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Orbitronics is an emerging and fascinating field that explores the utilization of the orbital degree of freedom of
electrons for information processing. An increasing number of orbital phenomena are being currently discovered,
with spin-orbit coupling mediating the interplay between orbital and spin effects, thus providing a wealth of
control mechanisms and device applications. In this context, the orbital analog of the spin Dzyaloshinskii-Moriya
interaction (DMI), i.e., orbital DMI, deserves to be explored in depth since it is believed to be capable of
inducing chiral orbital structures. Here, we unveil the main features and microscopic mechanisms of the orbital
DMI in a two-dimensional square lattice using a tight-binding model of t2g orbitals in combination with the
Berry phase theory. This approach allows us to investigate and transparently disentangle the role of inversion
symmetry breaking, strength of orbital-exchange interaction, and spin-orbit coupling in shaping the properties
of the orbital DMI. By scrutinizing the band-resolved contributions, we are able to understand the microscopic
mechanisms and guiding principles behind the orbital DMI and its anisotropy in two-dimensional magnetic
materials, and uncover a fundamental relation between the orbital DMI and its spin counterpart, which is
currently being explored very intensively. The insights gained from our work contribute to advancing our
knowledge of orbital-related effects and their potential applications in spintronics, providing a path for future
research in the field of chiral orbitronics.
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I. INTRODUCTION

In condensed-matter physics, a new and promising area of
research known as orbitronics has emerged in recent years.
Orbitronics focuses on utilizing the orbital degree of freedom
as a means of transmitting and manipulating information in
solid-state devices [1–3]. Recent investigations have revealed
intriguing possibilities within this realm, demonstrating that
an orbital current, resulting from the movement of electrons
possessing finite orbital angular momentum, can be gener-
ated in a diverse range of materials, despite the presence of
orbital quenching in the ground state [4–12]. The fundamen-
tal principle behind orbitronics lies in the precise control of
orbital dynamics and information transport and subsequent
manipulation of spin transport and magnetization dynamics
through spin-orbit coupling (SOC). This demonstrates the
potential of utilizing the orbital current as an alternative to
a conventional spin current in the field of spintronics [13–20].
Moreover, the orbital degree of freedom serves as an interme-
diary, facilitating the appearance of diverse spin phenomena
by mediating the coupling between magnetic moments and
the lattice, thus triggering, e.g., the k-dependent spin splitting
through structural inversion symmetry breaking and magne-
tization dynamics in an applied external electric field [4,21].
Correspondingly, in past years, the community witnessed a
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considerable interest in exploring the fundamental relation be-
tween various spin phenomena and their orbital analogs, such
as the orbital Rashba effect, orbital Hall effect, and orbital
torque [1,4,5,13,14,21–39].

In the realm of chiral spin magnetism, the so-called
Dzyaloshinskii-Moriya interaction (DMI) has attracted sig-
nificant attention due to its pivotal role in the formation and
stabilization of topological magnetic textures, including chiral
domain walls and magnetic skyrmions [40–43], which hold
great promise as information carriers in emerging memory-
storage and neuromorphic computing [44,45]. The DMI is an
antisymmetric spin-exchange interaction that originates from
the combination of SOC with structural inversion asymmetry
[46–48]. Recently, a growing body of theoretical and exper-
imental research has illuminated the pivotal role played by
orbital degrees of freedom in the emergence and manipulation
of the DMI, thereby igniting a surge of interest in exploring
orbital facets in the DMI.

Importantly, Yamamoto et al. theoretically investigated the
intricate connection between the DMI and orbital moments in
heavy metal/ferromagnetic metal structures, revealing a close
correlation between the sign of the DMI and the induced
orbital moments of heavy metal elements [49]. Meanwhile,
density functional theory calculations by Belabbes et al.
showed a correlation of the DMI with an electric dipole
moment at the oxide/ferromagnetic metal interface [50]. The
electric dipole moment arises from the charge transfer trig-
gered by orbital hybridization at the interface between an
oxide and a ferromagnet, tightly correlated with the interfacial
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orbital moment. It established a strong relationship among
the DMI, interfacial orbital hybridization, and the interfacial
orbital moment. Subsequently, Nembach et al. conducted ex-
periments to substantiate the calculations by Belabbes et al.,
revealing that the DMI and the spectroscopic splitting factor,
which measures the orbital moment, are indeed correlated
[51]. Furthermore, Zhu et al. experimentally investigated the
correlation between interfacial orbital hybridization and DMI
in heavy metal/ferromagnetic metal structures, providing con-
clusive evidence of the pivotal role played by the orbital
hybridization of magnetic interfaces in the determination and
regulation of the DMI [52]. It has also been found that the
DMI appears to exhibit a close correlation with the orbital
moment anisotropy. Kim et al. experimentally unveiled that
the DMI is governed by the orbital anisotropy, attributing its
microscopic origin to the asymmetric charge distribution at
the interface due to electron hoppings driven by the inversion
symmetry breaking (ISB) [53]. Moreover, the asymmetric
charge distribution results in chiral orbital angular momen-
tum, which is then converted into spin canting via SOC,
thereby explaining the emergence of the DMI.

At the same time, while it is clear that the various aspects
of the orbital nature and orbital contributions to the spin
DMI governing the energetics of spin canting deserve further
efforts, the physics and properties of the orbital DMI, which
reflects the energy changes due to the chiral canting of orbital
moments, have been practically unexplored so far. Katsnelson
et al. have applied the method of infinitesimal rotations to
compute the values of the orbital part of the DMI in magnetic
La2CuO4 from first-principles calculations, finding that the
orbital part, while being generally small, is far larger than the
spin contribution [54]. On the other hand, Kim and Han have
considered the superexchange interaction in a multiorbital
tight-binding Hubbard model, finding a contribution which is
proportional to a chiral product between neighboring orbitals
[55]. Identifying strong on-site correlations and ISB as the
origin of the orbital version of DMI, they have demonstrated
that the latter can dictate the formation of complex orbital
textures [55].

The orbital DMI and the resulting orbital chiral struc-
tures present a novel avenue for creating and manipulating
chiral topological textures or angular momentum by con-
trolling orbital properties, marking the orbital DMI as an
object deserving further in-depth investigation. Therefore, a
comprehensive understanding of orbital DMI is imperative.
However, a clear and simple physical picture of the orbital
DMI, reaching into the realm of electronic structure models
not necessarily rooted in strong correlations, is still elusive,
which necessitates further clarification of the influence of
various orbital parameters on the orbital DMI.

Here, we evaluate and analyze in depth the orbital DMI
behavior in a two-dimensional square lattice based on a simple
tight-binding model of t2g orbitals. This model satisfies the
requirement that the crystal field splitting in combination with
ISB promote rich unquenched orbital magnetism, making it
an optimal choice to extract the orbital-related effects [29,56].
We resort to the Berry phase theory of orbital DMI, which is
obtained as a direct extension of the successful methodology
to compute the spin DMI, developed in the past [57]. As
one of the key variables in this method, we introduce the

orbital-exchange coupling term in the Hamiltonian, discussing
its nature and physical origins, assessing the orbital DMI as
the energy response of the model to its spiralization, and
relating it to the mixed orbital Berry curvature. We demon-
strate that the orbital hybridization induced by ISB not only
leads to chiral orbital angular momentum (OAM) structures
in momentum space, but also gives rise to prominent or-
bital DMI localized in specific regions of the Brillouin zone.
Furthermore, we explore in which way the orbital exchange
and ISB strengths impact the orbital DMI. We find that the
orbital DMI exhibits a strong anisotropy with respect to the
orbital magnetization direction. We also show that even in
the absence of SOC, the orbital DMI persists while the spin
DMI vanishes, finding that orbital DMI, which is nonrel-
ativistic by nature, can dictate the behavior of spin DMI,
consistent with the behavior of other orbital effects. With our
work, we thus significantly contribute to putting the orbital
DMI physics onto the rails of material engineering in wider
classes of two-dimensional metallic surfaces, interfaces, and
heterostructures, opening new perspectives for the experimen-
tal realization of chiral orbital textures.

II. METHODS

A. Motivation and physical setups

Before proceeding further with a detailed description of
our approach, it is necessary to elucidate the motivation be-
hind our treatment of the OAM contribution to the DMI.
Our starting point is the nonrelativistic nonmagnetic Hamil-
tonian of an orbitally complex system, represented by a t2g

orbital model on a square lattice with broken inversion sym-
metry. Starting with this model, our next step is to break
the time-reversal symmetry by allowing unquenched local
orbital moments, which serve as the primary objects whose
canting energetics we are to study. The conventional way to
achieve this would be to allow for spin-exchange interaction
which, when combined with an effect of SOC, results in
orbital magnetism. However, here we choose a different path
and explicitly include the effect of the orbital-exchange field
into consideration, which couples directly to the OAM [see
Eq. (3) below] and gives rise to unquenched orbital magnetism
without resorting to spin magnetism and SOC. In turn, one can
perceive the effect of the orbital-exchange field as a combined
effect of the two latter phenomena, projected onto the orbital
subspace only, which allows for a transparent way to perturb
the directions of orbital moments by tracking the energetics of
the orbital subsystem.

When thinking of a physical situation in which the effect of
the orbital-exchange field can be most easily singled out, we
can imagine a weakly coupled bilayer type of system, where
a nonmagnetic layer develops orbital magnetism via the SOC
and the nonlocal exchange coupling with the second layer that
is strongly magnetic, e.g., 3d overlayer separated by a spacer
from a 5d substrate [58–60]. In the latter case, considering that
we can freely impose magnetic order in the 3d metal, this will
be translated into the corresponding orbital order via the effect
of SOC and effective orbital field, the energetics of which we
can study separately assuming that it would be possible to
neglect the spin contributions arising in the 5d layer itself due
to the smallness of the corresponding induced spin moments.

144417-2



DZYALOSHINSKII-MORIYA INTERACTION FROM … PHYSICAL REVIEW B 109, 144417 (2024)

Second, we can consider a situation in which the shell of
orbitals which drive spin magnetism is separated in energy
from a nominally spin-degenerate but orbitally active shell
of states residing around the Fermi level, such as the case,
e.g., for materials incorporating 4 f ions [61]. Here, again,
the SOC-imposed contribution to (e.g., p-d- f ) hybridiza-
tion between the two shells would result in the presence of
an effective orbital field. In the latter two cases, for clear
identification of the orbital DMI, it seems to be particularly
promising to consider antiferromagnetic bilayers and f -based
compounds, where the net effect of spin splitting on the orbital
states can be vanishingly small, and they can be considered
practically spin degenerate [61].

Finally, we can turn to a situation of a nonmagnetic thin
film exposed to a spatially varying external magnetic field
which drives a direct interaction with orbital moments in the
substrate of the Zeeman type—i.e., orbital Zeeman effect—as
given by Eq. (3). The latter case has been considered recently
in a situation of orbital pumping, where magnetic field dy-
namics drives a prominent orbital response [62,63].

In the following, we provide the details of the t2g or-
bital model and the derivations of the expression of orbital
DMI.

B. t2g orbitals on a two-dimensional square lattice

We employ a tight-binding model description of a simple
two-dimensional square lattice with t2g orbitals (dxy, dyz, dzx)
on each site. We operate in terms of Bloch waves eik·r|ϕnk〉 =∑

R eik·R|φnR〉 as the basis, where φnR is the localized state
at the Bravais lattice R with the orbital character n, n =
dxy, dyz, dzx. The spinless tight-binding Hamiltonian in k
space is written as

Htot(k) = Hkin(k) + HL
exc, (1)

where Hkin(k) is the kinetic part of the Hamiltonian arising
from hoppings and on-site energies, and HL

exc describes the
orbital-exchange interaction. Hkin(k) is independent of the
spin and its nonzero matrix elements are

〈ϕdxyk|Hkin|ϕdxyk〉 = E‖ − 2tδ[cos(kxa) + cos(kya)], (2a)

〈ϕdyzk|Hkin|ϕdyzk〉 = E⊥ − 2tπ cos(kxa) − 2tδ cos(kya), (2b)

〈ϕdzxk|Hkin|ϕdzxk〉 = E⊥ − 2tπ cos(kya) − 2tδ cos(kxa), (2c)

〈ϕdxyk |Hkin|ϕdyzk〉 = 2iγ sin(kxa), (2d)

〈ϕdxyk|Hkin|ϕdzxk〉 = 2iγ sin(kya). (2e)

Here, E‖ and E⊥ are on-site energies for the in-plane (dxy) and
out-of-plane (dyz and dzx) orbitals, respectively, and tπ and
tδ are the nearest-neighbor hopping amplitudes between t2g

orbitals via the π and δ bondings, respectively. The inversion
symmetry breaking at the surface is equivalent to the potential
gradient along the surface-normal direction (z), which pro-
motes hybridization between dxy and dyz, as well as dxy and
dzx states, with hopping integral γ characterizing the strength
of the symmetry breaking. The orbital-exchange interaction is

written as

HL
exc = JL

h̄
M̂L · L, (3)

where L is the atomic OAM operator, M̂L denotes the direc-
tion of the orbital-exchange field, and JL denotes the coupling
strength of the orbital-exchange interaction. For t2g orbitals,
L = (Lx, Ly, Lz ) becomes

Lx = h̄

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, (4a)

Ly = h̄

⎛
⎝ 0 i 0

−i 0 0
0 0 0

⎞
⎠, (4b)

Lz = h̄

⎛
⎝0 0 0

0 0 i
0 −i 0

⎞
⎠, (4c)

in the matrix representation using the basis states ϕdxyk, ϕdyzk,
and ϕdzxk.

A spinfull model Hamiltonian is constructed by adding
SOC Hsoc and spin-exchange interaction HS

exc. The SOC is
given by

Hsoc = 2λsoc

h̄2 L · S, (5)

where S is the spin angular momentum operator and λsoc is
the SOC strength. The spin-exchange interaction is written as

HS
exc = JS

h̄
M̂S · S, (6)

where M̂S denotes the direction of the spin-exchange field and
JS denotes the spin-exchange interaction strength. The spin
angular momentum operator is represented by the vector of
the Pauli matrices σ = (σx, σy, σz ) within each orbital,

〈ϕnσk|S|ϕnσ ′k〉 = h̄

2
[σ]σσ ′ , (7)

where σ, σ ′ are spin indices (up or down).
The values of the model parameters used in the

calculation are E‖ = 1.6, E⊥ = 1.0, tπ = 0.5, tσ = 0.1, γ =
0.02, λsoc = 0.04, JL = 1.0, JS = 1.0, all in unit of eV. The
lattice constant is set at a = 1 Å. While the values of the
hopping parameters are chosen to mimic typical metallic sur-
face/interfacial systems, we vary parameters JL and λsoc in a
wide range of values to account for various material possibil-
ities. Our values of the parameter γ fall on the conservative
side of the typical values used to study ISB effects at sur-
faces and interfaces, constituting only about a few percent of
the hopping magnitude [25,30,56]. All parameters are set as
above, unless specified otherwise.

C. Berry phase expression for the orbital DMI

We define the orbital DMI as the energy contribution to
the free-energy functional by the spiralization of the orbital-
exchange field M̂L,

FL
DMI =

∫
d2r

∑
i j

DL
i j r̂i · (M̂L × ∂r j M̂

L), (8)
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where r̂i is the unit vector in the i direction, and ∂r j is the
partial derivative in the j direction (i, j = x, y, z). We derive a
microscopic expression for the orbital DMI coefficient DL

i j by
means of the Berry phase theory, which has been applied in
the past to calculate the spin DMI [57,64,65]. In this method,
DL

i j can be quantified by expanding the free energy in terms
of small spatial gradients of orbital magnetization direction
within quantum mechanical perturbation theory.

Given the orbital-exchange interaction in the spinless
Hamiltonian in Eq. (3), we define the torque operator on the
orbital-exchange field due to the OAM by

T L = − 1

ih̄

[
L, HL

exc

] = JL

h̄
M̂L × L. (9)

Following the detailed derivation in Ref. [64], the first-
order perturbation by the spiralization of M̂L starting from a
collinear configuration of M̂L gives rise the following expres-
sion in terms of electronic states:

DL
i j =

∫
d2k

(2π )2

∑
n

[
f (εnk )An

i j (k)

+ 1

β
ln(1 + e−β(εnk−μ) )Bn

i j (k)
]
, (10)

where f (εnk ) = 1/[1 + eβ(εnk−μ)] is the Fermi-Dirac distribu-
tion function for the unperturbed band energy εnk, μ is the
electrochemical potential, and β = 1/kBT for the Boltzmann
constant kB and the temperature T . The quantities An

i j (k) and
Bn

i j (k) are given by the correlation between the orbital torque
operator and the velocity operator,

An
i j (k) = −h̄

∑
m �=n

Im
[〈unk|T L

i |umk〉〈umk|v j |unk〉
]

εnk − εmk
(11)

and

Bn
i j (k) = −2h̄

∑
m �=n

Im
[〈unk|T L

i |umk〉〈umk|v j |unk〉
]

(εnk − εmk )2
, (12)

where unk denotes the lattice-periodic part of the unperturbed
Bloch state function of band n at k and v j = ∂k j Hkin/h̄ is the
jth component of the velocity operator.

At zero temperature, Eq. (10) becomes

DL
i j =

∫
d2k

(2π )2

∑
n

f (εnk )
[
An

i j (k) − (εnk − μ)Bn
i j (k)

]
.

(13)

By utilizing T L = M̂L × ∂M̂L Htot , Eq. (13) becomes

DL
i j =

∫
d2k

(2π )2

∑
n

f (εnk )r̂i

× Im[M̂L × 〈∂ML unk|(Htot + εnk − 2μ)|∂k j unk〉].
(14)

Note the similarity of this expression to the mixed Berry
curvature,

�ML
i k j

= −2r̂i · Im[M̂L × 〈∂ML unk|∂k j unk〉]. (15)

FIG. 1. Orbital texture of the spinless model. (a) The band
structure of the t2g model along the high-symmetry directions
for a two-dimensional square lattice calculated without SOC and
spin/orbital-exchange interaction. (b) The band structure near  cor-
responding to the region marked with an orange circle in (a). The blue
circle marks the region of strong orbital hybridization mediated by
inversion symmetry breaking. (c)–(e) Band-resolved orbital textures
in the k space near the  point, where E1,k, E2,k, and E3,k denote the
different bands as indicated in (a). The direction of orbital angular
momentum is shown with an arrow, with a length corresponding to
its magnitude (in arbitrary units).

Up to now, the properties of the orbital mixed Berry curvature
in solid-state systems have been not explored. According to
Eq. (14), the orbital spiralization, in analogy to spin spiraliza-
tion and the modern theory of orbital magnetization [66–68],
comprises two terms: one is “itinerant” in the language of
orbital magnetization, proportional to the orbital mixed Berry
curvature and associated with the Bn

i j part in Eq. (13), and
another one, which should be treated as the “self-rotation”
contribution, driven by the An

i j part in Eq. (13). While the sec-
ond part of the orbital DMI is arising from the local breaking
of inversion symmetry, the itinerant mixed Berry curvature
part can be attributed to the breaking of inversion symmetry
at the boundary of a finite sample taken to the thermodynamic
limit.

In considering the spin, as mentioned above, the Hamil-
tonian for spinfull systems necessitates the inclusion of
both spin-orbit coupling and spin-exchange interaction. In
this case, the spin torque operator can be represented as
T S = (JS/h̄)M̂S × S. From this, we can obtain the spin
spiralization DS

i j through the above equations by replacing

the orbital-exchange field M̂L by the spin-exchange field
M̂S.

III. RESULTS

A. Orbital DMI by orbital Rashba effect in k space

First, let us unravel the emergence of an intrinsic orbital
texture of t2g orbitals without considering the effect of SOC
and orbital-/spin-exchange interaction. In Figs. 1(a) and 1(b),
we present the band structure of the model along the high-
symmetry directions and near , respectively. The Brillouin
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zone range is [−π, π ] × [−π, π ], with high-symmetry points
located at X = (π ,0) and M = (π, π ) in unit of 1/a. We
can clearly see in Fig. 1(b) the effect of orbital hybridization
mediated by inversion symmetry breaking, inducing avoided
crossings of the bands with different orbital characters. In
Figs. 1(c)–1(e), we show the distribution of the expectation
value of OAM in k space near the  point for the bands E1,k,
E2,k, and E3,k, which are labeled in the increasing order of
energy. We observe that the OAM exhibits a chiral texture
around the  point, specifically, of clockwise, counterclock-
wise, and zero character, respectively. The chiral behavior of
the t2g orbital textures is driven by the orbital Rashba effect of
the form ẑ · (k × L), which is consistent with previous studies
[29]. Investigating the influence of SOC reveals that the spin
Rashba effect plays a crucial role in driving the spin texture’s
chirality appearing on top of the orbital chirality. As a result,
the spin textures are closely tied to the local orientation of
the OAM in the Brillouin zone, manifesting as either parallel
or antiparallel alignment with the underlying OAM (see the
Supplemental Material, Sec. S1 [69]).

Next, we consider the effect of the orbital Zeeman effect
HL

exc due to the orbital-exchange field M̂L (keeping the value
of JL at 1.0 eV). In the two-dimensional square lattice with
an out-of-plane inversion symmetry breaking, the orbital DMI
spiralization is described by an antisymmetric tensor due to
the fourfold rotational symmetry around the axis normal to
the film, which amounts to DL

xx = DL
yy = 0 and DL

yx = −DL
xy.

We compute the magnitude of DL
yx and present it in Fig. 2(a) as

a function of band filling as given by the position of the Fermi
level EF , without SOC and with the orbital-exchange field
pointing out of the plane. The computed oscillatory behavior
is strongly reminiscent of the Fermi energy dependence of
the spin DMI typical for thin films of transition metals [65].
Remarkably, we observe that the magnitude of orbital DMI
spiralization DL

yx within our model reaches a large value of
16.8 meV/Å for EF = 2.7 eV, which is comparable to the
theoretical magnitude of spin DMI in typical transition-metal
systems, such as Co/Pt, Co/Ir, and Co/Au thin films [64,65].
This finding serves as compelling evidence that significant
orbital DMI can manifest in a system lacking SOC but with
inversion symmetry breaking when this system possesses a
strong orbital-exchange interaction.

More insight can be gained from a band-projected anal-
ysis of orbital DMI at EF = 2.7 eV, as shown in Fig. 2(b),
where the color marks the value of projected orbital DMI onto
each band. We observe that significant orbital DMI can be
observed predominantly in the vicinity of the avoided band
crossing between the  and M points in the Brillouin zone.
As shown in Fig. 2(c), the k-resolved orbital DMI displays
a very spiky behavior in this region, which corresponds to
the region of orbital hybridization associated with inversion
symmetry breaking. At this Fermi energy, another significant
contribution to the orbital DMI can be seen between M and
X in the region of another band anticrossing along that path.
This underlines the crucial importance of the band-crossing
points for achieving large values of the orbital DMI in realistic
systems.

Given a close relation between the orbital DMI and orbital
mixed Berry curvature, it is insightful to directly compare

FIG. 2. Orbital DMI without SOC. (a) The orbital DMI vari-
ation with respect to the position of Fermi energy without SOC.
(b) The band-projected orbital DMI along the high-symmetry path
in the Brillouin zone at EF = 2.7 eV. The color marks the value
of orbital DMI projected on each band. The projected orbital DMI
is pronounced in the vicinity of the band avoided crossing between
the  and M points. (c) The k-resolved orbital DMI along the high-
symmetry path in the Brillouin zone at EF = 2.7 eV.

the two quantities. In Fig. 3, we plot the k-resolved dis-
tribution of the orbital spiralization DL

yx and of the mixed
Berry curvature �ML

y kx
, which are summed over the occupied

bands below EF = 1.0 eV and EF = 2.7 eV, respectively. At
EF = 1.0 eV, both �ML

y kx
and DL

yx exhibit complex patterns
with significant background contributions arising from broad
areas of the Brillouin zone. Moreover, they show relatively
small values throughout the entire Brillouin zone, consistent
with the low values of the orbital DMI at this energy, as visible
in Fig. 1(a). In contrast, when EF = 2.7 eV, both �ML

y kx
and

DL
yx are sharply peaked in narrow regions of the Brillouin

zone, corresponding to quasinodal lines arising due to near
degenerate bands crossing the Fermi level. Clearly, the nodal
lines serve as prominent sources of both orbital mixed Berry
curvature and orbital DMI, with the two quantities being di-
rectly correlated in sign and magnitude.

Next, we explore the impact of SOC on orbital DMI.
Namely, we perform calculations to examine the energy de-
pendence, band dispersion, and k-space distribution of orbital
DMI while considering the presence of SOC. Remarkably,
we find that the qualitative nature of orbital DMI remains
unaffected by SOC; see the Supplemental Material, Secs. S2
and S3 [69]. Our findings align with previous studies on other
orbital effects, such as the orbital Rashba effect and orbital
Hall effect [4,21], indicating that SOC does not play a decisive
role in the emergence of orbital DMI, although it impacts its
magnitude via the influence on the electronic structure details;
see, also, discussion below.
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FIG. 3. Orbital mixed Berry curvature. Distribution of the orbital
mixed Berry curvature �ML

y kx
(left) and the orbital Dzyaloshinskii-

Moriya spiralization DL
yx (right) of all occupied bands in the Brillouin

zone of the model for two Fermi energy values: (a),(b) EF = 1.0 eV
and (c),(d) EF = 2.7 eV. All calculations are performed without
considering SOC. The data are shown on a logarithmic scale,
sgn(x) log10(1 + |x|).

B. Anatomy of orbital DMI

Next, we analyze the anatomy of the orbital DMI in detail.
At this point, by keeping the SOC strength at a constant
value of 0.04 eV, we study the behavior of the orbital DMI
in response to changing the key parameters of the system—
the strength of orbital-exchange coupling JL, the strength of
inversion symmetry breaking γ , and the angle θ that the
orbital-exchange field makes with the z axis—presenting the
results in Fig. 4. In Fig. 4(a), the orbital DMI DL

yx is shown
as a function of the Fermi energy EF , for increasing orbital-
exchange coupling strength JL. It is noteworthy that with
increasing JL, both the amplitude and position of the peak
exhibit distinct deviations. Specifically, the height of the peak
exhibits a positive correlation with JL, whereas the peak po-
sition undergoes an upward shift with increasing JL. This
observation underscores the critical significance of orbital-
exchange coupling in determining the magnitude of the orbital
DMI. When JL is sufficiently small, the orbital DMI assumes a
significantly diminished value, aligning with the general sce-
nario where the orbital Zeeman effect is negligibly small and
consequently conceals the manifestation of the orbital DMI.
This also indicates that the time-reversal symmetry breaking
by nonzero orbital-exchange parameter JL is necessary for the
emergence of orbital DMI, consistent with the same symmetry
requirements needed for achieving a nonvanishing spin DMI.

In order to gain a deeper understanding of the trend of
orbital DMI with respect to the orbital-exchange coupling
strength JL, we conduct band-projected as well as k-resolved
calculations of orbital DMI. In Fig. 5, we compare two cases,
i.e., JL = 0.3 eV and JL = 0.7 eV, with the Fermi energy
set to the peak position for each case. It is evident from
Figs. 5(a) and 5(b) that as JL increases, the position of the

FIG. 4. The anatomy of orbital DMI. The orbital DMI (DL
yx ) as a

function of the Fermi energy (EF ) for (a) different orbital-exchange
coupling strengths JL and (b) inversion symmetry-breaking strengths
γ . The orbital DMI (DL

yx ) as a function of the Fermi energy (EF ) for
different angles θ of the orbital-exchange field with the z axis in the
ranges of (c) 0◦ to 45◦ and (d) 45◦ to 90◦. All calculations take into
account the effect of SOC (λsoc = 0.04 eV).

FIG. 5. Orbital DMI with varying JL. The band-projected orbital
DMI along the high-symmetry path in the Brillouin zone at (a) EF =
0.909 eV for JL = 0.3 eV and (b) EF = 1.939 eV for JL = 0.7 eV.
The color marks the value of orbital DMI projected on each band.
Clearly, the band avoided crossing region contributes primarily to
the orbital DMI. (c),(d) The k-resolved orbital DMI along the high-
symmetry path in the Brillouin zone corresponding to the case in
(a) and (b), respectively.
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FIG. 6. Orbital DMI with varying γ . The band-projected or-
bital DMI along the high-symmetry path in the Brillouin zone at
EF = 2.7 eV for (a) γ = 0.005 eV and (b) γ = 0.015 eV. The color
marks the value of orbital DMI projected on each band. Clearly,
the band avoided crossing region primarily contributes to the orbital
DMI. (c),(d) The k-resolved orbital DMI along the high-symmetry
path in the Brillouin zone corresponding to the case in (a) and (b),
respectively.

band avoided crossing region moves up in energy in response
to the band dynamics. This is directly reflected in a shift of
the peak in orbital DMI, as seen in Fig. 4(a). Furthermore,
by comparing Figs. 5(c) and 5(d), we observe an increase in
the absolute value of DL

yx(k) in the k region associated with
orbital hybridization, resulting in an enhanced peak height in
Fig. 4(a) with increasing JL. The analysis for other values of
JL is presented in the Supplemental Material, Sec. S4 [69].

In Fig. 4(b), we show the variation of the orbital DMI
DL

yx with the inversion symmetry-breaking strength as given
by parameter γ . As mentioned above, the strength of the in-
version symmetry breaking directly influences the “intensity”
of orbital hybridization, ultimately resulting in the formation
of chiral orbital textures. We observe that the orbital DMI
monotonically increases with the gradual increase of γ , and
zero γ results in vanishing orbital DMI. We note that when
the parameter γ is zero, the inversion symmetry is not broken.
This highlights the decisive role of inversion symmetry break-
ing as a dominant factor for orbital DMI. The presence of ISB,
along with the induced orbital hybridization and chiral orbital
textures, governs the existence of orbital DMI, consistent with
previous studies on the orbital Hall effect [4].

The analysis of band-projected and k-resolved orbital DMI
for γ = 0.005 eV and γ = 0.015 eV (results for other values
of γ can be found in the Supplemental Material, Sec. S5 [69]),
shown in Figs. 6(a) and 6(b), reveals that the position of the or-
bital hybridization points, which contribute predominantly to
the orbital DMI, remains unaffected as γ undergoes variation
within the considered range of values. Consequently, there is
no discernible shift of the peak position in the orbital DMI
curve, as evident from Fig. 4(b). As shown in Figs. 6(c) and
6(d), it is also directly evident that the increase in the degree
of inversion symmetry breaking results in an amplification of
orbital hybridization at the respective hybridization points, as
reflected in the degree of orbital mixing [70]. This leads to an
enhancement of the local orbital DMI and an increase in the
peak height of the orbital DMI curve in Fig. 4(b).

FIG. 7. Orbital DMI with varying θ . The band-projected orbital
DMI along the high-symmetry path in the Brillouin zone at (a) EF =
2.7 eV for θ = 0◦ and (b) EF = 0.2 eV for θ = 90◦. The color marks
the value of orbital DMI projected on each band. (c),(d) The k-
resolved orbital DMI along the high-symmetry path in the Brillouin
zone corresponding to the case in (a) and (b), respectively.

At last, we present, in Figs. 4(c) and 4(d), the dependence
of DL

yx on the angle of the orbital-exchange field θ . Specifi-
cally, the range of θ from 0◦ to 45◦ is depicted in Fig. 4(c),
while the range from 45◦ to 90◦ is shown in Fig. 4(d). We
can clearly observe that for θ less than 45◦, DL

yx gradually
decreases with increasing θ at around EF = 2.7 eV, while in
other energy regions, the DMI values stay stable. On the other
hand, for θ values above 45◦, the situation is reversed and it
is the DMI between 0 and 1 eV which is increasing rapidly
with increasing θ on the background of relative stability at
other energies. Such behavior is a manifestation of strong
anisotropy of orbital DMI with respect to the direction of the
orbital-exchange field. To understand this effect better, we plot
the band-projected and k-resolved orbital DMI for two orien-
tations of the orbital exchange field: the out-of-plane direction
(θ = 0◦) and the in-plane direction (θ = 90◦). As shown in
Fig. 7, drastic changes in the band structure are observed
as the orbital-exchange field direction varies. As a result,
the position of the band avoided crossing region that mainly
contributes to the orbital DMI experiences alteration. Simul-
taneously, the degree of orbital hybridization also exhibits
pronounced variation, manifested as changes in the magnitude
of orbital DMI at the hybridization positions. These combined
factors lead to modifications in both the peak position and
peak height of the orbital DMI curve as the orbital-exchange
field direction transitions from the out-of-plane to the in-plane
configuration, showcasing a strong anisotropy, as depicted in
Figs. 4(c) and 4(d).

C. Relation between orbital DMI and spin DMI

Finally, we consider the case when, in addition to the
orbital exchange and SOC, the spin-exchange interaction as
given by HS

exc is also present in the Hamiltonian. We keep
the values of JL and JS at 1 eV, while keeping the out-
of-plane directions of the spin- and orbital-exchange fields,
and compute both spin and orbital DMI by following the
Berry phase theory outlined above. We focus specifically on
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FIG. 8. Variation of spin and orbital DMI with SOC. (a) The
orbital DMI (DL

yx ) and (b) spin DMI (DS
yx ) as a function of the

Fermi energy (EF ) for various SOC strengths λ in small SOC regime.
(c) DL

yx and (d) DS
yx in large SOC regime. (e),(f) The band-resolved

contributions to the (e) orbital and (f) spin DMI for the spin-orbit
strength of λsoc = 0.04 eV at EF = 2.2 eV.

the dependence of the spin and orbital DMI on the SOC
strength, presenting the results in Fig. 8. First, we consider the
regime of small λsoc; see Figs. 8(a) and 8(b). We observe that
in this regime, the orbital DMI exhibits minimal variations,
whereas the spin DMI consistently increases with increasing
the SOC strength, vanishing identically without spin-orbit
interaction. More importantly, we observe that for the energies
above 1.5 eV, the qualitative behavior of the spin and orbital
DMI is quite similar in that both quantities develop large
peaks at about 2.2 and 3.3 eV, albeit of opposite sign in the
case of spin.

To understand the origin of this correlation, we scrutinize
the band-resolved contributions to the spin and orbital DMI
at the value of λsoc = 0.04 eV and EF = 2.2 eV, shown in
Figs. 8(e) and 8(f). We observe that in the discussed region of
energy, both flavors of DMI come from the same anticrossings
in the electronic structure along M. These anticrossings are
simply the ISB-driven hybridization points between orbitally
different bands—discussed in depth above and shifted in
energy by spin-exchange splitting—which induce orbital DMI
without SOC. We thus come to a fundamental conclusion that

the orbital DMI is the effect which is parent to spin DMI. As
in the case of a relation between the orbital Hall effect and
spin Hall effect [4], the spin DMI is “pulled” by the orbital
DMI via SOC. In the case when DMI-driving hybridizations
are well defined in energy and k space, such as for energies
above 1.5 eV, the behavior of the spin and orbital DMI can
be very similar, but not necessarily identical: for example,
in the case considered here, the switch in sign correlation
between DL

yx and DS
yx at 2.2 and 3.3 eV can be explained by

the opposite sign of the spin-orbit correlation 〈L · S〉 of partic-
ipating bands [4] at these energies, similarly to the case of Hall
effects.

As a result, when at a given energy the DMI contributions
are small and spread over several bands with different orbital
character filling larger areas of k space, as is the case below
1 eV [see Figs. 8(a) and 8(b)], the correlation between DL

yx

and DS
yx is much less pronounced, or not at all present. This

is ultimately the reason why it is difficult to observe a direct
relation between DL

yx and DS
yx for the case of larger SOC

strength, shown in Figs. 8(c) and 8(d). In the latter case, the
bands that are strongly modified by SOC develop larger areas
in k space, where the effect of SOC on the DMI is active.
This is also consistent with the saturation in the values of the
spin DMI with increasing SOC towards the values comparable
to the strength of exchange interaction. It is especially worth
mentioning that when the strength of orbital-exchange inter-
action JL is similar to the magnitude of spin exchange JS, the
values of the orbital DMI, on average, exceed those of the
spin DMI by an order of magnitude. This underlines the fact
that the orbital angular momentum in solids is much more
prone to the effects of chiralization when compared to spin,
due to its stronger sensitivity to the atomic arrangement and
qualitatively different energetics of orbital dynamics relying
on crystal field structure rather than spin-orbit interaction.

IV. CONCLUSION

In summary, we theoretically demonstrate that the chiral
exchange interaction among orbital moments, closely resem-
bling the spin Dzyaloshinskii-Moriya interaction, can arise in
a two-dimensional square lattice with t2g orbitals. We find that
orbital hybridization, induced by inversion symmetry break-
ing, is crucial for generating orbital DMI. Furthermore, the
position and strength of orbital hybridization have a crucial
impact on both the magnitude and distribution of orbital DMI.
We also argue that in the vicinity of isolated Fermi surface fea-
tures, the orbital DMI is closely correlated with the behavior
of the orbital mixed Berry curvature. Moreover, the strength
of orbital-exchange interaction exerts a decisive impact on the
magnitude of orbital DMI. In situations where the strength
of the orbital-exchange interaction is comparable to that of
the spin-exchange interaction, the orbital DMI can exceed
the spin DMI by an order of magnitude. Importantly, consis-
tent with other orbital phenomena, the orbital DMI can also
emerge in the absence of spin-orbit interaction, subsequently
inducing the spin DMI through the effect of SOC.

While with our work we provide first basic insights into
the physics and properties of orbital DMI, further experi-
mental verification is required to validate the existence and
control of orbital DMI. In a system without sizable spin
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magnetism, the properties of the domain walls of orbital angu-
lar momentum—i.e., orbital domain walls—arising in a spa-
tially nonuniform magnetic field or their pulses could be ex-
plored by (time-resolved) techniques sensitive to local magne-
tization such as x-ray magnetic circular dichroism (XMCD),
magneto-optical Kerr effect (MOKE), or scanning tunneling
microscopy (STM), from which the strength of the orbital
DMI could be extracted. The same techniques could be used to
detect the emergence of noncollinear orbital magnetism aris-
ing as a consequence of strong orbital DMI on a background
of collinear spin magnetization in systems with strong spin-
exchange interactions, even though separation of orbital and
spin contributions to the measured signal presents a challenge.
At the same time, more effort is needed to suggest specific ma-
terial candidates where the formation of chiral orbital textures
could be singled out and experimentally observed.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation), TRR
173/2, Grant No. 268565370 (Project No. A11) and TRR
288, Grant No. 422213477 (Project No. B06). We gratefully
acknowledge the Jülich Supercomputing Centre and RWTH
Aachen University for providing computational resources un-
der Projects No. jiff40 and No. jara0062 and the funding under
SPP 2137 “Skyrmionics” of the DFG. We are also thankful
for the support by the National Key Research and Devel-
opment Program of China (Grants No. 2022YFB4400200),
National Natural Science Foundation of China (Grant No.
92164206, No. 52261145694, and No. 52121001), and the
New Cornerstone Science Foundation through the XPLORER
PRIZE.

[1] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Orbitronics:
The intrinsic orbital current in p-doped silicon, Phys. Rev. Lett.
95, 066601 (2005).

[2] V. o. T. Phong, Z. Addison, S. Ahn, H. Min, R. Agarwal,
and E. J. Mele, Optically controlled orbitronics on a triangular
lattice, Phys. Rev. Lett. 123, 236403 (2019).

[3] D. Go, D. Jo, H.-W. Lee, M. Kläui, and Y. Mokrousov, Orbi-
tronics: Orbital currents in solids, Europhys. Lett. 135, 37001
(2021).

[4] D. Go, D. Jo, C. Kim, and H.-W. Lee, Intrinsic spin and orbital
Hall effects from orbital texture, Phys. Rev. Lett. 121, 086602
(2018).

[5] D. Jo, D. Go, and H.-W. Lee, Gigantic intrinsic orbital Hall
effects in weakly spin-orbit coupled metals, Phys. Rev. B 98,
214405 (2018).

[6] S. Bhowal and S. Satpathy, Intrinsic orbital moment and predic-
tion of a large orbital Hall effect in two-dimensional transition
metal dichalcogenides, Phys. Rev. B 101, 121112(R) (2020).

[7] S. Bhowal and S. Satpathy, Intrinsic orbital and spin Hall effects
in monolayer transition metal dichalcogenides, Phys. Rev. B
102, 035409 (2020).

[8] L. M. Canonico, T. P. Cysne, T. G. Rappoport, and R. B.
Muniz, Two-dimensional orbital Hall insulators, Phys. Rev. B
101, 075429 (2020).

[9] L. M. Canonico, T. P. Cysne, A. Molina-Sanchez, R. B. Muniz,
and T. G. Rappoport, Orbital Hall insulating phase in transition
metal dichalcogenide monolayers, Phys. Rev. B 101, 161409(R)
(2020).

[10] T. P. Cysne, M. Costa, L. M. Canonico, M. B. Nardelli, R. B.
Muniz, and T. G. Rappoport, Disentangling orbital and valley
Hall effects in bilayers of transition metal dichalcogenides,
Phys. Rev. Lett. 126, 056601 (2021).

[11] P. Sahu, S. Bhowal, and S. Satpathy, Effect of the inversion
symmetry breaking on the orbital Hall effect: A model study,
Phys. Rev. B 103, 085113 (2021).

[12] Y. Xu, F. Zhang, A. Fert, H.-Y. Jaffres, Y. Liu, R. Xu, Y.
Jiang, H. Cheng, and W. Zhao, Orbitronics: Light-induced or-
bital currents in Ni studied by terahertz emission experiments,
Nat. Commun. 15, 2043 (2024).

[13] T. Tanaka, H. Kontani, M. Naito, T. Naito, D. S. Hirashima, K.
Yamada, and J. Inoue, Intrinsic spin Hall effect and orbital Hall
effect in 4d and 5d transition metals, Phys. Rev. B 77, 165117
(2008).

[14] H. Kontani, T. Tanaka, D. S. Hirashima, K. Yamada, and J.
Inoue, Giant orbital Hall effect in transition metals: Origin of
large spin and anomalous Hall effects, Phys. Rev. Lett. 102,
016601 (2009).

[15] S. Bhowal and G. Vignale, Orbital Hall effect as an alternative
to valley Hall effect in gapped graphene, Phys. Rev. B 103,
195309 (2021).

[16] J. Kim, D. Go, H. Tsai, D. Jo, K. Kondou, H.-W. Lee, and
Y. C. Otani, Nontrivial torque generation by orbital angular
momentum injection in ferromagnetic − metal/Cu/Al2O3 tri-
layers, Phys. Rev. B 103, L020407 (2021).

[17] S. Lee, M.-G. Kang, D. Go, D. Kim, J.-H. Kang, T. Lee, G.-H.
Lee, J. Kang, N. J. Lee, Y. Mokrousov, S. Kim, K.-J. Kim, K.-J.
Lee, and B.-G. Park, Efficient conversion of orbital Hall current
to spin current for spin-orbit torque switching, Commun. Phys.
4, 234 (2021).

[18] S. Ding, Z. Liang, D. Go, C. Yun, M. Xue, Z. Liu, S. Becker,
W. Yang, H. Du, C. Wang, Y. Yang, G. Jakob, M. Kläui, Y.
Mokrousov, and J. Yang, Observation of the orbital Rashba-
Edelstein magnetoresistance, Phys. Rev. Lett. 128, 067201
(2022).

[19] Y. Tazaki, Y. Kageyama, H. Hayashi, T. Harumoto, T. Gao,
J. Shi, and K. Ando, Current-induced torque originating from
orbital current, arXiv:2004.09165.

[20] S. Ding, A. Ross, D. Go, L. Baldrati, Z. Ren, F. Freimuth, S.
Becker, F. Kammerbauer, J. Yang, G. Jakob, Y. Mokrousov, and
M. Kläui, Harnessing orbital-to-spin conversion of interfacial
orbital currents for efficient spin-orbit torques, Phys. Rev. Lett.
125, 177201 (2020).

[21] D. Go, J.-P. Hanke, P. M. Buhl, F. Freimuth, G. Bihlmayer,
H.-W. Lee, Y. Mokrousov, and S. Blügel, Toward surface orbi-
tronics: Giant orbital magnetism from the orbital Rashba effect
at the surface of Sp-metals, Sci. Rep. 7, 46742 (2017).

[22] Y.-G. Choi, D. Jo, K.-H. Ko, D. Go, K.-H. Kim, H. G. Park, C.
Kim, B.-C. Min, G.-M. Choi, and H.-W. Lee, Observation of

144417-9

https://doi.org/10.1103/PhysRevLett.95.066601
https://doi.org/10.1103/PhysRevLett.123.236403
https://doi.org/10.1209/0295-5075/ac2653
https://doi.org/10.1103/PhysRevLett.121.086602
https://doi.org/10.1103/PhysRevB.98.214405
https://doi.org/10.1103/PhysRevB.101.121112
https://doi.org/10.1103/PhysRevB.102.035409
https://doi.org/10.1103/PhysRevB.101.075429
https://doi.org/10.1103/PhysRevB.101.161409
https://doi.org/10.1103/PhysRevLett.126.056601
https://doi.org/10.1103/PhysRevB.103.085113
https://doi.org/10.1038/s41467-024-46405-6
https://doi.org/10.1103/PhysRevB.77.165117
https://doi.org/10.1103/PhysRevLett.102.016601
https://doi.org/10.1103/PhysRevB.103.195309
https://doi.org/10.1103/PhysRevB.103.L020407
https://doi.org/10.1038/s42005-021-00737-7
https://doi.org/10.1103/PhysRevLett.128.067201
https://arxiv.org/abs/2004.09165
https://doi.org/10.1103/PhysRevLett.125.177201
https://doi.org/10.1038/srep46742


CHEN, GO, BLÜGEL, ZHAO, AND MOKROUSOV PHYSICAL REVIEW B 109, 144417 (2024)

the orbital Hall effect in a light metal Ti, Nature (London) 619,
52 (2023).

[23] I. V. Tokatly, Orbital momentum Hall effect in p-doped
graphane, Phys. Rev. B 82, 161404(R) (2010).

[24] G. Sala and P. Gambardella, Giant orbital Hall effect and
orbital-to-spin conversion in 3d , 5d , and 4 f metallic het-
erostructures, Phys. Rev. Res. 4, 033037 (2022).

[25] A. Johansson, B. Göbel, J. Henk, M. Bibes, and I. Mertig, Spin
and orbital Edelstein effects in a two-dimensional electron gas:
Theory and application to SrTiO3 interfaces, Phys. Rev. Res. 3,
013275 (2021).

[26] L. Salemi, M. Berritta, A. K. Nandy, and P. M. Oppeneer,
Orbitally dominated Rashba-Edelstein effect in noncentrosym-
metric antiferromagnets, Nat. Commun. 10, 5381 (2019).

[27] T. Yoda, T. Yokoyama, and S. Murakami, Orbital Edelstein
effect as a condensed-matter analog of solenoids, Nano Lett.
18, 916 (2018).

[28] J. Hong, J.-W. Rhim, C. Kim, S. Ryong Park, and J. Hoon Shim,
Quantitative analysis on electric dipole energy in Rashba band
splitting, Sci. Rep. 5, 13488 (2015).

[29] P. Kim, K. T. Kang, G. Go, and J. H. Han, Nature of orbital
and spin Rashba coupling in the surface bands of SrTiO3 and
KTaO3, Phys. Rev. B 90, 205423 (2014).

[30] J.-H. Park, C. H. Kim, H.-W. Lee, and J. H. Han, Orbital
chirality and Rashba interaction in magnetic bands, Phys. Rev.
B 87, 041301(R) (2013).

[31] J.-H. Park, C. H. Kim, J.-W. Rhim, and J. H. Han, Orbital
Rashba effect and its detection by circular dichroism angle-
resolved photoemission spectroscopy, Phys. Rev. B 85, 195401
(2012).

[32] S. R. Park, C. H. Kim, J. Yu, J. H. Han, and C. Kim, Orbital-
angular-momentum based origin of Rashba-type surface band
splitting, Phys. Rev. Lett. 107, 156803 (2011).

[33] D. Go, D. Jo, T. Gao, K. Ando, S. Blügel, H.-W. Lee, and
Y. Mokrousov, Orbital Rashba effect in a surface-oxidized Cu
film, Phys. Rev. B 103, L121113 (2021).

[34] D. Lee, D. Go, H.-J. Park, W. Jeong, H.-W. Ko, D. Yun, D.
Jo, S. Lee, G. Go, J. H. Oh, K.-J. Kim, B.-G. Park, B.-C. Min,
H. C. Koo, H.-W. Lee, O. Lee, and K.-J. Lee, Orbital torque in
magnetic bilayers, Nat. Commun. 12, 6710 (2021).

[35] D. Go, F. Freimuth, J.-P. Hanke, F. Xue, O. Gomonay, K.-J. Lee,
S. Blügel, P. M. Haney, H.-W. Lee, and Y. Mokrousov, Theory
of current-induced angular momentum transfer dynamics in
spin-orbit coupled systems, Phys. Rev. Res. 2, 033401 (2020).

[36] D. Go and H.-W. Lee, Orbital torque: Torque generation by
orbital current injection, Phys. Rev. Res. 2, 013177 (2020).

[37] D. Go, D. Jo, K.-W. Kim, S. Lee, M.-G. Kang, B.-G. Park,
S. Blügel, H.-W. Lee, and Y. Mokrousov, Long-range orbital
torque by momentum-space hotspots, Phys. Rev. Lett. 130,
246701 (2023).

[38] A. Bose, F. Kammerbauer, R. Gupta, D. Go, Y. Mokrousov,
G. Jakob, and M. Kläui, Detection of long-range orbital-Hall
torques, Phys. Rev. B 107, 134423 (2023).

[39] H. Hayashi, D. Jo, D. Go, T. Gao, S. Haku, Y. Mokrousov,
H.-W. Lee, and K. Ando, Observation of long-range orbital
transport and giant orbital torque, Commun. Phys. 6, 32 (2023).

[40] M. C. Robertson, C. J. Agostino, G. Chen, S. P. Kang, A.
Mascaraque, E. Garcia Michel, C. Won, Y. Wu, A. K. Schmid,
and K. Liu, In-plane néel wall chirality and orientation of

interfacial Dzyaloshinskii-Moriya vector in magnetic films,
Phys. Rev. B 102, 024417 (2020).

[41] W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M. B. Jungfleisch,
F. Y. Fradin, J. E. Pearson, Y. Tserkovnyak, K. L. Wang, O.
Heinonen, S. G. E. te Velthuis, and A. Hoffmann, Blowing
magnetic skyrmion bubbles, Science 349, 283 (2015).

[42] W. Jiang, G. Chen, K. Liu, J. Zang, S. G. te Velthuis, and A.
Hoffmann, Skyrmions in magnetic multilayers, Phys. Rep. 704,
1 (2017).

[43] R. Chen, X. Wang, H. Cheng, K.-J. Lee, D. Xiong, J.-Y. Kim,
S. Li, H. Yang, H. Zhang, K. Cao, M. Kläui, S. Peng, X.
Zhang, and W. Zhao, Large Dzyaloshinskii-Moriya interaction
and room-temperature nanoscale skyrmions in CoFeB/MGo
heterostructures, Cell Rep. Phys. Sci. 2, 100618 (2021).

[44] W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M. Benjamin
Jungfleisch, J. E. Pearson, X. Cheng, O. Heinonen, K. L. Wang,
Y. Zhou, A. Hoffmann, and S. G. E. te Velthuis, Direct observa-
tion of the skyrmion Hall effect, Nat. Phys. 13, 162 (2017).

[45] Y. Guan, X. Zhou, T. Ma, R. Bläsing, H. Deniz, S.-H. Yang, and
S. S. P. Parkin, Increased efficiency of current-induced motion
of chiral domain walls by interface engineering, Adv. Mater. 33,
2007991 (2021).

[46] I. Dzyaloshinsky, A thermodynamic theory of “weak” ferro-
magnetism of antiferromagnetics, J. Phys. Chem. Solids 4, 241
(1958).

[47] T. Moriya, Anisotropic superexchange interaction and weak
ferromagnetism, Phys. Rev. 120, 91 (1960).

[48] A. Fert and P. M. Levy, Role of anisotropic exchange interac-
tions in determining the properties of spin-glasses, Phys. Rev.
Lett. 44, 1538 (1980).

[49] K. Yamamoto, A.-M. Pradipto, K. Nawa, T. Akiyama, T. Ito,
T. Ono, and K. Nakamura, Interfacial Dzyaloshinskii-Moriya
interaction and orbital magnetic moments of metallic multilayer
films, AIP Adv. 7, 056302 (2017).

[50] A. Belabbes, G. Bihlmayer, S. Blügel, and A. Manchon,
Oxygen-enabled control of Dzyaloshinskii-Moriya interaction
in ultra-thin magnetic films, Sci. Rep. 6, 24634 (2016).

[51] H. T. Nembach, E. Jué, E. R. Evarts, and J. M. Shaw,
Correlation between Dzyaloshinskii-Moriya interaction and or-
bital angular momentum at an oxide-ferromagnet interface,
Phys. Rev. B 101, 020409(R) (2020).

[52] L. Zhu, L. Zhu, X. Ma, X. Li, and R. A. Buhrman, Critical role
of orbital hybridization in the Dzyaloshinskii-Moriya interac-
tion of magnetic interfaces, Commun. Phys. 5, 151 (2022).

[53] S. Kim, K. Ueda, G. Go, P.-H. Jang, K.-J. Lee, A. Belabbes, A.
Manchon, M. Suzuki, Y. Kotani, T. Nakamura, K. Nakamura,
T. Koyama, D. Chiba, K. T. Yamada, D.-H. Kim, T. Moriyama,
K.-J. Kim, and T. Ono, Correlation of the Dzyaloshinskii-
Moriya interaction with Heisenberg exchange and orbital
asphericity, Nat. Commun. 9, 1648 (2018).

[54] M. I. Katsnelson, Y. O. Kvashnin, V. V. Mazurenko, and A. I.
Lichtenstein, Correlated band theory of spin and orbital contri-
butions to Dzyaloshinskii-Moriya interactions, Phys. Rev. B 82,
100403(R) (2010).

[55] P. Kim and J. H. Han, Orbital Dzyaloshinskii-Moriya exchange
interaction, Phys. Rev. B 87, 205119 (2013).

[56] L. Petersen and P. Hedegård, A simple tight-binding model of
spin-orbit splitting of sp-derived surface states, Surf. Sci. 459,
49 (2000).

144417-10

https://doi.org/10.1038/s41586-023-06101-9
https://doi.org/10.1103/PhysRevB.82.161404
https://doi.org/10.1103/PhysRevResearch.4.033037
https://doi.org/10.1103/PhysRevResearch.3.013275
https://doi.org/10.1038/s41467-019-13367-z
https://doi.org/10.1021/acs.nanolett.7b04300
https://doi.org/10.1038/srep13488
https://doi.org/10.1103/PhysRevB.90.205423
https://doi.org/10.1103/PhysRevB.87.041301
https://doi.org/10.1103/PhysRevB.85.195401
https://doi.org/10.1103/PhysRevLett.107.156803
https://doi.org/10.1103/PhysRevB.103.L121113
https://doi.org/10.1038/s41467-021-26650-9
https://doi.org/10.1103/PhysRevResearch.2.033401
https://doi.org/10.1103/PhysRevResearch.2.013177
https://doi.org/10.1103/PhysRevLett.130.246701
https://doi.org/10.1103/PhysRevB.107.134423
https://doi.org/10.1038/s42005-023-01139-7
https://doi.org/10.1103/PhysRevB.102.024417
https://doi.org/10.1126/science.aaa1442
https://doi.org/10.1016/j.physrep.2017.08.001
https://doi.org/10.1016/j.xcrp.2021.100618
https://doi.org/10.1038/nphys3883
https://doi.org/10.1002/adma.202007991
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRevLett.44.1538
https://doi.org/10.1063/1.4973217
https://doi.org/10.1038/srep24634
https://doi.org/10.1103/PhysRevB.101.020409
https://doi.org/10.1038/s42005-022-00932-0
https://doi.org/10.1038/s41467-018-04017-x
https://doi.org/10.1103/PhysRevB.82.100403
https://doi.org/10.1103/PhysRevB.87.205119
https://doi.org/10.1016/S0039-6028(00)00441-6


DZYALOSHINSKII-MORIYA INTERACTION FROM … PHYSICAL REVIEW B 109, 144417 (2024)

[57] F. Freimuth, R. Bamler, Y. Mokrousov, and A. Rosch, Phase-
space berry phases in chiral magnets: Dzyaloshinskii-Moriya
interaction and the charge of skyrmions, Phys. Rev. B 88,
214409 (2013).

[58] A. Belabbes, G. Bihlmayer, F. Bechstedt, S. Blügel, and
A. Manchon, Hund’s rule-driven Dzyaloshinskii-Moriya in-
teraction at 3d–5d interfaces, Phys. Rev. Lett. 117, 247202
(2016).

[59] H. Yang, A. Thiaville, S. Rohart, A. Fert, and M. Chshiev,
Anatomy of Dzyaloshinskii-Moriya interaction at Co/Pt inter-
faces, Phys. Rev. Lett. 115, 267210 (2015).

[60] V. Kashid, T. Schena, B. Zimmermann, Y. Mokrousov, S.
Blügel, V. Shah, and H. G. Salunke, Dzyaloshinskii-Moriya
interaction and chiral magnetism in 3d − 5d zigzag chains:
Tight-binding model and ab initio calculations, Phys. Rev. B
90, 054412 (2014).

[61] M. Zeer, D. Go, P. Schmitz, T. G. Saunderson, H. Wang,
J. Ghabboun, S. Blügel, W. Wulfhekel, and Y. Mokrousov,
Promoting p-based Hall effects by p-d- f hybridization
in Gd-based dichalcogenides, Phys. Rev. Res. 6, 013095
(2024).

[62] S. Han, H.-W. Ko, J. H. Oh, H.-W. Lee, K.-J. Lee, and K.-W.
Kim, Theory of orbital pumping, arXiv:2311.00362.

[63] D. Go, K. Ando, A. Pezo, S. Blügel, A. Manchon, and Y.
Mokrousov, Orbital pumping by magnetization dynamics in
ferromagnets, arXiv:2309.14817.

[64] F. Freimuth, S. Blügel, and Y. Mokrousov, Berry phase theory
of Dzyaloshinskii-Moriya interaction and spin-orbit torques,
J. Phys.: Condens. Matter 26, 104202 (2014).

[65] J.-P. Hanke, F. Freimuth, S. Blügel, and Y. Mokrousov, Higher-
dimensional Wannier interpolation for the modern theory of
the Dzyaloshinskii-Moriya interaction: Application to co-based
trilayers, J. Phys. Soc. Jpn. 87, 041010 (2018).

[66] T. Thonhauser, Theory of orbital magnetization in solids,
Intl. J. Mod. Phys. B 25, 1429 (2011).

[67] R. Resta, Electrical polarization and orbital magnetization: The
modern theories, J. Phys.: Condens. Matter 22, 123201 (2010).

[68] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on
electronic properties, Rev. Mod. Phys. 82, 1959 (2010).

[69] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.109.144417 for the results with SOC and
the detailed analysis of orbital DMI.

[70] M. Zeer, D. Go, J. P. Carbone, T. G. Saunderson, M. Redies,
M. Kläui, J. Ghabboun, W. Wulfhekel, S. Blügel, and Y.
Mokrousov, Spin and orbital transport in rare-earth dichalco-
genides: The case of EuS2, Phys. Rev. Mater. 6, 074004 (2022).

144417-11

https://doi.org/10.1103/PhysRevB.88.214409
https://doi.org/10.1103/PhysRevLett.117.247202
https://doi.org/10.1103/PhysRevLett.115.267210
https://doi.org/10.1103/PhysRevB.90.054412
https://doi.org/10.1103/PhysRevResearch.6.013095
https://arxiv.org/abs/2311.00362
https://arxiv.org/abs/2309.14817
https://doi.org/10.1088/0953-8984/26/10/104202
https://doi.org/10.7566/JPSJ.87.041010
https://doi.org/10.1142/S0217979211058912
https://doi.org/10.1088/0953-8984/22/12/123201
https://doi.org/10.1103/RevModPhys.82.1959
http://link.aps.org/supplemental/10.1103/PhysRevB.109.144417
https://doi.org/10.1103/PhysRevMaterials.6.074004

