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The superconducting diode effect may exist in bulk systems as well as in junctions when time-reversal
and inversion symmetries are simultaneously broken. Magnetization gradients and textures satisfy both re-
quirements and therefore also allow for superconducting diodes. We concretely demonstrate such possibilities
in two-dimensional superconductors. We first consider superconducting Rashba metals in the presence of an
inhomogeneous out-of-plane exchange field. Using analytical arguments, we reveal that such magnetization
gradients stabilize a helical superconducting ground state, similar to homogeneous in-plane magnetic fields.
Our predictions are confirmed by employing self-consistent real-space numerical lattice simulations exemplified
through the cases of a uniform magnetization gradient or a ferromagnetic domain wall. Furthermore, by con-
sidering a phase difference, we determine the nonreciprocal current-phase relations and explore their parameter
dependence. Our calculations show that planar devices with out-of-plane magnetization gradients may be as
efficient supercurrent rectifiers as their analogs induced by uniform in-plane fields. In addition, they feature the
advantage that by means of tailoring the spatial profile of the out-of-plane magnetization, one may optimize and
spatially control the diode effect. Finally, we show that superconducting diodes may become also accessible even
in the absence of spin-orbit coupling by means of suitable spatially varying magnetization fields.
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I. INTRODUCTION

Recently, a series of experiments have demonstrated the
existence of nonreciprocal supercurrents in different de-
vice setups, thus establishing the so-called superconducting
diode effect [1–17]. The supercurrent rectification appears
promising for future electronic logic circuit applications uti-
lizing nondissipative supercurrents and its efficiency depends
strongly on the particular design of the diode [18]. When
the superconducting diode effect takes place, different crit-
ical currents arise for current flow in opposite directions.
This implies that there exist certain regimes of the cur-
rent amplitudes, in which the junction is resistive along one
direction and superconductive along the other. Thus, the su-
perconducting diode effect can be equivalently viewed as
a polarity-dependent metal-superconductor transition. This
appealing rectification property can originate, for example,
from vortex-related physics [10,15,17], be a property of
the tunnel-junction itself [2,4,7,8,14], or be rooted in finite-
momentum Cooper pairing of the superconducting ground
state [3,5,6,9,11–13,16]. In this work, we focus on the lat-
ter mechanism, i.e., supercurrent nonreciprocity in Josephson
tunnel junctions arising from helical superconducting ground
states [19–31].

Obviously, the detailed mechanism and whether an ex-
ternal field is required for nonreciprocity or not, depends
on the particular system under investigation. For the case
of homogeneous noncentrosymmetric superconductors, the
Rashba spin-orbit coupling (SOC) in conjunction with an in-
plane magnetic field was shown to allow for nonreciprocity
of the supercurrents [19,21,23]. Essentially, in the presence
of the field the ground state adiabatically transforms into the

so-called helical superconducting phase [32,33]. In the latter,
the Cooper pairs carry a finite momentum q0, whose direction
is determined by the orientation of the external Zeeman field.
As a consequence of the finite-momentum pairing, the critical
depairing current naturally depends on the current direction
compared to the ground state propagation direction of the
Cooper pairs set by q0.

The above mechanism is, however, not unique. For in-
stance, it was recently discussed in a work that two of us
coauthored [34], that imposing an out-of-plane magnetization
gradient on a planar superconductor with Rashba SOC can
lead to additional ground state electrical currents. The emer-
gence of the latter reflects the violation of time-reversal and
inversion symmetries, and also forms the basis for a super-
conducting diode effect. Nevertheless, Ref. [34] restricted the
discussion to outlining the possibility and the key concepts
for such magnetization gradient diodes, without carrying out
a detailed investigation of the arising Josephson diode effects.
In fact, a number of interesting questions need to be answered
in this respect. The first concerns whether an out-of-plane
magnetization gradient also induces a helical pairing state in a
Rashba superconductor. Moreover, when it comes to possible
applications, it is important to examine the efficiency of such
diodes. Note that when considering magnetization gradients,
the exact spatial profile of the exchange field is crucial. There-
fore, optimizing this feature constitutes an important study
area for diodes using magnetization gradients.

In this work, we explore the superconducting diode ef-
fect induced from magnetization gradients in two-dimensional
(2D) systems, both in the presence and absence of Rashba
SOC. Notably, the spatially varying magnetization can be
either an intrinsic property of the system, e.g., spontaneously
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generated spin-density waves due to interactions, or, imposed
by external means. We first investigate the emergence of a
diode effect in a bulk Rashba superconductor under the influ-
ence of an out-of-plane magnetization gradient, and discuss
the arising similarities and differences with its counterpart
generated by uniform in-plane magnetization components.
Afterwards, we extend our study to the Josephson diode
effect, i.e., nonreciprocal Josephson transport arising in junc-
tion settings. In particular, we study 2D Josephson junctions
composed of superconducting Rashba metals, in which time-
reversal and C2 rotation symmetries become already violated
at zero phase-bias due to the influence of the out-of-plane
magnetization. We perform self-consistent real-space simu-
lations of such Josephson junction devices to determine the
real-space current distribution, the asymmetric current-phase
relation, and the associated directional-dependent critical cur-
rents. We indeed find that this setup features the Josephson
diode effect and we study its parameter dependence in detail.
Compared to the standard case with in-plane magnetic fields,
we find that the nonreciprocal effect is equally pronounced
for the magnetization gradient junctions, and may be further
optimized by proper designs of the spatial form of the magne-
tization gradients.

We conclude this work by demonstrating that a spatially
varying magnetization profile is alone capable of generating
Josephson diodes, without any requirement for SOC. This is
possible when on top of the out-of-plane magnetization gradi-
ent discussed earlier, an additional magnetization profile with
a suitable structure is present. The latter profile can be, for in-
stance, induced by a magnetic texture crystal whose magnetic
moments exhibit a nontrivial winding in two spatial dimen-
sions. Such infinitely repeating magnetic structures carry zero
net magnetic moment since they preserve a nonsymmorphic
time-reversal symmetry [35,36]. However, they generally lack
inversion symmetry, hence effectively give rise to Rashba
SOC [37–39]. A number of works have theoretically pre-
dicted [40–44], as well as experimentally [45] demonstrated,
the engineering of such a synthetic Rashba SOC. The latter
SOC combined with the out-of-plane magnetization profiles
discussed earlier, gives rise to the sought-after Josephson
diode effect. Our analytical predictions are further backed by
numerical investigations for a magnetic texture crystal of the
spin whirl type [38,39,46].

The paper is organized as follows: in Sec. II A we briefly
review the phenomenology of helical superconductivity and
magnetization-induced supercurrents, with a focus on the
cases mediated by uniform in-plane fields and out-of-plane
magnetization gradients. Section II B considers the particular
case of a Rashba metal and provides a detailed discussion
of the amplitude of linear-response coefficients connecting
the induced currents and the magnetization for that case.
In Sec. III we turn to the lattice model and the numerical
setup for obtaining the current-phase relations in the Rashba
metal. Section IV discusses the results from the lattice model,
comparing the diode effects for different junction realizations.
Next, in Sec. V, we show using both analytical and numerical
methods that the Josephson diode effect can emerge from a
spatially nonuniform magnetization even in the absence of
Rashba SOC. Finally, Sec. VI presents our discussion and
conclusions.

II. HELICAL SUPERCONDUCTIVITY
IN A RASHBA METAL

Before proceeding with the detailed numerical inves-
tigations of the superconducting diode effect in various
experimentally relevant platforms, we first lay the founda-
tions for the phenomena discussed here, and compare their
mechanism to prior theoretical proposals. In the following
two subsections, we first introduce a phenomenological de-
scription of the helical phase stabilized by (in)homogeneous
magnetism and afterwards we focus on the case of a Rashba
metal in the quasiclassical regime.

A. Phenomenological theory of helical superconductivity in
Rashba systems

Our discussion can be facilitated by introducing the phe-
nomenological energy density E (r) of the Rashba supercon-
ductor, which is obtained after integrating out the electronic
degrees of freedom. Here, r = (x, y) corresponds to a position
in 2D space, with x and y the coordinates. Assuming a bulk
system with a uniform superconducting gap, we focus on the
couplings appearing among the superconducting phase field
ϕ(r), the in-plane components of the electromagnetic vec-
tor potential Ax,y(r) and a magnetization/magnetic/exchange
field Mx,y(r), along with the gradients of the out-of-plane
magnetization ∇Mz(r) with ∇ = (∂x, ∂y). After the analysis
of Ref. [34], we find the following expression for E (r):

E (r) = A(r) · [DA(r)/2 − Jmag(r)], (1)

where we introduced the gauge invariant vector potential
A(r) = A(r) + h̄∇ϕ(r)/2e and the current induced by the
in-plane magnetization and the out-of-plane-magnetization
gradient:

Jmag(r) = �ẑ × M(r) + X∇ × ẑMz(r). (2)

We remark that throughout this work all vectorial
quantities refer to the in-plane components, e.g., M(r) =
(Mx(r), My(r)). The only exception is the unit vector pointing
in the z direction which is denoted ẑ. In the above, we intro-
duced the reduced Planck constant h̄, the electric charge unit
e > 0, the superfluid stiffness D, and the coefficients � and
X which control the strength of the magnetization-induced
currents.

The coefficient � is responsible for the standard Edelstein
effects [47,48]. While this coupling constant has been calcu-
lated in prior works [34,49], we briefly discuss it also here
for completeness. The interconversion coefficient X has been
investigated by two previous works for a superconducting
Rashba metal. Firstly, Pershoguba et al. [49] determined the
behavior of this coefficient as a function of the ratio of the
Fermi energy EF and the SOC energy at the Fermi level
Esoc, when the pairing gap � � 0 is considered negligible.
Subsequently, Ref. [34] investigated the limit in which the
Fermi energy goes to infinity, and X is found as a function
of the ratio of Esoc and �. In addition to the contribution of
the Rashba SOC, the latter work also considered the contri-
butions of the Zeeman effect to X , obtaining the following
expressions:

X = χ + χZ and χZ = gμBχ
spin
⊥ /2. (3)
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Notably, the coefficient X consists of two principal contri-
butions χZ and χ . The former stems from the Zeeman effect,
while the latter incorporates the orbital and Rashba couplings
to the magnetization. In the above, g denotes the gyromagnetic
Landé factor, μB the Bohr magneton, and χ

spin
⊥ defines the

out-of-plane spin susceptibility of the Rashba system.
We observe from Eqs. (1) and (2) that the free energy

obtained for in-plane magnetic fields and out-of-plane mag-
netization gradients has a similar form. Therefore, we expect
the system to adiabatically transit to the helical phase with
�(r) = �exp(iq0 · r) in either scenario [32,33]. The current
of the system at zero vector potential is given by

J(r) = − δE (r)

δA(r)

∣∣∣∣
A=0

= −D
h̄

2e
∇ϕ(r) + Jmag(r). (4)

For a uniform Jmag(r) = Jmag, the system completely can-
cels out the magnetization-induced current. This is precisely
the helical superconductivity regime, which is dictated by
a zero total electric current. Hence, the resulting slope |q0|
of the superconducting phase profile in the helical phase is
determined by minimizing the energy density of Eq. (1) with
respect to the phase gradient, and depends on the precise
values of the coefficients � and X . The above implies that
the system exhibits a nonzero constant superconducting phase
gradient ∇ϕ given by

q0 = ∇ϕ = 1

D

2e

h̄
Jmag. (5)

B. The case of a superconducting Rashba metal

At this point, it is important to discuss the parameter depen-
dence of the coefficients � and X in the representative case
of a superconducting Rashba metal. In this case, the system
is described in its normal phase by two helicity bands with
energy dispersions

ε±(p) = p2 − p2
F ± 2m∗υp

2m∗
, (6)

where p = |p| corresponds to the modulus of the momentum
vector p = h̄k, where k defines the wave vector. Here, pF

is the Fermi momentum in the absence of the Rashba SOC,
whose strength is determined by the variable υ > 0. The vari-
able m∗ > 0 denotes the effective mass. For a typical metallic
conductor considered here, which features an electron gas,
m∗ can be approximated with the bare electron mass me and
the Landé factor with g = 2. In the following, we consider
the regime in which the Fermi energy EF = p2

F /2me is much
larger than Esoc = υpF and �. Thus, in this limit, EF can
be taken to infinity. In addition, we restrict to the case δ =
�/Esoc � 1.

Under the above conditions, Ref. [34] has shown that χ

reads as

χ (0 < δ � 1) = − e

4π h̄
, (7)

while the Zeeman contribution becomes

χZ (0 < δ � 1) = μBχ
spin
⊥ = e

2π h̄
. (8)

Interestingly, the contribution of the Zeeman effect is sub-
stantial and in the present case is twice that of χ , thus leading

(a) (b)

FIG. 1. Fermi surface for (a) a spin-degenerate metal, and (b) a
metal with Rashba spin-orbit coupling, which features an inner (red)
and an outer (blue) Fermi contour. These Fermi contours result from
the two helicity bands of the Rashba metal. In (a) the two Fermi
surfaces coincide, a property which is reflected in the mixed (purple)
color coding of the Fermi surface. In (b) we have indicated the
parameter δksoc used in the main text, which defines the splitting of
the two helicity Fermi contours.

to |X | = χ . Since in the present case the sign of X is not
crucial, we can take advantage of the coincidence of |X | and
χ , and do not explicitly take into account the Zeeman effect
in our upcoming analysis.

We now proceed with the expression of the coefficient �

for a superconducting Rashba metal in the quasiclassical limit
and at zero temperature T . It is straightforward to show that

� = eυχ
spin
|| , (9)

where χ
spin
|| indicates the in-plane spin-spin susceptibility. At

T = 0, we find χ
spin
|| = χ

spin
⊥ /2 = me/2π h̄2. This implies that

� can be re-written according to

�
(
0 < δ � 1

) = 2meυ

h̄

e

4π h̄
. (10)

Thus, we find the ratio �/X = δksoc, where we introduced
the Rashba SOC wave number δksoc = 2meυ/h̄, which yields
the SOC splitting of the two helical branches, as shown in
Fig. 1. Therefore, in order for the two mechanisms, i.e.,
in-plane field M|| versus out-of-plane magnetization gradient
∂Mz, to lead to the same superconducting phase gradient |q0|,
the following relation needs to be satisfied:

|M|||δksoc = |∂Mz| ∼ |δMz|
ξgrad

. (11)

From the above, we find the following simple result: what
controls the relative ratio of the strengths of these two effects
is how the Rashba splitting δksoc of the two helicity bands
compares to the characteristic length scale ξgrad for which
the out-of-plane magnetization is modified by δMz. There-
fore, if we assume the same order of magnetization energies
|M||| ∼ |δMz|, the magnetization gradient contribution to |q0|
is dominant only when the following inequality is satisfied:

ξgrad < 1/δksoc. (12)

The above reveals that the value of ξgrad required to satisfy
the above scales inversely proportional to the Rashba SOC
strength υ.
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III. LATTICE MODEL AND METHOD
FOR NUMERICAL APPROACH

In this section we describe the lattice model and the method
used to determine the supercurrents and the current-phase
relations. The Hamiltonian without magnetization effects is
given by

H = Hkin + Hsoc + HSC, (13)

where

Hkin = −t
∑
〈i,j〉,σ

c†
iσ cjσ − μ

∑
i,σ

c†
iσ ciσ , (14)

Hsoc = −λsoc

2

∑
i

[(c†
i−x̂↓ci↑ − c†

i+x̂↓ci↑)

+i(c†
i−ŷ↓ci↑ − c†

i+ŷ↓ci↑) + H.c.], (15)

HSC =
∑

i

�i(c
†
i↑c†

i↓ + H.c.), (16)

corresponds to the kinetic term, the Rashba SOC and the
superconducting term, respectively. In the above equations,
c†

iσ (ciσ ) refer to the electronic creation (annihilation) operator,
where i is used as the shorthand notation for Ri denoting the
coordinates on a 2D square lattice (lattice constant a = 1)
and σ refers to the spin. We include nearest-neighbor (NN)
hopping t = 1 and a chemical potential μ. Further, λsoc and �i
denote the strength of the Rashba SOC and the superconduct-
ing order parameter. Below we neglect any contributions from
the electromagnetic vector potential in the lattice studies, as-
suming that such effects are negligible. Possible consequences
of their inclusion can be inferred from previous studies [50].

Using the spinor �
†
i = (c†

i↑, c†
i↓, ci↑, ci↓), we construct the

4N2 × 4N2 Bogoliubov–de Gennes (BdG) Hamiltonian and
solve self-consistently at each site for the superconducting
order parameter:

�i = VSC(〈ci↑ci↓〉 − 〈ci↓ci↑〉), (17)

assuming an on-site pairing interaction VSC = −1.0 resulting
in � = 0.2 for the homogeneous system in the absence of
external fields and with the typical values of μ = −1 and
λsoc = 0.2 used below.

We compute the current densities between all NN bonds,
which have two contributions due to the presence of Rashba
SOC:

Ji,δ̂ = Jt
i,δ̂

+ Jsoc
i,δ̂

, (18)

where δ̂ = {x̂,−x̂, ŷ,−ŷ} denote the four NN bonds to site i.
The first contribution to the current density is derived from the
hopping term of the Hamiltonian and can be written as

Jt
i,δ̂

= it
∑

σ

〈c†
i+δ̂σ

ciσ − H.c.〉. (19)

The latter term in Eq. (18) due to SOC is given by

Jsoc
i,±x̂ = i

λsoc

2

∑
i,σ

〈±σc†
i±x̂σ ciσ̄ − H.c.〉, (20)

Jsoc
i,±ŷ = ±λsoc

2

∑
i,σ

〈c†
i±ŷσ ciσ̄ − H.c.〉, (21)

FIG. 2. Illustration of the Josephson junction devices for the
cases of (a) an in-plane magnetic field and (b) an out-of-plane mag-
netization gradient. The orange region corresponds to the weak link
junction area, and Jx denotes the current arising in the x direction.

with σ̄ = −σ . Finally, the total current operator on each site
is defined as the average vector of the two adjacent bonds:

Ji = 1

2

∑
δ̂

δ̂Ji,δ̂. (22)

The current expressions Eqs. (19)–(21) contain an additional
factor of e/(h̄a2), which enters our current unit in the follow-
ing.

The Hamiltonian for the in-plane magnetic field in the y
direction is given by

HB = −By

∑
i,σ,σ ′

(σy)σσ ′c†
iσ ciσ ′ . (23)

In contrast, the out-of-plane magnetization gradient case is
modeled by

HMz = −
∑
i,σ,σ ′

Mz,i(σz )σσ ′c†
iσ ciσ ′ , (24)

with Mz,i a site-dependent magnetization.
In order to compare the helical phase and the supercon-

ducting phase gradient for both field configurations, we first
impose open boundary conditions (OBC) and solve self-
consistently for the order parameter at each site. To obtain
the current-phase relations, we impose a phase difference ϕ

between both ends of the system at each iteration of the
self-consistency. Insisting on a phase gradient ϕ across the
junction in each iteration induces a current, which, only when
full self-consistency is obtained at each lattice site, respects
charge conservation [51,52].

IV. RESULTS FROM THE LATTICE MODEL

The setup for the Josephson junction is shown in Fig. 2.
As seen it consists of a symmetric junction with a weak
link of reduced transparency (orange middle ribbon) modeled
by two columns of lattice bonds of hopping t ′. In this sec-
tion, we first discuss helical superconductivity, i.e., the case
of no bulk currents and additionally t ′ = t (no weak link).
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(b)

(c) (d)

(a)

FIG. 3. (a) Helical superconductivity generated in a Rashba su-
perconducting strip in a transverse in-plane magnetic field. (b) Fermi
surface for λsoc = 0.2, By = 0.1 and μ = −1.0. (c) Example of the
remnant total currents at each bond on a 31 × 31 system after re-
quiring self-consistency. All currents are negligible and vanish in the
thermodynamic limit except near some edges. (d) Superconducting
phase at y = 15 as a function of position along the x axis, displaying
the finite constant gradient of the helical ground state. The gap
magnitude is homogeneous in the system with |�| ∼ 0.2.

Afterwards, we turn to the current-carrying states with im-
posed phase difference ϕ across the junction, and discuss both
the superconducting diode effect (t ′ = t) and the Josephson
diode effect (t ′ < t).

A. Helical superconductivity

1. Case of in-plane magnetic field

Here, we review the helical ground state properties in
the case of a superconducting Rashba metal in an in-plane
magnetic field, as illustrated in Fig. 3(a). In the presence of
SOC, an in-plane magnetic field shifts the center of the two
Fermi surfaces, as shown in Fig. 3(b). The superconducting
ground state adiabatically enters the helical phase where the
order parameter, as mentioned in the introduction, acquires a
spatial variation of the form �(R) = �0eiq0·R [22,32,33,53].
The ground state carries zero total current due to the perfect
compensation of Jt

i,δ̂
and Jsoc

i,δ̂
. We have verified these prop-

erties by numerical self-consistent calculations of the order
parameter and the currents. Figures 3(c) and 3(d) explicitly
show the absence of bulk currents and a finite ground state
phase gradient, respectively. We have checked that for large
systems (or imposing periodic boundary conditions), the bulk
currents indeed vanish identically. For finite sized systems as
in Fig. 3(c), the currents may develop interesting patterns with
nonvanishing contributions prevalent near some of the sample
edges, in this case the edges perpendicular to the magnetic
in-plane field direction. The numerically obtained value for
the Cooper pair momentum of the helical state presented in
Fig. 3 can be shown to be quantitatively consistent with a
corresponding free-energy analysis (see the Appendix).

(a) (b)

(c) (d)

(a)

(c)

FIG. 4. (a) Helical superconductivity generated in a Rashba su-
perconducting strip with an out-of-plane magnetization gradient, as
shown in panel (b). (c) Example of the remnant total currents at
each bond on a 31 × 31 system after requiring self-consistency, with
λsoc = 0.2, 2Mmax

z /ξgrad = 0.02 and μ = −1.0. All currents are neg-
ligible and vanish in the thermodynamic limit except near the edges.
(d) Superconducting phase at y = 15 as a function of position along
the x axis, exhibiting the constant gradient of the helical ground state.
The gap magnitude is rather homogeneous in the system center with
|�| ∼ 0.2, and suppressed up to ∼30% close to the edges due to the
larger magnetization in these regions.

2. Case of out-of-plane magnetization gradient

For helical superconductivity originating from a spatially
varying out-of-plane magnetization, see Eqs. (2) and (5), we
focus initially on the simplest case with a uniform magne-
tization gradient as shown schematically in Fig. 4(a) and
quantitatively in Fig. 4(b). Figures 4(c) and 4(d) display the
current pattern in the ground state of a 31 × 31 system and
the associated ground state superconducting phase gradient,
respectively. The latter confirms that indeed a helical state is
favored also in this case. The total currents in the ground state
are again vanishing except for edge effects.

In Sec. II B we used the continuum model in the quasi-
classical limit to derive the result that in-plane fields lead to
a current J = C|M|||δksoc and that out-of-plane magnetization
gradients lead to a current J = C|δMz|/ξgrad, with the same
proportionality constant C. Hence, for helical superconduc-
tivity, Byδksoc and 2Mmax

z /ξgrad should generate comparable
phase gradients. This result can be explicitly verified within
the lattice approach. For this purpose, we self-consistently
solve for the superconducting gap imposing OBC for an in-
plane field and an out-of-plane magnetization gradient. Since
the ground state enters the helical phase in both cases as
shown above, the superconducting order parameter develops
a phase gradient ∂ϕ/∂x in the x direction, which we evaluate
numerically.

In Fig. 5 we compare the phase gradients in the helical
phases. As seen, the superconducting phase gradients indeed
agree semiquantitatively, particularly in the linear regime
where |∂ϕ/∂x| is small. We attribute the deviation to the
fact that the finite-size lattice calculations are not sufficiently
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FIG. 5. Comparison of the superconducting phase gradient gen-
erated in the Rashba superconductor by the in-plane field By δksoc

(red curve) or an out-of-plane magnetization gradient 2Mmax
z /ξgrad

(blue curve), in the case of λsoc = 0.2, μ = −1.0 and system size
31 × 31. An equivalent helical superconducting phase is generated
by the two different means.

deep in the quasiclassical regime since �/EF � 0.07 and
Esoc/EF � 0.1. As the out-of-plane magnetization becomes
larger, the superconducting order becomes increasingly inho-
mogeneous, leading to the nonlinear regime where the phase
gradient generated by the out-of-plane magnetization crosses
the one from the in-plane field. Another possible origin of
the arising discrepancy can be the noncircular character of the
Fermi lines obtained in the investigated regime.

B. Superconducting and Josephson diode effects

In this section we turn to a discussion of the current-
carrying states in Josephson junctions. The currents are
introduced by an enforced phase difference across the junc-
tion, which can be implemented numerically by insisting on
such a phase difference in the iteration process [51]. In the
absence of magnetization gradients or external fields, the
current-phase relations exhibit the expected form (not shown),
i.e., sawtooth shaped curves that get deformed into sinusoidal
current-phase relations as t ′, and thereby the junction trans-
parency, is reduced. Figure 6 shows explicitly the model for
the junction and which bonds experience the modified hop-
ping integral t ′.

In the presence of the in-plane field or out-of-plane mag-
netization gradient, the system enters the helical state. The
inherent directionality dictating the helical superconducting
phase can be uncovered in the current-carrying state. This is

FIG. 6. Illustration of the junction within the lattice model; two
connected columns of bonds experience hopping of t ′ as opposed to
all other bonds exhibiting hopping integral of t .

(a)

(b)

FIG. 7. Current-phase relations for the case of (a) in-plane
magnetic field and (b), out-of-plane magnetization gradient with
λsoc = 0.2, μ = −1.0, t ′ = 0.1 and a system size of 21 × 11.
The red (blue) curves indicate the cases with (without) magnetic
field/magnetization gradient where the current-phase relations are
nonsymmetric (symmetric).

evident from shifted and asymmetric current-phase relations
and the associated diode effect of the junctions. For the case
t ′ = t we find that both setups produce a weak superconduct-
ing diode effect. In the following we focus mainly of the
Josephson diode effect with reduced junction transparency.
Figure 7 displays examples of typical current-phase relations
in the helical state with t ′ = 0.1 both in the case of an in-plane
magnetic field, Fig. 7(a), and an out-of-plane magnetization
gradient, Fig. 7(b). As seen, the Josephson current indeed
exhibits a diode behavior. Below we elaborate on the diode
efficiency of the Josephson junctions.

In Fig. 8 we show the spatially resolved current profile
across the junction in the presence of an out-of-plane magne-
tization for the same case as in Fig. 7(b), i.e., a representative
Josephson diode case reasonably close to the tunneling limit
with t ′ = 0.1. For the case of OBC shown in Fig. 8(a) there
are remnant current loops visible due to the finite size of the
system. They, however, cancel identically across any cross
section of the sample, i.e., there is no net current flow in any
direction. These edge currents are simply a consequence of the
relatively small system sizes under consideration. As evident
from Fig. 7(b) and explicitly shown in Fig. 8, however, a
fixed phase gradient leads to a net total current flow across
the junction. The current direction can be switched by the
sign of the magnetization gradient or by the imposed phase
difference.

Next we turn to a discussion of the Josephson junction
diode efficiency Q [19,21–23,26] defined by

Q = |Imax| − |Imin|
|Imax| + |Imin| , (25)
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(a)

(b)

(c)

(d)

(e)

OBC

FIG. 8. Evolution of current patterns in the case of a homoge-
neous out-of-plane magnetization gradient 2Mmax

z /ξgrad = 0.04 for
(a) OBC, and imposed phase gradients of (b) ϕ = π/30, (c) ϕ =
π/10, and (d) ϕ = π/3, in the case of λsoc = 0.2, μ = −1.0, t ′ = 0.1
and a system size of 21 × 11. For the latter case (d), the resulting
superconducting phase is shown in (e) for y = 5, displaying the phase
drop in the junction (orange region in the inset). For the case in (a) all
bulk currents vanish as the system size increases, similar to Fig. 4(c).

where Imax and Imin denote the maximum and minimum cur-
rents, respectively. Here, I is the sum of all the currents
through one cross-sectional cut normalized by the length in
the y direction. We obtain these values from the numerically
computed current-phase relations. Typically, the associated
diode effects arising from a helical superconducting phase are
small, thus implying the same for the corresponding values of
Q. Nevertheless, the precise outcome will obviously depend
on input parameters which, in the current case, consist of the
amplitude of the Rashba SOC, the Fermi surface filling set by
the chemical potential, the amplitude of the respective external
field and, finally, the transparency of the junction.

For fixed junction transparency t ′ = 0.1, we show respec-
tively in Figs. 9(a) and 9(b) the dependence of the diode

FIG. 9. Josephson junction diode efficiency Q for the case of an
in-plane magnetic field (a) or an out-of-plane magnetization gradient
(b) for different values of the Rashba SOC strength λsoc, with μ =
−1.0, t ′ = 0.1 and a system size 21 × 11.

efficiency on the in-plane magnetic field and the out-of-plane
magnetization gradient for different values of the SOC param-
eter λsoc. As seen, the diode efficiency of the junction may be
significantly enhanced by the SOC and the amplitude of the
driving magnetic field or magnetization gradient. Too large
fields, however, destroy superconductivity and puts a natural
bound on Q.

Aside from the strength of the SOC, we find that the
value of the chemical potential μ also significantly affects Q.
This can be seen from Fig. 10, which maps out the chemical
potential dependence of Q. Notably, our numerical approach
allows us to go beyond the quasiclassical regime discussed
in Sec. II B. Figures 10(a)–10(d) display the evolution of
the Fermi surface versus μ for the homogeneous case of a
constant in-plane magnetic field. In that case, see Fig. 10(e),
the maximum efficiency arises from one of the split Fermi
surfaces acquiring significant contributions from the van Hove
singularities. In the inhomogeneous case of an out-of-plane
magnetization gradient, the efficiency Q versus μ is shown
in Fig. 10(f). In that case too, we attribute the μ-dependent
efficiency maxima to regions of favorable density of states
conditions. At this point, it is interesting to observe that in
the lattice model Q = 0 for μ = 0, which is a property not
found for the continuum model defined in Sec. II B, as shown
in Ref. [23]. This qualitative difference is due to a symmetry

(a) (b) (c) (d)

(e) (f)

FIG. 10. (a)–(d) Fermi surfaces for an in-plane magnetic field,
considering different values of the chemical potential μ, with λsoc =
0.2 and By = 0.16. Josephson junction diode efficiency Q as a func-
tion of chemical potential μ in the case of (e) an in-plane field By =
0.16 and (f) and out-of-plane magnetization gradient 2Mmax

z /ξgrad =
0.04, with λsoc = 0.2, t ′ = 0.1 and a system size 21 × 11.
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that emerges for the lattice model when μ = 0. This symmetry
is easier to describe using the BdG matrix Hamiltonian Ĥ(k)
obtained after expressing Eq. (13) in reciprocal space. In
this space, the arising symmetry is effected by the following
shift operation of the wave vector k �→ k + (π, π ) accompa-
nied by an exchange between time-reversed electron and hole
partners.

From the above results, it is evident that we find overall
comparable efficiencies for the two diode mechanisms, that
is, for in-plane field versus out-of-plane magnetization gra-
dient. However, the in-plane field has the disadvantage that
large amplitudes of it eventually destroys superconductivity
through pair breaking. In stark contrast, while this effect may
also happen for the gradient case, this would still require
large magnetization amplitudes. This is because for the mag-
netization gradient profiles considered here, the net magnetic
moment is zero, thus rendering such setups more compati-
ble with the superconducting elements of the circuit. Hence,
this poses yet another interesting possibility; to engineer the
spatial structure of the out-of-plane magnetization in order to
optimize the diode efficiency.

Here, however, we do not pursue this optimization prob-
lem, but instead aim at unveiling an alternative related setup,
which appears equally prominent and feasible to realize in
experiments. This is a ferromagnetic (FM) domain wall junc-
tion. A sketch of such a platform is shown in the inset of
Fig. 11(a). In a similar fashion to the previously examined
magnetic configurations, the FM junction also generates a
helical ground state and supports therefore a Josephson diode
effect.

From the current-phase relations, we have again extracted
the directional-dependent critical currents and the associated
efficiencies shown in Fig. 11 as a function of the amplitude
of the out-of-plane magnetization. For the magnetization used
in Fig. 11 superconductivity still persists throughout the junc-
tion. As seen from Fig. 11(a), Q increases with the amplitude
of the out-of-plane FM, until eventually this field becomes too
large and it suppresses superconductivity.

From Figs. 11(b) and 11(c), we observe that the resulting
charge currents are not restricted to flow in close vicin-
ity of the domain wall. Instead they extend over the entire
transverse dimension of the sample. The above property of
the currents precisely reflects that transport stems from the
charged condensate extending throughout the entire junction.
Indeed, from studying the energy spectra, we also confirm
that for the parameter window studied here there exist no
domain wall boundary quasiparticle modes that could con-
tribute to transport. We remark, however, that this finding
could not have been taken for granted, since such a pos-
sibility generally exists for the model of Eq. (13) in the
presence of a ferromagnetic domain wall. Akin to previous
theoretical predictions for Rashba superconductors [54,55],
also here a topological superconductor in class D can arise
on each side of the wall when |Mz| takes values in a desired
range. For the NN hoppings and Rashba SOC considered
here, along with the assumptions � > 0 and |μ| < t = 1,
each side of the domain wall with net magnetization ±|Mz|
behaves as a topological superconductor with a Chern number
N = ±2 for � < |Mz| <

√
�2 + (4t − |μ|)2 and N = ±1

(a)

(b)

(c)

FIG. 11. (a) Josephson diode efficiency Q versus the amplitude
of the magnetization of the ferromagnetic regions, in the case of a
21 × 11 system, λsoc = 0.2, μ = −1.0, ξgrad = 11 and t ′ = 0.1. In
this case the Rashba superconductor is exposed to a ferromagnetic
domain wall with the magnetization as shown in the inset. (b) and
(c) show the current distribution for opposite phases biases across
the sample. One observes that the current flow is not restricted to the
domain wall region. Remarkably, however, the polarity of the phase
bias can toggle between high and low domain wall current.

for
√

�2 + (4t − |μ|)2 < |Mz| <
√

�2 + (4t + |μ|)2, respec-
tively. The emergence of such topological states gives rise to
correspondingly 4 and 2 chiral Majorana edge modes which
are trapped at the domain wall. The properties of the diode
effect arising for such topological scenarios are interesting on
their own and therefore deserve a dedicated study. However,
we leave this for a future study, since investigating these
boundary mode contributions go beyond the scope of the
current work.

We conclude this section with possible optimization strate-
gies of the diode efficiency for the present setup. Similar to
the cases studied earlier, Q can be also here further enhanced
by appropriate tuning of the values for the parameters λsoc and
μ. For example, using λsoc = 0.6 and μ = −0.2 one obtains
Q � 3% for the single FM domain wall junction. Another
optimization approach which promises an enhanced diode
effect versatility is the employment of layered ferromagnet-
semiconductor-superconductor heterostructures, e.g., similar
to the Majorana multi-layer platforms discussed in Ref. [54].
In such hybrid systems, the Rashba SOC appears in the
semiconductor element, which additionally experiences an ex-
change field and a pairing gap due to proximity effects. Since
the pairing gap in the effective Rashba superconductor which
becomes engineered in the semiconductor is no longer driven
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by interactions, but is instead externally imposed, it appears
feasible that such a setup allow for higher efficiencies.

V. MAGNETIZATION-GRADIENT DIODES IN THE
ABSENCE OF SPIN-ORBIT COUPLING

Up to this point, we have explored superconducting plat-
forms which feature Rashba SOC. It is the presence of the
latter that has allowed us to solely consider a magnetization
gradient pointing only along the out-of-plane axis. In the case
that the involved superconducting material is free of any SOC
which violates inversion symmetry, a diode effect from a spa-
tially inhomogeneous magnetization field remains possible,
albeit it requires a more complex magnetization profile.

Specifically, in the case of 2D systems discussed here, the
magnetization field needs to consist of an additional contribu-
tion which generates effectively the required Rashba SOC that
we considered in the preceding analysis. This part may have
the form of a magnetic texture crystal [37–39], i.e., a period-
ically repeating magnetic texture in space, which is known to
give rise to a synthetic Rashba SOC [40–45]. Whether the spa-
tial profile m(r) of a magnetization texture crystal effectively
leads to a Rashba SOC of the general form n̂ · pW n̂ · σ, can
be judged from the structure of the vectorial coefficients W n̂

which are given by [38,39]:

W n̂ ∝
∫

MUC
dV m(r) × ∂m(r)

∂n
, (26)

where ∂/∂n ≡ n̂ · ∂/∂r denotes the directional derivative in
coordinate space in the direction defined by the unit vector n̂.
The integral employed above is over the volume of the mag-
netic unit cell (MUC), which is determined by the periodicity
dictating the magnetic texture.

In certain cases, it is straightforward to identify the quanti-
ties W n̂ from the microscopic model. As an example, consider
for instance the continuum model discussed in Sec. II B, with
the difference that there is no Rashba SOC, but the system
is instead under the influence of a magnetic helix crystal
m(x) = m( sin(Qx), 0, cos(Qx)). Due to the fact that |m(r)|
is spatially uniform, one can carry out a spin-dependent gauge
transformation [40], and find an effective anisotropic Rashba
SOC of the form υeff pxσy with υeff = h̄Q/2me. Thus, in this
case, one can readily set W n̂ = ∫

MUC dV m̂(r) × ∂m̂(r)/∂n
with m̂(r) = m(r)/|m(r)|. Hence, for the magnetic helix pro-
file, one finds that the only nonzero vectorial coefficient is
given by W x̂ = (0,Q, 0). Consider now instead a helix of the
form m(y) = m(0, sin(Qy), cos(Qy)). This, in turn, generates
the Rashba SOC term −υeff pyσx.

It now becomes clear that a possible minimal magnetic
texture crystal configuration that can generate a synthetic
Rashba SOC of the form υeff (pxσy − pyσx ) is of the so-called
spin-whirl crystal (SWC) form [38]:

mswc(r) = m( f sin(Qx), f sin(Qy), cos(Qx) + cos(Qy)),
(27)

with an anisotropy factor f which is generally not equal to
unity. While the link of the vectorial coefficients W n̂ is no
longer as simple as in the case of the single magnetic helix
crystal profile, one still expects the strength of the effec-
tive Rashba SOC to approximately continue to be given by

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 12. (a)–(c) Magnetization components for the SWC form
in Eq. (27) with Q = 0.4 and system size 31 × 31. (d) Imposed
out-of-plane magnetization gradient required for the diode effect. (e)
Superconducting phase at y = 5 as a function of position along the x
axis and (f) remnant total currents at each bond on a 15 × 15 system
after requiring self-consistency, with m = 0.05, 2Mmax

z /ξgrad = 0.04,
μ = −1.0 and Q = 0.4. (g) and (h) Same as (e) and (f) for a 31 × 31
system, with 2Mmax

z /ξgrad = 0.02 and Q = 0.2. From the above,
we conclude that helical superconductivity is stabilized also in the
present case, with no requirement for Rashba SOC.

υeff = h̄Q/2me. As a result, we expect the earlier defined
parameter δksoc dictating the splitting of the helicity bands to
be roughly equal to the magnetic wave number Q.

We now proceed by numerically demonstrating the pre-
dictions for a diode effect solely due to a spatially varying
magnetization profile with a zero net moment, and without
any sort of intrinsic Rashba SOC, λsoc = 0. For this purpose,
we consider a magnetization field consisting of the SWC
structure described by Eq. (27) in addition to a uniform spa-
tially varying out-of-plane magnetization gradient. Without of
generality, we set f = 1. Figures 12(a)–12(c) display 2 × 2
unit cells of the SWC magnetization components mx, my and
mz entering Eq. (27). The additional out-of-plane magnetiza-
tion profile is shown in Fig. 12(d). This component is needed
to obtain a helical ground state with its associated transport
nonreciprocity.
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In Figs. 12(e) and 12(f), we show the self-consistent re-
sults for the induced ground state phase gradient and the
absence of currents away from the edges, respectively, both
characteristic of the helical phase. These results are obtained
with OBC for a relatively small system size of 15 × 15 sites.
Figures 12(g) and 12(h) display the same quantities but for
the case of system size 31 × 31. As seen from Fig. 12(g), the
superconducting phase gradient ∂ϕ/∂x in the SWC-induced
helical phase becomes significantly larger by doubling the
system size, again featuring no currents, except close to the
edge regions, see for example Fig. 12(h).

Comparing the values of the phase gradients obtained from
the SWC to the case with intrinsic Rashba SOC shown in
Fig. 5, we estimate that the effective SOC generated by the
SWC texture winding is approximately an order of magni-
tude smaller for the 31 × 31 system. Consequently, for the
relatively small system sizes available for the self-consistent
studies, given that these become very computationally de-
manding for such magnetization profiles, the diode effect is
correspondingly reduced.

We have verified explicitly, however, that indeed the SWC
setup does feature a diode effect, and that it gets enhanced by
larger systems exhibiting larger winding of the SWC magne-
tization. We choose not to show the resulting currents here,
since the small magnitude of the resulting effect is not vi-
sually discernible. The present calculations primarily serve
as a proof-of-principle rather than a thorough study of the
superconducting effect from magnetic textures. Further ded-
icated studies are required to explore the diode efficiency and
further possibilities which open up from this SOC-free diode
route.

VI. DISCUSSION AND CONCLUSIONS

We have proposed and compared various concrete path-
ways to generate helical superconductivity and, in turn,
superconducting and Josephson diode effects. Our approach
describes in a unified manner the emergence of helical super-
conductivity from both out-of-plane magnetization gradients
and in-plane magnetic fields in Rashba superconductors. We
compared the diode effect resulting from the two distinct
scenarios in bulk Rashba superconductors, as well as in
Josephson junctions, and found that diode efficiencies of com-
parable magnitude are accessible.

For the diode mechanism originating from a spatially vary-
ing out-of-plane magnetization that we propose here, we have
explored uniform gradients across the Josephson junction and
ferromagnetic domain walls. It is likely, however, that opti-
mized efficiencies can be engineered by imposing other more
suitable spatially varying magnetization gradients. One can
also envision to use tailored magnetization gradients to guide
the nonreciprocal current flow along desired paths of the 2D
platform. This possibility could allow for the nonreciprocal
superconducting current to be guided in circuits, without any
need for lithographic etching or nanopatterning. The potential
merits of such applications open the door to a number of future
research directions of this sort.

Aside from out-of-plane magnetization gradients imposed
on Rashba superconductors, we also showcased the Josephson
diode effect in platforms where the superconducting material

is SOC free. In this case, the diode effect becomes accessible
due to a synthetic Rashba SOC generated by the inhomoge-
neous magnetization itself. However, this requires complex
magnetization profiles which are noncoplanar and wind in
both spatial dimensions. As a proof-of-principle, in this work,
we considered a spin-whirl-crystal magnetic texture in con-
junction with the out-of-plane magnetization profile discussed
earlier, and verified that both helical superconductivity and
superconducting diode effects are possible in these systems.
Additional dedicated studies are required to be carried out
in the future, in order to identify the parameter regimes
and magnetic texture profiles that can maximize the diode
efficiency.

It is important to note that in this work we restricted our-
selves to magnetization gradients and textures which lead to a
zero net magnetization. First of all, achieving zero net mag-
netization is advantageous for sustaining superconductivity.
Second, in this work we chose to focus on such types of
gradients, in order to emphasize the underlying mechanism.
Considering instead other magnetic texture configurations,
which violate this zero-sum rule, is also generally expected
to give rise to a superconducting diode effect. However, in
this case additional mechanisms can be at play. Interestingly,
the simplest example of a configuration which violates the
zero-sum magnetization constraint can be obtained by super-
imposing a uniform Zeeman field on top of the out-of-plane
magnetization profile discussed earlier. As it follows from
Eq. (2), such a possibility endows the structure with enhanced
control, since one ends up with an additional knob to tailor the
resulting diode effect.

We also stress that the superconducting diode effect from
magnetization gradients is expected in many other settings
where SOC and spatially varying magnetization are at play.
This may apply, for example, to the observed superconduct-
ing diode effects in twisted graphene layers in zero external
magnetic field [2,5]. There superconductivity coexists with
a spontaneous time-reversal symmetry broken state, possibly
an inhomogeneous magnetic phase, known from theoretical
studies to naturally appear in twisted layers with sizable
interactions [56,57]. In fact, one may envision using the su-
perconducting diode effect as a probe of such spontaneously
generated inhomogeneous magnetic order in quantum materi-
als, particularly in settings where transport measurements are
the most appropriate probes of the system.

Finally, we point out that it would be interesting to repeat
the experiments in the systems where the superconducting
diode effect has been already experimentally observed, for
instance in those of Refs. [1,6], but now using out-of-plane
magnetization gradients. This can be possibly realized by
bringing the Rashba system in proximity to a ferromagnetic
insulator, or, by exposing it to the fringing fields of an array of
nearby nanomagnets [34]. In such cases, our findings predict
the existence of an experimentally detectable superconducting
diode effect.
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(a) (b)

FIG. 13. Free energy density as a function of the Cooper pair
momentum qx for � = 0.1, μ = −1, and system size 2000 × 2000
(a) in the absence of SOC and in-plane field and (b) for λsoc = 0.2
and By = 0.15.

APPENDIX: FREE ENERGY ANALYSIS FOR THE
IN-PLANE MAGNETIC FIELD CASE

In Sec. IV we discuss the self-consistent results from the
lattice model in the presence of an in-plane magnetic field,
and we show that the superconducting ground state in the
helical phase develops a spatial variation, �(R) = �0eiq0·R
(see Fig. 3). Here we demonstrate the free energy analysis
and show that in the presence of spin-orbit coupling and an in-
plane magnetic field, the free energy is minimized for a finite
Cooper pair momentum in agreement with the self-consistent
calculations.

We calculate the free energy in the homogeneous case
of an in-plane field with periodic boundary conditions, and

therefore we can construct the Hamiltonian in Eq. (13) in
momentum space, which allows us to consider larger system
sizes. In order to implement the spatial variation of the gap
in momentum space we use the gauge transformation ci →
eiq·i/2ci. As a consequence, the Hamiltonian has the following
form

H′ = Hkin + Hsoc + HSC + HB, (A1)

with

Hkin = −2t
∑
k,σ

[
cos

(
kx + qx

2

)
+ cos(ky)

]
c†

kσ ckσ ,

Hsoc = λsoc

2

∑
k

[(
i sin

(
kx+qx

2

)
+ sin ky

)
c†

k↑ck↓+h.c.
]
,

HSC =
∑

k

(�qc−k+q/2↓ck+q/2↑ + h.c.),

HB = −By

∑
k

(−ic†
k↑ck↓ + ic†

k↓ck↑), (A2)

where we have considered q = (qx, 0) as seen from Fig. 3.
Thus, to calculate the free energy (at T = 0) we need to
evaluate 〈H′〉, which now depends on qx. In Fig. 13 we show
the free energy as a function of the Cooper pair momentum
qx. As expected, in the absence of SOC and in-plane field
the free energy minimum occurs at qx = 0. On the contrary,
when implementing a finite field and SOC the free energy
develops a finite Cooper pair momentum minimum and the
superconducting gap develops a spatially varying phase with
qx = ∂ϕ

∂x , as seen in Fig. 3 of the main text.
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González-Orellana, M. Ilyn, C. Rogero, F. S. Bergeret, J. S.
Moodera, P. Virtanen, T. T. Heikkilä, and F. Giazotto, Super-
conducting spintronic tunnel diode, Nat. Commun. 13, 2431
(2022).

[8] H. Wu, Y. Wang, Y. Xu, P. K. Sivakumar, C. Pasco, U.
Filippozzi, S. S. P. Parkin, Y.-J. Zeng, T. McQueen, and M. N.
Ali, The field-free Josephson diode in a van der Waals het-
erostructure, Nature (London) 604, 653 (2022).

[9] L. Bauriedl, C. Bäuml, L. Fuchs, C. Baumgartner, N. Paulik,
J. M. Bauer, K.-Q. Lin, J. M. Lupton, T. Taniguchi, K.
Watanabe, C. Strunk, and N. Paradiso, Supercurrent diode ef-
fect and magnetochiral anisotropy in few-layer NbSe2, Nat.
Commun. 13, 4266 (2022).

[10] Y. Hou, F. Nichele, H. Chi, A. Lodesani, Y. Wu, M. F. Ritter,
D. Z. Haxell, M. Davydova, S. Ilić, O. Glezakou-Elbert, A.
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