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We investigate the Andreev reflection in a normal metal/charge-4e superconductor junction. Compared with
the electron-hole conversion in normal charge-2e superconductors, here four electrons participate simultane-
ously, enriching the possibility of conversion ways. Using the nonequilibrium Green’s function method, we
obtain a four-particle-type Landauer-Büttiker formula with generalized charge-4e anomalous Green’s function to
describe it. We then calculate and clarify the behavior of the Andreev coefficient and the conductance contributed
by it, showing features like the unconventional position of the peak structure and the emerging plateau inside
the superconducting gap. Our research makes up the blank of research for transport property of charge-4e
superconductors and can serve as a hallmark for future experimental verifications.
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I. INTRODUCTION

Charge-4e superconductivity (charge-4e SC) names the
condensate of the quartets of electrons. Such electron pairs
can carry a charge of 4e, which differs from the normal
charge-2e Cooper pairs described by the Bardeen-Cooper-
Schrieffer theory [1]. It was proposed in a wide range of
fields [2–9]. Especially in the theory of intertwined orders
in cuprate superconductors, the charge-4e SC is described
as a vestigial phase in the thermal melting of pair-density-
wave order [10,11]. Recent progress in experiments makes
charge-4e SC more attractive [12,13], due to the possible
evidence for charge-4e and even charge-6e pairs in kagome
superconductors. Although theorists have proposed a possible
mechanism for charge-4e/6e pairs [14–16], it still requires
more evidence to confirm the existence of charge-4e SC in
experiments. Therefore, it is quite necessary to investigate the
transport properties of charge-4e SC in the hope of giving
more hallmarks to distinguish it from the perspective of trans-
port phenomena.

The former researches are mainly focusing on the equilib-
rium properties of charge-4e SC [6–8,17–21]. By applying
the theory of vestigial order and the Ginzburg-Landau
method, they showed the appearance of charge-4e SC or-
der and discussed the phase competition between it and
other orders, such as pair-density-wave and nematic orders
[9,18,19,22,23]. While those studies were phenomenological
in general, some works began to pay attention to the micro-
scopic mechanics of forming four-electron pairs [24–27]. A
real-space mean-field Hamiltonian, in which four electrons
on the neighboring sites can form a pair, was proposed with
quantum Monte Carlo simulations revealing chemical poten-
tial controlled phase transition between charge-4e SC and
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charge-2e SC [25]. Using the solvable Sachdev-Ye-Kitaev
model, a charge-4e superconductor with gapless ground
state was also described [26]. Besides, similar to the BCS
wave function for charge-2e SC, a charge-4e wave function
with its corresponding mean-field Hamiltonian has also been
proposed [27]. While this Hamiltonian describes a gapped
charge-4e SC phase, it can also be seen as a natural extension
of the theory of intertwined orders.

To study the transport with superconductors, one often en-
counters the interface between leads and superconductors. It is
well known that an incident electron can be reflected as a hole
at the interface between a normal metal and a superconduc-
tor, namely, the Andreev reflection. This process can convert
the normal current into the supercurrent, governing the con-
ductance of the interface below the superconducting gap.
Moreover, as the incident electron and reflected hole can be
regulated by both sides of the junction, the Andreev reflection
is often used to reveal the novel properties of materials either
in the normal side [28–31] or in the superconducting side
[32–35]. Therefore, to understand the transport with charge-4e
SC, it is natural to consider the possible Andreev reflection
happening in the interface between a normal metal and a
charge-4e superconductor. At this point, the conventional pic-
ture involving two participating electrons may be inapplicable
due to the electron quartet, which introduces more freedom as
well as complexity.

In this paper, we investigate the charge-4e Andreev
reflection (charge-4e AR) in a normal metal/charge-4e su-
perconductor junction. Due to the characteristics of quartet
condensation, the Andreev reflection here involves four par-
ticles, enriching the possibility of conversion ways. Using
nonequilibrium Green’s function method, we derive a four-
particle-type Landauer-Büttiker formula with generalized
charge-4e anomalous Green’s function to describe the An-
dreev reflection process. We then calculate and clarify the
behavior of charge-4e AR with various incident energy and
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show the conductance contributed by it. We find that there ex-
ist features including the unconventional position of the peak
structure and the emerging plateau inside the superconducting
gap. Our results provide formulas and pictures to describe
the charge-4e AR, which can enrich the understanding of
the transport with charge-4e SC and give guidance for future
experimental verifications.

The rest of the paper is as follows: In Sec. II, we give the
Hamiltonian of the normal metal/charge-4e superconductor
junction and derive the formula for the transport process. In
Secs. III and IV, we calculate the Andreev coefficient using
perturbation and nonperturbation methods, which character-
ize the Andreev reflection from different perspectives while
maintaining some consistency. We then give the whole pic-
ture of charge-4e AR in Sec. V and further consider the
conductance in Sec. VI. Finally, a summary is presented in
Sec. VII.

II. MODEL AND FORMULA

We consider a normal metal/charge-4e superconductor
junction, which is described by the following Hamiltonian
Htot = HL + HR + HC , with

HL =
∑
i,k,σ

εL,ik a†
ikσ

aikσ ,

HR =
∑
i,k,σ

εR,ik c†
ikσ

cikσ + HSC,

HC =
∑

i,k,k′,σ

tLk,Rk′ a†
ikσ

cik′σ + H.c., (1)

where HL, HR, and HC represent the Hamiltonians of left
lead (normal metal), right lead (charge-4e superconductor),
and their coupling, respectively. aikσ (cikσ ) are electron an-
nihilation operators in the left (right) lead, with k denoting
the momentum and σ =↑,↓ denoting the electron spins.
Besides, εL/R,ik and tLk,Rk′ are the energy dispersion and hop-
ping strength. We set tLk,Rk′ = tc below for convenience [36].
HSC describes the superconducting interaction. Adopting the
charge-4e mean-field Hamiltonian in Ref. [27] and introduc-
ing the index i = 1, 2 to fulfill the Pauli exclusion principle
(like pair-density-wave order momentum, nematic order
component, layer degree of freedom, etc. [7,8,10,15,37]),
we have

H4e
SC = �

∑
k

(c†
1k↑c†

1−k↓c†
2k↑c†

2−k↓ + H.c.), (2)

with � being the superconducting pairing potential. To com-
pare with the charge-2e SC, we also write the charge-2e
Hamiltonian H2e

SC = �
∑

k (c†
1k↑c†

1−k↓ + H.c.) with the index
i = 1 only.

Due to the symmetry of Htot, exchanging arbitrary two
channels could exchange their currents while keeping Htot

unchanged. Therefore, the current of each channel must be
equal, leading to a total current being four times that of a
single channel. We thus consider the current flowing from
channel 1 ↑ via the time derivative of electron number op-

erator N1↑,L = ∑
k a†

1k↑a1k↑ [38],

I1↑ = −e〈Ṅ1↑,L〉

= ie

h

∫
dω1�

L
[

f e
1↑(ω1)G>

1↑(ω1) + f̄ e
1↑(ω1)G<

1↑(ω1)
]
,

(3)

where �L = 2πρL|tc|2 with ρL being the density of states in
the left lead. f̄ e

1↑(ω1) = 1 − f e
1↑(ω1) and f e

1↑(ω1) = f (ω1 −
eV ) = 1/[e(ω1−eV )/kBT + 1] is the Fermi distribution function
of channel 1 ↑ in electron type with the bias voltage V
and temperature T . The less and greater Green’s functions
G≶

1↑(ω1) are the Fourier transforms of G≶
1↑(t, 0), which are

defined as G<
1↑(t, 0) = i

∑
kk′ 〈c†

1k′↑(0)c1k↑(t )〉 and G>
1↑(t, 0) =

−i
∑

kk′ 〈c1k↑(t )c†
1k′↑(0)〉. Equation (3) is a simple transform of

the usual Landauer formula [39] and contains all the possible
transport processes of an interacting system.

A. Andreev reflection in charge-2e SC

Before starting our procedure in calculating charge-
4e AR, we first briefly review the Andreev reflection
in charge-2e SC. To describe charge-2e AR, we need
to explicitly insert the coupling term of channel 1 ↓
into the nonequilibrium Green’s function G1↑,k1k′

1
(τ1, τ

′
1) =

−i〈c1k1↑(τ1)c†
1k′

1↑(τ ′
1)〉c, with superscript “c” denoting the

complex contour time order and the time τ1 and τ ′
1 being

defined on the contour [40], to do the perturbation expan-
sion. This would introduce the nonequilibrium anomalous
Green’s functions Fk1k2 (τ1, τ2) = −i〈c1k1↑(τ1)c1−k2↓(τ2)〉c and
F †

k′
2k′

1
(τ ′

2, τ
′
1) = −i〈c†

1−k′
2↓(τ ′

2)c†
1k′

1↑(τ ′
1)〉c. After applying the

analytic continuation and Fourier transform, we derive the part
of the G≶

1↑(ω1) relating to the process of Andreev reflection
(denoted with subscript “A”) as

G>
1↑,A(ω1) = F r (ω1)

[−i f̄ h
1↓�L

]
F †,a(ω1),

G<
1↑,A(ω1) = F r (ω1)

[
i f h

1↓�L
]
F †,a(ω1), (4)

where f̄ h
1↓ = 1 − f h

1↓ and f h
1↓ = f (ω1 + eV ) is the Fermi dis-

tribution function of channel 1 ↓ in hole type. F r (ω1) and
F †,a(ω1) are the Fourier transforms of

∑
k1k2

F r
k1k2

(t, 0) and∑
k′

2k′
1

F †,a
k′

2k′
1
(t, 0). The retarded (advanced) Green’s functions

can be obtained from the analytic continuation

F r (t1, t2) = F
(
t s
1, t+

2

) − F
(
t s
1, t−

2

)
,

F †,a(t2, t1) = F †
(
t+
2 , t s

1

) − F †
(
t−
2 , t s

1

)
, (5)

with s = + or −. The arbitrary choosing of s = ± branch
of the complex contour shows the causality [41] that t1 > t2
in F r (t1, t2) and F †,a(t2, t1). Substituting Eq. (4) into (3), we
obtain the current contributed by the Andreev reflection

I1↑,A = e

h

∫
dω1

(
f e
1↑ f̄ h

1↓ − f̄ e
1↑ f h

1↓
)

TA, (6)

with TA(ω1) = �LF r�LF †,a being the Andreev reflection
coefficient. Notice that f e

1↑ f̄ h
1↓ − f̄ e

1↑ f h
1↓ = f e

1↑ − f h
1↓, so the

Andreev reflection current in Eq. (6) is identical with that in
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the literature [38,42,43]. For completeness, we leave the de-
tailed derivation and the formula for other transport processes
contributed to the total current in Appendix A 1.

B. Andreev reflection in charge-4e SC

It is then straightforward to generalize the charge-2e AR
to the charge-4e AR. By inserting the coupling terms of the
other three channels, we introduce the nonequilibrium charge-
4e anomalous Green’s function

Fk1k2k3k4 (τ1, τ2, τ3, τ4)

= −i
〈
c1k1↑(τ1)c1−k2↓(τ2)c2k3↑(τ3)c2−k4↓(τ4)

〉c
,

F †
k4k3k2k1

(τ4, τ3, τ2, τ1)

= −i
〈
c†

2−k4↓(τ4)c†
2k3↑(τ3)c†

1−k2↓(τ2)c†
1k1↑(τ1)

〉c
. (7)

After applying the analytic continuation and the Fourier trans-
form, we obtain the part of the G≶

1↑(ω1) relating to the process
of charge-4e AR as

G>
1↑,A(ω1) = −i

∫
234

F r
[

f̄ h
1↓(ω2) f̄ h

2↑(ω3) f̄ h
2↓(ω4)(�L )

3]
F †,a,

G<
1↑,A(ω1) = i

∫
234

F r
[

f h
1↓(ω2) f h

2↑(ω3) f h
2↓(ω4)(�L )

3]
F †,a,

(8)

where f̄ h
iσ (ω) = 1 − f h

iσ (ω) and f h
iσ (ω) = f (ω + eV ) is

the Fermi distribution function of channel iσ in hole
type. The integral

∫
234 represents the energy convolu-

tion
∫

dω2dω3dω4δ(ω1 − ω2 − ω3 − ω4)/4π2, constraining
the total energy of the three reflected holes to form four-
electron pairs at the Fermi surface. F r = F r (ω2, ω3, ω4)
and F †,a = F †,a(ω4, ω3, ω2) are the Fourier transforms of∑

ki
F r

k1k2k3k4
(0, t2, t3, t4) and

∑
k′

j
F †,a

k′
4k′

3k′
2k′

1
(t4, t3, t2, 0), respec-

tively. We have the generalized retarded (advanced) Green’s
functions (omitting the momentum index for simplification)

F r (t1, t2, t3, t4) =
∑
s2s3s4

(−1)PF
(
t±
1 , t s2

2 , t s3
3 , t s4

4

)
,

F †,a(t4, t3, t2, t1) =
∑
s2s3s4

(−1)PF †
(
t s4
4 , t s3

3 , t s2
2 , t±

1

)
, (9)

with s2,3,4 = ± being the branch index and P being the total
number of “–” branches among them. Note that the results in
Eq. (9) are the same regardless of t1 either on + branch or on –
branch. This arbitrary choosing of the branch of t1 is protected
by the causality that t1 > t2, t3, t4.

Substituting Eq. (8) into (3) leads to a four-particle Lan-
dauer formula

I1↑,A = e

h

∫
1234

(
f e
1↑ f̄ h

1↓ f̄ h
2↑ f̄ h

2↓ − f̄ e
1↑ f h

1↓ f h
2↑ f h

2↓
)

TA, (10)

with
∫

1234 being
∫

dω1dω2dω3dω4δ(ω1 − ω2−ω3−ω4)/4π2

and

TA(ω2, ω3, ω4) = �LF r (�L )
3
F †,a (11)

being the charge-4e Andreev reflection coefficient. This is one
of the central results of this work. It describes the charge-4e
Andreev reflection process, where one incident electron can

FIG. 1. Schematics of charge-4e Andreev reflection in the nor-
mal metal/charge-4e superconductor junction, where one incident
electron carrying energy ω1 can be reflected to three holes carrying
energy ω2,3,4 at the interface of the junction, injecting a four-electron
pair into the right side. The green, yellow, and orange lines show the
energy dispersion of different types of quasiparticles in charge-4e
SC. While the mixing of charge-2e particles (holes) owns a direct
gap �, the mixing of charge-e/3e particles (holes) owns an indirect
gap �′ = √

3�/2.

be reflected to three holes at the interface between normal
metal and charge-4e superconductor (shown in Fig. 1), and
can be easily extended to multielectron Andreev reflection.
Note that since the Fermi distribution functions of elec-
tron and hole can be transformed by f̄ h

iσ (ωh) = f e
iσ (ωe) with

ωe = −ωh, the number of incident electrons and reflected
holes just depends on the way we treat each channel as elec-
tron type or hole type. We thus can rewrite Eq. (10) as

I1↑,A = e

h

∫ ′

1234
( f e f e f e f e − f̄ e f̄ e f̄ e f̄ e) TA, (12)

omitting the channel index iσ . Here
∫ ′

1234 denotes the
energy integral

∫
dωe

1dωe
2dωe

3dωe
4δ(ωe

1 + ωe
2 + ωe

3 + ωe
4)/4π2

with ωe
1 = ω1, ω

e
2,3,4 = −ω2,3,4 unifying the energy variables

in electron type.
We then consider the conductance contributed by the

charge-4e AR, which can be obtained from GA = ∂I1↑,A/∂V :

GA = e2

h

4∑
i=1

∫ ′

1234−i
( f e f e f e + f̄ e f̄ e f̄ e) TA|ωe

i =eV , (13)

assuming that TA is independent of the voltage V . Here
the integral

∫ ′
1234−i is over the other three energy vari-

ables while keeping ωe
i = eV . For completeness, we leave in

Appendix A 2 the detailed derivation as well as the transport
formula for other transport processes and their contributions
to the total conductance. Recall that in charge-2e SC, GA is
simply proportional to TA, the integral nature here would make
the conductance of charge-4e SC quite different from that of
charge-2e SC.

III. PERTURBATION IN SUPERCONDUCTIVITY:
LOWEST-ORDER EXPANSION

It is challenging to solve the charge-4e anomalous Green’s
functions F, F † and give an exact form of TA. Therefore, we
begin our analysis by considering some specific conditions
where perturbation theory can take effect.
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We first consider expanding the Andreev reflection co-
efficient to the lowest order of charge-4e superconducting
pairing potential �. Due to the many-body correlation nature
of charge-4e SC, in the theoretical description, one usually has
no particular reason to expect the charge-4e pairing potential
to be weak enough to apply a perturbation theory [26]. How-
ever, such a challenge can be avoided in transport problems, as
we investigate the state that the energy of the incident electron
is much greater than the superconducting gap. Compared with
the injecting energy, the pairing potential can now be seen as
a small quantity, which makes the perturbation effective.

Therefore, we can expand the charge-4e anomalous
Green’s function to the lowest order of � and obtain the
Andreev reflection coefficient up to �2 order (here we also
give the result of charge-2e SC for comparison),

T (1)
A,4e = 4z4 (�/πρR)2

(ω1 + ω2)2(ω1 + ω3)2(ω1 + ω4)2 ,

T (1)
A,2e = 4z2 �2

(ω1 + ω2)2 , (14)

with z = πρR�L/(1 + πρR�L/2)2 measuring the influence of
coupling. Here ρR is the density of states in the right lead.
We have energy constraint ω2 = ω1 for charge-2e SC and
ω2 + ω3 + ω4 = ω1 for charge-4e SC, showing that the total
energy carried by the reflected holes is equal to that of the in-
cident electron. A brief discussion of other transport processes
is given in Appendix B for completeness.

It is now clear to see that the perturbation can take effect
only when the denominators in Eq. (14) are much greater
than the numerators. In charge-2e SC, the energy constraint
preserves that we just require the incident electron to be far
away from the gap. However, in charge-4e SC, the loose
constraint requires not only the incident electron but also the
reflected holes should be far away from the gap. The pertur-
bation would also break down at some diverging points as
some reflected holes carry the opposite energy of the incident
electron. However, these divergences can be compensated by
considering the higher-order contributions. The maximum of
T (1)

A,4e would happen when each reflected hole carries one-third
of the energy of the incident electron, which is different from
T (1)

A,2e that the energy of the reflected hole and the incident
electron are usually equal [44].

Besides, we can see from Eq. (14) that the structure of
T (1)

A,4e is similar to the T (1)
A,2e. However, since T (1)

A,4e ∝ E−6 and

T (1)
A,2e ∝ E−2 with E the incident energy, we find that they

possess different energy dependence. Meanwhile, the square
of coupling from z2 to z4 makes T (1)

A,4e change faster than T (1)
A,2e

as z varies, which means that the conductance of charge-4e
SC is more sensitive to the interface barriers than that of
charge-2e SC.

IV. NONPERTURBATION IN SUPERCONDUCTIVITY:
THE EQUATION OF MOTION METHOD

As the incident (reflected) energy stays below or near the
gap, the breakdown of the perturbation expanded by supercon-
ducting pairing potential � implies that we should consider
higher orders of � into the anomalous Green’s function.

One straightforward way is to expand the Andreev reflec-
tion coefficient to the lowest order of coupling |tc|2, which
makes the nonequilibrium charge-4e anomalous Green’s func-
tion Fk1k2k3k4 (0, t2, t3, t4) regress to the equilibrium charge-4e
anomalous Green’s function δkk1δkk2δkk3δkk4 Fk (0, t2, t3, t4). As
the equilibrium Green’s function of HR can be solved exactly
[27], for the convenience of future promotion to the weak
coupling case, we introduce the equation of motion (EOM)
for retarded charge-4e anomalous Green’s functions.

A. EOM for equilibrium Green’s function

We first solve the equilibrium charge-4e anomalous
Green’s functions of HR at tc = 0. By using Eq. (9) and the
identity

1 =
∑
(xyz)

θ (0 − tx )θ (tx − ty)θ (ty − tz ), (15)

with (xyz) the permutation of (234), we rewrite the retarded
charge-4e anomalous Green’s function

F r
k (0, t2, t3, t4) =

∑
(xyz)

−iF (c̃1k (0), c̃xk (tx ), c̃yk (ty), c̃zk (tz ))

=
∑
(xyz)

−iP(xyz)θ (0 − tx )θ (tx − ty)θ (ty − tz )

× {[{c̃1k (0), c̃xk (tx )}, c̃yk (ty)], c̃zk (tz )},
(16)

where P(xyz) is the sign of the permutation (xyz).
c̃1k, c̃2k, c̃3k, c̃4k represent c1k↑, c1−k↓, c2k↑, c2−k↓, respec-
tively. Using the Fourier transform, we have

F r
k (ω2, ω3, ω4) =

∑
(xyz)

−iF (ωx, ωy, ωz ). (17)

The EOM for F r
k (F ) can then be obtained by consider-

ing the time derivative, with detailed derivation shown in
Appendix C 1.

Recall the EOM for charge-2e anomalous Green’s func-
tion, we note that the closure of the EOM relies on the
commutation relation[

c1kσ , H2e
SC

] = �c†
1−k−σ

,
[
c†

1−k−σ
, H2e

SC

] = �c1kσ , (18)

which also shows the particle-hole symmetry in charge-2e SC.
Similarly, for charge-4e SC, we have a commutation relation[

c1k↑, H4e
SC

] = � d†
1k↑,

[
d†

1k↑, H4e
SC

] = � ξ1k↑c1k↑,

[
ξ1k↑c1k↑, H4e

SC

] = � d†
1k↑, (19)

guaranteeing the closure of the EOM. Here d†
1k↑ =

c†
1−k↓c†

2k↑c†
2−k↓ is the operator for charge-3e particles. ξ1k↑ =

n1−k↓n2k↑n2−k↓ + n̄1−k↓n̄2k↑n̄2−k↓ with n̄ = 1 − n shows the
effect of occupation numbers to the excitations. Therefore,
Eq. (19) expresses the particle-hole symmetry in charge-4e
SC, where a charge-3e hole (particle) can be converted into
a charge-e particle (hole) combining with its environment
(described by ξ ).
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Equipped with this relation, we can write the EOM for
charge-4e SC,

(ω−
z I3 − H)F = −iF′

1,

(ω−
yz I9 − H1)F1 = −iF′

2,

(ω−
xyz I27 − H2)F2 = −iF0, (20)

with ω−
z = ωz − iη, ω−

yz = ωy + ωz − iη, ω−
xyz = ωx + ωy +

ωz − iη and η measuring the energy relaxation rate [42].
In is the n × n identity matrix. H,H1,2 are the coefficient

matrix and F, F0,1,2 are the vectors containing charge-4e
anomalous Green’s functions with different number of time
variables. The superscript “prime” means to select the first
3 (9) elements of F1 (F2). We leave the explicit form of
H,H1,2 and F, F0,1,2 in Appendix C 2.

B. Equilibrium gap spectrum

Using Eq. (20), we show here the result of F at zero
temperature,

F (ωx, ωy, ωz ) = i�
(ω−

z + 3εk )(ω−
yz + 2εk )(ω−

xyz + εk ) + �2(ω−
z + ω−

yz + ω−
xyz + 2εk )[

(ω−
z + εk )2 − E2

k

][
ω−2

yz − E2
k

][
(ω−

xyz − εk )2 − E2
k

]
(ω−

xyz + εk )
, (21)

with E2
k = 4ε2

k + �2. This gives us more insights into the
properties of charge-4e SC, especially the energy dispersion
of quasiparticles, which can be obtained from poles of F .

Similar to the charge-2e SC, the energy dispersion here
also shows a gapped feature. However, we note that there are
two types of gaps. As shown in Fig. 1, while ±Ek (shown as
green lines) contribute a direct gap of � for the mixing of
charge-2e particles (holes), ±εk ± Ek (shown as yellow and
orange lines) contribute an indirect gap of �′ = √

3�/2 for
the mixing of charge-e/-3e particles (holes). Similar to the
charge-2e SC where the Andreev reflection can be enhanced
at the gap, we will show below that the peaks of Andreev
reflection in charge-4e SC are also related to those gaps.

C. EOM for nonequilibrium Green’s function

We then consider adding the coupling of left leads into
F . In general, introducing the lead coupling would mix the
momentum in the right side and make k not a good quan-
tum number anymore. Besides, the nonzero voltage bias and
the flowing current could regulate the behavior of quasipar-
ticles through the occupation numbers [see in Eq. (19) and
Appendix C 3]. These things would bring a lot of complexity
to the description of the transport in charge-4e SC. Therefore,
to capture the main characteristics of charge-4e AR, we con-
sider below an approximation with weak coupling, which can
also be achieved in experiments conveniently. At this point,
the momentum mixture is weak as well as the current is
relatively small so that we can see the lead coupling as an extra
self-energy E to the charge-4e anomalous Green’s function
while keeping other things unchanged. This would correct the
EOM in Eq. (20):

(ω−
z I3 − H − E )Fneq = −iF′

1,neq,

(ω−
yz I9 − H1 − E1)F1,neq = −iF′

2,neq,

(ω−
xyz I27 − H2 − E2)F2,neq = −iF0, (22)

with the subscript “neq” distinguishing the results here from
those in the equilibrium case. We leave the explicit form of
E, E1,2 and discussion in Appendix C 3.

V. CHARGE-4e ANDREEV REFLECTION

Once we calculate the result of nonequilibrium charge-4e
anomalous Green’s functions through Eq. (22), it is straight-
forward to get the Andreev coefficient TA by Eq. (11).
Therefore, we now reach the stage to give the whole picture
of the charge-4e AR, together with the calculated results of
Andreev coefficient TA. Unlike the charge-2e AR where the
energy of the reflected hole is constrained to that of the in-
cident electron, the loose constraint in charge-4e AR would
give two additional energy degrees of freedom ω2, ω3 if we
consider the incident electron with certain energy ω1, leaving
ω4 = ω1 − ω2 − ω3. Together with Eq. (13) which shows that
the contribution of TA to GA is further constrained by Fermi
distribution functions, for a given ω1 = eV > 0, we indeed
only need to investigate the behavior of TA in −eV < ω2,3,4 <

3eV , which forms a triangle region in the ω2-ω3 plane [see in
Fig. 2(a)]. Besides, the two types of gaps shown in Sec. IV
would bring different “in-gap” areas to the energy triangle.

FIG. 2. Schematics of charge-4e Andreev reflection in ω2-ω3

energy plane (left column) with corresponding numerical results
of TA at eV = 0.2, 0.4, 0.8, 1.8 (from top to bottom of the right
column) in the weak coupling case. While the blue regions denote
the “in-gap” areas, we distinguish the separation lines induced by
different gaps with different types of dotted lines. Moreover, we set
� = 1, ρR = 1, �L = 0.02, and η = 0.01 in calculations [45].
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We find that similar to the charge-2e AR, the charge-4e AR
would also be enhanced around the energy gap as well as
decay quickly outside the gap. Therefore, as ω1 varies, the
competing of these two gaps would change the “in-gap” area,
which dominates the behavior of TA and eventually influences
the result of conductance GA.

We begin with ω1 being relatively small. As shown in
Fig. 2(a), the whole energy triangle is inside the gap �′ with
all the incident (reflected) particles (holes) lying below the
gap. Therefore, TA stays stable with different energy but is
slightly smaller in the center than around [see in Fig. 2(b)]. If
we improve the strength of coupling, TA would increase in the
whole area. As ω1 increases, some incident (reflected) particle
(hole) would reach the gap �′ where Andreev reflection gets
enhanced. This requires that the maximum energy allowed
to a single particle (hole) should satisfy 3eV � �′, giving
a separation point ωc1 = �′/3. When ω1 > ωc1, the whole
area would be separated by three lines ω2,3,4 = �′ located
at the gap of charge-e/-3e particles [see in Fig. 2(c)]. In the
weak coupling case, the strength of TA concentrates on these
gap lines [see in Fig. 2(d)]. As we improve the strength of
coupling, those TA belonging to the “in-gap” area [shown as
the blue region in Fig. 2(c)] would also increase.

The further increasing of ω1 allows two of the electrons
can carry a total energy of �, touching the gap of charge-
2e particles. This requires that 2eV � �, leading to another
separation point ωc2 = �/2. When ω1 exceeds ωc2, a new set
of three lines appears, with ω1 − ω2 = �, ω1 − ω3 = �, and
ω1 − ω4 = � located at the gap of charge-2e particles. At this
time, the “in-gap” area is encircled by six lines, showing a
star of David structure [see in Fig. 2(e)]. In the weak coupling
case, the peaks of TA mainly focus on the crossover points of
these lines [see in Fig. 2(f)]. The improvement of coupling
would enhance the TA in the whole area inside the star of
David structure.

As ω1 further increases across ωc3 = 2� − �′, the “in-
gap” area brought by � fully enters into the area brought by
�′. As shown in Figs. 2(g) and 2(h), the maximum of TA is
then back to the position of �′ gap. This “in-gap” area would
eventually disappear as ω1 � 3�′, leaving the maximum of
TA at the center of the energy triangle ω2 = ω3 = ω4 = ω1/3.
This also matches Eq. (14) from the perturbation theory in the
case of � 	 ω1, showing the consistency of results provided
by different methods.

VI. CONDUCTANCE

A. Conductance for Andreev reflection

Clarifying the behavior of TA helps us understand the
conductance of charge-4e SC, which can be measured in
experiments. Applying Eq. (13), we first consider the conduc-
tance GA contributed by the charge-4e AR [see in Fig. 3(a)].
From the numerical results, we find that the GA possesses
two major features. One is the conductance peak located at
�′ = √

3�/2. The other is the emerging plateau beginning
from �/2.

When we consider increasing eV from zero, at first, GA is
contributed by those “in-gap” processes [shown in Figs. 2(a)
and 2(b)]. In the weak coupling case, they are relatively small,

FIG. 3. (a) Conductance GA contributed by the charge-4e AR
with different coupling strength. (b) Conductance GA in (a) is scaled
by G2

n ∝ (�L )2, which shows the consistency of decreasing coupling
strength. We use dotted lines to highlight the major features in GA.
Besides, Gn ≈ 4π 2ρLρR|tc|2 = 2πρR�L is the normal-state conduc-
tance in the weak coupling case [42,44]. We omit the unit e2/h for
conductance here and below and keep other parameters the same as
those in Fig. 2 in calculations.

resulting in a near zero GA. Once eV surpasses ωc1, the
emerging gap lines enhance the Andreev reflection [shown
in Figs. 2(c) and 2(d)], causing the increasing of GA before
eV = �/2 [see Fig. 3(a)]. The further increase of eV , how-
ever, turns the maximum of TA from lines to points. The
emerging plateau is then attributed to the fixed number of
TA peaks [shown in Figs. 2(e) and 2(f)]. Such peaks would
reach their maximum at eV = �′ [as shown in Fig. 3(a)],
where all the participating electrons touch the gaps ±�′. We
therefore get the GA peak located at eV = �′, which differs
from the charge-2e AR that GA is enhanced at � [44]. Apart
from the peak, GA decays. While in charge-2e AR, a quick
�2/[�2 − (eV )2] behavior is presented [44], the asymmetric
behavior here between eV = �′ (especially when �L/2 → η)
shows the slow decaying in charge-4e GA due to the integral
nature of it. Moreover, we compare our results with decreasing
the coupling �L, finding that the peak and plateau always
appear at weak coupling cases. As the coupling decreases, the
nonequilibrium Green’s functions would regress to equilib-
rium Green’s functions. Our results in Fig. 3(b) then indicate
good consistency, with the small values of GA being scaled by
G2

n ∝ (�L )2 at weak coupling cases.

B. Conductance for other transport processes

We then consider the contributions of other transport pro-
cesses to the total conductance (see Appendix A 2 for the
formulas used in numerical computation). Except for the
quasiparticle tunneling process, the other transport processes
can also be viewed as Andreev reflection with some of the
reflected holes entering into the right leads. Similar to the
charge-2e AR where an incident electron can be converted
into a hole in the superconductor due to the “branch crossing”
[42,44], we distinguish those processes by which side the
reflected holes enter and use Tαβγ , Gαβγ , with α, β, γ = L, R,
to denote them (see Appendix A 2 for the detailed formulas.)
Due to the coexistence of left-leaving holes and right-leaving
holes, we find that they possess features both in Andreev
reflection and normal tunneling with different types of quasi-
particles. Therefore, we cannot simply attribute them to the
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FIG. 4. Conductance contributed by the charge-4e AR with some reflected holes entering the right leads. (a)–(c) Show the conductance
GLLR, GLRR, and GRRR, respectively, with different coupling strengths. We use dotted lines to highlight major features in those conductances
and keep other parameters the same as those in Fig. 2 in calculations.

transmission processes like what we usually do in charge-2e
SC [32,38].

Figures 4(a)–4(c) show numerical results for the conduc-
tance GLLR, GLRR, and GRRR, respectively. These processes
contain both features in Andreev reflection and quasiparticle
tunneling. While the emerging increase from eV = �/2 and
the peak at eV = �′ is similar to that behavior of GA, we
attribute the peak at eV = � to the combination of charge-2e
quasiparticles in the right leads. Note that the symmetry pre-
serves that GLLR = GLRL = GRLL and GLRR = GRLR = GRRL.

C. Total conductance

Finally, combining all the processes (including all Andreev
reflections Gαβγ and the quasiparticle tunneling Gq) gives us
the total differential conductance Gtot. As shown in Fig. 5,
in the weak coupling case, we have a U-shape curve of Gtot.

FIG. 5. Total conductance with different coupling strength. We
use dashed lines to highlight the major features in Gtot and the
insert shows detailed behavior of the plateau. Besides, we keep other
parameters the same as those in Fig. 2 in calculations.

We also find the plateau beginning from eV = �/2 as well as
the conductance peak at eV = �′. While the former is mainly
contributed by GA and GLLR,LRL,RLL, the latter is mainly con-
tributed by the divergence of the DOS in charge-4e SC [27].
As eV increases away from the gap, Gtot eventually tends to
the normal-state conductance Gn, backing to the results in
normal metal/normal metal junctions [42].

Moreover, it is beneficial to discuss the possible behaviors
of Gαβγ in the strong coupling case. While in the weak cou-
pling case, the increase of coupling would rise the height of
the features at �/2 and �′ [see in Figs. 3(a) and 4(a)]. If we
further improve the coupling, however, the increase of TA in
those “in-gap” areas would suppress the contribution in gap
lines, eliminating the plateau feature. Therefore, when eV is
close to zero, GA/(eV )2 ≈ (2/π2)TA is the constant propor-
tional to the area of the energy triangle. As eV increases, the
behavior of GA/(eV )2 would be proportional to the area of
the “in-gap” region, and the total curve of GA would show a
V-shape behavior. Besides, to see the possible values of those
conductances, we further consider an incident electron with
energy E , the conservation of probability in charge-4e SC case
requires that

1 = Tq(E ) + R(E ) +
∑
αβγ

∫ ′

1234−i
Tαβγ |ωe

i =E , (23)

where Tq is the tunneling coefficient and R is the reflec-
tion coefficient. Tαβγ are Andreev reflection coefficients with
TLLL = TA. Due to the non-negativity of those coefficients, we
have

0 �
∫ ′

1234−i
Tαβγ |ωe

i =E � 1, (24)

which would give us an estimation for Gαβγ . Note that here
we do not involve Fermi distribution functions. This would
extend the integral range to the whole energy plane and cause
the result of the single integral in Gαβγ [see in Eqs. (13) and
(A13)] less than that in Eq. (24). Therefore, we have

Gαβγ � (nαβγ + 1)
e2

h
, (25)
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with nαβγ measuring the number of holes entering the left
leads. We then expect to approach these values in some strong
coupling cases, such as a possible maximum 4e2/h peak at
�′ for the perfect charge-4e AR, differing from the maximum
2e2/h peak of charge-2e AR [44].

VII. DISCUSSION AND CONCLUSIONS

The calculations above provide a comprehensive descrip-
tion of the charge-4e AR, from the transport formula to the
picture of the behavior of TA. Differing from the charge-2e
SC, in charge-4e SC, the superconducting potential � intro-
duces two types of gaps, an indirect gap of �′ = √

3�/2 for
charge-e/3e quasiparticles and a direct gap of � for charge-
2e quasiparticles. These two gaps compete with each other
to decide the “in-gap” area for the TA, thus introducing the
conductance peak at eV = �′ and the plateau beginning from
eV = �/2 at weak coupling case.

In experiments, these features can help us distinguish the
charge-4e SC from the charge-2e SC. As the value of the su-
perconducting potential usually remains unknown, it is hard to
distinguish �′ from � directly. Therefore, the existence of the
plateau not only gives us direct evidence that differs from the
conductance spectrum of charge-2e SC but also provides us a
way to check the behavior of

√
3 as the ratio of the position of

the gap and plateau. Besides, these behaviors also distinguish
the charge-4e SC from two-gap charge-2e SC, as its con-
ductance spectrum usually contains two peaks and irregular
ratio of two gaps [46–50]. Moreover, if we can change the
coupling continuously, like approaching the tip to the sample
in STM experiments, the rising of the conductance inside the
gap can alter the curve of the differential conductance from
U shape and plateau to V shape, with a parabolic behavior
near the center of the gap. This would give more hallmarks
for experimental observation.

In summary, we investigate the Andreev reflection in
a normal metal/charge-4e superconductor junction, which
involves four particles due to the characteristics of quar-
tet condensation. Using nonequilibrium Green’s function
method, we obtain a four-particle-type Landauer-Büttiker
formula with generalized charge-4e anomalous Green’s func-
tions to describe this process. We then calculate and clarify
the behavior of this process with various incident energy
and show the conductance contributed by it. Our results
can enrich the understanding of the transport with charge-
4e SC and give more guidance for future experimental
verifications.
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APPENDIX A: DERIVATION OF THE FORMULA
FOR TRANSPORT PROCESSES IN NORMAL

METAL/SUPERCONDUCTOR JUNCTIONS

In this Appendix, we derive the formula for transport pro-
cesses in the normal metal/superconductor junction, with the
superconducting side being either charge-2e superconductor
or charge-4e superconductor.

1. Transport in charge-2e superconductivity

We first derive the transport formula in the case of charge-
2e SC. To describe the Andreev reflection, we explicitly insert
the coupling term of channel 1 ↓ into G1↑,k1k′

1
(τ1, τ

′
1). By

using the Wick’s theorem, we get

[part of G1↑,k1k′
1
(τ1, τ

′
1)]

=
∫

c
dτ2dτ ′

2

∑
k2k′

2

Fk1k2 (τ1, τ2) �1↓(τ2, τ
′
2) F †

k′
2k′

1
(τ ′

2, τ
′
1),

(A1)

with Fk1k2 (τ1, τ2) and F †
k′

2k′
1
(τ ′

2, τ
′
1) being the nonequi-

librium anomalous Green’s functions. �1↓(τ2, τ
′
2) =∑

k |tc|2gh
1↓,k (τ2, τ

′
2) is the self-energy of coupling to channel

1 ↓ with gh
1↓,k (τ2, τ

′
2) = −i〈a†

1−k↓(τ2)a1−k↓(τ ′
2)〉c

0 being the
hole-type free Green’s function in the decoupled system (i.e.,
when tc = 0).

We then apply the analytic continuation [51] to get the less
(greater) Green’s function G≶

1↑,kk′ (ω1) as the Fourier transform

of G≶
1↑,k1k′

1
(t, 0):

[part of G<
1↑,k1k′

1
(ω1)]

=
∑
k2k′

2

∑
ss′

(−1)PF+s
k1k2

(ω1) �ss′
1↓(ω1) F †,s′−

k′
2k′

1
(ω1),

[part of G>
1↑,k1k′

1
(ω1)]

=
∑
k2k′

2

∑
ss′

(−1)PF−s
k1k2

(ω1) �ss′
1↓(ω1) F †,s′+

k′
2k′

1
(ω1), (A2)

with s, s′ = ± being the branch index and P being the
total number of “minus” branches among them. Besides,
F±±

k1k2
(ω1), F †,±±

k′
2k′

1
(ω1), and �±±

1↓ (ω1) are Fourier transforms of

Fk1k2 (t±, 0±), F †
k′

2k′
1
(t±, 0±), and �1↓(t±, 0±), respectively. In

order to get G≶
1↑,A, we need to select the less (greater) part �

≶
1↓

from �±±
1↓ . By using �r

1↓ = −�a
1↓ = −i�L/2, �<

1↓ = i f h
i↓�L,

and �>
1↓ = −i f̄ h

i↓�L [52] we eventually obtain Eqs. (4) and (5)
from Eq. (A2).

While Eq. (A2) contains the process of Andreev reflection,
it should be emphasized that the rest parts of �±±

1↓ (i.e., �
r/a
1↓ )

in Eq. (A2) also contributes to the other transport processes.
Using the Keldysh equation [42]

G≶ = (1 + Gr�r )G≶
0 (1 + �aGa) + Gr�≶Ga

= Gr
[
Gr−1

0 G≶
0 Ga−1

0 + �≶]
Ga, (A3)
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the exact form of G≶
1↑,k1k′

1
can be derived as [43,53,54] (omit-

ting the energy variable ω1)

G<
1↑,k1k′

1
=

∑
k2k′

2

Gr
1↑,k1k2

[
i f e

1↑�L + i f �Rδk2k′
2

]
Ga

1↑,k′
2k′

1

+ F r
k1k2

[
i f h

1↓�L + i f �Rδk2k′
2

]
F †,a

k′
2k′

1
,

G>
1↑,k1k′

1
=

∑
k2k′

2

Gr
1↑,k1k2

[−i f̄ e
1↑�L − i f̄ �Rδk2k′

2

]
Ga

1↑,k′
2k′

1

+ F r
k1k2

[−i f̄ h
1↓�L − i f̄ �Rδk2k′

2

]
F †,a

k′
2k′

1
, (A4)

where f̄ = 1 − f and f = f (ω1) is the Fermi distribution
function in the right lead. �R = 2η measures the linewidth of
the quasiparticles in the right lead [42]. Substituting Eq. (A4)
into (3), we then get the transport formula for other transport
processes.

One is the quasiparticle tunneling process, which con-
tributes a current

I1↑,q = e

h

∫
dω1( f e

1↑ − f ) Tq, (A5)

where Tq(ω1) = �L�R
∑

k1k2k′
1

Gr
1↑,k1k2

Ga
1↑,k2k′

1
is the tunneling

coefficient.
The other is the Andreev process with the reflected hole

entering the right lead, contributing a current

I1↑,R = e

h

∫
dω1

(
f e
1↑ f̄ − f̄ e

1↑ f
)

TR

= e

h

∫
dω1

(
f e
1↑ − f

)
TR, (A6)

with TR(ω1) = �L�R
∑

k1k2k′
1

F r
k1k2

F †,a
k2k′

1
.

We usually do not distinguish these two processes and
define the transmission current [38]

I1↑,trans = e

h

∫
dω1

(
f e
1↑ − f

)
Ttrans, (A7)

with transmission coefficient Ttrans = Tq + TR. Together with
Eq. (6), we have the total current

I1↑,tot = I1↑,A + I1↑,trans. (A8)

2. Transport in charge-4e superconductivity

Similar to the charge-2e AR, the charge-4e AR can be
described by inserting the coupling terms of the other three
channels into G1↑,k1k′

1
(τ1, τ

′
1). Using the Wick’s theorem, we

get

[part of G1↑,k1k′
1
(τ1, τ

′
1)]

= −
∫

c
dτ2dτ3dτ4dτ ′

2dτ ′
3dτ ′

4

∑
k2k3k4
k′

2k′
3k′

4

Fk1k2k3k4 (τ1, τ2, τ3, τ4)

×�1↓(τ2, τ
′
2)�2↑(τ3, τ

′
3)

×�2↓(τ4, τ
′
4)F †

k′
4k′

3k2k′
1
(τ ′

4, τ
′
3, τ

′
2, τ

′
1), (A9)

with Fk1k2k3k4 (τ1, τ2, τ3, τ4) and F †
k′

4k′
3k′

2k′
1
(τ ′

4, τ
′
3, τ

′
2, τ

′
1) being

the nonequilibrium charge-4e anomalous Green’s functions.

�iσ (τ, τ ′) = ∑
k |tc|2gh

iσ,k (τ, τ ′) is self-energy of coupling to

channel iσ with gh
iσ,k (τ, τ ′) = −i〈a†

ikσ
(τ )aikσ (τ ′)〉c

0 being the
hole-type free Green’s function in the decoupled system (i.e.,
when tc = 0).

We then apply the analytic continuation [51] and use the
Fourier transform to get the less (greater) Green’s functions

[part of G<
1↑,k1k′

1
(ω1)]

= −
∫

234

∑
k2k3k4
k′

2k′
3k′

4

∑
s2s3s4
s′

2s′
3s′

4

(−1)PF+s2s3s4
k1k2k3k4

�
s2s′

2
1↓ (ω2)

×�
s3s′

3
2↑ (ω3)�s4s′

4
2↓ (ω4)F †,s′

4s′
3s′

2−
k′

4k′
3k′

2k′
1

,

[part of G>
1↑,k1k′

1
(ω1)]

= −
∫

234

∑
k2k3k4
k′

2k′
3k′

4

∑
s2s3s4
s′

2s′
3s′

4

(−1)PF−s2s3s4
k1k2k3k4

�
s2s′

2
1↓ (ω2)

×�
s3s′

3
2↑ (ω3)�s4s′

4
2↓ (ω4)F †,s′

4s′
3s′

2+
k′

4k′
3k′

2k′
1

, (A10)

with s2,3,4, s′
2,3,4 = ± being the branch index and P denoting

the total number of “minus” branches among them F±±±±
k1k2k3k4

=
F±±±±

k1k2k3k4
(ω2, ω3, ω4) and F †,±±±±

k′
4k′

3k′
2k′

1
= F †,±±±±

k′
4k′

3k′
2k′

1
(ω4, ω3, ω2)

are the Fourier transforms of Fk1k2k3k4 (0±, t±
2 , t±

3 , t±
4 ) and

F †
k′

4k′
3k′

2k′
1
(t±

4 , t±
3 , t±

2 , 0±). �±±
iσ (ω j ) is the Fourier transform

of �iσ (t±
j , 0±). To get G≶

1↑,A, we also need to select the less

(greater) part �
≶
iσ from the �±±

iσ . With some simplification,
we can get Eqs. (8) and (9) in the end.

Similar to the charge-2e SC, here we have extra processes
contributing to the total conductance, including the quasiparti-
cle tunneling and the other three types of Andreev processes.
While the current I1↑,q contributed by the quasiparticle tun-
neling has the same form as Eq. (A5), the formula for other
transport processes can be generalized from Eq. (A6). We de-
note them as I1↑,αβγ , with α, β, γ = L, R denoting which side
the reflected holes enter, and set I1↑,LLL = I1↑,A. According to
the number of reflected holes entering the right side, we have

I1↑,LLR = e

h

∫ ′

1234
( f e f e f e f − f̄ e f̄ e f̄ e f̄ ) TLLR,

I1↑,LRR = e

h

∫ ′

1234
( f e f e f f − f̄ e f̄ e f̄ f̄ ) TLRR,

I1↑,RRR = e

h

∫ ′

1234
( f e f f f − f̄ e f̄ f̄ f̄ ) TRRR, (A11)

with

TLLR = (�L )
3
�R

∑
kik′

j

F r
1↑,k1k2k3k4

F †,a
1↑,k4k′

3k′
2k′

1
,

TLRR = (�L )
2
(�R)

2 ∑
kik′

j

F r
1↑,k1k2k3k4

F †,a
1↑,k4k3k′

2k′
1
,

TRRR = �L(�R)
3 ∑

kik′
j

F r
1↑,k1k2k3k4

F †,a
1↑,k4k3k2k′

1
. (A12)
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Others like I1↑,LRL (TLRL ), I1↑,RLR(TRLR), etc., are analogous.
Therefore, we can measure their contributions to the con-

ductance by Gαβγ = ∂I1↑,αβγ /∂V ,

GLLR = e2

h

3∑
i=1

∫ ′

1234−i
( f e f e f + f̄ e f̄ e f̄ ) TLLR|ωe

i =eV ,

GLRR = e2

h

2∑
i=1

∫ ′

1234−i
( f e f f + f̄ e f̄ f̄ ) TLRR|ωe

i =eV ,

GRRR = e2

h

∫ ′

1234−1
( f f f + f̄ f̄ f̄ ) TRRR|ωe

1=eV , (A13)

assuming that all Tαβγ are independent of voltage V . Others
are analogous. We then obtain the total current and conduc-
tance

I1↑,tot = I1↑,q +
∑
αβγ

I1↑,αβγ ,

Gtot = Gq +
∑
αβγ

Gαβγ , (A14)

with GLLL = GA.

APPENDIX B: PERTURBATIVE EXPANSION FOR OTHER
PROCESSES IN NORMAL METAL/CHARGE-4e

SUPERCONDUCTOR JUNCTIONS

In this Appendix, we briefly discuss the perturbative
expansion for other transport processes. The first one is
the quasiparticle tunneling process, which is described by
Eq. (A5). To calculate the nonequilibrium Gr/a

1↑,k1k2
, we begin

with the Dyson equation [51]

Gr/a
1↑,k1k2

(ω1) = δk1k2 gr/a
1↑,k1

(ω1) +
∑
k′

1k′
2

gr/a
1↑,k1

(ω1)

× [
δk′

1k′
2
�

r/a
L + �

r/a
1↑,k′

1k′
2
(ω1)

]
Gr/a

1↑,k′
2k2

(ω1),

(B1)

with g1↑,k being the free Green’s function. �
r/a
L = ∓i�L/2 is

the self-energy of coupling to channel 1 ↑ and �
r/a
1↑,k′

1k′
2
(ω1)

is the Fourier transform of the irreducible self-energy
�

r/a
1↑,k′

1k′
2
(t, 0) containing the superconducting interaction and

the coupling. Expanding �1↑,k′
1k′

2
(τ, τ ′) to the lowest order of

� and applying the analytic continuation [51], we have

�
(1)
1↑,k′

1k′
2
(τ, τ ′) = −�2G1↓,k′

1k′
2
(τ, τ ′)G2↑,k′

1k′
2
(τ, τ ′)

× G2↓,k′
1k′

2
(τ, τ ′),

�
(1),≶
1↑,k′

1k′
2
(t, t ′) = −�2G≶

1↓,k′
1k′

2
(t, t ′)G≶

2↑,k′
1k′

2
(t, t ′)

× G≶
2↓,k′

1k′
2
(t, t ′), (B2)

with

Giσ,k′
1k′

2
(τ, τ ′) = δk′

1k′
2
gh

iσ,k′
1
(τ, τ ′) +

∫
c

dτ1dτ ′
1

∑
k

gh
iσ,k′

1
(τ, τ1)

× �iσ (τ1, τ
′
1)Giσ,kk′

2
(τ ′

1, τ
′). (B3)

Using [51] (omit the subscript for simplification)

�(1),r (t, 0) = θ (t )[�(1),>(t, 0) − �(1),<(t, 0)],

�(1),a(t, 0) = θ (−t )[�(1),<(t, 0) − �(1),>(t, 0)], (B4)

the Fourier transform to �(1),r/a(ω1) would then lead to in-
tegrals over terms like ( fα fβ fγ + f̄α f̄β f̄γ ), where α, β, γ =
L, R denotes the Fermi distribution function in left (right)
leads, as G≶ contains terms with fL,R. This is consistent with
the results in Ref. [5] and can be seen as the generalization
to the nonequilibrium case. From this we can find that, in
general, if we fix the energy of the incident electrons, the
voltage bias would still affect Tq by changing the occupation
numbers. This is consistent with the discussion in Sec. IV,
showing the specific particle-hole symmetry in charge-4e SC.

As for the other three types of Andreev processes, the
lowest-order expansions of Tαβγ can be expressed like (omit-
ting the expressions of A1,2,3 for simplification)

T (1)
LLR = 4z3v2 A1

(
ωe

1, ω
e
2, ω

e
3, ω

e
4, z1

)
B
(
ωe

1, ω
e
2, ω

e
3, ω

e
4

) ,

T (1)
LRR = 4z2v2 A2

(
ωe

1, ω
e
2, ω

e
3, ω

e
4, z1

)
B
(
ωe

1, ω
e
2, ω

e
3, ω

e
4

) ,

T (1)
RRR = 4zv2 A3

(
ωe

1, ω
e
2, ω

e
3, ω

e
4, z1

)
B
(
ωe

1, ω
e
2, ω

e
3, ω

e
4

) , (B5)

with v = �/πρR and z1 = πρR�L/(2 + πρR�L ). Despite
having different sensitivity to the coupling, the same form of
the denominator of T (1)

αβγ shows similar energy dependence.
We can write it explicitly

B
(
ωe

1, ω
e
2, ω

e
3, ω

e
4

) =
∏
i 
= j

(
ωe

i − ωe
j

)2
. (B6)

Therefore, the perturbation breaks down when at least two
of the incident electrons carry the same energy. In fact, it is
these points that mainly contribute to Tαβγ and dominate the
transmission processes.

APPENDIX C: THE EQUATION OF MOTION
FOR RETARDED GREEN’S FUNCTIONS

In this Appendix, we derive the EOM for charge-4e anoma-
lous Green’s function.

1. The equation of motion for multitime
retarded Green’s function

According to Eq. (16), we begin with examining the time
evolution of multitime retarded Green’s function F . For the
convenience of future applications, we consider the general
form of F (tx, ty, tz ),

F (A(0), X (tx ),Y (ty), Z (tz ))

= P(xyz)θ (0 − tx )θ (tx − ty)θ (ty − tz )

× {[{A(0), X (tx )},Y (ty)], Z (tz )}, (C1)
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with operators A, X,Y, Z owning different times. The Fourier
transform of F (tx, ty, tz ) can be written as

F (ωx, ωy, ωz ) =
∫

dtxeiωxtx

∫
dtyeiωyty

×
∫

dtze
iωztzF (tx, ty, tz )

=
∫ 0

−∞
dtxeiωxtx

∫ tx

−∞
dtyeiωyty

×
∫ ty

−∞
dtze

iωztzF (tx, ty, tz ). (C2)

We first consider the time derivative of tz. Using the Heisen-
berg equation, we have

i∂zF (tx, ty, tz ) = [F , Hz](tx, ty, tz ), (C3)

where [F , Hz] = F (A(0), X (tx ),Y (ty), [Z (tz ), Htot(tz )]). No-
tice that∫ ty

−∞
dtze

iωztz i∂zF (tx, ty, tz )

= ieiω−
z tyF (tx, ty, ty) + ω−

z

∫ ty

−∞
dtze

iωztzF (tx, ty, tz ).

(C4)

The Fourier transform of Eq. (C2) then gives

ω−
z F (ωx, ωy, ωz )

= −iF1(ωx, ωyz ) + [F , Hz](ωx, ωy, ωz ). (C5)

Here F1(ωx, ωyz ) is the Fourier transform of F (tx, ty, ty) with
ωyz = ωy + ωz. We note that in our calculations, ωx,y,z are hole
energies due to the selection of time variables that is opposite
to the usual way. This also causes the −iη which preserves the
causality 0 > tx,y,z.

Repeatiung the above steps for tx and ty, we finally get a
complete set of EOM,

ω−
z F (ωx, ωy, ωz ) = −iF1(ωx, ωyz ) + [F , Hz](ωx, ωy, ωz ),

ω−
yzF1(ωx, ωyz ) = −iF2(ωxyz ) + [F1, Hy](ωx, ωyz ),

ω−
xyzF2(ωxyz ) = −iF0 + [F2, Hx](ωxyz ), (C6)

where F0 = F (A(0), X (0),Y (0), Z (0)). F2(ωxyz ), [F1, Hy]
(ωx, ωyz ), and [F2, Hx](ωxyz ) are the Fourier transforms of
F (tx, tx, tx ), [F1, Hy](tx, ty, ty), and [F2, Hx](tx, tx, tx ) with

[F1, Hy] = F (A(0), X (tx ), [Y (ty), Htot (ty)], Z (ty))

+ F (A(0), X (tx ),Y (ty), [Z (ty), Htot (ty)]),

[F2, Hx] = F (A(0), [X (tx ), Htot (tx )],Y (tx ), Z (tx ))

+ F (A(0), X (tx ), [Y (tx ), Htot (tx )], Z (tx ))

+ F (A(0), X (tx ),Y (tx ), [Z (tx ), Htot (tx )]). (C7)

2. The equation of motion for equilibrium
retarded Green’s function

We here give the explicit form of the EOM to solve
F (ωx, ωy, ωz ). Using the EOM derived in Appendix C 1 and
the commutation relations (19), we define F, which is the

Fourier transform of⎛
⎜⎝

F (A(0), X1(tx ),Y1(ty), Z1(tz ))
F (A(0), X1(tx ),Y1(ty), Z2(tz ))
F (A(0), X1(tx ),Y1(ty), Z3(tz ))

⎞
⎟⎠, (C8)

with A = c̃1k, X1 = c̃xk,Y1 = c̃yk and Z1 = c̃zk, Z2 = d̃†
zk,

Z3 = ξ̃zk c̃zk . This leads to

(ω−
z I3 − H)F = −iF′

1, (C9)

with the coefficient matrix

H =
⎛
⎝εk � 0

0 −3εk �

0 � εk

⎞
⎠, (C10)

and F′
1 being the Fourier transform of

⎛
⎜⎝

F (A(0), X1(tx ),Y1(ty), Z1(ty))
F (A(0), X1(tx ),Y1(ty), Z2(ty))
F (A(0), X1(tx ),Y1(ty), Z3(ty))

⎞
⎟⎠. (C11)

It then requires F′
1 to solve F. We thus define F1, in

which the (3i + j − 3) element is the Fourier transform of
F (A(0), X1(tx ),Yi(ty), Zj (ty)), with i, j = 1, 2, 3. Here the
definition of Y1,2,3 is the same as Z1,2,3 and we can get F′

1 as
the top three elements of F1.

Following the similar procedures, we can derive the EOM
for F1,

(ω−
yz I9 − H1)F1 = −iF′

2, (C12)

with the coefficient matrix

H1 =
⎛
⎝H11 �I3 0

0 H12 �I3

0 �I3 H11

⎞
⎠,

H11 =
⎛
⎝2εk � 0

0 −2εk �

0 � 2εk

⎞
⎠,

H12 =
⎛
⎝−2εk � 0

0 −6εk �

0 � −2εk

⎞
⎠. (C13)

Besides, F′
2 are the top nine elements in F2, in which

the (9i + 3 j + k − 12) element is the Fourier transform of
F (A(0), Xi(tx ),Yj (tx ), Zk (tx )), with i, j, k = 1, 2, 3. Here the
definition of X1,2,3 is the same as Z1,2,3.

We then write the EOM for F2

(ω−
xyz I27 − H2)F2 = −iF0, (C14)

with H2 being the coefficient matrix similar to H,H1.
F0 is the vector with its (9i + 3 j + k − 12) element being
F (A(0), Xi(0),Yj (0), Zk (0)).

Since the value of F0 can be solved exactly [27], at zero
temperature, we find that the nonzero terms in F0 are

F (A(0), X2(0),Y1(0), Z1(0)) = 1,

F (A(0), X2(0),Y1(0), Z3(0)) = 1,

F (A(0), X3(0),Y1(0), Z2(0)) = −1. (C15)
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This completes the whole set of EOM and we can solve
F (ωx, ωy, ωz ) as F(1).

3. The equation of motion for nonequilibrium
retarded Green’s function

Here we extend the EOM in Appendix C 2 to the nonequi-
librium case with the coupling of the left normal metal lead
and briefly discuss the complexity for transport in charge-4e
SC. In charge-2e SC, the EOM for nonequilibrium Green’s
functions can still be closed with the help of commutation
relations like

[c1kσ , HC] = tca1σ , [a1kσ , HC] = tcc1σ , (C16)

where a1σ = ∑
k a1kσ and c1σ = ∑

k c1kσ . However, the sit-
uation for charge-4e SC is much more complex, due to the
commutation relations like

[d†
1k↑, HC] = −tc (a†

1↓c†
2k↑c†

2−k↓ + c†
1−k↓a†

2↑c†
2−k↓

+ c†
1−k↓c†

2k↑a†
2↓), (C17)

[ξ1k↑c1k↑, HC] = tc ξ1k↑a1↑ + ( j1−k↓ν2k↑,2−k↓
+ j2k↑ν1−k↓,2−k↓ + j2−k↓ν1−k↓,2k↑)c1k↑,

(C18)

where a†
iσ = ∑

k a†
ikσ

, aiσ = ∑
k aikσ , νik, jk = nikn jk − n̄ik n̄ jk ,

and jikσ = tc
∑

k′ (c†
ikσ

aik′σ − a†
ik′σ cikσ ). Here Eq. (C17) de-

scribes the coupling between charge-3e particles and left
leads, which would mix the momentum of three channels, and
Eq. (C18) describes the effect that the occupation numbers
in charge-4e SC would be affected by the appearance of the
current.

To suppress these many-body correlation effects, we con-
sider the approximation with weak coupling |tc|2, where the
lead coupling only introduces an extra self-energy E to the

charge-4e anomalous Green’s function. This approximation
is effective due to the dominant contribution of the diagonal
term δkk1δkk2δkk3δkk4 F r

k1k2k3k4
to the summation

∑
ki

F r
k1k2k3k4

as
those momentum mixing terms are higher-order terms of |tc|2.
Therefore, we have

(ω−
z I3 − H − E )Fneq = −iF′

1,neq,

(ω−
yz I9 − H1 − E1)F1,neq = −iF′

2,neq,

(ω−
xyz I27 − H2 − E2)F2,neq = −iF0, (C19)

with

E =
⎛
⎝i�L/2 0 0

0 3i�L/2 0
0 0 i�L/2

⎞
⎠ (C20)

and

E1 =

⎛
⎜⎝
E11 0 0
0 E12 0
0 0 E11

⎞
⎟⎠,

E11 =

⎛
⎜⎝

i�L 0 0
0 2i�L 0
0 0 i�L

⎞
⎟⎠,

E12 =

⎛
⎜⎝

2i�L 0 0
0 3i�L 0
0 0 2i�L

⎞
⎟⎠. (C21)

E2 is similar to E, E1. Notice that as we consider the cou-
pling hardly altering the property of charge-4e SC, at zero
temperature we still use the result of F0 in equilibrium. As
the coupling is strengthened, not only the contribution of the
momentum mixing terms needs to be considered but also the
value of nonequilibrium F0 needs to be decided by some self-
consistent method, which we would leave for future study.
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