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The study of topological superconductivity is largely based on the analysis of simple mean-field models that
do not conserve particle number. A major open question in the field is whether the remarkable properties of
these mean-field models persist in more realistic models with a conserved total particle number and long-range
interactions. For applications to quantum computation, two key properties that one would like to verify in more
realistic models are (i) the existence of a set of low-energy states (the qubit states) that are separated from the
rest of the spectrum by a finite energy gap, and (ii) an exponentially small (in system size) bound on the splitting
of the energies of the qubit states. It is well known that these properties hold for mean-field models, but so far
only property (i) has been verified in a number-conserving model. In this work we fill this gap by rigorously
establishing both properties (i) and (ii) for a number-conserving toy model of two topological superconducting
wires coupled to a single bulk superconductor. Our result holds in a broad region of the parameter space of this
model, suggesting that properties (i) and (ii) are robust properties of number-conserving models and not just
artifacts of the mean-field approximation.
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I. INTRODUCTION

Although over 20 years have passed since the original
work on Majorana fermions (MFs) in condensed-matter sys-
tems [1,2], research on topological superconductors (TSCs)
shows no signs of slowing down. One of the main reasons
for this sustained activity is the possibility that these systems
could be used to perform fault-tolerant quantum computa-
tion [1]. A great deal of theoretical and experimental work
has been done to realize TSC phases in the laboratory and to
devise schemes for performing protected quantum computing
operations using MFs [3–14]. Despite these efforts, there is
still no broad consensus on whether MFs have indeed been
observed in the laboratory [15–22] (see Ref. [21] for a review
and critique of the current experimental situation).

In the last decade several researchers raised an impor-
tant theoretical concern about these efforts [22–27]. Almost
all of the calculations involved in the work on TSCs rely
on the mean-field (or Bogoliubov–de Gennes) approach to
superconductivity, an approach that violates particle num-
ber conservation symmetry. In particular, Leggett noted that
although the mean-field approach accurately captures the
bulk thermodynamic properties of many superconductors, the
mean-field eigenstates may not represent the true eigenstates
of a superconductor accurately enough for quantum comput-
ing applications (which depend on the detailed properties of
individual quantum states).
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In our own work [28] on this subject we raised an
additional concern. While most work on TSCs relies on
mean-field models with short-range interactions, real charged
superconductors are described by number-conserving Hamil-
tonians with long-range interactions.1 Because of this, there
is no guarantee that the usual mean-field models can ac-
curately capture the topological properties of real charged
superconductors.

There are two key properties of the mean-field TSC models
that are important for quantum computing applications and
that one would like to verify in a number-conserving model.
These are (i) the existence of a set of low-energy states (the
qubit states) that is separated from the rest of the spectrum by
a finite energy gap, and (ii) an exponentially small (in system
size) bound on the splitting of the energies of the qubit states.

In the mean-field models these properties are closely con-
nected to the existence of unpaired MFs at specific locations
in the system (e.g., the two ends of a 1D wire or the cores of
quantum vortices in a 2D system). The presence of these MFs
also leads to unusual long-range correlations between their
locations (typically the MFs are separated by a distance on
the order of the system size) [30–35]. Therefore we can add
to the above two properties a third interesting property: (iii)
the existence of long-range “Majorana-like” correlations.

In Ref. [28] we investigated whether these properties of
mean-field TSC models carry over to the number-conserving

1All gapped superconductors must contain long-range interactions,
irrespective of the physical realization, as can be seen from the
Goldstone theorem of Ref. [29].
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setting. Specifically, we focused on a number-conserving toy
model for a one-dimensional (1D) proximity-induced topo-
logical superconductor. This model consisted of a fermionic
wire coupled to a number and phase degree of freedom repre-
senting a bulk s-wave superconductor. For this toy model we
proved that properties (i) and (iii) hold for a wide range of
parameter values, i.e., without any fine-tuning of parameters.
However, the methods we used in Ref. [28] were not strong
enough to address property (ii), and so the question of the
energy splitting of the qubit states remained open.2

In this paper we fill this gap in the literature by rigorously
establishing property (ii) for a number-conserving toy model
for a 1D TSC. In other words, we prove that the energy
splitting between the two-qubit states in our toy model is ex-
ponentially small in the system size. As in Ref. [28], our result
holds in an open region of the model’s parameter space (i.e., it
does not require fine-tuning). This robust, exponentially small
splitting is important because it means that the TSC qubit
will take an exponentially long time to decohere, even in a
number-conserving system.

The main idea of our proof is to use a stability result for
quantum spin systems with long-range interactions that we
proved in Ref. [36]. After some manipulations, we show that
our TSC model can be mapped onto the type of spin system
studied in Ref. [36] and then we invoke the stability result
from that paper to complete the proof of the exponential
splitting property. As an interesting side note, this approach
also provides an alternative proof of property (i) in our TSC
model.

The model that we study in this paper is a two-wire version
of our model from Ref. [28]. It is known that two wires
are needed for any qubit setup based on a 1D TSC—in the
mean-field or number-conserving settings—for the following
reason. In the mean-field setting, if we want to use two eigen-
states of a system to form a qubit, then those two states need to
have the same fermion parity. This is because of a superselec-
tion rule that forbids the existence of quantum superpositions
of states with opposite fermion parity. Therefore, to construct
a qubit using the low-energy states of a 1D TSC, we actually
need two fermionic wires (the low-energy states of one wire
have opposite fermion parity) [14]. In that case there are four
low-energy states, and two of these states with the same parity
can be used to form a qubit. In the number-conserving setting
the situation is almost the same, except now the superselection
rule forbids superpositions of states with different fermion
number.3 Again, two wires are necessary to obtain two low-
energy states with the same fermion number.

Topological superconductivity with number conserva-
tion has been studied previously using several different
methods. One approach uses bosonization to study low-
energy field theory models in 1D [38–45]. This approach

2The methods from Ref. [28] (when applied to the two-wire model
in this paper) are only strong enough to prove a power-law bound
on the splitting. Specifically, they can be used to obtain a bound that
scales as L−1, where L is the length of the topological superconduct-
ing wires.

3Superselection rules in this context were discussed in detail in
Refs. [25,37].
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FIG. 1. The physical picture for the TSC model studied in this
paper: two fermionic wires are placed on top of a bulk s-wave
superconductor. The wires interact with the bulk superconductor by
exchanging pairs of fermions, and the total number of fermions in
the wires plus the superconductor is always conserved.

delivers general results but requires various approximations.
In addition, because these models are one dimensional and
have only local interactions, they only feature quasi-long-
range order, as opposed to the true superconducting order
present in our model. A second approach is based on ex-
actly solvable models [25,37,46–49], including models in one
and two dimensions. This approach yields rigorous results
but requires fine-tuning of the parameters in each model.
Finally, several works have studied these systems using nu-
merical methods or other kinds of approximate analytical
arguments [22,26,27,50–53]. The key differences between our
work and these previous results are (i) we have been able to
obtain rigorous results on a concrete model, and (ii) our results
are robust in the sense that they do not require fine-tuning of
the parameters in our model.4

This paper is organized as follows. In Sec. II we introduce
our model and state our main stability results. In Sec. III we
present the proof of our main result. The bulk of this section is
dedicated to explaining the mapping from our TSC model to a
spin model of the kind that we studied in Ref. [36]. In Sec. IV
we present our conclusions. Finally, in Appendix A we discuss
some of the minor technical changes that need to be made to
our proof from Ref. [36] in order to apply those results to the
two-wire TSC model in this paper.

II. MODEL AND MAIN RESULTS

A. A number-conserving model of two topological
superconducting wires

The model that we study in this paper is a two-wire version
of the model that we studied in Ref. [28]. The degrees of
freedom in this model consist of (i) spinless fermions living
on two quantum wires, and (ii) a number and phase degree
of freedom that serve as a toy model for a bulk s-wave su-
perconductor (SC). Both quantum wires have open boundary

4In a separate line of work [54], one of us obtained rigorous results
on topological invariants for TSCs in the number-conserving setting.
Those results are also robust in that they hold for any number-
conserving model that can be adiabatically connected to a gapped
pairing model of a TSC.

144502-2



STABILITY OF TOPOLOGICAL SUPERCONDUCTING … PHYSICAL REVIEW B 109, 144502 (2024)

conditions and should be thought of as finite segments of wire
deposited on top of a bulk SC, as shown in Fig. 1.

We label the two wires by α ∈ {1, 2}, and we label the sites
on each wire by j ∈ {1, . . . , L}, where L is the length of each
wire. The operator that annihilates a spinless fermion on site
j and wire α is c j,α , and these operators obey the standard
anticommutation relations: {c j,α, c j′,β} = 0 and {c j,α, c†

j′,β} =
δ j j′δαβ . We define the number operators n j,α = c†

j,αc j,α in the
usual way. We also define the number operator Nw,α for wire
α as Nw,α = ∑L

j=1 n j,α . The number operator Nw for both

wires together is then given by Nw = ∑2
α=1 Nw,α .

The number and phase degree of freedom that represents
the bulk SC is comprised of the operators n̂ and φ̂. We use
a hat for these operators in order to distinguish the phase
operator φ̂ from classical phases φ that appear in various
parts of our analysis. The operator n̂ is defined to have in-
teger eigenvalues, and n̂ and φ̂ obey the usual commutation
relations [φ̂, n̂] = i. The Hilbert space HSC of the number and
phase degree of freedom is spanned by the states |p〉, where
p ∈ Z and we have n̂|p〉 = p|p〉 and e±iφ̂ |p〉 = |p ± 1〉. The
total Hilbert space of our model is then the tensor product
F ⊗ HSC, where F is the Fock space for the fermions c j,α on
the two wires.

The operator n̂ counts the number of Cooper pairs in the
bulk SC, and eiφ̂ adds a Cooper pair to the bulk SC (similarly,
e−iφ̂ removes a Cooper pair). Therefore, the total number
operator for our entire system is

N = Nw + 2n̂ , (2.1)

where Nw is the number operator for the two wires, and the
factor of 2 is present because each Cooper pair has twice the
charge of a single fermion. The model that we study in this
paper conserves the total particle number of the two wires plus
the bulk SC, and so our model Hamiltonian will commute with
N .

The Hamiltonian for our model takes the general form

H = H0 + V. (2.2)

The first term, H0, resembles a standard mean-field Hamilto-
nian [1] for two decoupled p-wave wires with open boundary
conditions but with the important difference that the wires are
coupled to the bulk SC in such a way that the total particle
number N is conserved. Specifically, H0 is given by

H0 = −
2∑

α=1

tα
2

L−1∑
j=1

(c†
j,αc j+1,α + H.c.)

−
2∑

α=1

�α

2

L−1∑
j=1

(c j,αc j+1,αeiφ̂ + H.c.)

−
2∑

α=1

μα

L∑
j=1

(
n j,α − 1

2

)
. (2.3)

The first line contains nearest-neighbor hopping terms for the
fermions in both wires, with hopping energies tα that we take
to be real and positive. The second line contains nearest-
neighbor pairing terms in each wire, with pairing energies
�α that we assume to be real numbers. Notice that, unlike

a normal mean-field Hamiltonian, the product c j,αc j+1,α ap-
pears together with the phase operator eiφ̂ , and so the pairing
term in H0 commutes with the total particle number operator
N . The physical interpretation of the term c j,αc j+1,αeiφ̂ is that
two fermions leave wire α and enter the bulk SC as a Cooper
pair. Finally, the third line in H0 contains a chemical potential
term for each wire, with chemical potentials μα that are real
numbers.

The second term V is a charging energy term that gives an
energy cost for transferring charge from the bulk SC to the
wires or vice versa. This term takes the form5

V = 1

2

2∑
α=1

Ec,α (Nw,α − Nα,0)2

+ E ′
c(Nw,1 − N1,0)(Nw,2 − N2,0) , (2.4)

where the parameters appearing in this expression are as fol-
lows. First, Nα,0 is the electrostatically preferred number of
electrons in wire α, which is presumably equal to the number
of electrons required to make wire α charge neutral. Next, Ec,α

and E ′
c are (inverse) capacitance coefficients that describe the

electrostatic energy cost for deviating from charge neutrality.
On physical grounds we have Ec,α, E ′

c � 0, and in order to
make V positive definite we also require that

Ec,1Ec,2 � (E ′
c)2 . (2.5)

As in Ref. [28], we parametrize Ec,α and E ′
c as

Ec,α = Ec,α

L
, E ′

c = E ′
c

L
, (2.6)

where Ec,α and E ′
c are rescaled charging energies that we

hold fixed in the thermodynamic limit L → ∞. The general
form of the charging energy term V , and the scaling of Ec,α

and E ′
c with L, follow from electrostatics considerations and

capture the influence of the Coulomb interaction on processes
in which charge is exchanged between the wires and the bulk
SC. In particular, V is the physically correct form of the
charging energy when the linear dimensions of the bulk SC
are comparable to the length L of the wires, and when the
length of the wires is much larger than their thickness and
their separation from the SC.

One key feature of our model is that it does not include
processes in which a single fermion enters or leaves the SC;
the SC can only accommodate pairs of fermions. Our model
also does not include processes where a single fermion tunnels
from one wire to the other.

The physical picture that motivates these properties is as
follows. The reason we neglect single-fermion excitations
within the SC is that we assume that the energy gap to
such excitations is the largest energy scale in the system,
and we think of our model as a low-energy effective the-
ory describing physics below this energy scale. Likewise,

5The reader may wonder why V does not include a quadratic term
for the charge of the bulk SC, or cross terms that couple the charge
on each wire to that of the bulk SC. The reason for this is that when
we are restricted to a sector of fixed total particle number N , those
terms can be rewritten in the same form as the terms that are already
included in V .
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the reason we neglect single-fermion tunneling between the
wires is that we assume that the wires are sufficiently far
apart from one another that such tunneling processes are
negligible.

In any case, even if we did allow for (gapped) single-
fermion excitations in the SC, we would not expect it
to qualitatively change our results. Indeed, we expect that
the main effect of such excitations would be to induce
an additional splitting of the ground-state degeneracy due
to virtual single-fermion tunneling between the two wires.
This tunneling process is well understood, and the split-
ting induced by it is exponentially small in the distance
between the two wires. Therefore, as long as the wires
are separated by a distance of order L, this effect would
not change our results about the exponential scaling of the
splitting.

B. Main stability results

We now state our main stability result for our two-wire
TSC model. Our result concerns the properties of the model
in a sector of fixed total particle number equal to N (the
“N-particle sector”). In other words, we work in the sec-
tor of the total Hilbert space in which N = N (and N can
be any positive integer). Each sector of fixed total parti-
cle number can be further divided into two subsectors, with
each subsector containing states with a fixed eigenvalue
(±1) of P1 := (−1)Nw,1 , the fermion parity operator for the
first wire. Since H also commutes with P1, we can sepa-
rately diagonalize H in each such subsector of the N-particle
sector.

Let |ψ (N )
± 〉 be the ground state of H in the subsector of the

N-particle sector with P1 = ±1, and let E (N )
± be the corre-

sponding ground-state energy. Our main goal is to determine
the stability of a qubit built out of the two states |ψ (N )

+ 〉 and
|ψ (N )

− 〉.
More precisely, we wish to determine whether the qubit

states |ψ (N )
± 〉 have the following two properties for a fi-

nite range of parameters (i.e., without fine tuning). First, H
should have a finite energy gap above E (N )

± in the subsector
of the N-particle sector with P1 = ±1. This prevents each
qubit state from mixing (e.g., due to thermal fluctuations
at low but nonzero temperatures) with other states in the
same subsector of the N-particle sector. Second, the energy
splitting |E (N )

+ − E (N )
− | between the two-qubit states should

be exponentially small in the system size L. This property
is known to hold in the mean-field p-wave wire model, and
it guarantees that the qubit will take a very long time to
decohere.

The main result of this paper is a rigorous proof of the
second property: we derive an exponential bound on the
energy splitting |E (N )

+ − E (N )
− | between the two-qubit states,

and we show that this bound holds for a wide range of pa-
rameter values. Conveniently, the methods we use to prove
this bound on the splitting also provide a proof of the first
property—i.e., the existence of a finite energy gap in each
of the two subsectors of the N-particle sector. We note that
the existence of a finite energy gap can also be established
by a straightforward generalization of the arguments from
Ref. [28].

We need to define a few more parameters before we can
state our main result. The first of these is a set of modified
chemical potentials μ̃α for the two wires:

μ̃1 = μ1 + Ec,1

L

(
N1,0 − L

2

)
+ E ′

c

L

(
N2,0 − L

2

)
(2.7a)

μ̃2 = μ2 + Ec,2

L

(
N2,0 − L

2

)
+ E ′

c

L

(
N1,0 − L

2

)
. (2.7b)

We will see why the μ̃1 and μ̃2 parameters are natural in
Sec. III when we map our Hamiltonian onto a spin model, but
the basic idea is that they come from expanding the charging
energy terms around half-filling.

Finally, we introduce one more parameter, λ, which is
defined to be the largest (in magnitude) of all the charging
energies and modified chemical potentials μ̃α:

λ = max(|Ec,1|, |Ec,2|, |E ′
c|, |μ̃1|, |μ̃2|) . (2.8)

We will present our result for a particular choice of tα,�α ,
namely, tα = �α . The reason for this choice is as follows:
for a single copy of Kitaev’s p-wave wire model, it is known
that the topological superconductor phase corresponds to the
region in parameter space in which |μ| < t and � �= 0. In
particular, for any nonzero value of �, the transition from
the topological to the trivial superconducting phase always
occurs at |μ| = t . Since the location of the transition does not
depend on the precise value of �, we are free to pick whatever
� is most convenient. Here we choose to study our model
at the point tα = �α , as this makes our stability analysis of
the model more straightforward and transparent. If we wanted
to, we could prove similar results for small deviations from
the point tα = �α by treating the deviation as an additional
short-range perturbation of the unperturbed Hamiltonian with
tα = �α .

We are now ready to state our main result.
Theorem 1. Consider the two-wire Hamiltonian H at the

special point tα = �α . There exists a L-independent constant
λ0 > 0 such that if λ < λ0, then (1) H has a unique ground
state and a finite energy gap in each subsector of the N-particle
sector with fixed P1 eigenvalue, and (2) the energy splitting
|E (N )

+ − E (N )
− | between the ground states in the two subsectors

of the N-particle sector satisfies the exponential bound

|E (N )
+ − E (N )

− | � c1Le−c2L , (2.9)

where c1 and c2 are fixed positive constants that depend on
�α , μ̃α , Ec,α , and E ′

c, but not on L.
This theorem shows that, for small enough |μ̃α|, |Ec,α|, and

|E ′
c|, our number-conserving TSC model has both of the stabil-

ity properties (i) and (ii) that we discussed above. (As a side
note, it is worth pointing out that the theorem holds for any
signs of the charging energy terms, though in our setting, the
model only makes physical sense when the charging energy
terms are positive.)

III. PROOF OF THE MAIN RESULT

In this section we present the proof of Theorem 1. The core
of the proof is the general stability result for spin Hamiltoni-
ans with long-range interactions established in Ref. [36]. To
apply that result to our model, we first need to map our model
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to a suitable spin Hamiltonian. We do that in two steps. In the
first step we show that, in the N-particle sector, our model is
equivalent to a purely fermionic model without number con-
servation and restricted to the sector of fixed fermion parity
equal to (−1)N . In the second step, we convert this purely
fermionic model to a spin model using a Jordan-Wigner trans-
formation.

A. Relation to a fermionic model

We begin by mapping our full model to a purely fermionic
model. Our discussion in this section closely follows Sec. III
of the Supplemental Material from Ref. [28].

We start by considering the mean-field Hamiltonian
HMF(φ) that is obtained by replacing the operator eiφ̂ in H0

with the classical phase eiφ :

HMF(φ) = −
2∑

α=1

tα
2

L−1∑
j=1

(c†
j,αc j+1,α + H.c.)

−
2∑

α=1

�α

2

L−1∑
j=1

(c j,αc j+1,αeiφ + H.c.)

−
2∑

α=1

μα

L∑
j=1

(
n j,α − 1

2

)
. (3.1)

The Hamiltonian HMF(φ) acts on only on the Fock space F for
the fermions c j,α . The number and phase degree of freedom is
not involved in HMF(φ).

Let |χa(φ)〉, with a ∈ {0, 1, 2, . . . } be the eigenstates
of HMF(φ) in the sector of the Fock space with fermion
parity (−1)N , and let εa be the energies of these states:
HMF(φ)|χa(φ)〉 = εa|χa(φ)〉. The energies εa are indepen-
dent of φ due to the fact that HMF(φ) is related to HMF(0)

6Our notation here highlights the fact that the state |χ (N )
a 〉 lives in

the tensor product F ⊗ HSC of the fermionic Fock space F and the
Hilbert space HSC for the number and phase degree of freedom.

by a unitary transformation: HMF(φ) = e−i φ

2 Nw HMF(0)ei φ

2 Nw .
This transformation also implies that the eigenstates of
HMF(φ) are related to the eigenstates of HMF(0) as |χa(φ)〉 =
e−i φ

2 Nw |χa(0)〉.
It turns out that there is a one-to-one correspondence

between the mean-field eigenstates |χa(φ)〉 and the eigen-
states of the number-conserving Hamiltonian H0 in a fixed
N-particle sector. To explain this correspondence, let |p〉 be
the eigenstates of the Cooper pair number operator n̂, and let
|φ〉 be the dual set of eigenstates of eiφ̂ that are related to |p〉
by

〈φ|p〉 = 1√
2π

eipφ . (3.2)

In this notation, the eigenstates of H0 in the N-particle sector
take the form6

∣∣χ (N )
a

〉 = 1√
2π

∫ 2π

0
dφ ei N

2 φ|χa(φ)〉 ⊗ |φ〉 . (3.3)

It is not hard to check that these states satisfy H0|χ (N )
a 〉 =

εa|χ (N )
a 〉 and N |χ (N )

a 〉 = N |χ (N )
a 〉 (see, e.g., Sec. III of the

Supplemental Material from Ref. [28] for details). In addi-
tion, these states have the following important property. Let
O be any operator formed from the fermionic creation and
annihilation operators c j,α and c†

j,α that also commutes with
the particle number operator for the wires, [O,Nw] = 0. Then
for any two states |χ (N )

a 〉 and |χ (N )
b 〉, we have the identity

〈
χ (N )

a

∣∣O∣∣χ (N )
b

〉 = 〈χa(0)|O|χb(0)〉 . (3.4)

To prove Eq. (3.4), we simply evaluate the matrix
element 〈χ (N )

a |O|χ (N )
b 〉 using our formula Eq. (3.3) for

|χ (N )
a 〉, the orthogonality relation 〈φ|φ′〉 = δ(φ − φ′), the

fact that |χa(φ)〉 = e−i φ

2 Nw |χa(0)〉, and our assumption that
[O,Nw] = 0. We then have

〈
χ (N )

a

∣∣O∣∣χ (N )
b

〉 = 1

2π

∫ 2π

0
dφ

∫ 2π

0
dφ′ e−i N

2 φei N
2 φ′ 〈χa(φ)|O|χb(φ′)〉〈φ|φ′〉

= 1

2π

∫ 2π

0
dφ

∫ 2π

0
dφ′ e−i N

2 φei N
2 φ′ 〈χa(φ)|O|χb(φ′)〉δ(φ − φ′)

= 1

2π

∫ 2π

0
dφ 〈χa(φ)|O|χb(φ)〉

= 1

2π

∫ 2π

0
dφ 〈χa(0)|ei φ

2 NwOe−i φ

2 Nw |χb(0)〉

= 1

2π

∫ 2π

0
dφ 〈χa(0)|O|χb(0)〉

= 〈χa(0)|O|χb(0)〉 . (3.5)

With these results we can now map H onto a purely
fermionic Hamiltonian. To do this we consider the ma-
trix elements of H in the |χ (N )

a 〉 basis. First, we clearly

have

〈
χ (N )

a

∣∣H0

∣∣χ (N )
b

〉 = εaδab = 〈χa(0)|HMF(0)|χb(0)〉 , (3.6)
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which follows directly from the construction of the states
|χ (N )

a 〉 from the states |χa(φ)〉. Next, for the charging energy
term we also find that〈

χ (N )
a

∣∣V ∣∣χ (N )
b

〉 = 〈χa(0)|V |χb(0)〉 , (3.7)

which follows immediately from Eq. (3.4) and the fact that
V depends only on the number operators Nw,α for the wires.
Adding together (3.6) and (3.7), we conclude that the matrix
elements 〈χ (N )

a |H |χ (N )
b 〉 of our Hamiltonian in the N-particle

sector are equal to the matrix elements 〈χa(0)|HF|χb(0)〉 of
a number-non-conserving fermionic Hamiltonian HF, defined
by

HF = HMF(0) + V , (3.8)

in the sector with fermion parity equal to (−1)N .
This completes the mapping of our model (within a sector

of fixed total particle number) to a purely fermionic model
without number conservation (and restricted to a sector of
fixed fermion parity).

B. Mapping to a spin model via Jordan-Wigner transformation

We now move on to the second step in the mapping to
a spin Hamiltonian, which is to use a Jordan-Wigner (JW)
transformation to map the fermionic Hamiltonian HF from
Eq. (3.8) into a spin Hamiltonian. Since the JW transformation
is a standard method, we give only a brief description of the
most important points.

First, as we discussed in Sec. II, to simplify our analysis
we work at the point in parameter space where tα = �α . At
this point it is helpful to first rewrite HF in terms of Majorana
fermion operators before doing the JW transformation. For
each wire α we define two Majorana fermion operators aj,α

and b j,α on each site j as

a j,α = −i(c j,α − c†
j,α ) (3.9a)

b j,α = c j,α + c†
j,α . (3.9b)

In terms of these operators we have the identity

c†
j,αc j+1,α + c j,αc j+1,α + H.c. = ib j,αa j+1,α , (3.10)

which holds for all j ∈ {1, . . . , L − 1}. For all j we also have
the identity

n j,α − 1
2 = − 1

2 ia j,αb j,α . (3.11)

These two identities are sufficient to completely rewrite HF

in terms of the Majorana operators. For example, we have (at
tα = �α)

HMF(0) = −
2∑

α=1

�α

2

L−1∑
j=1

ib j,αa j+1,α +
2∑

α=1

μα

2

L∑
j=1

ia j,αb j,α .

(3.12)
In addition, the number operator Nw,α for wire α takes the
form

Nw,α = L

2
− 1

2

L∑
j=1

ia j,αb j,α , (3.13)

and this identity can be used to rewrite the charging energy
term in HF in terms of the Majorana operators.

We now turn to the JW transformation itself. For this
transformation we introduce two sets of Pauli matrices
{σ x

j,α, σ
y
j,α, σ z

j,α} (one set for each wire). For the fermions
on the first wire the transformation between the Majorana
operators and the Pauli matrices σ

x,y,z
j,α is

a j,1 =
⎛
⎝∏

k< j

σ x
k,1

⎞
⎠σ z

j,1, (3.14a)

b j,1 =
⎛
⎝∏

k< j

σ x
k,1

⎞
⎠σ

y
j,1 . (3.14b)

For the second wire the relation is slightly more complicated,
because we have to ensure that Majorana operators on two dif-
ferent wires still anticommute with each other. Therefore, for
the fermions on the second wire we have the transformation

a j,2 =
(

L∏
=1

σ x
,1

)⎛
⎝∏

k< j

σ x
k,2

⎞
⎠σ z

j,2, (3.15)

b j,2 =
(

L∏
=1

σ x
,1

)⎛
⎝∏

k< j

σ x
k,2

⎞
⎠σ

y
j,2 . (3.16)

To rewrite the fermionic Hamiltonian HF in terms of the spin
operators, it will also be convenient to introduce the following
notation for sums of σ x

j,α operators: �x
α = ∑L

j=1 σ x
j,α .

After the JW transformation, the mean-field part of the
Hamiltonian takes the form

HMF(0) = −
2∑

α=1

�α

2

L−1∑
j=1

σ z
j,ασ z

j+1,α +
2∑

α=1

μα

2
�x

α , (3.17)

and the charging energy term is now

V = 1

2

2∑
α=1

Ec,α

L

(
1

2
�x

α + Nα,0 − L

2

)2

+ E ′
c

L

(
1

2
�x

1 + N1,0 − L

2

)(
1

2
�x

2 + N2,0 − L

2

)
. (3.18)

The entire Hamiltonian HF can then be rewritten as

HF =
2∑

α=1

�α

2

L−1∑
j=1

(
1 − σ z

j,ασ z
j+1,α

) +
2∑

α=1

μ̃α

2
�x

α

+
2∑

α=1

Ec,α

8L

L∑
j, j′=1

σ x
j,ασ x

j′,α (1 − δ j, j′ )

+ E ′
c

4L
�x

1�
x
2 + constant , (3.19)

where the μ̃α are the modified chemical potentials that we
defined in Eqs. (2.7). In particular, the form of the JW-
transformed Hamiltonian explains why it is μ̃α , and not μα ,
that appears in our main result.

Finally, we need to discuss the various fermion parity oper-
ators and their form in terms of spin operators. First, the total
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fermion parity operator (−1)Nw takes the form7

(−1)Nw = S , (3.20)

where S is the total Ising symmetry operator for both wires:
S = ∏2

α=1

∏L
j=1 σ x

j,α . Next, we consider the fermion parity
operators for each individual wire. Using the JW transforma-
tion, we find that Nw,α = L

2 − 1
2�x

α , and so

Pα := (−1)Nw,α = Sα , (3.21)

where Sα = ∏L
j=1 σ x

j,α is the Ising symmetry operator for wire
α.

If we put all of our results together, then we find that
studying our original model in the subsector of the N-particle
sector where P1 = ±1 is equivalent to studying the Hamilto-
nian HF (expressed in terms of spin operators) in the S1 = ±1
subsector of the sector with S = (−1)N .

C. Completing the proof

At this point we have mapped our model to a spin Hamilto-
nian with long-range σ x

j,ασ x
j′,β interactions. We now show that

this spin Hamiltonian is subject to the general stability result
that we proved in Ref. [36].

To apply our result from Ref. [36], notice that the final spin
Hamiltonian from Eq. (3.19) (after dropping the constant part)
can be written in the general form

Hspin =
2∑

α=1

�α

2

L−1∑
j=1

(
1 − σ z

j,ασ z
j+1,α

) + λW , (3.22)

where λ is a constant with units of energy, and the perturbation
term W takes the form

W =
2∑

α=1

hα�x
α + 1

2

L∑
j, j′=1

2∑
α,β=1

f (α,β )(| j − j′|)σ x
j,ασ x

j′,β .

(3.23)

Here, hα and f (α,β )(| j − j′|) are dimensionless coefficients,
and we assume that f (α,β )(0) = 0 if α = β to avoid including
constant terms in W . In particular, we can choose the follow-
ing values for λ, hα , and f (α,β )(| j − j′|):

λ = max(|Ec,1|, |Ec,2|, |E ′
c|, |μ̃1|, |μ̃2|) (3.24a)

hα = μ̃α

2λ
(3.24b)

f (1,1)(| j − j′|) = Ec,1

4λL
(1 − δ j, j′ ) (3.24c)

f (2,2)(| j − j′|) = Ec,2

4λL
(1 − δ j, j′ ) (3.24d)

7There is a minus sign error in Eq. (4.3) of the Supplemental
Material of Ref. [28] that caused us to include an additional factor
of (−1)L in the relation between the fermion parity operator and the
Ising symmetry operator. That sign error did not affect our results
in Ref. [28], but we note here that the correct versions of Eq. (4.3)
and (4.5) of the Supplemental Material are N̂w = L

2 − 1
2

∑L
j=1 σ̂ x

j and

Ŝ = (−1)N̂w , respectively (using the notation of Ref. [28]).

f (1,2)(| j − j′|) = E ′
c

4λL
(3.24e)

f (2,1)(| j − j′|) = f (1,2)(| j − j′|) . (3.24f)

Notice that the coefficients f (α,β )(| j − j′|) are bounded in
magnitude by 1

4L and therefore, in particular,

| f (α,β )(| j − j′|)| � 1 . (3.25)

Also, for any site j the coefficients f (α,β )(| j − j′|) satisfy a
summability condition of the form∑

j′,α,β

∣∣ f (α,β )(| j − j′|)∣∣ � c , (3.26)

where c is a constant that can be chosen to be independent of
L. (Specifically, in this case we can take c = 1.)

With this setup we are now in a position to apply the
stability result from Ref. [36] (adapted to the current setting).

Theorem (Adapted from Theorem 1 of Ref. [36]) Con-
sider a Hamiltonian Hspin of the form (3.22) with interaction
coefficients that satisfy (3.25) and (3.26). There exists an
L-independent constant λ0 > 0 such that if λ < λ0, then (1)
Hspin has a unique ground state and a finite energy gap in each
subsector of the S = (−1)N sector with fixed S1 eigenvalue,
and (2) the ground-state energy splitting |E+(λ) − E−(λ)|
between the S1 = ±1 subsectors of the S = (−1)N sector
satisfies the exponential bound

|E+(λ) − E−(λ)| � c1Le−c2L , (3.27)

where c1 and c2 are positive constants that depend on �α , hα ,
and λ, but not on L.

Combining the above theorem with the mappings dis-
cussed in the previous sections, Theorem 1 follows immedi-
ately.

A few comments: First, for readers who are curious about
the proof of the above theorem, the basic idea is to consider
a perturbative expansion in λ. One can then prove that this
expansion in λ is absolutely convergent with a fixed, finite
radius of convergence for arbitrarily large L. This is the most
difficult technical step and utilizes the “polymer expansion”
(also known as the “cluster expansion”). Once one establishes
convergence, the exponentially small bound on the energy
splitting |E+(λ) − E−(λ)| follows almost immediately, since
in perturbation theory the corrections to the energies E+(λ)
and E−(λ) are identical until order L/2. This leads to an
exponentially small energy splitting that scales as λL/2. For
more details, we refer the reader to Ref. [36].

A final comment: As we mentioned earlier, the above the-
orem is similar, but not identical, to Theorem 1 of Ref. [36].
The main difference is that the original theorem was phrased
in terms of a single spin chain, while the above theorem
involves two coupled spin chains. Also, while the original
theorem assumed periodic boundary conditions, here we con-
sider a model with open boundary conditions. These minor
modifications in the statement of the theorem can be accom-
modated by making minor technical changes to the proofs in
Ref. [36]. For completeness we summarize these changes in
Appendix A.
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IV. CONCLUSION

In this paper we have completed the work that we began in
Ref. [28]: Combining the results of this paper and Ref. [28],
we have now proved that three of the key properties of the
mean-field TSC models also hold in a number-conserving toy
model of a qubit formed from a 1D TSC. These properties
are (i) the existence of two low-energy “qubit” states that are
separated from the rest of the spectrum by a finite energy
gap; (ii) an exponentially small bound on the energy splitting
of the qubit states (the main contribution of this paper); and
(iii) the existence of long-range “Majorana-like” correlations
between the ends of the fermionic wires in the 1D TSC model.
These results provide an important proof of principle that
the key properties of the mean-field TSC models—properties
that are important for quantum computing applications—can
indeed be realized in a number-conserving model without
fine-tuning.

A natural next step would be to study the above properties
in a more realistic model. Such a model would include some
or all of the following ingredients: first, the bulk s-wave SC
would be modeled by a 3D number-conserving Hamiltonian
of interacting fermions (rather than a single number and phase
degree of freedom). Second, the 1D wires would couple to
the 3D bulk via single-particle hopping terms (rather than
pair hopping terms). Finally, the fermions would interact via
microscopic Coulomb interactions (rather than an effective
charging energy term). While it is not obvious how to general-
ize our techniques to this setting, we see this as an interesting
direction for future work.
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APPENDIX A: APPLYING OUR STABILITY RESULTS
TO THE TWO-WIRE MODEL IN THIS PAPER

As we mentioned in the main text, we need to make a few
changes to our setup and proofs from Ref. [36] in order to
apply the stability results from that paper to the spin model
from Eq. (3.19). There are two main differences between
this spin model and the model that we studied in Ref. [36]
(see Eqs. (2.1)–(2.3) of that paper). The first difference is
that the unperturbed spin model in this paper consists of two
transverse-field Ising chains, instead of one, and the long-
range interaction term (which comes from the charging energy
term) couples spins within and between the two chains. The
second difference is that the model in this paper has open
boundary conditions for the two chains, while we assumed
periodic boundary conditions in Ref. [36].

We now give a brief list of the main changes that we need to
make in the setup and proofs of Ref. [36] in order to apply the

results of that paper to Eq. (3.19) of this paper. In what follows
we assume that any reader of this Appendix is familiar with
the concepts and notation from Ref. [36].

Changes needed because of the open boundary conditions:
(1) Sums over the separation r = | j − j′| between sites j

and j′ on the spin chains now run from 1 to L − 1 instead of 1
to L/2.

(2) The size of the blocked spacetime lattice � used in the
polymer expansion is now |�| = (2L − 1)M instead of 2LM.
Compared to the periodic case, the lattice is now missing one
column of plaquettes.

(3) Support sets can now include “half-boxes” at the
boundaries of the system. These do not introduce any com-
plications, and they can be treated exactly the same as the full
boxes in the bulk of the system.

Changes needed because we now have two wires (two spin
chains):

(1) The weights W±(X ) are now for the system restricted
to the S1 = ±1 subsectors of the S = (−1)N sector of the
Hilbert space for the two spin chains.

(2) We now define the macroscopic support set s(C) of a
microscopic domain wall and interaction configuration C as
follows:

(a) If C has a domain wall worldline (from either wire)
that passes all the way through a given plaquette, then that
plaquette is included in s(C).

(b) If a perturbation term VY has support on site j (on
either wire) within the time interval [τ ( − 1), τ], then s(C)
contains the box or half-box centered on j within that time
slice.

(c) If a perturbation term VY has support on site j (on
either wire) and site k (on either wire) within the time in-
terval [τ ( − 1), τ], then s(C) contains a single dashed line
connecting the boxes or half-boxes centered on sites j and k
within that time slice. Of course, this rule is only relevant for
the σ xσ x terms.

(3) With the new definition of s(C) from point (2) above,
there are now more microscopic configurations that lead to
the same macroscopic support set, and we need to be sure to
sum over these additional configurations when deriving the
bound on the weights W±(X ) from Lemma 1 of Ref. [36]. In
particular, this means that the “partial perturbation terms” V

from Eq. (A17) of Ref. [36] now contain more terms, and the
constant K that first appears in Eq. (A23) will be larger.

(4) The parameter � that appears in the upper bound in
Eq. (A4) of Ref. [36] should be chosen as � = min(�1,�2).
The reason is that this upper bound is now obtained by taking
the smaller of the two excitation energies for domain walls in
the unperturbed Hamiltonian.

(5) The parameter |h| in Eq. (A7) of Ref. [36] should be
chosen as |h| = max(|h1|, |h2|).

(6) In Eq. (A7) of Ref. [36], the weights in the “+” and
“−” Ising sectors are both bounded from above by an ex-
pression that features a trace over only the “+” Ising sector.
Instead of this, we now have a bound in which the weights in
the S = (−1)N , S1 = ±1 subsectors are both bounded from
above by an expression that features a trace in the S = 1,
S1 = 1 subsector.
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