral:

〈�(k, τ )�̄(k′, τ )〉 = 1

Z

∮
D[�̄,�]�(k, τ )�̄(k′, τ )e−S[�̄,�]

= 1

Z

∮
D[�̄,�][1 + iα(τ ) · k]

× � ′(k, τ )�̄(k′, τ )[1 − iα(t ′) · k′]

× e−S[�̄ ′,� ′](1 − δS[�̄ ′, � ′]) + O(α2).
(B53)

Using the fact that the measure is invariant under the change
of variables � → � ′ we then obtain

[iα(τ ) · k − iα(t ′) · k′]〈�(k, τ )�̄(k′, τ )〉 + O(α2)

= 〈�(k, τ )�̄(k′, τ )δS[�̄,�]〉. (B54)

The expectation value on the left-hand side is simply the
Green’s function, while the right-hand side is related to the
vertex function via the usual rule, expressed here in terms of
Matsubara frequencies,〈

�n(k)�̄n′ (k′)
∑
n′′,p

�̄n′′ (p)γ̂n′′ (p)�n′′ (p)

〉

≡ Ĝn(k)�̂n,n′ (k)Ĝn′ (k′)δ(k − k′), (B55)

where �̂ is the fully renormalized vertex corresponding to γ̂ .
Using these expectation values and writing the correlators in
terms of Matsubara frequencies we then can rewrite Eq. (B54)
as

T
∑

n

[iαm · k(−Ĝn−m(k)βδn−n′−mδ(k − k′))]

− T
∑

n

[iαm · k′(−Ĝn(k′)βδn−n′−mδ(k − k′))]

= i
∑

m

(i�m)αmĜn(k)�̂mom
n,n−m(k)Ĝn−m(k′)δ(k − k′).

(B56)

We now use the fact that αm is arbitrary and additionally act on
both sides with the inverse of the Green’s functions to arrive
at the Ward identity for the momentum vertex

i�m�̂mom
n+m,n(k) = k

(
Ĝ−1

n+m − Ĝ−1
n

)
(B57)

or

�̂mom
n+m,n(k) = k

(
1 + i

�̂−1
n+m − �̂−1

n

�m

)
. (B58)

This relation holds for both Galilean-invariant and non-
Galilean-invariant systems. However, in general this does not
determine the form of the current vertex. Only in a Galilean-
invariant system is the current given by

J(τ ) = e

m
P(τ ) =

∑
p

e
p
m

�̄(p, τ )�(p, τ ) (B59)

and thus the renormalized current vertex is determined di-
rectly from Eq. (B58).

APPENDIX C: ξ-INTEGRATED GREEN’S FUNCTION
WITH SUPERCURRENT

For a translationally invariant state, we can express the
inverse Green’s function to second order in Q as

Ĝ−1
k = i�̃n − k

m1
· Q −

(
ξk + Q2

2m2
+ χk

)
τ̂3 − φk τ̂1. (C1)
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The ξ -integrated Green’s function is then, according to Eq. (9),

ĝn(kF ) = 1

π

∫
dξ

[�̃n(kF ) + ivF · Q]τ̂3 − i
[
ξ + Q2

2m2
+ χn(kF )

] + φn(kF )τ̂2

[�̃n(kF ) + ivF · Q]2 + [
ξ + Q2

2m2
+ χn(kF )

]2 + |φn(kF )|2
. (C2)

As long as the quasiclassical approximation holds, we can shift ξ to eliminate (Q2/2m2) + χ leaving simply

ĝn(kF ) = [�̃n(kF ) + ivF · Q]τ̂3 + φn(kF )τ̂2√
[�̃n(kF ) + ivF · Q]2 + |φn(kF )|2

. (C3)

APPENDIX D: QUASICLASSICAL FREE-ENERGY
FUNCTIONAL FOR ELIASHBERG THEORY

Starting with the inverse Green’s function

Ĝ−1
k = i�̃n − k

m1
· Q −

(
ξk + Q2

2m2
+ χk

)
τ̂3 − φk τ̂1 (D1)

we can evaluate the quasiclassical free energy as a sum of a
kinetic term

Fkin = −T ln
[ − det

( − βĜ−1
k

)]
(D2)

and a potential term

Fpot = −1

2
T 2

∑
k,k′

Vk−k′ tr[τ̂3Ĝk τ̂3Ĝk′ ]. (D3)

Note the presence of an additional minus sign inside the
logarithm of the kinetic term, coming from the Nambu spinor
measure

dψ̄k↑dψk↑dψ̄−k↓dψ−k↓ = −dψ̄k↑dψk↑dψ−k↓dψ̄−k↓

= d�̄kd�k . (D4)

1. Kinetic term

For the kinetic term we can start by writing

Fkin = −T
∑

k

ln
( − β2 det Ĝ−1

k

)
. (D5)

The determinant is

Dk ≡ − det Ĝ−1
k

=
(

�̃n + i
k

m1
· Q

)2

+
(

ξk + Q2

2m2
+ χk

)2

+ φ2
k . (D6)

To regulate the sum, we will first integrate over momentum
within finite limits and then take the limits to infinity at the
end. Defining Sn(kF )2 = (�̃n + i k

m1
· Q)2 + φ2

k ,

Fkin =− νT
∑

n

∮
FS

dkF

Sd−1

∫ �

−�

dξ
Sn(k)2 +

(
ξk + Q2

2m2
+ χk

)2

T 2

≡− νT
∑

n

∮
FS

dkF

Sd−1
In(kF ). (D7)

Let us define dimensionless variables

r ≡ χ + Q2

2m1

�
, s ≡ S

�
, z ≡ ξ

�
, (D8)

which lets us write

In(kF ) = �

∫ 1

−1
dz ln

[
�2

T 2
[(z + r)2 + s2]

]

= 4� ln
�

T
+ �

∫ 1+r

−1+r
dz ln(z2 + s2). (D9)

We can expand Taylor in the limits of the integral

∫ 1+r

−1+r
dx f (x) =

∫ 1

−1
dx f (x) + r[ f (1) − f (−1)] + O(r2)

(D10)
and we find

In(kF ) = 4� ln
�

T
+ �

∫ 1

−1
dz ln(z2 + s2) + O(r2). (D11)

We can thus safely neglect χ and Q2/(2m2) since they are, by
assumption, much smaller than �. We evaluate the remaining
integral using integration by parts:

In(kF )

�
= 4 ln

�

T
+ +�������

z ln(z2 + s2)|1−1 −
∫ 1

−1
dz

2z2

z2 + s2

= 4 ln
�

T
+ −2

∫ 1

−1
dz

z2 + s2 − s2

z2 + s2

= 4 ln
�

T
+ −4 + 2

∫ 1/s

−1/s
dy

1

1 + y2

= 4 ln
�

eT
+ 2s tan−1 y

∣∣1/s

−1/s = 4 ln
�

eT
+ 2πs + O(s2).

(D12)

In the limit of � → ∞, the integral In(kF ) consists of an
(infinite) constant term, which is irrelevant for the response
of the system plus a a term of order �0:

lim
�→∞

In(kF ) = C� + 2πSn(kF ). (D13)

We thus arrive at the expression for the kinetic part of the
quasiclassical free energy

Fkin = − 2πνT
∑

n

∮
FS

dkF

Sd−1

×
√

[�̃n(kF ) + ivF · Q]2 + φn(kF )2. (D14)
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2. Potential term

The potential term is straightforwardly simplified using the
definition of the ξ -integrated Green’s function (9):

Fpot = − 1

2
T 2

∑
n,n′

∮
FS

dkF

Sd−1

∮
FS

dk′
F

Sd−1
Vn−n′ (|kF − k′

F |)

× ν2
∫

dξ

∫
dξ ′tr[τ̂3Ĝn(ξ, kF )τ̂3Ĝn′ (ξ ′, k′

F )]

= ν2π2T 2
∑
n,n′

∮
FS

dkF

Sd−1

∮
FS

dk′
F

Sd−1
Vn−n′ (|kF − k′

F |)

× [gn(kF )gn′ (k′
F ) + fn(kF ) fn′ (k′

F )]. (D15)

3. Total quasiclassical expression

In combining the two terms we note that we can rewrite the
kinetic part

Fkin = −2πνT
∑

n

∮
FS

dkF

Sd−1

ϒn(kF )2 + φn(kF )2

Sn(kF )

=−2πνT
∑

n

∮
FS

dkF

Sd−1

�n(kF )ϒn(kF ) + �n(kF )φn(kF )

Sn(kF )

= −2πνT
∑

n

∮
FS

dkF

Sd−1
[ϒn(kF )gn(kF ) + φn(kF ) fn(kF )]

= −2πνT
∑

n

∮
FS

dkF

Sd−1
�n(kF )gn(kF )

− 2ν2π2T 2
∑
n,n′

∮
FS

dkF

Sd−1

∮
FS

dk′
F

Sd−1
Vn−n′ (|kF − k′

F |)

× [gn(kF )gn′ (k′
F ) + fn(kF ) fn′ (k′

F )], (D16)

where in the last equality we used the gap equation. We see
that the second term is just −2Fpot and thus we have

F = − 2πνT
∑

n

∮
FS

dkF

Sd−1
�n(kF )gn(kF )

− ν2π2T 2
∑
n,n′

∮
FS

dkF

Sd−1

∮
FS

dk′
F

Sd−1
Vn−n′ (|kF − k′

F |)

× [gn(kF )gn′ (k′
F ) + fn(kF ) fn′ (k′

F )]. (D17)

APPENDIX E: EVALUATION OF DYNAMIC COEFFICIENT

The integral of ξ may be performed immediately in
Eq. (79). By rescaling the integration variable, we may then
express the frequency integral as

κ = 2ν lim
�→∞

∫
dz

2π

2

1 + z2Z2(�z)
. (E1)

In general Z (ε) has the following properties:

(i) Z is an even function of frequency;
(ii) at large frequencies Z goes to 1, i.e., ∃0 < �FL �

� s.t. ∀ |ε| > �FL, Zε − 1 � (�FL/�).

With this in mind, we split the integration into a low-energy
and a high-energy part:

κ ≈ 2ν

∫
dz

2π

2

1 + z2Z2(�z)

= 4ν

(∫ �FL/�

0
+
∫ ∞

�FL/�

)
dz

2π

2

1 + z2Z2(�z)
. (E2)

The first term can then be bounded by∫ �FL/�

0
dz

1

1 + z2Z2(�z)
� �FL

�
, (E3)

while for the second term∫ ∞

�FL/�

dz
1

1 + z2Z2(�z)

=
∫ ∞

�FL/�

dz
1

1 + z2

1

1 + z2

1+z2 [Z2(�z) − 1]

≈
∫ ∞

�FL/�

dz
1

1 + z2

(
1 − z2

1 + z2
[Z2(�z) − 1] + · · ·

)

≈
∫ ∞

0
dz

1

1 + z2
+ O

(
�FL

�

)
. (E4)

We thus arrive at

κ = 2
ν

π

∫ ∞

−∞

1

1 + z2
= 2ν, (E5)

where all other terms vanish in the � → ∞ limit.
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