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Spin-dependent graph neural network potential for magnetic materials
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The development of machine-learning interatomic potentials has immensely contributed to the accuracy
of simulations of molecules and crystals. However, creating interatomic potentials for magnetic systems that
account for both magnetic moments and structural degrees of freedom remains a challenge. This work introduces
SpinGNN, a spin-dependent interatomic potential approach that employs the graph neural network (GNN) to
describe magnetic systems. SpinGNN consists of two types of edge GNNs: Heisenberg edge GNN (HEGNN)
and spin-distance edge GNN (SEGNN). HEGNN is tailored to capture Heisenberg-type spin-lattice interactions,
while SEGNN accurately models multibody and high-order spin-lattice coupling. The effectiveness of SpinGNN
is demonstrated by its exceptional precision in fitting a high-order spin Hamiltonian and two complex spin-lattice
Hamiltonians with great precision. Furthermore, it successfully models the subtle spin-lattice coupling in
BiFeO3 and performs large-scale spin-lattice dynamics simulations, predicting its antiferromagnetic ground
state, magnetic phase transition, and domain-wall energy landscape with high accuracy. Finally, we perform
spin-lattice simulations over one million atoms across GPUs in parallel. Our study broadens the scope of graph
neural network potentials to magnetic systems, serving as a foundation for carrying out large-scale spin-lattice
dynamic simulations in first-principle accuracy on such systems.
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I. INTRODUCTION

Machine-learning (ML) interatomic potentials have trans-
formed the field of computational condensed-matter physics
by enabling highly accurate simulations of materials [1,2].
These potentials are trained on a dataset of atomic configura-
tions and their corresponding total energies or forces using a
machine-learning model. This allows the model to learn the
potential-energy surface (PES) of the system and simulate
its behavior under different conditions such as temperature,
pressure, or deformation. Compared to traditional methods
like density-functional theory, ML interatomic potentials are
much faster, making them a powerful tool for investigating
large and complex materials systems over long timescales
[3–8]. Kernel-based ML interatomic potentials employ ma-
terial descriptors as inputs and learn to map them to the
corresponding energy of the material. These methods include
kernel ridge regression and Gaussian process regression. The
descriptors, which are derived from the atomic positions and
atomic numbers, remain invariant under uniform translations,
rotations, and permutations of identical atoms in the material.
The construction of the descriptors significantly affects the
performance of the machine-learning interatomic potentials
(MLIP) model. Various descriptors have been developed to
encode material information such as Behler-Parrinello neu-
ral networks [9], Gaussian Approximation Potential (GAP)
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[10], Spectral Neighbor Analysis Potential (SNAP) [11], Mo-
ment Tensor Potentials [12], DeepMD [13], Atomic Cluster
Expansion (ACE) [14], Smooth Overlap of Atomic Posi-
tions (SOAP) [15], and Atom-Centered Symmetry Functions
(ACSFs) [16].

A. Graph neural network and message-passing neural network

Graph neural networks (GNNs) with message-passing
deep-learning architecture have shown remarkable perfor-
mance in condensed-matter physics. Message-passing neural
network (MPNN) interatomic potentials induce an atomistic
graph by connecting each atom (node) to neighboring atoms
within a finite cutoff sphere. This structure representation
is learned directly from the input structure, which makes it
more natural than manual descriptor construction methods.
The graph representations of GNN naturally include symme-
try invariants such as translation, rotation, and permutation.
Recently, molecular and crystal graph neural networks have
been well developed as end-to-end learned natural descrip-
tors for crystals [17–25]. The Line Graph Neural Network,
a recently proposed extension of GNN, explicitly includes
bond angles and updates edge features in the graph, exem-
plified by ALIGNN [26], and Dimenet++ [20]. Furthermore,
equivariant neural networks have been developed to pro-
cess noninvariant geometric inputs, such as displacement
vectors, while maintaining symmetry [27]. By using only
E(3)-equivariant operations, these models achieve internal
features that are equivariant with respect to the 3D Euclidean
group. Equivariant architectures provide an approach for
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creating interatomic potential models such as NequIP [23]
and MACE [28]. In particular, the NequIP model, along with
other equivariant implementations [29–33], has demonstrated
remarkable performance in accurately describing the struc-
tural and kinetic properties of complex materials, achieving
unprecedented error rates across a broad range of systems
and remarkable sample efficiency. The MPNN has shown out-
standing performance in training potential, interpreting mate-
rials, predicting properties, and inverse design [17,18,34–37].
While MPNNs can learn many-body correlations and access
nonlocal information beyond the local cutoff, their parallelism
presents significant limitations for large-scale system simu-
lations. The iterative propagation of information in MPNNs
results in large receptive fields with many effective neighbors
per atom, hindering parallel computation and restricting the
accessible length scales for atom-centered MLIPs. A potential
solution to these challenges is Allegro [24], a recently pro-
posed interatomic potential architecture that uses strictly local
equivariant deep neural networks for scalable and accurate
modeling. As a result, molecular dynamics simulations can
now predict the structural and kinetic properties of complex
systems containing millions of atoms with near first-principles
fidelity.

B. Magnetic interatomic potential

In magnetic materials, the PES depends not only on the
positions of the atoms but also on the spin configurations of
the magnetic atoms. At finite temperatures, atomic magnetic
moments fluctuate, and a single magnetic state is insufficient
to describe the system. Even at ambient temperatures, atomic
spin flips occur frequently due to small energy differences
between different spin configurations, typically in the range
of a few meV/atom. Therefore, a thorough understanding
of magnetic materials necessitates incorporating the effects
of temperature on atomic spin configurations. The effective
spin-lattice Hamiltonian is traditionally used to understand
the spin-lattice coupling in multiferroic materials, such as
BiFeO3, based on the system’s symmetry [38–42]. However, it
is challenging to determine the terms and coefficients required
to build the potential, and the effective Hamiltonian method
is limited in its ability to describe systems with significant
perturbations from the ideal structure.

MLIPs have advanced significantly in their ability to in-
vestigate complex systems and physical phenomena, but their
failure to consider the diverse range of spin arrangements and
magnetic interactions remains a limitation. Many descriptors
only work with potentials that do not include atomic magnetic
moments, which makes most MLIP models unable to describe
the intricate spin-lattice coupling present in magnetic materi-
als. Representing magnetic PES is even more challenging than
nonmagnetic PES due to the dimensional crisis. For illustra-
tion, for a system with N particles, a nonmagnetic potential
function has 3×N freedom degrees as input of E = f ({−→ri }),
while for a magnetic potential function, it has 6×N freedom
degrees, including atomic positions and magnetic moments as
E = f ({−→ri }, {−→si }), which makes it inaccessible to describe
a magnetic system well with traditional atomic potentials.
Also, one significant limitation is the cost involved in gener-
ating a dataset that is well sampled in {−→ri ,−→si } configuration

spaces with high accuracy. The spin-polarized first-principle
calculation is much more expensive than the ones without
spin polarization. Consequently, there is a significant need
for a general and robust magnetic neural network potential
with high accuracy and efficiency to investigate and better
understand magnetic materials.

Several machine-learning methods have been developed
for magnetic systems. In our previous work, Yu et al. de-
veloped the spin Hamiltonian based on the proposed spin
descriptors without considering the atomic displacement, so
could not consider the spin-lattice coupling [43]. Magnetic
moment tensor potentials (mMTPs) [44], developed by Ivan
et al., incorporate the contributions of collinear magnetic mo-
ments on moment tensor potentials (MTPs) to add collinear
magnetic degrees of freedom to MLIP. Although mMTPs
have been demonstrated for body-centered cubic iron with
calculations and simulations, it should be noted that they
can only handle collinear spin and do not explicitly consider
spin-inversion symmetry. Marco et al. developed the mag-
netic high-dimensional neural network potential (mHDNNP),
which modifies the ACSFs to spin-dependent ACSFs [45].
However, like mMTPs, mHDNNP can only handle collinear
magnetic moments, hindering the study of noncollinear mag-
netic states like spirals, skyrmions, and bimerons. Note
that considering noncollinear magnetic states is indispens-
able for calculating magnetic transition temperature with
Monte Carlo simulation and performing spin-lattice dynamics
[46,47]. Meanwhile, Svetoslav et al. proposed magnetoelas-
tic machine-learning interatomic potentials (ML-IAP) [48]
with SNAP [11] potential and a spin Hamiltonian consid-
ering Heisenberg and biquadratic terms, mainly considering
the spin-spiral state. While magnetoelastic ML-IAP can deal
with a noncollinear magnetic state, the spin-lattice part is the
traditional explicit term, and the complex interaction cannot
be described well under this framework. Moreover, in a re-
cent study, Behnam et al. [49] discovered that both SOAP
and ACSFs, the most commonly used descriptors, fail to ad-
equately handle four-body interactions, leading to a failure
to learn the full energy landscape of materials. To date, the
freedom of magnetic moments has not been included in GNN,
resulting in underdeveloped MLIP for noncollinear magnetic
degrees of freedom.

In this work, we introduce SpinGNN, a generalized spin-
dependent graph neural network framework designed to
incorporate noncollinear spin into graph neural networks. This
framework extends molecular and crystal GNNs to encompass
both structural and magnetic states. In our study, we find that
Spin-Dimenet++ and Spin-Allegro show high accuracy and
effectively capture fine spin-lattice interactions in some mag-
netic datasets. We further demonstrate that Spin-Allegro is not
only efficient in parallelizing across devices for spin-lattice
simulations that involve millions of atoms, but it can also
predict magnetic ground states accurately. Finally, we show
that Spin-Allegro can predict consistent magnetic phase tran-
sitions, related transition temperatures, and energy landscape
of domain walls of BiFeO3, a commonly studied multiferroic
material.

This paper follows the subsequent structure: First, we
review related work on kernel-based interatomic potential,
graph neural network interatomic potential, and magnetic
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FIG. 1. The SpinGNN framework. Illustration of the SpinGNN
including the Heisenberg edge GNN (HEGNN) and spin-distance
edge GNN (SEGNN). (a) HEGNN utilizes the updated edge feature
of GNN as the Heisenberg coefficients and builds a Heisenberg-
based magnetic potential. (b) SEGNN utilizes the spin-distance edge
crystal graph which initializes the edge with the dot product of the
spin vector and bond length and builds a high-order general magnetic
potential.

interatomic potential. Next, we present the core concepts
of the SpinGNN framework, as well as the detailed design
of Spin-Dimenet++ and Spin-Allegro model based on the
popular Dimenet++ and Allegro. Then, we introduce the
edge-vector based atomic virial method to enable parallel
stress calculation for Allegro. Following that, we present a
series of results from magnetic datasets. Finally, we demon-
strate the results of spin-lattice dynamics simulation for the
multiferroic BiFeO3 on a large scale.

II. RESULTS

The following introduces our proposed method for learning
magnetic potential-energy surfaces, utilizing a spin-dependent
graph neural network architecture that incorporates non-
collinear spin with a stress parallel calculation method for
Allegro.

A. The SpinGNN framework

The SpinGNN framework, illustrated in Fig. 1, enhances
the standard GNN potential by integrating the degrees of
freedom related to atomic positions and collinear or non-
collinear magnetic moments. The framework involves two
separate neural network architectures, namely the Heisenberg
edge graph neural network (HEGNN) and the spin-distance
edge graph neural network (SEGNN). HEGNN uses updated
edge features in GNN to map the variational Heisenberg
coefficients between magnetic atoms. Conversely, SEGNN
utilizes both the atomic distance and the dot product of the
noncollinear spin between two atoms to initialize the edges
in the network. By incorporating HEGNN and SEGNN in a
GNN potential, we can create and train a magnetic poten-
tial model for describing the magnetic material’s complicated
PES. While HEGNN supports the discovery of the funda-
mental Heisenberg magnetic potential, SEGNN enables the
modeling of complex high-order magnetic potentials. We can

use both models independently or collectively to develop
the magnetic potential of an ensemble. HEGNN is proficient
in representing uncomplicated Heisenberg 2-order magnetic
interactions, whereas SEGNN can generally illustrate both
2-order and higher-order interactions through graph convolu-
tion in GNN, rendering it competent in accommodating most
spin-lattice interactions. Since the Heisenberg interactions are
mostly prevalent in magnetic potentials, HEGNN is adept
at constructing the magnetic potential landscape for materi-
als with simple magnetic interactions that can be expressed
through the Heisenberg model. Conversely, SEGNN should
be utilized for modeling the magnetic potential landscape
for materials with high-order magnetic interactions, where
the Heisenberg model falls short. Hence, the choice of the
SpinGNN model for creating the magnetic potential landscape
is determined by the type of magnetic interactions dominating
the material of interest.

B. Concerning general magnetic potentials, HEGNN
and SEGNN work in ensembles that are expressed as

E total = EHEGNN + ESEGNN, (1)

= λr

∑
i

hHEGNN
i (�r) +λHB

∑
i, j

JHEGNN
i j (r)−→si ·−→s j ,

(2)

ESEGNN(r, �s) = λrs

∑
i

hSEGNN
i (r, �s), (3)

where hHEGNN
i (r) is the HEGNN component of the local

atomic energy of atom i and JHEGNN
i j (r) represents the Heisen-

berg coefficient of the bond between atoms i and j. Both
terms are solely dependent on the neighboring atomic position
environment and do not involve the spin configuration. Here,
hSEGNN

i (r, �s) represents the SEGNN component of the local
atomic energy of atom i which relates to the position and spin
vector of the surrounding atoms. The coefficients, λr, λHB

and λrs, are used in the potential, as PES is usually dominated
by position-related energy, then refined by the Heisenberg
interaction and high-order spin-lattice interaction. The spin
force, like force and stress, can be calculated using autod-
ifferentiation, as per its definition: the negative gradient of
the total energy with respect to the spin vector of atom i. It
is denoted as −→ωi = −∂E/∂−→si and is used for carrying spin-
lattice dynamics. It can also be used for training if provided in
the dataset.

The input vector �s in HEGNN and SEGNN is a unit vec-
tor. The length of the magnetic moment can be predicted
by a separate MLP in the output of HEGNN or SEGNN if
it varies with the atomic structure and spin configuration.
When the length of the magnetic moment remains the same
across different atomic structures and spin configurations,
such as in multiferroic [50,51], it can be excluded from the Sp-
inGNN prediction and treated as a constant during spin-lattice
dynamics.

1. HEGNN

We first introduce the HEGNN based on the Heisenberg
model and GNN. The Heisenberg model is commonly used
to describe magnetic interactions in materials, and it is ex-
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FIG. 2. The Spin-Dimenet++ and Spin-Allegro architecture. (a) Details of the HEGNN-DimeNet++ and spin-distance edge in SEGNN-
DimeNet and (b) Details of the Spin-Allegro, which is stacked by HEGNN-Allegro and SEGNN-Allegro. Spin-related parts are highlighted in
red.

pressed as HHB = ∑
i> j Ji j (r)−→si · −→s j , where Ji j (r) depends

on the atomic environment of the bond between two magnetic
atoms. However, defining the explicit Heisenberg coefficient
Ji j (r) is challenging as it is affected by the relative positions
of the surrounding atoms, which are difficult to define ex-
plicitly. Typically, the Heisenberg coefficient is simplified as
Ji j (ri j ) assuming it is only influenced by the atomic distance
between two magnetic atoms, thus ignoring the many-body
effect. GNNs such as Dimenet++ overcome this limitation by
updating the edges of the graph and reflecting the surrounding
atomic information of the magnetic bond. As a result, the up-
dated edge features in the line graph can represent the learned
Heisenberg coefficient Ji j (r) including information about the
neighbor atoms of the magnetic bond. The updated node fea-
tures, on the other hand, represent the local atomic energy,
similar to the usual GNN potential. Thus, the magnetic po-
tential of HEGNN can be expressed as Eq. (2), where E pos

i (r)
represents the traditional structure potential, derived from the
learned node features, and Ji j (r) represents the Heisenberg
coefficient, derived from the learned edge feature.

2. SEGNN

Then, we introduce the SEGNN model, which utilizes a
spin-distance edge crystal graph based on the molecular and
crystal GNN with the spin-distance edge feature. Radial ba-
sis functions, such as Gaussian expansion [18] and Bessel
functions with atomic distance as the only input [19], are
typically used for edge initialization of the graph. We pro-
pose a spin-distance edge that incorporates bond information
on not only the distance but also the spin product, −→si · −→s j .
SEGNN has two types of edges: magnetic edges and non-

magnetic edges. Magnetic edges exist between two magnetic
atoms with magnetic moments, whereas nonmagnetic edges
occur when at least one of the two atoms lacks magnetic
moments. To construct the spin edge, we use an expansion
basis of the value of −→si · −→s j for magnetic edges, and we
use a zero array for nonmagnetic edges to distinguish them
from the magnetic ones with −→si · −→s j = 0. Then, we stack the
spin edge and distance edge to form the final spin-distance
edge. The implementation of the spin-distance edge could be
expressed as

edistance
i j = f (RBF(|−→ri j |)), (4)

espin
i j = f (basis(−→si · −→s j )) for magnetic edges, (5)

espin
i j = f (basis(0.0) × 0.0) for nonmagnetic edges, (6)

espin−distance
i j = f

(
edistance

i j ⊕ espin
i j

)
, (7)

where “RBF” refers to radial basis function, ‘basis” refer to
a basis function, and ⊕ denotes the concatenation. The ad-
dition of spin-distance edges provides a simple and effective
way to include spin information in the original crystal graph.
Therefore, any GNN model can be used to represent magnetic
interactions using this modification in the edge-initialization
process to construct the magnetic potential.

3. Spin-Dimenet++
Dimenet++ [19,20], a remarkable line graph neural net-

work for materials, is applied within SpinGNN and used
to construct the magnetic potential shown in Fig. 2(a).
In HEGNN-DimeNet++, the last layer’s edge message
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features m ji of DimeNet++ are employed to establish the
edge Heisenberg coefficients using multilayer perceptrons
(MLPs) to map high-dimensional features to a single-
value scalar. Meanwhile, in SEGNN-DimeNet++, the spin-
distance edge e( ji)

RBF−new replaces the distance representations

e( ji)
RBF, an amalgamation of the original e( ji)

RBF and the spin dot
product of the two atoms on the bond 〈−→si ,−→s j 〉 obtained em-
ploying some MLPs with details shown in Fig. 2(a).

4. Spin-Allegro

Allegro [24], a strictly local equivariant neural network
interatomic potential architecture, is implemented within Sp-
inGNN and utilized to create the magnetic potential and
perform large-scale spin-lattice dynamics, shown in Fig. 2(b).
HEGNN-Allegro and SEGNN-Allegro are stacked within the
Spin-Allegro. HEGNN-Allegro constructs the local edge en-
ergy along with the edge Heisenberg coefficients, utilizing
distinct MLPs, using updated edge features as input. For
SEGNN-Allegro, the edge features from HEGNN-Allegro are
combined with 〈−→si ,−→s j 〉 expansion based on the Fourier basis,
the one-hot embedding of atom species, and the spin informa-
tion of the center and neighbor atoms to serve as input features
for the next layer of Allegro:

xi j, L=0
SEGNN = MLPtwo−body(1hot(Zi ) ⊕ 1hot(Zj ) ⊕ |−→si | ⊕ |−→s j |

⊕ xi j, L=last
HEGNN ⊕ B(−→si · −→s j )) · u(−→ri j ), (8)

where ⊕ denotes concatenation, 1hot(·) is a one-hot encoding
of the center and neighbor atom species Zi and Zj , |−→si | is
the normalization of the spin vector, xi j, L=last

HEGNN is the edge
invariant features from the last layer of the HEGNN-Allegro,
B(−→si · −→s j ) is the projection of the −→si · −→s j onto a Fourier
basis, and u(−→ri j ) is the polynomial envelope function as pro-
posed in Ref. [19]. While the edges that involve nonmagnetic
atoms use an array of zero to replace the 〈−→si ,−→s j 〉 expan-
sion B(−→si · −→s j ), the magnetic edges require both atoms of
the edges to be magnetic. When the magnetic moment μi

is included in the prediction, an additional MLP is applied
on the updated invariant latent features from the last Allegro
layer, shown in Fig. 2(b). The trained Spin-Allegro model
can be utilized to perform spin-lattice calculations using the
SPIN package in LAMMPS [46,52,53]. Furthermore, it is paral-
lelizable across multiple workers and can efficiently perform
large-scale spin-lattice dynamics, similar to the large-scale
molecular dynamics achievable with Allegro [24].

C. Stress calculation for Allegro in parallel

In neural network potential, stress can be calculated by the
derivatives of a zero strain on the cell over the energy with the
help of autograd technology. However, stress calculation with
the cell is limited during parallel calculation in large systems
as the cell is not usually treated as an input. In LAMMPS

[53], a widely used molecular dynamics program, ghost atoms
instead of the cell and other periodic boundary information
are involved during parallel calculation, which further limits
stress calculation with the cell in parallelism. We propose an
edge-vector based atomic virial method for the parallel stress

calculation of Allegro [24], which makes it possible to carry
out NPT simulations in parallel.

We first calculate the virial � of the system and stress is
equal to �

�
, where � is the volume of the cell. According to the

virial definition, � = ∑
i RiF i, with Ri and F i as the position

and force vector of i’s atom, respectively. In Allegro, the
energy can be expressed as E = ∑

i, j Ei j where coefficients
related to all the species are ignored for clarity. We define node
energy as Ei = ∑

j Ei j and note that Ei j �= Eji for the edge
energy in Allegro. As the atomic energy is strictly local in Al-
legro and the position information of atoms is collected as Ri j

with the center atom i and neighbor atom j, the edge energy
can be expressed as Ei j = f1(Zi, {Zj, Ri j, j ∈ N (i)}) and sim-
ilarly, node energy as Ei = f2(Zi, {Zj, Ri j, j ∈ N (i)}). Here,
Ri j is defined as Ri j = R j − Ri and the system energy is
E = ∑

i Ei. For atom i as the center atom, we can derive

that ∂Ei
∂Ri

= −∑
j �=i

∂Ei
∂Ri j

for atom i as the center atom and
∂Ej

∂Ri
= ∂Ej

∂R ji
for atom i as the neighbor atoms. As a result,

the force is expressed as F i = − ∂E
∂Ri

= − ∂
∑

j E j

∂Ri
= − ∂Ei

∂Ri
−∑

j �=i
∂Ej

∂Ri
= ∑

j �=i
∂Ei
∂Ri j

− ∑
j �=i

∂Ej

∂R ji
. Hence, the virial can be

expressed as

� =
∑

i

RiF i =
∑

i

Ri

⎛
⎝∑

j �=i

∂Ei

∂Ri j
−

∑
j �=i

∂Ej

∂R ji

⎞
⎠

=
∑

i

Ri

∑
j �=i

∂Ei

∂Ri j
−

∑
i

Ri

∑
j �=i

∂Ej

∂R ji

=
∑

i

Ri

∑
j �=i

∂Ei

∂Ri j
−

∑
j

R j

∑
i �= j

∂Ei

∂Ri j

= −
∑

i

∑
j �=i

Ri j
∂Ei

∂Ri j
. (9)

Considering the symmetry of the virial and the numerical
error in the calculation, the final virial is calculated with
�i = −∑

j �=i(Ri j
∂Ei
∂Ri j

+ R ji
∂Ej

∂R ji
)/2 as the atomic virial for

each atom and � = ∑
i(�i + �T

i )/2 as the system virial.
�i can be calculated with only center and neighbor atoms’
positions in parallel and ∂Ei

∂Ri j
can be easily calculated with

the autograd technique. This method requires only the posi-
tions of the atoms as input without the cell, and the virial
of the entire system can be calculated by the accumulation
of atomic virial that can be correctly calculated in paral-
lel. Additionally, the atomic virial provided in this method
helps obtain the correct heat current for simulations of heat
transport [54,55]. A careful numerical check is carried out,
ensuring consistency with the results of the zero-strain cell
stress method and LAMMPS parallel computation. With this
edge-vector based atomic virial method, we can carry out
NPT simulations in parallel and simulate heat transport with
Allegro. See Refs. [56,57] for available implementation.

D. Fitting the artificially constructed spin model

SpinGNN’s capability to precisely learn energies from
different artificially constructed spin models is demon-
strated with Spin-DimeNet++. As depicted in Fig. 2(a),
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FIG. 3. The prediction results of Spin-DimeNet++ on the en-
ergy of test datasets generated from the artificially constructed spin
model.

Spin-DimeNet++ precisely models the intricate spin-spin
and spin-lattice interactions, achieving high accuracy.

1. Spin Hamiltonian of an artificial model

We first validate Spin-DimeNet++ by developing a spin
Hamiltonian with a fixed structure that only accounts for spin
degrees of freedom. We utilize an artificial model that includes
Heisenberg interactions, fourth-order biquadratic interactions,
and four-body, fourth-order interactions to describe the spin
interactions between magnetic ions occupying the Al sites of
the CuAlO2-type [58] structure. The spin-Hamiltonian model
consists of intralayer interactions within a triangular lattice
and interlayer couplings:

H =
n=1,...,5∑

〈i j〉n

JnSi · S j +
n=1,5,7∑

〈i j〉n

Kn(Si · S j )
2

+
∑

〈i jkl〉1

L1(Si · S j )(Sk · Sl ). (10)

For more details regarding this model, please refer to
Ref. [43]. Since high-order interactions must be considered,
HEGNN and SEGNN are used to construct the GNN spin
Hamiltonian, fitting the model well, as shown in Fig. 3(a),
with a mean absolute error (MAE) defined as

∑| f (xi )−yi|
n )

of 1.024×10−5 meV per site. This performance is slightly
better than that of the machine-learning spin Hamiltonian
based on the spin descriptor, with an MAE of 1.03×10−5 meV
per site [43]. Thus, Spin-DimeNet++ can effectively recon-
struct the energy landscape of a complex spin Hamiltonian.

2. Two artificial spin-lattice models

We assess the capability of Spin-DimeNet++ to develop a
magnetic potential that considers both structural and magnetic
degrees of freedom. To fully validate Spin-DimeNet++, we
used two complex spin-lattice model potentials that include
different types of magnetic interactions. The first model po-
tential is a Heisenberg type, while the second one includes
higher-order magnetic interactions. These model potentials
are meant to describe the spin-lattice couplings in the mag-
netic B sites of the ABO3 perovskite structure and embody a
total of 50 atoms.

The first model potential considered does not include
high-order spin interactions. Instead, it consists of 108 terms
expressed below, encompassing up to three-body and second-
order interactions that are expressed as

H =
r<7Å∑
〈i jk〉r

J33(ri, r j, rk )ui/ j/k (Si · S j ) + J22(ri, r j, rk )(Si · S j )

+ E3(ri, r j, rk ) +
r<7Å∑
〈i j〉r

J23(ri, r j )ui/ j (Si · S j )

+ J22(ri, r j )(Si · S j ) + E2(ri, r j ), (11)

where r < 7 Å corresponds to considering up to third-nearest
magnetic neighbor B site of the center B site, Ji j indicates the
Heisenberg coefficient of the i body and jth order which is
all set as 0.1 eV, while all other coefficients of terms only
related to positions are set to 1 eV. The spin-lattice model
potential used in this study is a complex Heisenberg model
that does not consider high-order magnetic interactions. Since
the first model only involves Heisenberg interactions, we have
utilized only HEGNN-DimeNet++ for training the model.
The results, as shown in Fig. 3(a), are impressive, with a mean
absolute error of 5.04 meV per site. We have also attempted
to improve the results by ensembling HEGNN-DimeNet++
and SEGNN-DimeNet++. However, this did not produce a
better outcome, and the MAE was 5.57 meV per site due to the
overfitting of SEGNN-DimeNet++. As a result, we conclude
that HEGNN-DimeNet++ is efficient enough to learn the
Heisenberg-type magnetic potential, indicating its ability to
grasp the Heisenberg coefficients accurately.

The second model potential introduces fourth-order spin
interactions, consisting of 274 terms, encompassing up to
three-body and fourth-order interactions that are expressed as

H =
r<5.71 Å∑

〈i jk〉r

J34(ri, r j, rk )ui/ j/kui/ j/k (Si · S j ) + J33(ri, r j, rk )ui/ j/k (Si · S j )J32(ri, r j, rk )(Si · S j ) + L(ri, r j, rk )(Si · S j )(Si · Sk )

+ E3(ri, r j, rk ) +
r<5.71 Å∑

〈i j〉r

J24(ri, r j )ui/ jui/ j (Si · S j ) + J23(ri, r j )ui/ j (Si · S j ) + J22(ri, r j )(Si · S j ) + E2(ri, r j ), (12)
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TABLE I. The energy difference per atom between different
structural phases and magnetic states of BiFeO3 are calculated using
first-principle calculations and Spin-Allegro and expressed in units
of meV per site.

Phase Spin-Allegro DFT

R3c-AFM 0.00 0.00
R3c-FM 44.17 44.35
R3m-AFM 35.07 32.10
R3m-FM 78.34 81.92
Pnma-AFM 10.24 11.53
Pnma-FM 56.99 53.38
Pm3m-AFM 200.78 201.27
Pm3m-FM 246.97 267.18

where r < 5.71 Å corresponds to considering up to second-
nearest magnetic neighbor B site of the center B site and
the coefficients are set the same as the first model that spin-
related coefficients at 0.1 eV and all others at 1 eV. The
model potential comprises both Heisenberg-type terms and
fourth-order terms L(ri, r j, rk )(Si · S j )(Si · Sk ). The fourth-
order terms cannot be learned by HEGNN-DimeNet++
alone. Initially, only HEGNN-DimeNet++ was used for fit-
ting, resulting in a high MAE of 2.26 meV per atom in tests
as shown in Fig. 3(b). Due to the high-order interactions in
the second model, HEGNN-DimeNet++ alone is insufficient,
and SEGNN-DimeNet++ is required. Then, only SEGNN-
DimeNet++ was used for fitting, resulting in a relatively good
MAE of 0.596 meV per atom as shown in Fig. 3(c). Subse-
quently, HEGNN and SEGNN were used jointly for fitting,
resulting in a better MAE of 0.466 meV per atom as shown in
Fig. 3(d). SEGNN-DimeNet++ effectively learns high-order
spin-lattice interactions, while HEGNN-DimeNet++ excels
in learning Heisenberg interactions, and the combination of
the two models improves the overall accuracy.

E. Application of multiferroic BiFeO3

We utilized SpinGNN to explore its capability to represent
magnetic materials featuring large-scale spin-lattice dynam-
ics. Specifically, we employed Spin-Allegro to investigate

BiFeO3 (BFO), the room-temperature multiferroic materials
[39,40,59–64]. BFO has garnered significant interest due to its
exclusive combination of ferroelectric and antiferromagnetic
properties. BFO possesses a perovskite crystal structure, and
its magnetic ground state is antiferromagnetic. BFO displays
a phase-transition temperature around 643 K [64], identified
as antiferromagnetic Néel temperature, that results from the
interplay of different magnetic interactions. Comprehending
the mechanism behind the phase transitions in BFO is crucial
to designing and optimizing materials for a wide range of
applications, including but not limited to data storage, spin-
tronics, and energy harvesting.

A BFO dataset comprising 4857 data points is gen-
erated through first-principles calculations. Spin-Allegro,
comprising two layers of HEGNN-Allegro and one layer of
SEGNN-Allegro, achieves high accuracy on the test dataset,
with an MAE of 1.40 meV per site and 23.2 meV/Å for
energy and force accuracy, respectively. In contrast, the orig-
inal Allegro with the same configuration is trained with an
MAE of 3.55 meV per site and 30.1 meV/Å for energy
and force accuracy, respectively. Energy of BiFeO3 with dif-
ferent structural phases and magnetic phases calculated by
density-functional theory (DFT) and Spin-Allegro model are
compared, shown in Table I.

To validate the potential accuracy, we utilized the potential
along with the conjugate gradient (CG) algorithm [65] to
explore the magnetic ground state of BFO. The investigation
began with a 12×12×12 supercell composed of 8640 atoms
and 1728 Fe atoms with random spin configurations. The
subsequent 1000 CG iterations produced a zero-spin tem-
perature perfect G-type antiferromagnetic state, which agrees
with the experimental data [59–61]. A small cell of BFO
structure with a G-type antiferromagnetic state is shown in
Fig. 4(a).

Then, we utilized spin-lattice semi-implicit B (SIB)-NPT
simulation [51,66] over a range of temperatures to examine
the magnetic and structural phase transition of BFO, starting
from the same structure as earlier. We collected the anti-
ferromagnetic vector from 50 to 1200K with two supercells
including 8640 and 109 760 atoms, respectively, as shown in
Fig. 4(b). Also, we collected the polarization vector from 50
to 1300 K with the supercells including 8640 atoms, shown

FIG. 4. (a) The structure of BiFeO3 with ground G-type antiferromagnetic state. (b), (c) The antiferromagnetic vector and relative
polarization in different temperatures of BiFeO3 from simulations of spin-lattice dynamics and spin dynamics with Spin-Allegro. Obvious
magnetic and ferroelectric transition is observed and transition temperatures can be estimated, which are close to the experimental values.
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in Fig. 4(c). The polarization vector is estimated by the Born
effective charge and atomic displacement. As the temperature
increased, the antiferromagnetic vector and relative polar-
ization decreased, indicating a magnetic transition from the
antiferromagnetic to the paramagnetic state and a structural
transition from the ferroelectric to the paraelectric state. The
Néel and Curie temperature were estimated to be 650 and
1200 K, respectively, consistent with experiments [59–61].
We conducted a spin dynamics simulation without atomic mo-
tions and confirmed that spin-lattice coupling drives a lower
and more accurate transition temperature shown in Fig. 4(b).
The Spin-Allegro model provides a precise depiction of var-
ious atomic and spin phenomena at different temperatures.
These results indicate that the model effectively characterizes
the intricate spin-lattice interaction of BFO.

Furthermore, we investigated the domain wall (DW) of
BFO, which plays a crucial role in its properties and ap-
plications. Different DW types in BFO have been observed
through experimental studies, such as DW109, DW180, and
DW71, with characteristic angles between the polarization
of 109 °, 180 °, and 71 °, respectively. These DWs can be
controlled by external conditions such as magnetic fields,
temperature, and pressure, and have gained attention for their
potential applications [67–69]. However, the complex and
large structure of the DWs in BFO presents challenges for
effectively optimizing their spin orientation and configura-
tion and understanding their various properties [70–74]. To
address this, we optimized several DW structures using the
CG and annealing algorithm [75] with Spin-Allegro and in-
vestigated their metastable structures and related energy. We
analyzed the DW energies of DW109, DW180, and DW71
by calculating (EDW − Eferro)/(2/A), where A is the area of
the supercell’s topmost layer and Eferro is the energy of pure
ferroelectric structure. Initially, we created relatively small-
cell DWs with 160, 80, and 80 atoms for DW109, DW180,
and DW71, respectively. The DW energies of these DWs
were in the order of 65.70, 166.4, and 182.0 mJ/m2, respec-
tively, which was in line with previous studies [71–74] and
presented a relatively consistent value. The optimized struc-
tures were analyzed using DFT, and the forces on the atoms
were minimal, demonstrating the efficacy of optimization with
Spin-Allegro. Subsequently, we constructed larger DW struc-
tures with 1280, 640, and 640 atoms for DW109, DW180,
and DW71, respectively, by increasing the size of the small
DW structures’ supercell to 2 × 2 × 2. The DW energies
of these structures were found to be 65.27, 170.5, and 184.6
mJ/m2, respectively, which were relatively close to those of
the small structures. All simulations ended with an antifer-
romagnetic state. Detailed energy values of the structures
and workflow of optimization are provided in Supplemental
Material [76].

To demonstrate the computational efficiency of the Spin-
Allegro in parallel, several spin-lattice simulations were
performed with different numbers of GPUs, shown in Table II.
We used different sizes of bulk BiFeO3 from a DFT-afforded
size to over one million atoms with up to 96 GPUs. For com-
parison, it takes about 2000 s to carry out the spin-polarized
calculation on 80-atom BiFeO3 with 80 CPUs. Spin-lattice
simulations for over one million atoms can be carried out
with close to first-principle calculations. With a smaller

TABLE II. The computational efficiency of the spin-lattice sim-
ulations for different sizes of bulk BiFeO3 performed with different
numbers of GPUs. The time step of 0.5 fs is used.

Number of Number of Speed Time
atoms GPUs in ps/day steps (s)

80 1 1792 41.485
8 640 1 55 1.262
8 640 2 106 2.449
8 640 4 202 4.668
8 640 8 371 8.595
8 640 16 641 14.845
8 640 32 1024 23.714
109 760 8 34 0.794
109 760 16 67 1.553
109 760 24 99 2.282
233 280 16 32 0.745
1 080 000 48 21 0.479
1 080 000 64 28 0.642
1 080 000 96 41 0.958

Spin-Allegro model with fewer parameters, better efficiency
could be achieved with less accuracy.

III. DISCUSSION

We introduced a deep-learning magnetic interatomic po-
tential suitable for magnetic materials that accounts for the
freedom degrees of atomic position and noncollinear mag-
netic moment. We achieved high accuracy in this endeavor
by proposing a Spin Graph Neural Network. Our resulting
Spin-DimeNet++ and Spin-Allegro models, based on the
SpinGNN framework, exhibited good performance on the
magnetic dataset, furnishing a dependable energy landscape
for an artificial high-order spin Hamiltonian, two artificial
complex spin-lattice models, as well as the multiferroic
BiFeO3. Spin-Allegro is equipped to scale to large system
sizes of over one million atoms with ease thanks to the strict
locality of its geometric representations in Allegro, along
with parallelization in large-scale calculations. This renders
it feasible to examine the magnetic, structural, and kinetic
properties of complex magnetic systems that comprise mil-
lions of atoms with spin-lattice dynamics simulations at nearly
first-principles fidelity. Compared to the spin-Hamiltonian
method based on the spin descriptor and neural network
without considering the atomic displacement in our previous
work, SpinGNN serves as a more general framework includ-
ing both freedom degrees of structural and magnetic states,
which are important for most magnetic systems such as the
multiferroics. Meanwhile, SpinGNN is based on the more
expressive message-passing neural network and shows better
performance. Given that the magnetic potential is important
for simulations of magnetic materials and understanding mag-
netism, we expect that our SpinGNN framework and proposed
parallelizable Spin-Allegro will find wide use in the study of
magnetism.

Our framework facilitates the study of previously inacces-
sible magnetic materials systems with graph neural networks.
It is worth noting that the SpinGNN framework can be

144426-8



SPIN-DEPENDENT GRAPH NEURAL NETWORK … PHYSICAL REVIEW B 109, 144426 (2024)

implemented with most graph neural network architec-
tures, such as MACE [28], GEMNET [21], NequIP [23], and
ALIGNN [26] to be implemented just as DimeNet++ [20]
and Allegro [24]. Compared to previous works that built mag-
netic potential based on different descriptors with different
implementations, SpinGNN serves as a general framework
to transfer the common neural network potential into a mag-
netic potential. Furthermore, just as the GNN potential usually
outperforms potential based on descriptors [77], the magnetic
GNN potential with the SpinGNN framework is expected to
be more powerful than the previously proposed magnetic po-
tential based on descriptors, although a benchmark magnetic
dataset is not yet available. With the continuous development
of the neural network potential, particularly in recent years,
we expect a better magnetic neural network potential to be
built with a more powerful graph neural network potential
and SpinGNN framework. Spin-Allegro is based on one of
the most popular graph neural network potentials and has
been proven to be not only powerful enough but also easy
to parallelize for large-scale spin-lattice dynamics. Also, the
time-reversal symmetry is naturally conserved in SpinGNN,
where the feature of the spin-distance edge is about −→si · −→s j =
(−−→si ) · (−−→s j ) and the Heisenberg-type spin-lattice formula
JHEGNN

i j (r)−→si · −→s j = JHEGNN
i j (r)(−−→si ) · (−−→s j ).

The stress implementations for NequIP, Allegro, and
LAMMPS interface are available. See Refs. [56,57].
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APPENDIX

1. Software

We developed our codes utilizing the modified
NequIP code available (see Ref. [56]) under git
commit bb10cc6f91ca42fda452d7b22cc314d33c0e3d95,
Allegro code available (see Ref. [78]) under git commit
a7899a9c4c6be0620e11bef0bca8d06d9f7f32a8, as well as
e3nn [27] with version 0.5.0, PYTORCH [79] with version
1.11.0 and PYTHON with 3.9.13. Spin-DimeNet++
is developed based on the implementation in PY-
TORCH_geometric [80]; see Ref. [81]. The LAMMPS was
built based on the LAMMPS code [82] under git commit
9b989b186026c6fe9da354c79cc9b4e152ab03af with the
modified pair_allegro code available [57], git commit
101d2c8db123c9549490fa7285ce5d85a616d46f. The VESTA

[83] software was used to generate Figs. 1 and 4(a).
MATPLOTLIB [84] was used for plotting results.

2. Spin-lattice dynamics simulations

We performed spin-lattice dynamics simulations using the
SPIN package [46] in LAMMPS [53]. To ensure the accurate in-
tegration of the Landau-Lifshitz-Gilbert (LLG) [85] equation

and enforce the conservation of the magnetic moments’ mag-
nitude [51], we implemented the semi-implicit SIB method
introduced by Mentink et al. [66] in LAMMPS and the SPIN

package. The dynamics of spins and atomic motions were
simulated using the molecular dynamics scheme (NVT or
NPT) and the SIB method. Our simulations of BFO were
carried out on the 12×12×12 periodic supercell comprising
8640 atoms and the 28×28×28 periodic supercell includ-
ing 109 760 atoms with a time step of 0.5 fs in NPT-SIB.
Temperature control was exerted by implementing the Nosé-
Hoover thermostat with a temperature damping parameter of
100 time steps, and pressure control was maintained using
the Parrinello-Rahman barostat with a temperature damping
parameter of 1000 time steps, as implemented in LAMMPS

[52]. To model the temperature-driven antiferromagnetic-
paramagnetic, we simulated the dynamics of atomic motions
and spin motions using NPT simulations, respectively, with a
damping coefficient in the LLG equation of 0.01. The simu-
lation commenced with BFO in the R3c phase, in which the
antiferromagnetic configurations were initialized randomly in
100 K with a Gaussian distribution of velocity. The system
was heated from 100 to 1200 K in 30 ps and then cooled
from 1200 to 50 K in 120 ps in steps of 50 K. At each given
temperature, an equilibrium run of 5 ps was followed by a
production run of 10 ps.

3. Reference training sets

We build the dataset of artificially constructed spin mod-
els using the effective Hamiltonian in the Property Analysis
and Simulation Package (PASP) [41]. The first dataset of spin
Hamiltonian is established on CuMO2, where M is a magnetic
ion, with a fixed CuAlO2-type structure. We generate a dataset
of 10 000 fully randomized spin configurations based on a
4×4×2 supercell with 96 magnetic sites, i.e., 6 layers of 4 ×
4 triangular lattices, and obtain their corresponding energies
from Eq. (10). We refer the reader to our previous work [43]
for more details. For the two spin-lattice effective Hamilto-
nian datasets, we construct atomic configurations based on
the ideal structures of ABO3 perovskite with 50 atoms in
total, comprising magnetic B sites. We randomly sample spin
configurations and calculate energy based on the constructed
effective Hamiltonian from Eq. (11) and Eq. (12). In total,
we generate 2416 and 3611 data with different distortions
and spin configurations for the two spin-lattice Hamiltonians,
respectively.

For the BFO dataset, we perform density-functional theory
(DFT) calculations using VASP [86–88] with the projector
augmented-wave (PAW) method [89] and the Perdew-Burke-
Ernzerhof (PBE) functional [90]. We generate atomic config-
urations through several NPT molecular dynamics simulations
starting from 4×2×2 supercells with 80 atoms under different
phases, including R3c, R3m, Pnma, and Pm-3m. The tem-
peratures are sampled from 600 to 1500 K including 600,
800, 1200, and 1500 K. We also randomly sample spin con-
figurations in the calculations without considering spin-orbit
couplings [91]. We choose an energy cutoff for the plane-wave
basis of 500 eV and a 2×4×4 k-point grid. Total energy
calculations are converged to 10−6 eV per supercell to ensure
high-accuracy DFT data. We use a self-consistent value of the
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effective Hubbard U [92] of 3.8 eV [38] for the localized 3d
electrons of Fe ions according to the calculation result from
the linear response approach [93].

4. Training details

Models were trained on an NVIDIA A100 GPU in
single-GPU training with the mean-squared-error (MSE) loss
function and the Adam optimizer [94] in PYTORCH [79] with
default parameters of β1 = 0.9, β2 = 0.999, and ε = 10−8.
We lowered the learning rate with an on-plateau scheduler that
responded to the validation loss. The learning stopped when
the learning rate dropped below 10−6 or no advancement was
made in the validation loss for multiple epochs. All models
were trained with float32 precision. We utilized the SiLU
activation function [95].

(a) Spin Hamiltonian and spin-lattice Hamiltonians. Spin-
DimeNet++ was implemented with identical parameters
across all three datasets. The model was trained on energy
prediction as the target variable, with 4 layers, each consisting
of 128 hidden channels. In addition, we employed 64 interac-
tion triplet embeddings, 8 basis transformation embeddings,
256 output embedding channels, 7 spherical harmonics basis,
and 5 for envelope exponent. Three linear layers were used
for the output blocks, and both interaction blocks before and
after the skip connection were composed of 1 and 2 residual
layers, respectively. The batch sizes were 10, 6, and 8 for
the spin Hamiltonian, Heisenberg type, and high-order spin-
lattice Hamiltonian, respectively. We initialized the learning
rate to be 0.0005 for all models, with a learning rate patience
of 5, a decay factor of 0.8, and a stop patience of 20. We chose
cutoff values of 8, 7.2, and 6 Å based on the Hamiltonian
construction to ensure sufficient information was included.
The Adam optimizer’s weight decay was 0.01. Finally, we

randomly partitioned the data into three sets: 80% for training,
10% for validation, and 10% for testing.

(b) BiFeO3. We split our data into training (4200 sam-
ples), validation (357 samples), and testing (300 samples)
sets. The target variables were energies, forces, and stresses.
To define the loss function, we used per-atom mean-squared
error [24], with weights of 1 assigned to the energy, force,
and stress terms, and no weight decay in the Adam opti-
mizer. For HBGNN-Allegro, we employed two layers, 16
features for both even and odd irreps, and an 	max = 2.
We used one layer for SEGNN-Allegro. The two-body latent
MLP for both models consisted of three hidden layers with
dimensions [64, 128, 128] using SiLU nonlinearities. The
later latent MLPs consisted of one hidden layer of dimension
128 using SiLU nonlinearity. We implemented the embedding
weight projection using a single matrix multiplication. For
HEGNN-Allegro, the final edge energy and Heisenberg co-
efficient MLPs both had three hidden layers with dimensions
[128, 128, 64], and SiLU nonlinearities, while for SEGNN-
Allegro, the final edge energy MLP had one hidden layer of
dimension 128 without nonlinearity. The weight initialization
for all MLPs used a uniform distribution of unit variance. The
coefficients λr , λHB, and λrs in Eqs. (1)–(3) and Fig. 2 were
set to 1.0, 0.05, and 0.05, respectively. We set the radial cutoff
at 6.0 Å and utilized an 8 nontrainable Bessel function basis
for encoding with the polynomial envelope function using
p = 48. The learning rate was set to 0.005, batch size to 1,
with an on-plateau scheduler reducing the learning rate based
on the validation loss of force every time it hit a plateau.
The patience was set to 5, and the decay factor was set to
0.3. An exponential moving average with a weight of 0.99
was used to evaluate the validation set and the final model.
We stopped the training when the learning rate dropped
below 1×10−6.
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