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Frustrated magnets in the limit of infinite dimensions: Dynamics and disorder-free glass transition
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We study the statistical mechanics and the equilibrium dynamics of a system of classical Heisenberg spins
with frustrated interactions on a d-dimensional simple hypercubic lattice, in the limit of infinite dimensionality
d → ∞. In the analysis we consider a class of models in which the matrix of exchange constants is a linear
combination of powers of the adjacency matrix. This choice leads to a special property: the Fourier transform of
the exchange coupling J (k) presents a (d − 1)-dimensional surface of degenerate maxima in momentum space.
Using the cavity method, we find that the statistical mechanics of the system presents for d → ∞ a paramagnetic
solution which remains locally stable at all temperatures down to T = 0. To investigate whether the system
undergoes a glass transition we study its dynamical properties assuming a purely dissipative Langevin equation,
and mapping the system to an effective single-spin problem subject to a colored Gaussian noise. The conditions
under which a glass transition occurs are discussed including the possibility of a local anisotropy and a simple
type of anisotropic exchange. The general results are applied explicitly to a simple model, equivalent to the
isotropic Heisenberg antiferromagnet on the d-dimensional face-centered-cubic lattice with first- and second-
nearest-neighbor interactions tuned to the point J1 = 2J2. In this model, we find a dynamical glass transition
at a temperature Tg separating a high-temperature liquid phase and a low-temperature vitrified phase. At the
dynamical transition, the Edwards-Anderson order parameter presents a jump demonstrating a first-order phase
transition.

DOI: 10.1103/PhysRevB.109.144414

I. INTRODUCTION

Many important phenomena in magnetism are controlled
by frustration. Striking examples are spin systems on tri-
angular, kagome, pyrochlore, face-centered-cubic (fcc), and
other geometrically frustrated lattices, which present an ex-
tremely rich and complex phenomenology [1]. In many of
these systems, frustration forces every plaquette to present
multiple degenerate minima. In the lattice, when plaquettes
share corners or edges, this leads often to striking collective
behaviors.

At the same time, frustration is a key ingredient in systems
displaying rugged energy landscapes, slow relaxation, and
glassy dynamics. Prototype examples are spin glasses [2,3],
controlled by a random distribution of exchange couplings.
However, frustration has a central role also in one of the theo-
ries for the vitrification of liquids [4,5], in Coulomb-frustrated
models [4–14], and in systems which present random patterns
of stripes [15], relevant, for example, in Coulomb-frustrated
charge separation [6], ferromagnetic thin films [16], and pos-
sibly even biology [17]. More precisely, we are talking about
models in which frustration arises from the competition be-
tween short- and long-range interactions (the latter can be
Coulomb, dipole-dipole, or can have another nature). Here in
the paper we will use the term “Coulomb frustrated” to refer
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to such models, just for brevity. These models are closely
connected to the phenomenon of avoided criticality [5]. In
Coulomb-frustrated theories, complementary theoretical anal-
yses [4–14] and numerical simulations [11] have indicated of
a glassy behavior even in absence of a quenched disorder.
Similar behavior was shown to happen in magnetic systems
with dipole-dipole interactions [16] and in Brazovskii-
type models with a line of minima of exchange energy
[15,18].

A natural question is therefore as follows: Under which
conditions is frustration alone sufficient to generate a glassy
state? This question has been a subject of investigations for
decades. Many theoretical models have been analyzed, for
example, fully frustrated spin systems [19–22], kinetically
constrained models [23], and models of Josephson-junction
arrays [24–26]. In Ref. [27], a spin model with three-spin
interactions has been shown to undergo a glass transition even
in presence of a purely ferromagnetic coupling. In this case,
frustration is not present at the level of ground state, but a
“dynamical” frustration present in finite-temperature configu-
rations was shown to be sufficient to produce a glass phase.

In the context of geometrically frustrated magnets, the
possibility of a glass transition in absence of disorder has
attracted interest as an explanation to the behavior experi-
mentally oberved in some kagome and pyrochlore materials
[28–31]. We note, for example, that a glassy “spin jam” state
has been predicted in a Heisenberg model on a lattice consist-
ing of a triangular network of bipyramids, a structure realized
in SrCr9pGa12−9pO19 [32]. A key element of the theory of
Ref. [32] is the prediction that, in this structure, a quantum
order-by-disorder effect can generate nonperiodic metastable
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states separated by large barriers, and that the number of
metastable states grows exponentially with the perimeter,
rather than exponentially with the area.

Recently, systems which combine a geometrically frus-
trated lattice with a long-range interaction have attracted
attention. In Ref. [33], it has been shown by numerical meth-
ods that an electron system with Coulomb repulsion on the
triangular lattice undergoes an “electron glass” transition at
quarter filling. The mechanism proposed for the emergence
of glassiness is that the long-range force lifts the degeneracy
between the many classical ground states on the triangular
lattice, introducing large energy barriers and a rugged land-
scape. The disorder-free glass transition detected theoretically
has been proposed as an explanation for the slow dynamics
observed in an organic conductor [33].

Another theory analyzed recently which combines simi-
larly a frustrated geometry and a long-range coupling is the
Ising model with dipolar interaction on the kagome net. For
this model, Ref. [34] found numerical evidence of a glass
transition and a slow relaxation consistent with the Vogel-
Fulcher law. The model has been analyzed in Ref. [35] by an
analytical method, based on the Bethe-Peierls approximation.
The results confirmed the existence of a glass transition, al-
though the second-order transition found in Ref. [35] indicates
a divergence of the relaxation time different from the Vogel-
Fulcher law, and similar to that of disordered spin glasses.

On the experimental side, two recent works [36,37] indi-
cated that a disorder-free glass transition can occur even in
an elemental solid: the rare-earth neodymium (Nd). In par-
ticular, Refs. [36,37] reported evidence of aging, ultraslow
dynamics, and complex amorphous structures in nanoscale
magnetization patterns imaged by spin-polarized scanning
tunneling microscopy on the surface of Nd. It was shown that
the randomness of the observed patterns becomes enhanced,
and not reduced, when the defect concentration is lowered.
This points to a theoretical explanation in terms of a “self-
induced spin glass” (“self-induced” means an assumption that
frustrations alone are sufficient for the spin-glass behavior in
deterministic systems) [15,16]. This scenario has been corrob-
orated by the observation of slow relaxation in spin dynamics
simulations, performed using exchange constants calculated
from first principles.

The results found recently motivate us to investigate an
exactly solvable spin model exhibiting a disorder-free glass
transition. In particular, we revisit a model studied by Lopatin
and Ioffe [38], which has as its key ingredient a frustrated an-
tiferromagnetic interaction on a large-dimensional hypercubic
lattice. In the work of Ref. [38], the model was introduced
as a lattice theory for the glass transition of supercooled
liquids, and presented as fundamental degrees of freedom
a set of Ising-type binary variables representing particles
(ρi = 1) and holes (ρi = 0). The interaction was constructed
assuming a matrix of exchange couplings of the form Ji j =
[ f (t̂/

√
2d )]i j with f (x) = −ux2 and t̂ the adjacency ma-

trix (a matrix ti j such that ti j = 1 if i and j are nearest
neighbors and ti j = 0 otherwise). Reference [38] solved the
problem for an arbitrary chemical potential using a replica
method. Despite the simplicity of the model, it was shown
that the system undergoes a dynamical and a static glass
transition.

In this work, we study a similar model in the case in
which the degrees of freedom are classical spin vectors Si.
The continuous nature of the degrees of freedom allows us
to study the possibility of a vitrification transition from a
dynamical analysis, based on a continuous Langevin equation.
In the main part of the work, we derive a solution of the
model, exact in the limit d → ∞, including the possibility
of anisotropy. Eventually, we apply the results to a special
case: an isotropic model with f (x) = J (x2 − 1), J < 0. Af-
ter separation of the hypercubic lattice into sublattices, this
model is equivalent to two decoupled Heisenberg models on
the fcc structure. In particular, the model has two nonzero
couplings: a nearest-neighbor interaction of strength J1 = J/d
and a second-nearest-neighbor interaction of magnitude J2 =
J/(2d ). For this model we identify a dynamical first-order
glass transition, signaled by a jump of the Edwards-Anderson
order parameter. The transition occurs even in absence of
quenched disorder: the glass phase is self-induced.

The class of interactions Ji j = [ f (t̂/
√

2d )]i j has a special
property, which has not been emphasized in Ref. [38]: for this
special form of interaction, the Fourier transform J (k) of the
exchange coupling develops a (d − 1)-dimensional surface of
degenerate maxima in momentum space [39,40].

Similar degenerate surfaces appear in the Brazovskii model
and in Coulomb-frustrated theories [4–16]. In Coulomb-
frustrated models, the emergence of a glass phase has been
investigated intensively using broken replica symmetry, with
the specific tools borrowed from the theory of conventional,
that is, disordered, spin glasses [41]. In particular, replica
analyses based on the self-consistent screening approximation
(SCSA) [8] and on local mean-field approximations [10,14]
predicted a glassy behavior of the random first-order type. The
presence of a glassy dynamical arrest has been corroborated
by numerical simulations, and by an analytical study based
on a mode-coupling theory and a dynamic SCSA [11,12]. In
dipole-frustrated [16] and for Brazovskii-type models [14,15]
analog glass transitions have been predicted within analyses
by the replica method.

In Coulomb-frustrated models the surface of maxima oc-
curs usually in the region of small momenta, at characteristic
wavelengths much larger than the atomic spacing. In addi-
tion, the interactions have an infinite range. These factors
introduce differences with respect to the model studied here,
where the interactions are short ranged and the degenerate
surface lies in a region of large wave vectors, comparable with
the size of the Brillouin zone. Despite these differences, there
remain similarities. This suggests that the exactly solvable
model which we study exemplifies some of the features of the
“stripe-glass” behavior, at a dynamical mean-field level.

The methodology used in our work allows to study vitrifi-
cation in a physically transparent approach, based on explicit
consideration of spin dynamics at large timescale, in analogy
with the pioneering work by Edwards and Anderson on spin
glasses [2] and to the mode-coupling approach by Götze in the
theory of structural glasses [42].

The range of applications of the model is even broader.
The theory analyzed here allows to investigate, in infinite
dimensions, the model of a frustrated magnet with a
degenerate surface of helical states. Spin systems with
degenerate manifolds of spiral ground states space have
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attracted an extensive interest and have been predicted to
host spiral spin-liquid phases (see Refs. [39,40,43–45] for
theoretical analyses and for experimental evidences of spiral
spin-liquid states in cubic spinels).

The paper is organized as follows. In Sec. II, we introduce
the model analyzed in this work. In Sec. III, we derive an exact
solution of the equilibrium statistical mechanics of the system
in the limit d → ∞. The solution shows that renormalizations
stabilize the paramagnetic solution at all temperatures down
to T = 0, a situation analog to the “avoided criticality” [7].
In Sec. IV, we study the dynamics of the system, assuming
a purely dissipative Langevin equation. In the large-d limit,
we show that the problem maps to an effective single-site
Langevin equation with a colored noise, self-consistently de-
termined by a set of consistency relations. The conditions
under which the dynamics develops a glass transition are
discussed in Sec. V. The general results are eventually applied
in the case of an isotropic Heisenberg model, and for a simple
interaction Ji j = [ f (t̂/

√
2d )]i j with f (x) = J (x2 − 1). The

results for this model are presented in Sec. VI. We conclude
the paper with a brief summary in Sec. VII.

A. Notations

Throughout the paper we will use the following notations.
The symbol

∫
Si

stands for an integral over all values of the

spin Si (in spherical coordinates
∫

Si
= ∫ π

0 sin θidθi
∫ 2π

0 dϕi).
δS (S − S′) is a delta function in spin space, defined accord-
ing to the invariant measure [in spherical coordinates δS (S −
S′) = δ(θ − θ ′)δ(ϕ − ϕ′)/ sin θ ]. 3×3 matrices carrying spin
indices such as f αβ (x) or χαβ are written in matrix notation
with a symbol f (x), χ , etc. Matrices carrying lattice indices,

such as ti j and Jαβ
i j , are denoted as t̂ , Ĵ . Matrix multiplications

and inverses are defined assuming contraction of all internal
spin and lattice indices ([ÂB̂]αβ

i j = ∑
k Aαγ

ik Bγ β

k j , [Â−1Â]αβ
i j =∑

k A−1αγ

ik Aγ β

k j = [1̂]αβ
i j = δαβδi j for matrices with both spin

and lattice indices; [AB]i j = ∑
k AikBk j for matrices in site

space only). We assume everywhere summation over repeated
spin (greek) indices: Aαγ Bγ β = ∑

γ Aαγ Bγ β .

II. MODEL

Although we eventually apply the results explicitly to a
particular isotropic model, in the main part of the work we
keep the discussion more general, and analyze spin systems
subject to a (possibly anisotropic) exchange interaction Jαβ

i j
and an onsite anisotropy V (Si ). We thus assume a Hamiltonian

H = −1

2

∑
i, j

Jαβ
i j Sα

i Sβ
j +

∑
i

V (Si ). (1)

The degrees of freedom Si are classical spins:
three-dimensional vectors with Cartesian coordinates Sα

i ,
α = x, y, z, and with the constraint of unit length
S2

i = Sα
i Sα

i = 1. The labels i, j run over the sites of a
hypercubic lattice in d dimensions. In the analysis we take
eventually the limit of large dimensionality d → ∞. The
d → ∞ approximation [46] has demonstrated its power for
the consideration of lattice fermionic problems where it is the

base of dynamical mean-field theory (DMFT) (for reviews
see Refs. [47–49]).

The anisotropy energy V (Si ) in the model may be arbi-
trary. We make the only assumption that it is even [V (Si ) =
V (−Si )] in such way that H is invariant under time reversal,
that is, spin reversal. For the exchange interaction we con-
sider instead a coupling of a special form: we assume that
Jαβ

i j = [ f αβ (t̂/
√

2d )]i j , with f αβ (x) a 3×3 matrix of func-
tions. This definition is a generalization of the interaction
Ji j = [ f (t̂/

√
2d )]i j , which was introduced and analyzed in

the case of Ising variables by Lopatin and Ioffe [38]. In the
definition, t̂ is the adjacency matrix and powers of t̂ are in-
tended in the sense of matrix multiplication. For example, the
function f αβ (x) = Jαβ

0 + Jαβ

1 x + Jαβ

2 x2 + Jαβ

4 x4 corresponds
to the coupling

Jαβ
i j = Jαβ

0 δi j + Jαβ

1√
2d

ti j + Jαβ

2

2d

∑
k

tiktk j

+ Jαβ

4

4d2

∑
k,l,m

tiktkl tlmtm j, (2)

an interaction which is nonzero between sites i j having
a Manhattan distance �i j = ∑d

a=1 |ia − ja| at most equal
to 4. In general, the exchange coupling is constructed
from linear combinations of the matrix elements [t̂ n]i j =∑

k1,...,kn−1
tik1tk1k2 . . . tkn−2kn−1tkn−1 j . These matrix elements are

equal to the number of different paths which start at i, end at
j, and are composed by a sequence of n steps along the bonds
of the hypercubic lattice. If f αβ (x) is a polynomial in x the
corresponding interaction is short ranged and the degree of
the polynomial is equal to the range (measured according to
the Manhattan distance).

For convenience, we assume that the onsite exchange
vanishes: Jαβ

ii = 0. This is convenient for the subsequent
mean-field calculations and does not imply a loss of generality
because any local interaction can be absorbed in a redefinition
of V (Si ). Imposing the condition Jαβ

ii = 0 requires to tune the
constant term Jαβ

0 as a function of Jαβ

2 , Jαβ

4 , ... in such way
as to cancel the contributions of the onsite matrix elements
[t̂2n/(2d )n]ii [50].

When the model is analyzed in an arbitrary dimension d
and eventually in the limit d → ∞, it is essential that the
coupling constants are scaled in such way to ensure a limiting
large-d model which is well defined and nontrivial. By taking
Jαβ

i j = [ f αβ (t̂/
√

2d )]i j we have assumed, following Ref. [38],
that the relevant scaling consists in assigning a factor of order
O(d−1/2) to every power of the adjacency matrix. The analy-
ses in the next sections show indeed that the limit d → ∞ at
fixed f αβ (x) is well defined.

The consistency of the limit, however, does not occur
for arbitrary f αβ (x) but requires that the function f αβ (x)
satisfies certain conditions, which qualitatively correspond
to the presence of a strong frustration. In fact the scal-
ing ≈d−1/2 is analog to the scaling needed in mean-field
models of spin glasses [3] and in other strongly frustrated
infinite-dimensional models [22,38]. If f αβ (x) described a
nonfrustrated interaction, instead, a different scaling would
be required. For example, in the case of a nearest-neighbor
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interaction, the exchange coupling would have to be scaled as
1/d , and not as d−1/2, to ensure a finite d → ∞ limit [22,51].

Before discussing the conditions which f αβ (x) must satisfy
in order to generate a model consistent with the d−1/2 scal-
ing, it is useful to describe some essential properties of the
exchange coupling Jαβ

i j which follow from the construction

Jαβ
i j = [ f αβ (t̂/

√
2d )]i j . As shown by a direct calculation, the

Fourier transform of Jαβ
i j is

Jαβ (k) =
∑

i

e−ik·(xi−x j )Jαβ
i j = f αβ (εk ), (3)

with εk = √
2/d

∑d
a=1 cos(ka). Thus, Jαβ (k) depends on the

wave vector k only through εk. This implies that, for many
choices of the function f αβ (x) the interaction can develop
degenerate surfaces of maxima in momentum space. More
precisely, consider the case in which the exchange is isotropic,
f αβ (x) = δαβ f (x). In dimension d , the variable εk is confined
to the interval −√

2d � εk �
√

2d . As a result, two situations
can occur, depending on the form of the function f (x). If
f (x) reaches its maximum at one of the boundaries ±√

2d ,
the maxima of J (k) occur at isolated points in momentum
space [the center of the Brillouin zone  = (k1, . . . , kd ) =
(0, . . . , 0), corresponding to ε = √

2d , or the zone corner
R = (k1, . . . , kd ) = (π, . . . , π ) with εR = −√

2d]. However,
if f (x), as a function of x, has maxima within the interval
−√

2d < x <
√

2d then J (k) reaches its maximum value on
a surface in momentum space [the surface defined by the
relation εk = εmax, with εmax the point, or points, at which
f reaches its maximum; this defines a (d − 1)-dimensional
manifold in reciprocal space]. In the anisotropic case, the
same analysis remains valid since the Fourier transform has
constant values on surfaces in momentum space. For exam-
ple, the maximum eigenvalue of Jαβ (k) occurs at a (d − 1)
manifold in k space, unless it occurs at the  or R points.

We now return to the discussion of the conditions under
which the model admits a well-defined limit for d → ∞. For
large dimensionality the interval [−√

2d,
√

2d] on which ε

is defined becomes unbounded and εk can assume arbitrary
real values. If the eigenvalues of f αβ (x) have no upper bound
on the real axis −∞ < x < ∞, the Fourier transform Jαβ (k)
can be made arbitrarily large by choosing k near the zone
center  or the zone corner R. This then implies a ferromag-
netic or antiferromagnetic instability at a critical temperature
which diverges for d → ∞ (see Sec. II A). The large-d limit,
in this case, is inconsistent with the assumed d−1/2 scal-
ing. If instead, the eigenvalues of f αβ (x) are bounded from
above, the maximum eigenvalue of J (k) occurs on a (d − 1)-
dimensional surface in momentum space and remains finite
when d → ∞. This is the case which will be considered
throughout the rest of the paper, and which leads at large d to
a well-defined limit. Throughout all the rest of this work, we
assume therefore that the boundedness condition is satisfied:
the eigenvalues of f αβ (x) are assumed to be bounded from
above on the real axis.

The boundedness condition on f has a simple interpre-
tation in terms of the exchange couplings in real space.
Suppose that the interaction has a range R, and, thus, that
f αβ (ε) = ∑R

m=0 Jαβ
m εm is a polynomial of degree R. If the

FIG. 1. Partitioning of the cubic lattice into two interpenetrating
fcc sublattices (A and B) for d = 3. The sublattices A and B can be
identified as the sets of lattice points (x1, . . . , xd ) for which

∑d
a=1 xa

is, respectively, even and odd. The separation of even and odd sites
can be applied in arbitrary dimension d to separate the hypercubic
lattice into fcc sublattices [53].

maximum degree R is odd, it is clear that the eigenvalues
cannot be bounded: depending on the signs of Jαβ

R , the sys-
tem presents ferromagnetic or antiferromagnetic instabilities.
Thus, R must be even. In addition, since the interaction is
required to have an upper bound, the interaction of maximum
range Jαβ

R must be negative (antiferromagnetic) [52]. To in-
terpret this condition it is useful to note that the hypercubic
lattice in d dimensions is bipartite and can be partitioned into
two sublattices: the sublattice A composed of the sites such
that the sum

∑d
a=1 xa of the coordinates (x1, . . . , xd ) is an even

integer and the complementary sublattice B where the sum∑d
a=1 xa is an odd integer (see Fig. 1). The sublattices A and B

have the structure of a generalized fcc lattice in d dimensions
[53]. After this partitioning, it is clear that interactions with
even range couple the spins within the same sublattice (A-A or
B-B), while interactions with an odd range induce a coupling
between different sublattices (A-B and B-A).

Thus, the conditions for a well-defined d → ∞ limit are
that the coupling of longest range is antiferromagnetic and
takes place within the fcc sublattices, and not across the
two different sublattices. This shows that the well-known
frustration of the fcc structure [21,39,40,53] plays a role
in the model studied here. We note, however, that in the
family of interactions which we study the frustration is not
purely geometrical because all models which we analyze
have nonzero couplings beyond the nearest neighbors. For
example, in Sec. VI we study the isotropic model with
V (S) = 0, f αβ (x) = Jδαβ (x2 − 1), J < 0. In this model, since
f is even in x, the interactions take place entirely within
the fcc sublattices, and the intersublattice coupling vanishes.
Thus, the theory describes effectively to two independent
copies of a model on the fcc lattice. The model, however, has
two nonzero couplings on the fcc lattice: a nearest-neighbor
(NN) coupling of magnitude J/d and a second-NN interaction
of magnitude J/(2d ). For this reason, the resulting prob-
lem differs significantly from the NN fcc model studied in
Ref. [21]. The model with interaction f (x) = J (x2 − 1), J <
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0, rather, provides a direct analog in infinite dimensions of the
three-dimensional Heisenberg fcc antiferromagnet with first-
and second-nearest-neighbor interactions tuned to J1 = 2J2.
This model has been analyzed in Refs. [39,40] as a candidate
for hosting spiral-spin-liquid behavior [43–45].

In general, all models analyzed here have the property of
displaying surfaces of degeneracy in the Fourier transform
of J (k). Thus, the models which we discuss can be viewed
as a large-dimensional mean-field theories of spiral-spin-
liquid models. We note, however, that the special form Ji j =
[ f (t̂/

√
2d )]i j of the coupling which we analyze is not the

most general which is known to produce degenerate surfaces
in momentum space. Models with an interaction constructed
via powers of the adjacency matrix have been analyzed in
the context of spiral spin liquids [44] but different theories,
in which Ĵ is not reducible to a function of t̂ have been
studied [39,43].

A. Analysis within the Weiss mean-field approximation

Although the exact large-d results presented in the next
sections lead to results which differ qualitatively from those
of Weiss mean-field theory (MFT), a first understanding of
the model, and in particular of the role of frustration for
d → ∞, can be obtained by analysis at the level of the
MFT approximation. To illustrate this with an example, we
consider first the case of the isotropic model [V (S) = 0]
with f αβ (x) = δαβ f (x), f (x) = J (x2 − 1) (this model will
be addressed in more detail in Sec. VI using the com-
plete large-d results). As mentioned above, the interaction
f (x) = J (x2 − 1) leads to two decoupled Heisenberg mod-
els on two independent fcc sublattices. A given site i =
(x1, x2, . . . , xd ) is coupled with an exchange coupling of
strength J1 = J/d with the 2d (d − 1) sites j = (x1 ± 1, x2 ±
1, x3, . . . , xd ), j = (x1 ± 1, x2, x3 ± 1, . . . , xd ), j = (x1, x2 ±
1, x3 ± 1, x4, . . . , xd ), which are NN on the fcc lattice, and
with an exchange of magnitude J/2d = J1/2 to the 2d sites
j = (x1 ± 2, x2, . . . , xd ), (x1, x2 ± 2, x3, . . . ), ..., which be-
long to the second-NN shell on the fcc structure. The −1 in the
definition f (x) = J (x2 − 1) is needed to ensure that Jii = 0: it
is required to cancel the onsite matrix element [t̂2/(2d )]ii = 1.
Within MFT, the susceptibility in the paramagnetic phase is
given by

χ−1αβ (k) = χ
−1αβ

0 − Jαβ (k), (4)

where χ
αβ

0 = δαβ/(3kBT ) is the susceptibility of a single spin
(in the isotropic case). The MFT predicts as a result a second-
order transition at a critical temperature TMFT = Jmax/(3kB)
where Jmax is the maximum value of J (k). By Eq. (3), Jmax

simply equals to the maximum fmax of the function f (x). If
the coupling is ferromagnetic (J > 0), f (ε) is not bounded
from above. In this case the interaction is not frustrated and
the critical temperature TMFT diverges for d → ∞. If instead
J < 0, Jmax = fmax = |J| and the Weiss transition temperature
TMFT = |J|/(3kB) remains finite.

The fact that TMFT remains of O(1) when d → ∞ signals
physically that the interaction is very strongly frustrated. In
fact, the interaction in the model has a magnitude of order
J/d but has a coordination of z ≈ d2 for d large. If the in-
teractions were not strongly frustrated, we would expect a

critical temperature which diverges for d → ∞ as z|J2|d−1 ≈
d2 × d−1 ∝ d . The fact that this divergence does not occur
signifies that the local fields

∑
j Ji jS j which act on a site i do

not scale linearly with the dimension d but only as their square
root

√
d . This behavior is analog to that of fully connected

spin glasses [3] and of other mean-field frustrated models
[22,38]. (See Ref. [20] for an analysis of the large-d scaling of
the local fields in the fully frustrated hypercubic Ising model.)

The same considerations apply for any f (ε) and in the
anisotropic case. If the eigenvalues of f αβ (ε) are not bounded
from above, the large-d limit is unstable and the MFT transi-
tion temperature diverges. If instead the eigenvalues of f αβ (ε)
are bounded from above, the interaction is strongly frustrated
the finite TMFT indicates a stable large-d limit. The finiteness
of TMFT is again a sign of a very strong frustration. In fact, the
expansion of Jαβ

i j = [ f αβ (t̂/
√

2d )]i j generates a coupling Jαβ
i j

of order d−�i j/2 where �i j is the Manhattan distance between
i and j. The suppression factor d−�i j/2 does not compensate
the growth of the coordination numbers z� ∝ d�. Thus, in
absence of frustration, we would expect a divergence TMFT ≈
zR|JR|d−R/2 ∝ dR × d−R/2 ≈ dR/2, where R is the maximum
range of the interaction.

As a remark, we note that the MFT analysis above relied,
although in an indirect way, on the scaling factors d−1/2

assigned to each power of the adjacency matrix. The role
of the scaling factors has been to ensure that the condition
Jαβ

ii = 0 can be imposed while keeping f αβ (x) fixed and finite
as d → ∞ [50].

B. Ground states in the isotropic case

In the isotropic case and when the function f (x) is bounded
from above, the interaction Ji j = [ f (t̂/

√
2d )]i j admits al-

ways helical ground states of the form Si = A cos(k · xi ) +
B sin(k · xi ), with A2 = B2 = 1, (A · B) = 0 (these are exact
ground states and can be derived using the Luttinger-Tisza
method) [7,39,40,44]. The modulation vector k is any wave
vector belonging to the surface εk = εmax, with εmax a point
at which f (ε) is maximal. The exact ground-state energy
per particle is therefore E/N = − f (εmax)/2 = − fmax/2 in
isotropic models.

For some interactions, the single helices are not the only
type of ground states. For example, if f (x) = f (−x), so that
the system breaks into two decoupled fcc sublattices, it is
possible to construct ground states by taking independent
helices, with arbitrary wave vectors kA and kB and arbitrary
magnetization vectors AA, BA, AB, BB on the two sublattices.

III. STATIC PROPERTIES

As in other mean-field frustrated models [3,38], the Weiss
mean-field approximation is not exact for d → ∞. The exact
large-d solution is, rather, similar to the dynamical mean-field
theory of correlated electron systems [51], and has to include
local self-energy effects. In this section we derive an exact
d → ∞ solution of the statistical mechanical properties of
the system, assuming a homogeneous state with unbroken
translational and spin-inversion symmetries. In contrast with
the behavior predicted by the MFT approximation, the exact
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large-d solution shows that the symmetric state remains lo-
cally stable at all temperatures down to T = 0.

To derive the large-d solution, we use an approach based
on the cavity method (in the context of DMFT for fermions,
see Ref. [51]). In particular we use as a starting point a
methodology analog to the cavity approach applied in Ref. [3]
to the Sherrington-Kirkpatrick (SK) spin-glass model. A key
idea of this approach consists in analyzing the joint probability
P(Si, bi ) of the spin Si and the internal field bα

i = ∑
j Jαβ

i j Sβ
j

acting at the same site i. In equilibrium at temperature T [54]

P(Si, bi ) = Z−1
∫

S̄i1

· · ·
∫

S̄iN

[δS (Si − S̄i )δ(bi − b̄i )

× e−βH (S̄i1 ,...,S̄iN )], (5)

where Z is the partition function, β = 1/(kBT ), b̄i
α =∑

j Jαβ
i j S̄ j

β , and the integral is over all possible configurations
of the N spins. P(Si, bi ) can be interpreted, simply, as the
probability that, extracting a random configuration at temper-
ature T , the spin and the field at site i have given values Si

and bi.
The reason why P provides a particularly convenient

framework for the analysis is that it describes efficiently a
property of the large-d limit: for d → ∞ the field bi has
strong correlations with the spin Si at the same site, but weaker
correlations with the spins S j at the other sites j �= i. Con-
sidering the joint distribution P allows to isolate the strong
correlation of bi with Si, by factorizing

P(Si, bi ) = Z ′
i Z

−1eβ(bi ·Si )−βV (Si ) p′(bi ). (6)

Here Z ′
i and p′(bi ) are, respectively, the partition function

and the distribution of the field bi in a cavity system in which
the site i is removed [an (N − 1)-body system containing all
spins apart from i]. Explicitly,

Z ′
i =

∫
Si2

· · ·
∫

SiN

e−βH ′
i (Si1 ,...,SiN ) (7)

and

p′(bi ) = Z ′
i
−1

∫
Si2

· · ·
∫

SiN

[
δ
(
bα

i − ∑
jJ

αβ
i j Sβ

j

)
× e−βH ′

i (Si1 ,...,SiN )], (8)

where

H ′
i = −1

2

∑
j �=i,k �=i

Jαβ

jk Sα
j Sβ

k +
∑
j �=i

V (S j ) (9)

is the Hamiltonian of the cavity system. The cavity distri-
bution p′(bi ) describes the probability to find a given value
of bα

i = ∑
j Jαβ

i j Sβ
j when extracting a random configuration

Si2 ,..., SiN in the cavity system, in which the effects of the
interactions with Si are absent and, thus, is by construction
uncorrelated to Si.

Thanks to the fact that the correlation between bi and
Si is subtracted in p′(bi ), the cavity distribution has simple
statistical properties in large dimensions. In the limit d → ∞,

as shown below, p′(bi ) is simply a Gaussian:

p′(bi ) = exp
[− L−1αβbα

i bβ
i /2

]
√

(2π )3 det L
. (10)

Here L is a 3 × 3 matrix defining the covariance of the cav-
ity distribution and needs to be determined as a function of
the temperature T . Since we assumed a symmetric solution,
with unbroken translation and spin-inversion symmetries, the
Gaussian distribution is centered and L does not depend on
the lattice site i.

The result that the cavity distribution p′(bi ) is Gaussian can
be derived using a perturbative analysis which is analog, from
the diagrammatic point of view, to DMFT [51]. Let us discuss,
in brief, the derivation. The �th cumulant C′

�
α1...α� of p′(bi ) is

related to the connected moments of the cavity spin distribu-
tion via C′

�
α1...α� = ∑

j1, j2,..., j�
Jα1β1

i j1
. . . Jα�β�

i j�
〈〈Sβ2

j2
. . . Sβ�

j�
〉〉′(i).

Here 〈〈. . . 〉〉′(i) are connected averages computed in the cav-
ity system [the symbol 〈〈. . . 〉〉 is used to denote connected
averages, and the sign ′(i) reminds that the averaging is com-
puted in a system with one cavity at site i]. The C′

�, in turn,
can be computed by a perturbative expansion in powers of
Jαβ

i j [a high-temperature expansion with fixed βV (S)]. The
corresponding diagrams are linked-cluster graphs (see, for
example, Refs. [55,56] for discussions of the linked-cluster
expansion in spin systems). As a result, the diagrams con-
tributing, for example, to the the cumulants C′

2 and C′
4 have

a structure of the form illustrated in Eqs. (11) and (12):

=

= + + + +

∑
j,k

j

i i i i

j j
jk

k
k

l

J

C

αγ
ij J δβ

αβ

ik 〈〈S γ
j S δ

k 〉〉′

′

( i )

=
∑
j �= i

J αγ
ij ργδ

2 J δβ
ji +

∑
j,k �= i

βJ αγ
ij ργμ

2 J μν
jk ρνδ

2 J δβ
ki

+ β 2
∑

j,k,l �= i

J αγ
ij ργμ

2

2

J μν
jk ρνρ

2 J ρσ
kl ρσδ

2 J δβ
li

+
β 2

2

∑
j,k �= i

J αγ
ij J βδ

ij ργδμν
4 J μρ

jk ρρσ
2 J σν

kj + .. ,

(11)

=
∑

j,k,l,m �= i

J αμ
ij J βν

ik J γρ
il J δσ

im 〈〈S μ
j S ν

k S ρ
l S σ

m〉〉′( i )

=
∑
j �= i

J αμ
ij J βν

ij J γρ
ij J δσ

ij ρμνρσ
4

+ 4 β
∑

j,k �= i

J αλ
ik ρλω

2 J ωμ
kj J γρ

ij J δσ
ij ρμνρσ

4 + ..

= ++C αβγδ′
4

j

ii

j

(12)
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Here ρ
αβ

2 = 〈〈Sα
i Sβ

i 〉〉(0) and ρ
αβγ δ

4 = 〈〈Sα
i Sβ

i Sγ
i Sδ

i 〉〉(0) are
the second and fourth cumulants of the unperturbed
spin distribution. These are equal to the cumulants
of the single-site distribution ρ(S) = e−βV (S)/

∫
S̄ e−βV (S̄):

ρ
αβ

2 = ∫
S ρ(S)SαSβ , ρ

αβγ δ

4 = ∫
S ρ(S)SαSβSγ Sδ − ρ

αβ

2 ρ
γδ

2 −
ρ

αγ

2 ρ
βδ

2 − ραδ
2 ρ

βγ

2 , and are represented by vertices with
2 and 4 incoming lines in the graphs. At higher or-
ders the expansion involves vertices of arbitrary order
(vertices with 6, 8, ... incoming lines), representing the
mth-order cumulants of the noninteracting distribution
ρα1...αm

m = ∂m[ ln
∫

S ρ(S)ex·S]/(∂xα1 . . . ∂xαm )|x=0. The lines in
the graphs, connecting different vertices, represent the inter-
actions Jαβ

jk , Jαβ
i j .

In general, the expansion of any C′
� with � arbitrary can

be represented in terms of graphs with the same structure of
Eqs. (11) and (12). The graphs contributing to C′

� have � lines
attached to the “origin” i, representing the � factors Jαβ

i j in

C′α1...αn
� = ∑

j1,..., j� �=i Jα1β1
i j1

. . . Jα�β�

i j�
〈〈Sβ1

j1
. . . Sβ�

j�
〉〉′(i), and any

number of “internal” vertices and lines describing the pertur-
bative expansion of the cavity correlations. Importantly, since
C′

� are moments of the cavity system, the summations over
the lattice sites j, k, l range over all lattice points except the
site i. The rules to associate a diagram with a perturbative
term require to multiply a given term by a numerical pref-
actor counting the multiplicity of the diagram. The numerical
prefactors, however, are irrelevant to the arguments below.

From the point of view of the large-d behavior, the graphs
are completely analog to the diagrams of the cavity method
in DMFT [51]. The perturbative expansion in Jαβ

i j , in particu-
lar, is identical diagrammatically to the expansion around the
atomic limit (the exchange coupling Jαβ

i j plays the role of the
electron hopping amplitude ti j).

Applying well-known arguments of power counting in 1/d ,
it can be shown that C′

2 is of order O(1) for d → ∞, whereas
all higher-order cumulants C′

� with � � 4 vanish in the large-d
limit [51]. In brief, for the interaction considered here, this can
be shown using that the couplings Jαβ

i j are of order O(d−�i j/2)
where �i j is the Manhattan distance between i and j. As
a consequence of this scaling, the diagrams contributing to
C′

2 can be shown to be finite: the summations over internal
coordinates compensate the suppression O(d−�i j/2) coming
from the scaling of the interaction. The graphs for C′

4 or higher
cumulants C′

�, � � 4, instead, are suppressed in the large-d
limit because they involve more than two lines connected to
the site i and thus, more powers of d−�i j/2.

A crucial subtlety is that the vanishing of the higher cumu-
lants C′

� � � 4 relies essentially on the cavity construction. In
fact, a diagram such as

j i

i

=

would give a finite, O(1), contribution if the summation over
j was allowed to run over all the N sites of the system, includ-
ing the site i. As is well known by standard power-counting

arguments, the O(1) contribution of the graph would arise
entirely from the term j = i, in which the internal vertex j
is “collapsed” to the origin [51], whereas the terms j �= i give
contributions which vanish at d → ∞. The cavity construc-
tion forces all internal summations to range over sites j �= i
and thus suppresses the O(1) contribution. As a result C′

4 picks
up only contributions which vanish for d large. The same is
valid for arbitrary diagrams and for any � � 4.

Since all cumulants C′
� with � odd vanish by spin-inversion

symmetry, and all cumulants with � � 4 are negligible for
d → ∞, p′(bi ) is a centered Gaussian distribution, with
Lαβ = C′

�.
Having derived Eq. (10), we can use Eq. (8) to reconstruct

the distribution

P(Si, bi ) = exp
[
β(bi · Si ) − βV (Si ) − 1

2 L−1αβbα
i bβ

i

]
Z1

√
(2π )3 det L

, (13)

which characterizes the statistical mechanics of the full sys-
tem (without cavities). The normalization in Eq. (13) is

Z1 = Z/Z ′
i =

∫
S

e−βV (S)+ 1
2 β2LαβSαSβ

, (14)

and is fixed by the condition 1 = ∫
S

∫
d3b P(S, b).

The distribution (13) has a form analog to the single-site
distribution P(Si, bi ) of the SK model in the paramagnetic
phase and for zero external fields. In addition to the local
potential V (Si ), there are two factors, both of order 1 for large
d: the fluctuations of the cavity and the term exp[β(bi · Si )],
which encodes the correlations between Si and bi. However
in the SK model the variance of the cavity distribution is
temperature independent [equal to J2(1 − q) = J2 [3] because
the overlap q vanishes in the paramagnetic state], whereas
here Lαβ has a nontrivial temperature dependence, which has
to be analyzed explicitly.

In principle, Lαβ could be computed directly from the sec-
ond moment C′

2
αβ = Lαβ . This, however, requires to compute

correlation functions in the cavity system. In the following,
we use a different approach, based on self-consistency con-
ditions analog to the self-consistency of effective single-site
problems in DMFT and other field-theoretical approaches
[14,38,51,57].

In particular, we fix Lαβ by matching two alternative ex-
pressions for the site-diagonal elements cαβ = Cαβ

ii , aαβ =
Aαβ

ii , λαβ = �
αβ
ii of the full two-point correlation functions

Cαβ
i j = 〈Sα

i Sβ
j 〉, Aαβ

i j = 〈Sα
i bβ

j 〉, �
αβ
i j = 〈bα

i bβ
j 〉 (calculated in

the complete system, without cavities).
For coincident sites i = j these correlations can be calcu-

lated directly from the single-site distribution (13) as

Cαβ
ii = cαβ =

∫
S

∫
d3b SαSβ P(S, b),

Aαβ
ii = aαβ =

∫
S

∫
d3b Sαbβ P(S, b), (15)

�
αβ
ii = λαβ =

∫
S

∫
d3b bαbβ P(S, b).
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Due to the special form of Eq. (13), they satisfy the “equa-
tions of motion”

λαβ = Lαβ + β2Lαγ cγ δLδβ, aαβ − βcαγ Lγ β = 0. (16)

Equations (16) reflect the fact that for fixed Si, the
distribution of the local field P(Si, bi ) is a Gaussian
with covariance Lαβ and mean 〈bα

i 〉|Sifixed = βLαβSβ
i .

After setting bα
i = βLαβSβ

i + ζ α
i , ζ α

i is a centered
Gaussian uncorrelated from Sα

i so that λαβ = 〈bα
i bβ

i 〉 =
β2Lαγ Lβδ〈Sγ

i Sδ
i 〉 + 〈ζ α

i ζ
β
i 〉 = β2Lαγ cγ δLδβ + Lαβ , aαβ =

βLβγ 〈Sα
i Sγ

i 〉 + 〈Sα
i ζ

β
i 〉 = βcαγ Lγ β . The first of Eqs. (16), in

particular, has a simple interpretation. The covariance of the
local field bi receives two contributions: a part Lαβ , which
originates from ζ α

i and which describes the fluctuations of
the cavity, and a part due to the bias βLαγ Sγ

i , which is related
to the Onsager reaction field, and which fluctuates when
averaged over random orientations of Si.

The self-consistency conditions are expressed by requiring
that the fluctuations computed from Eqs. (15) match with a
separate calculation of the second-order correlation functions.
To obtain an independent set of expressions for Cαβ

i j , Aαβ
i j ,�

αβ
i j

we use that at noncoincident sites i �= j, these correlations
can be calculated via a generalized cavity method, with two
cavities [3]: one at i and one at j. As for the single-cavity
method, the calculation of the correlations can be approached
by analyzing the probability P(Si, bi; S j, b j ) to find simulta-
neously, given values of the variables Si, bi, S j , b j at the two
sites i and j. Factorizing the Gibbs weights, this probability
can be written as

P(Si, bi; S j, b j ) = Z ′′
i jZ

−1 exp
{
β
[
(bi · Si ) + (b j · S j )

− Jαβ
i j Sα

i Sβ
j − V (Si ) − V (S j )

]}
× p′′

i j

(
bα

i − Jαβ
i j Sβ

j , bα
j − Jαβ

ji Sβ
i

)
. (17)

The terms in the first two lines describe the Gibbs-Boltzmann
weight associated with the energy V (Si ) + V (S j ) − (bi ·
Si ) − (b j · S j ) + Jαβ

i j Sα
i Sβ

j (the last term cancels the double
counting of the direct i- j interaction). p′′

i j (X1, X2) is the

distribution of the fields X α
1 = bα

i − Jαβ
i j Sβ

j = ∑
k �=i, j Jαβ

ik Sβ

k

and X α
2 = bα

j − Jαβ
ji Sβ

i = ∑
k �=i, j Jαβ

jk Sβ

k calculated in the two-
cavity system (with the sites i and j removed). The
normalization factor Z ′′

i j is the partition function of the two-
cavity system.

As in the case of the single-cavity distribution p′(b),
we can analyze p′′

i j (X1, X2) by studying perturbatively its
cumulants

C′′
�,m

α1...α�β1βm = 〈〈
X α1

1 . . . X α�

1 X β1
2 . . . X βm

2

〉〉′′(i j)

=
∑

k1,...,k�,l1,...,lm �=i, j

Jα1γ1

ik1
. . . Jα�γ�

ik�
Jβ1δ1

jl1
. . . Jβmδm

jlm

× 〈〈
Sγ1

k1
. . . Sγ�

k�
Sδ1

l1
Sδm

lm

〉〉′′(i j). (18)

Here 〈〈. . . 〉〉′′(i j) are connected averages in the system with
two cavities at i and j.

In the d → ∞ limit we find that the cumulants C′′
�,0

α1...α�

and C′′
0,�

α1...α� , which involve only one of the two sites are
equal, up to negligible corrections, to the cumulants C′

�
α1...α�

of the system with a single cavity. This is due to the fact that
the presence of a second cavity at a point j which is away
from the origin i has only a small effect on the diagrams for
the cumulants of X1 (similarly the cavity at i has small effects
on the cumulants of X2).

Turning to the cross correlations between X1 and X2, an
analysis of the mixed cumulants shows that the diagrams for
C′′

1,1
αβ ,

= ,+ + +
j ji i i k

k k l
l

j
C αβ′′

1,1

are of order d−�i j/2 while the graphs for cumulants of higher
order vanish in a faster way for large d .

We thus find that, at leading order for d large, p′′(X1, X2)
is Gaussian and has the form

p′′
i j (X1, X2) � [(2π )3 det L]−1 exp

{− [(
L−1αβX α

1 X β

1

+ L−1αβX α
2 X β

2

)
/2 + Mαβ

i j X α
1 X β

2

]}
. (19)

The off-diagonal term Mαβ
i j is of order d−�i j/2 (Mαβ

i j �
−L−1αγC′′

1,1
γ δL−1δβ).

The correlations Cαβ
i j , Aαβ

i j , and �
αβ
i j at leading order can

be calculated by plugging Eq. (19) into (17), by substituting
Z ′′

i /Z � 1/Z2
1 , and by expanding to first order in Jαβ

i j and Mαβ
i j

[which are both O(d−�i j/2)]. After an explicit calculation we
find the relations

Cαβ
i j = βcαγ Jγ δ

i j cδβ − aαγ Mγ δ
i j aβδ,

Aαβ
i j = cαγ Jγ β

i j + βcαγ Jγ δ
i j aδβ − aαγ Mγ δ

i j λδβ,

�
αβ
i j = Jαγ

i j aγ β + aγαJγ β
i j + βaγαJγ δ

i j aδβ − λαγ Mγ δ
i j λδβ,

(20)

which are exact at leading order for d → ∞.
Using Eqs. (16) and (20), we can eliminate Mαβ

i j and obtain
the following relations, valid for arbitrary i and j (coincident
or noncoincident):

Cαβ
i j = −(kBT )2σαβδi j − kBTAαγ

i j σγβ,

�
αβ
i j = −kBT Jαβ

i j − βσ−1αγ Aγ β

i j . (21)

Here σαβ = λ−1αβ − L−1αβ .
Equations (21) now do not make any reference to the cavity

system; they express relations between the “true” correlation
functions C, A, and �. The calculation can be completed
using that the correlations have to satisfy by definition Aαβ

i j =∑
k Cαγ

ik Jγ β

k j , �
αβ
i j = ∑

k Jαγ

ik Aγ β

k j .
As a result we obtain

Ĉ = −(β2σ̂−1 + β Ĵ )−1, Â = ĈĴ,

�̂ = ĴĈĴ = −kBT Ĵ + (σ̂ + β Ĵ−1)−1. (22)

Here the matrix σ̂ is site diagonal, and is equal to σ
αβ
i j =

δi jσ
αβ . It plays the role of the local self-energy of DMFT [51].
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The self-consistency conditions can finally be imposed by
requiring that the onsite elements Cαβ

ii , Aαβ
ii , and �

αβ
ii com-

puted from Eqs. (22) coincide with the correlations cαβ , aαβ ,
λαβ of the single-site problem, computed from Eqs. (15) and
the distribution (13). Using Eqs. (16) it can be checked that the
three matching conditions Cαβ

ii = cαβ , Aαβ
ii = aαβ , and �

αβ
ii =

λαβ are equivalent, so Lαβ can be determined by imposing any
one of them.

This completes the solution of the problem for d → ∞,
at least in the case of a symmetric solution, with unbroken
symmetries. Since the two-site correlation Cαβ

i j is connected

to the static susceptibility χ
αβ
i j by the thermodynamic relation

χ
αβ
i j = βCαβ

i j , the first of Eqs. (22) can be written as χ̂−1 =
−βσ̂−1 − Ĵ , and, after a Fourier transform

χ−1αβ (k) = −βσ−1αβ − Jαβ (k). (23)

The result is common in systems with large coordination
numbers: the susceptibility has the same structure as the Weiss
mean-field susceptibility χ−1αβ = χ−1

0
αβ − Jαβ (k) [Eq. (4)],

but χ−1
0

αβ is now replaced by a renormalized term −βσ−1αβ ,
local in real space, and determined by self-consistency con-
ditions. The term −βσ−1αβ plays the role of the “locator
matrix” [38], here in the special case of a state with zero
magnetization.

A. Internal energy and free energy

The effective single-site problem and the self-consistency
equations give access to the thermodynamic properties of
the system. In fact, since the energy can be recast as H =∑

i V (Si ) + 1
2

∑
i(bi · Si ), the thermodynamic internal energy

per site can be computed as

E (β )

N
= 〈V (S)〉1 − 1

2
aαα. (24)

Here 〈V (S)〉1 = Z−1
1

∫
S V (S) exp [ − βV (S) + β2LαβSαSβ/2]

is the average anisotropy energy computed with the distribu-
tion (13) and aαα is the trace of aαβ = 〈Sαbβ〉. Integrating
over temperatures and using the self-consistency conditions
we find that the free energy is given by an expression with a
standard “tr ln” form [38]

F (β )

N
= −T S∞ + kBT

∫ β

0
dβ ′ E (β ′)

= −kBT ln Z1(β, Lαβ ) − kBT

2
tr ln[−β2(σ−1 + L)]

+ kBT

2
tr ln[−(β2σ̂−1 + β Ĵ )]. (25)

Here Z1(β, Lαβ ) = ∫
S exp [ − βV (S) + β2LαβSαSβ/2] is the

single-site partition function [Eq. (14)] and the integration
constant S∞ is equal to the entropy per site in the infinite-
temperature limit. In the classical model analyzed here S∞ is
an arbitrary constant with no physical meaning (only entropy
differences are meaningful). In the second line of Eq. (25), we
have chosen S∞ = kB ln(4π ).

We also note that the self-consistency equations can be
obtained from a variational principle on F . If we regard the
free energy as a function F (β, Lαβ, σ αβ ) of three independent

variables β, Lαβ , and σαβ , defined by Eq. (25), then the
self-consistency conditions are equivalent to the requirements
that F is stationary with respect to variations of Lαβ and σαβ .
In fact, the relations ∂F/∂Lαβ |β,σ = 0 and ∂F/∂σαβ |β,L = 0
give cαβ = Cαβ

ii and

β2cαβ = −(σ−1 + L)−1αβ, (26)

a relation which, using Eqs. (16), can be shown to be equiva-
lent to the condition σαβ = λ−1αβ − L−1αβ .

B. Local stability of the symmetric solution

In the derivation, the system has been assumed to present
unbroken spin-inversion and translation symmetries. In other
words, the analysis described a system which, starting from a
high-temperature paramagnetic phase, is continuously cooled
down. This symmetric solution can be consistent only if
the susceptibility matrix χ

αβ
i j is positive definite, in such

way that the system is locally stable against a sponta-
neous modulation. In this section, we show that this local
stability condition is satisfied at any temperature, down
to T = 0: the disordered phase is never destabilized, at
arbitrarily low T .

To analyze stability, consider first the isotropic case. In
this case, cαβ = δαβ/3, Lαβ = Lδαβ , σαβ = σδαβ , λαβ =
λδαβ , and several of the expressions simplify. In particular,
expressing Cαβ

ii as a Fourier integral and using the infinite-
dimensional density of states [38,51]

ν(ε) = 1

(2π )d

∫ π

−π

dk1 . . .

∫ π

−π

dkdδ(ε − εk ) →
d→∞

e−ε2/2

√
2π

,

(27)

the self-consistency condition cαβ = Cαβ
ii reduces to the scalar

equation

β

3
= −

∫ ∞

−∞
dε

ν(ε)

β/σ + f (ε)
= I (β/σ ). (28)

As discussed in Sec. II, f (ε) is assumed to be bounded
from above, with a maximum value maxε[ f (ε)] = fmax. The
integral I (β/σ ) therefore is well defined for β/σ < − fmax.
Since I (β/σ ) tends to 0 for β/σ → −∞ and to +∞ for β/σ

to − fmax, there is always a value of β/σ in the interval −∞ <

β/σ < − fmax which solves Eq. (28), at any temperature T .
Thus, the self-consistency relations admit a solution at any T .
In addition, the solution corresponds always to a locally stable
state because the susceptibility χ−1(k) = −β/σ − J (k) =
−β/σ − f (εk ) � fmax − f (εk ) is automatically positive for
all k.

We see therefore that the second-order transition predicted
by the Weiss theory (Sec. II A) disappears in the exact large-d
solution. The reason why the instability is suppressed at arbi-
trarily low T can be traced to the fact that J (k) = f (εk ) has
its maximum value fmax on an entire surface in momentum
space, and not on isolated k points. Due to this geometrical
property, there are a large number of modes near the degen-
erate surface εk = εmax which become simultaneously soft as
β/σ approaches − fmax. The fluctuation of these modes makes
the integral I (β/σ ) diverge for β/σ → − fmax, ensuring that
Eq. (28) has always a solution.
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The mechanism at play is closely analog to that occurring
in the Brazovskii model, and in other models with Coulomb-
or dipole-frustrated interactions [7,9,14–16], where the modes
near a degenerate surface remove a second-order instability.

Before continuing the discussion, let us analyze the prop-
erties of the solution in more detail. The condition Jii = 0
implies that

∫ ∞
−∞ dε ν(ε) f (ε) = Jii = 0. This, in particular,

shows that fmax is always positive and β/σ < − fmax is always
negative. Using

∫ ∞
−∞ dε ν(ε) = 1 and analyzing Eq. (28) it can

then be shown that β/σ < min({− fmax,−3/β}). At high tem-
peratures β/σ ≈ −3/β + O(β−3). The effective single-atom
susceptibility χ̃ = −σ/β is approximately equal to its Weiss
mean-field value χ0 = β/3. At low temperatures, however, χ̃

becomes much smaller than χ0 and eventually saturates to
a finite value χ̃ = −σ/β ≈ 1/ fmax when T → 0. The tem-
perature dependence of χ̃ is such that χ̃−1 is always larger
than J (k) at all wavelengths, so that the system is locally
stable at all T .

In the anisotropic case, the analysis is more complex.
However, we expect that from the point of view of the local
stability of the disordered solution, the result is the same.
When all eigenvalues of f αβ (x) are bounded from above,
we expect that the paramagnetic state remains locally stable
at all T .

This local stability analysis rules out that the system may
order at low temperatures via a continuous transition. It is not
excluded, however, that the model may undergo a first-order
transition into an ordered state. In this case, the symmetric
solution which we presented corresponds to the one of lowest
free energy only for temperatures higher than the temperature
Tf.o. of the transition, while for T < Tf.o. it has to be inter-
preted as a metastable supercooled phase (Tf.o. denotes the
temperature of the first-order transition).

A study of possible first-order transitions requires an anal-
ysis of the broken-symmetry solutions of the large-d model,
which is beyond the scope of this work [58]. We give,
however, some remarks on this question. In the context of
continuous field theories with degenerate surfaces of soft
modes, the Brazovskii model with scalar degrees of freedom
has been predicted to present a fluctuation-induced first-order
transition to a modulated phase [5,18]. Coulomb-frustrated
models with vector degrees of freedom and O(n) symmetry
have been argued, instead, to behave differently. In particular,
the analyses in Refs. [5,7] indicate that for n � 3 Coulomb-
frustrated models present no ordered phases when there is an
exact degeneracy of low-lying modes at a momentum-space
surface (although a lifting of the degeneracy due to lattice
effects beyond the continuum limit induce a finite-temperature
transition).

In the models studied here, the mechanism by which the
symmetric state is stabilized at arbitrarily low T is analog
to that occurring in Coulomb-frustrated models since it orig-
inates from the anomalous density of states near a surface
in momentum space. It should be noted, however, that the
lattice spin systems which we study differ from continuous
field theories because of a significantly different shape of the
degenerate surface. In Coulomb-frustrated models, degenerate
surfaces of soft modes arise due to competing interactions
on different length scales. In the limit of small frustration,
the surface of soft modes occurs in a region of wavelengths

much larger than the lattice spacing. In the lattice systems
of interest in this work, instead, frustration occurs at the
microscopic scale and the surface of soft modes occurs at
large wave vectors, comparable to the size of the Brillouin
zone. The degenerate surface of soft modes, as a result, has
a highly nonspherical shape, determined by the condition
εk = εmax.

Due to the nonspherical shape, it is possible that a mech-
anism of order by disorder [43] selects at low temperatures
a modulated phase. Order by disorder has indeed been found
in the J1 = 2J2 fcc antiferromagnet in three dimensions: in
this model Ref. [39] predicted the entropic selection at low
temperatures of an ordered helical state, with a modulation
vector oriented along a high-symmetry direction [39]. It is
likely therefore that, also in the large-d models studied here,
an ordered state is selected entropically as the most stable
low-temperature phase.

Since, however, we showed that the disordered phase is
locally stable in the d → ∞ model, we can consistently study
its properties at all T (in the region T < Tf.o. the analysis then
describes a metastable, supercooled phase).

In the following sections we will focus on the disordered
solution and, using a dynamical analysis, we will explore
the possibility that, at a certain temperature, it may undergo
a dynamical glass transition, and a consequent breaking of
ergodicity. If the glass transition competes with a first-order
transition and Tf.o. > Tg we assume that the system can be
supercooled down to Tg.

In other words, the disordered solution represents the state
of the system in a spin-liquid phase [43], and by the dynamical
analysis in the next sections we study whether this liquid
state can freeze into a glass. A first-order transition into a
modulated phase is instead analog to a crystallization. The as-
sumption which we make is that the crystallization, if present,
can be avoided by supercooling.

C. Distribution of the internal field and low-temperature limit
of the internal energy in isotropic models

Before analyzing dynamical properties, we discuss some
additional properties of the static solution focusing on the
isotropic case. In isotropic models, the cavity distribution
p′(b) is, at any temperature, a rotationally invariant Gaussian
of width L. The variance of the cavity field distribution L is
related to the self-energy σ by the relation L = −3/β2 − 1/σ

[which follows from Eqs. (16) using that in the rotationally
invariant case cαβ = δαβ/3 at all T ]. At high temperatures, L
is controlled by the leading orders of perturbation theory and
is approximately L ≈ J 2

2 /3, with J 2
2 = ∫ ∞

−∞ dε ν(ε) f 2(ε) =∑
k (Jik )2. When the temperature is lowered, L decreases.

Eventually in the limit T → 0, L vanishes as L ≈ −1/σ ≈
kBT fmax.

Consider now the complete distribution of the field
p(b) = ∫

S P(S, b) [3]. At high temperatures, the reaction
field is weak and the distribution p(b) is approximately
equal to the cavity distribution p′(b). In particular, the vari-
ance λ of p(b) is approximately the same as the variance
L of p′(b).

When the temperature is lowered, the correlation between
bi and Si becomes more important and the distribution p(bi )
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becomes significantly different from p′(bi ). Eventually in the
limit of low temperatures, the distribution of the field bi is
completely dragged by the spin Si. In fact, using L ≈ kBT fmax

we find

P(S, b) ≈ exp{β[(b · S) − b2/(2 fmax) − fmax/2]}
4π

√
(2π )3 det L

→
β→∞

1

4π
δ(b − fmaxS). (29)

In all relevant configurations, bi is equal to fmaxSi up to a
small fluctuation (with root mean square

√
L ≈ √

kBT fmax).
The probability p(b) = ∫

S P(S, b) is then concentrated within
a narrow spherical surface of radius fmax. The variance of
the distribution λ = 1/σ + β2/(3σ 2) remains finite and ap-
proaches λ ≈ f 2

max/3 for T → 0.
Equation (29) implies, in addition, that the internal en-

ergy per site for T → 0 tends to E0 = −Naαα/2 = −N fmax/2
in isotropic models. E0 is exactly equal to the energy of
the spiral ground states, which is the exact ground-state en-
ergy of the system. This suggests that the configurations
contributing to the T → 0 limit of the symmetric state are
built predominantly from a superposition of Fourier modes
with k lying near the degenerate surface. However, we ex-
pect that the correlations in this disordered phase remain
short ranged since the correlation function Cαβ

i j evolves
smoothly when the system is cooled down starting from high
temperatures.

We note as a remark that E0 describes the T → 0 limit
of the equilibrium internal energy. This energy may be un-
reachable if the system remains trapped in a glassy state at
a vitrification temperature Tg. The state in which the sys-
tem freezes at Tg may have an energy larger than E0 when
it is eventually cooled down to T → 0. In this case, the
relevant thermodynamic properties should be analyzed tak-
ing into account the trapping into a metastable state (see
Ref. [38] for a replica theory of the thermodynamics within a
glass phase).

IV. DYNAMICAL PROPERTIES

The analysis in Sec. III described the properties of the
disordered phase from the point of view of equilibrium sta-
tistical mechanics. In this section, we extend the analysis and
study the equilibrium dynamics of the system. The results
of this dynamical analysis will be used in Sec. V to analyze
the conditions under which the disordered phase can become
nonergodic, and develop a glassy behavior.

To study the system from a dynamical point of view, we
assume a purely dissipative Langevin equation

Ṡi = −Si × [Si × (Ni + νi )]

= Ni + νi − Si[Si · (Ni + νi )]. (30)

Here Ni is the vector

Ni = −∂H

∂Si
= bi + Fi, (31)

bα
i = ∑

j Jαβ
i j Sβ

j is the instantaneous internal field, and
Fα (Si ) = −∂V (Si )/∂Sα

i is a contribution from the onsite

anisotropy. νi(t ) is a random torque, considered as a white
Gaussian noise with zero mean and〈

να
i (t )νβ

j (t ′)
〉 = 2kBT δαβδi jδ(t − t ′). (32)

For simplicity we have adopted a rescaled set of units, absorb-
ing the gyromagnetic ratio and the Gilbert damping constant
in a redefinition of the timescale.

This purely dissipative dynamics is a particular case, in the
limit of strong damping, of the stochastic Landau-Lifshitz-
Gilbert (LLG) equation [59,60]. We restrict the analysis to the
overdamped case to simplify the presentation, but the deriva-
tions could be adapted to include a precession term. We expect
that the emergence of vitrification depends on the structure of
the energy landscape, and not on the specific nature of the
dynamical equations. Thus, it seems natural to assume that a
more detailed, precessional dynamics, would give the same
conditions for the emergence of glassiness.

In the analysis, we focus on equilibrium dynamics: we
consider correlation functions averaged over the Gaussian
distribution of the noises νi and over the initial conditions
Si10,...,SiN 0 at time t = 0, assigning to the initial condi-
tions a weight given by the equilibrium Gibbs distribution
Z−1 exp[−βH (Si10, . . . , SiN 0)].

As in the case of the static properties, the d → ∞ limit
allows to reduce the dynamics of the N-body problem to
an effective single-site problem and a set of self-consistency
equations. We present detailed derivations of the dynamical
properties in Secs. IV A–IV C, and in Appendix B, but for
compactness we summarize the main results throughout this
and the next page.

In the limit d → ∞ we find that the dynamics of a single
spin can be replaced by a non-Markovian Langevin equation

Ṡi = −Si × {Si × [bi(t ) + Fi + νi(t )]}, (33)

subject to a time-dependent field bi(t ) given by

bi(t ) = ζ α
i (t ) + βlαβ (t )Sβ

i0

+
∫ t

0
dt ′ Kαβ (t − t ′)Sβ

i (t ′). (34)

In Eq. (34), ζi(t ) is a colored Gaussian noise with zero
mean and correlation 〈ζ α

i (t )ζ β
i (t ′)〉 = lαβ (t − t ′). The kernel

Kαβ (t − t ′) is related to the spectrum of the noise by the
fluctuation-dissipation relation

Kαβ (t − t ′) = −β�(t − t ′)
d

dt
lαβ (t − t ′). (35)

Finally, the term βlαβ (t )Sβ

i0 in Eq. (34) is controlled by the
same function lαβ (t ) which defines the correlation of ζ α

i (t ),
and depends on Si0, which is the initial condition of the spin
Si at time t = 0.

Equations (33) and (34) define a single-site problem which
encodes all time-dependent correlation functions of the spin
Si and the field bi at a single site i. In other words, in-
stead, of solving the N-body dynamics, the local correlations
〈Sα1

i (t1) . . . Sαn
i (tn)bβ1

i (t ′
1) . . . bβ�

i (t ′
�)〉 can be calculated equiva-

lently by solving the single-site dynamics, and by averaging
the solutions of the one-site Langevin equations over the re-
alizations of νi(t ), ζi(t ), and over the initial conditions of Si0.
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In this procedure, the initial conditions Si0 must be averaged
with the probability distribution

P1eq(Si0) = Z−1
∫

Si2

· · ·
∫

SiN

e−βH (Si0,Si2 ,...,SiN )

=
∫

d3b P(Si0, b)

= Z−1
1 e−βV (Si0 )+ 1

2 β2LαβSα
i0Sβ

i0 (36)

which is the Gibbs probability of the spin Si0.
The non-Markovian single-site problem is entirely spec-

ified by the correlation function lαβ (t − t ′). At equal
times t = t ′, lαβ (t = t ′) = lαβ (0) can be shown to be
equal to the matrix Lαβ found in the static analy-
sis of Sec. III. For arbitrary times, lαβ (t − t ′) can be
fixed by a set of self-consistency conditions satisfied by
the correlations Cαβ

i j (t − t ′) = 〈Sα
i (t )Sβ

j (t ′)〉, Aαβ
i j (t − t ′) =

〈Sα
i (t )bβ

j (t ′)〉, �
αβ
i j (t − t ′) = 〈bα

i (t )bβ
j (t ′)〉 and their site-

diagonal elements cαβ (t − t ′) = Cαβ
ii (t − t ′), aαβ (t − t ′) =

Aαβ
ii (t − t ′), λαβ (t − t ′) = �

αβ
ii (t − t ′).

In particular, we find that the self-consistency rela-
tions can be reduced to a compact form when expressed
in terms of the time derivatives Ċαβ

+i j (t − t ′) = �(t −
t ′)dCαβ

i j (t − t ′)/dt , Ȧαβ
+i j (t − t ′) = �(t − t ′)dAαβ

i j (t − t ′)/dt ,

�̇
αβ
+i j (t − t ′) = �(t − t ′)d�

αβ
i j (t − t ′)/dt , restricted to the re-

tarded region t > t ′. Ċ+ is simply related to the response
function Gαβ

i j (t − t ′) = 〈δSα
i (t )/δνβ

j (t ′)〉 by the fluctuation-

dissipation theorem (FDT) Gαβ
i j (t − t ′) = −βĊαβ

+i j (t − t ′) (see
Appendix A).

In the limit d → ∞, we find that Ċ+, Ȧ+, �̇+ satisfy the
relations

Ċαβ
+i j (t − t ′) − δi j ċ

αβ
+ (t − t ′)

= β

∫ t

t ′
dt ′′

∫ t ′′

t ′
dt ′′′[Ċαγ

+i j (t − t ′′)

× Kγ δ (t ′′ − t ′′′)ċδβ
+ (t ′′′ − t ′)

]
− β

∫ t

t ′
dt ′′ Ȧαγ

+i j (t − t ′′)ċγ β
+ (t ′′ − t ′), (37)

Ȧαβ
+i j (t − t ′) = ċαγ

+ (t − t ′)Jγ β
i j

− β

∫ t

t ′
dt ′′ċαγ

+ (t − t ′′)
[
�̇

γβ

+i j (t
′′ − t ′)

−
∫ t ′′

t ′
dt ′′′ Kγ δ (t ′′ − t ′′′)Ȧδβ

+i j (t
′′′ − t ′)

]
,

(38)

or, in frequency space,

Ċαβ
+ (k, ω) − ċαβ

+ (ω) = βĊαγ
+ (k, ω)Kγ δ (ω)ċδβ

+ (ω)

− βȦαγ
+ (k, ω)ċγ β

+ (ω),

Ȧαβ
+ (k, ω) = ċαγ

+ (ω)Jγ β (k) − β ċαγ
+ (ω)�̇γβ

+ (k, ω)

+ β ċαγ
+ (ω)Kγ δ (ω)Ȧδβ

+ (k, ω). (39)

Here ċαβ
+ (t − t ′) = �(t − t ′)dcαβ (t − t ′)/dt is the time

derivative of the single-site correlation 〈Sα (t )Sβ (t ′)〉, re-
lated to the single-site response function gαβ (t − t ′) =
〈δSα

i (t )/δνβ
i (t ′)〉 by the FDT gαβ (t − t ′) = −β ċαβ

+ (t − t ′).
ċαβ
+ (ω) = ∫ ∞

−∞ dt eiωt ċαβ
+ (t − t ′) is the Fourier transform of

ċ+.
Together with the relations Ȧαβ

+ (k, ω) = Ċαγ
+ (k, ω)Jγ β (k),

�̇
αβ
+ (ω, k) = Jαγ (k, ω)Ȧγ β

+ (k, ω), Eqs. (39) fix the correla-
tions as functionals of K and ċ+.

The solutions are

Ċαβ
+ (k, ω) = [(ċ+(ω))−1 − βK (ω) + βJ (k)]−1αβ,

Ȧαβ
+ (k, ω) = Ċαγ

+ (k, ω)Jγ β (k), (40)

�̇
αβ
+ (k, ω) = Jαγ (k)Ċγ δ

+ (k, ω)Jδβ (k).

This result has a DMFT-like form, as expected due to the
limit of large dimensionality: the self-energy depends on the
frequency ω but not on the momentum k [51].

The self-consistency conditions can be imposed by
requiring that the site-diagonal correlations Ċαβ

+ii(t − t ′),
Ȧαβ

+ii(t − t ′), �̇
αβ
+ii(t − t ′) computed by Fourier transformation

from Eqs. (40) coincide with the corresponding quantities
ċαβ
+ (t − t ′), ȧαβ

+ (t − t ′) = �(t − t ′)daαβ (t − t ′)/dt =
�(t − t ′)d〈Sα

i (t )bβ
i (t ′)〉/dt , λ̇

αβ
+ (t − t ′) = �(t − t ′)dλαβ (t −

t ′)/dt = �(t − t ′)d〈bα
i (t )bβ

i (t ′)〉/dt computed from the
single-site Langevin equation.

These conditions can be expressed in frequency space as

ċ+(ω) =
∫ π

−π

dd k

(2π )d
[(ċ+(ω))−1 − βK (ω) + βJ (k)]−1,

ȧ+(ω) =
∫ π

−π

dd k

(2π )d
{[(ċ+(ω))−1 − βK (ω)+βJ (k)]−1J (k)},

λ̇+(ω) =
∫ π

−π

dd k

(2π )d
{J (k)[(ċ+(ω))−1 − βK (ω)

+ βJ (k)]−1J (k)}. (41)

The three matching conditions for ċ+, ȧ+, λ̇+ are equivalent
to each other because Eqs. (37), (38), and thus Eqs. (41), are
consistent by construction with the relations

ȧαβ
+ (ω) = ċαγ

+ (ω)Kγ β (ω),

λ̇
αβ
+ (ω) = − 1

β
Kαβ (ω) + Kαγ (ω)ċγ δ

+ (ω)Kδβ (ω), (42)

which are automatically satisfied by the effective single-site
Langevin equation (see Sec. IV B). Thus, we can choose
equivalently to impose any one of the three relations (41) to
fix the self-consistency.

As a remark, note that the self-consistency equations fix
the time derivatives and not directly the correlation func-
tions. However, since the equal-time correlations must be
equal to the static correlations, computed in Sec. III, we
can deduce any time-dependent average by integrating over
time (using the static averages of Sec. III as a boundary
condition at t = t ′).
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A. Derivation: Effective single-site problem

To derive the dynamical results we used, as in Sec. III,
a combination of perturbation theory and the cavity method
[3,51]. The starting point is a methodology analog to the
cavity approach used in Ref. [3] for the dynamics of the SK
model. A fundamental idea of this cavity approach is that a
single spin Si(t ) = Si1 (t ) has only a weak effect on the trajec-
tories of the other N − 1 spins Si2 (t ),..., SiN (t ). For each set
of initial conditions Si0, Si20,..., SiN 0 and for each realization
of the noise νi(t ), νi2 (t ),..., νiN (t ), this allows to expand the
trajectories of the N − 1 spins i2, ..., iN [3]:

Sα
j (t ) = Sα

j
′(i)(t ) +

∑
k

∫ t

0
dt ′ G(1)α,μ

jk
′(i)(t, t ′)Jμβ

ki Sβ
i (t ′)

+ 1

2

∑
k,l

∫ t

0
dt ′

∫ t

0
dt ′′ G(2)

j,kl
α,μν ′(i)(t ; t ′, t ′′)

× Jμβ

ki Jνγ

li Sβ
i (t ′)Sν

i (t ′′) + · · · , (43)

and the magnetic field bα
i = ∑

j Jαβ
i j Sβ

j (t ) acting on site Si,

bα
i (t ) = ηα

i (t ) +
∫ t

0
dt ′ K (1)α,β (t, t ′)Sβ

i (t ′)

+ 1

2

∫ t

0
dt ′

∫ t

0
dt ′′ K (2)α,βγ (t ; t ′, t ′′)Sβ

i (t ′)Sγ

i (t ′′)

+ · · · (44)

as power series in the interaction between the spin Si and the
cavity.

The zero-order term in Eq. (43), denoted as S j
α′(i)(t ), is

a solution of the Langevin equations of the cavity system
[Eqs. (30) in absence of the site i, that is, Ṡ′(i)

j = −S′(i)
j ×

(S′(i)
j × (N′(i)

j + ν j )) with N′(i)
j = F(S′(i)

j ) + b′(i)
j and bα′(i)

j =∑
k �=i Jαβ

jk Sβ′(i)
k ]. G(n) are the nth-order response functions

G(n)α,μ1μn′(i)
j,k1,...,kn

(t ; t1, . . . , tn) = δSα′(i)
j (t )

δν
μ1
k1

(t1) . . . δν
μn

kn
(tn)

, (45)

calculated along the trajectory S′
j
α (t ) (G(n) are trajectory de-

pendent).
In Eq. (44), ηα

i (t ) = ∑
j Jαβ

i j S j
β′(i)(t ) is the magnetic field

at zero order. The kernels K (n)(t ) describe the nth-order cor-
rections to the instantaneous field due to the interactions of the
cavity with Si, and are related to the response functions via

K (n)α,μ1...μn (t ; t1, . . . , tn)

=
∑

j,k1,...,kn

Jαβ
i j × G(n)β,ν1...νn′(i)

j,k1...kn
(t ; t1, . . . , tn)Jν1μ1

k1i . . . Jνnμn

kni .

(46)

By construction S j
α′(i)(t ), G(n), ηi(t ), and K (n) do not depend

explicitly on Si0 and νi, but only on the noises νi2 (t ),..., νiN (t )
and the initial conditions Si20, . . . , SiN 0 of the cavity. For
varying initial conditions and realizations of the noises, they
become random variables.

In order to derive Eq. (34), it is necessary to show that
the complex expression (44) for the instantaneous field sim-
plifies for d → ∞. In particular we need to derive four

properties: (1) The nonlinear response terms have a negli-
gible effect at large d , so that the series in Eq. (44) can
be truncated keeping only the term ηα

i (t ) and the linear re-
sponse part

∫ t
0 dt ′K (1)αβ (t, t ′)Sβ

i (t ′). (2) The linear response
kernel K (1)(t, t ′) is effectively a deterministic quantity, with
a negligible variance. For any trajectory at temperature T ,
K (1)αβ (t, t ′) is then equal to its thermal average Kαβ (t − t ′) =
〈K (1)αβ (t, t ′)〉, up to negligible fluctuations. (3) The random
field ηi(t ) has for d → ∞ a Gaussian distribution, with mean
βlαβ (t )Sβ

i0 and correlation lαβ (t − t ′). (4) The kernel Kαβ (t −
t ′) is related to lαβ (t − t ′) by the FDT.

These results are similar to those valid in the SK model [3],
and can be derived by studying in a perturbative expansion
the cumulants of ηi(t ), and the K (n). Let us consider first
the cumulants of ηi(t ). In equilibrium, the initial conditions
Si20,..., SiN 0 are drawn with a distribution which, for each Si0,
is given by

p
(
Si20, . . . , SiN 0

∣∣Si0
) = Z−1

P1eq(Si0)
e−βH (Si0,Si20,...,SiN 0 ). (47)

Thus, we can study the fluctuations of η by analyzing the
cumulants

C′α1,...,αn
�|Si0

= 〈〈
η

α1
i (t1) . . . η

α�

i (t�)
〉〉

ν2,...,νN ;Si20,...,SiN 0|Si0
. (48)

Here 〈〈. . . 〉〉ν2,...,νN ;Si20,...,SiN 0|Si0 are connected averages over
ν2,..., νN , and the initial conditions Si20,..., SiN 0, weighted with
the distribution (47).

For large d , p(Si20, . . . , SiN 0|Si0) is close to the cavity
distribution Z ′

i
−1 exp[−βH ′

i (Si20, . . . , SiN 0)] [the difference
between p(Si20, . . . , SiN 0|Si0) and the cavity distribution
comes from the interaction −∑

j Jαβ
i j Sα

i0Sβ

j0 which is small for
large d].

Thus, we can at first ignore the corrections due to Si0 and
calculate the cumulants

C′α1,...,αn
� = 〈〈

η
α1
i (t1) . . . η

α�

i (t�)
〉〉′(i)

ν2,...,νN ;Si20,...,SiN 0

=
∑

j1,..., j�

Jα1β1
i j1

. . . Jα�β�

i j�

〈〈
Sβ1′(i)

j1
(t1)

× · · · × Sβ�′(i)
j�

(t�)
〉〉′(i)

ν2,...,νN ;Si20,...,SiN 0
, (49)

assuming that the averages over initial conditions
are weighted simply with the Gibbs distribution
Z ′

i
−1 exp[−βH ′

i (Si20, . . . , SiN 0)] of the cavity. After this
simplification, the cumulants in Eq. (49) reduce to averages
calculated in the equilibrium dynamics of the cavity system.

The C′
� can be studied perturbatively by expanding at the

same time the solutions of the cavity Langevin equations and
the distribution of initial conditions Z ′

i
−1 exp(−βH ′

i ) as a se-
ries in the interactions Jαβ

jk acting within the cavity system. To
this end, we note that the expansion of the solutions S′(i)(t ),
for any fixed realization of the initial conditions Si20,..., SiN 0

and of the noises νi2 (t ),..., νiN (t ), can be represented in terms
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of tree diagrams of the form

=

= + +

+ +

S α

α

(0)

j

j

(t

(t)
j

k

k k l

l

j j

j

S

) +
∑

k

∫ t

0

dt ′ G(1) αβ
j (t, t ′)J βγ

jk S γ (0)

k (t ′

′

)

+
∑
k,l

∫ t

0

dt ′
∫ t ′

0

dt ′′ G(1) αβ
j (t, t ′)J βγ

jk

× G(1) γδ
k (t ′, t ′′)J δμ

kl S μ (0)

l (t ′′)

+
∑
k,l

∫ t

0

dt ′
∫ t ′

0

dt ′′ G(2) αβγ
j (t; t ′, t ′′)

× J βδ
jk S (0) δ

k (t ′)J γμ
jl S (0) μ

l (t ′′) + ... (50)

The zero-order term in Eq. (50) is simply the solution
Sα(0)

j (t ) of the noninteracting Langevin equation Ṡ j = −S j ×
{S j × [F j + ν j (t )]}, in absence of exchange interactions. The
diagrammatic corrections can be visualized as a stream of
processes acting one after the other in time. The first correc-
tion, represented in the second graph of (50), describes the
first-order perturbation of the trajectory S j due to the field of
the other spins Sk , and involves the linear response function
G (1)αβ

j (t, t ′) = δS(0)α
j (t )/δνβ

j (t ′) of the spin S j , computed in
the noninteracting problem. The third graph describes two
perturbative processes acting in chain: the field due to S(0)

l (t ′′)
polarizes the spin Sk (t ′) at a later time t ′ and the correction
induced on Sk (t ′) in turn polarizes S j (t ) at t . The last graph in
Eq. (50) describes the second-order nonlinear response of S j

to the field induced on it by S(0)
k and S(0)

l .
In general, terms of higher order involve an arbitrary

number of interaction lines and nonlinear response functions
of arbitrary order. In the diagrammatic representation, we
have used the following graphical conventions. The solu-
tion S(0)

j (t ) of the noninteracting Langevin equations of site
j is represented by a dot with one outgoing line, located
at the lattice site j. The noninteracting response functions
G (n)α,β1...βn

j (t ; t1, . . . , tn) of S j are represented by dots with
n incoming lines and one outgoing line, located at j. Fi-
nally, the interactions Jαβ

jk are represented by lines connecting
different sites.

Every interaction Jαβ

jk describes the effect of Sk as a source
of perturbation to the trajectory S j or vice versa. This implies
that all lines in the graph connect one outgoing leg in a vertex
to one ingoing leg of a different vertex. As a result, the arrows
distinguishing ingoing and outgoing directions can be drawn
directly on the midpoints of the interaction lines, as in the
example (50).

Every term represented in a graph has to be summed over
all internal sites, and integrated over all times. Since all re-
sponse functions G (n) are causal, the outward line at each

vertex has a time t which is larger than the times t1,..., tn of the
incoming lines. The orientation of the arrows thus describes
the direction of growing times.

The expansion (50) can be used to describe the perturbative
solution of S′

j (t ) for any given noise realization and for any
fixed initial condition. To determine cumulants of ηi(t ) the
solution must be averaged over the ν j (t ) and the S j0. In order
to calculate the cumulant 〈〈ηα1

i (t1) . . . η
α�

i (t�)〉〉 perturbatively
we need to draw � tree diagrams of the type (50), representing
the solutions S′β1(i)

j1
(t1),..., S′β�(i)

jn
(t�), add � lines representing

the factors Jα1β1
i j1

,...,Jαnβ�

i j�
in Eq. (49), and average the resulting

product of graphs.
The perturbative terms needed in this expansion involve

averages of products of S(0)
j (t ), of noninteracting response

functions G (n), and of initial conditions S j0, calculated in
the nonperturbed problem (with Jαβ

jk = 0). As in the linked-
cluster expansion, the perturbative terms are conveniently
handled by separating these averages, which we denote as
〈S(0)

j1
. . . S(0)

jn
. . .G (n1 )

k1
. . .G (nm )

km
. . . Sl10 . . . Slp0〉(0), as sums of

connected averages (cumulants).
This leads to an expansion analog to the LCE in

which the vertices are connected averages of the type
〈〈S(0)

j . . . S(0)
j . . .G (n1 )

j . . .G (nm )
j . . . S j0 . . . S j0〉〉(0), computed at

zero order (with Jαβ
i j = 0). These vertices are fully local

because at zero order all spins are noninteracting, and all
connected averages which are not site diagonal vanish. In the
following the vertices will be represented graphically in the
form

G

G G

(1) (0)α,β

(1)α,β

G S

S0 S0 

(2) (0) (0)α,βγ

γG (1) (0)α,β

(1) (0)γ,δ

δ

δ

(t, t  )

(t1, t1)

(t, t )

(t1; t2,t3) (t4)

(t3, t4)

(51)

Here the dots with incoming and outgoing arrows have
the same meaning as before: they represent the solutions of
the noninteracting Langevin equations and the nth-order non-
interacting response functions G (n)

j . Dots connected to lines
without arrows, instead, are introduced to represent factors of
Sα

j0, where S j0 is the initial condition of S j at time t = 0.
The circle stands for a connected average of all quantities
inside it, over ν j (t ), and S j0, calculated using the zero-order
Langevin dynamics and the zero-order ensemble P(S j0) =
ρ(S j0) = exp[−βV (S j0)]/

∫
S exp[−βV (S)]. Since the system

is homogeneous, the value of the vertices does not depend on
the site j. In addition, since P(S j0) = ρ(S j0) is the equilib-
rium probability for the noninteracting Langevin equation, the
vertices are time-translation invariant.

The perturbative expansion involves in general vertices
of the type (51), with arbitrarily many “dots“ representing
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the connected average of arbitrary products of S(0)(t ), G (n),
and Si0.

Using this graphical representation, the first few terms of
the cumulant C′αβ

2 (t − t ′) = 〈〈ηα
i (t )ηβ

i (t ′)〉〉′(i)νi2 ,...,νiN ;Si20,...,SiN 0

can be represented as

=
∑

j

J αγ

αβ

ij J βδ
ij 〈S β (0)

j (t)S γ (0)

k (t ′

(t

i

j j k kj

i i
= + + +t )C ′ ′

)〉(0)

+
∑
j,k

J αγ
ij J δμ

jk J βν
ik

∫ t ′

0

2

dt ′′
[
〈S (0) γ

j (t)S (0) δ
j (t ′′)〉(0)

× 〈G(1) μν
k (t ′, t ′′)〉(0)

]

+
∑
j,k

βJ αγ
ij J δμ

jk J βν
ik 〈S (0) γ

j (t)S δ
j 0〉(0)

× 〈S (0) γ
k (t)S δ

k 0〉(0) + ... (52)

Here the two “external” lines connected to the origin i cor-
respond to the factors Jαβ

i j , Jαβ

ik in the definition of the local

field ηα
i (t ) = ∑

j Jαβ
i j Sβ′(i)

j (t ). The inner part of the graphs

describes the average of the product of Sβ′(i)
j (t ) and Sβ′(i)

k (t ′).
The third graph contains a term coming from the first-order
expansion of the distribution Z ′

i
−1e−βH ′

i (Si20,...,SiN 0 ) of the initial
conditions. The contribution of the corresponding interaction
is represented by a “static line” (illustrated in the diagram as
a line without an arrow).

At higher order the diagrams involve arbitrary numbers of
lines with arrows (representing the perturbative solution of the
Langevin equations) and without arrows (representing the ex-
pansion of the Gibbs distribution of the cavity). The expansion
of cumulants C′

� with arbitrary � is given by diagrams with the
same structure, but with � lines connected to the origin i.

We can now discuss the scaling of diagrams in the large-
d limit. Although the vertices of the dynamic problem are
more complex than those of the static calculation, the power
counting for d → ∞ is the same. As a result, it turns out that
the only finite cumulant for d → ∞ is C′αβ

2 (t − t ′) because
it is represented by graphs in which two lines are attached
to i. All higher cumulants of η(t ), instead, are represented
by graphs in which more than two lines are attached to the
origin i. Since by the cavity construction the internal sites
are summed over all lattice sites except i, this implies, as in
Sec. III, that all cumulants beyond the second are suppressed
for d → ∞. This shows that ηi(t ) has a Gaussian distribution
in large dimension. We identify the cumulant C′αβ

2 (t − t ′) with
the correlation function lαβ (t − t ′) describing the fluctuation
of the noise in the effective single-site dynamics.

The same power-counting analysis which has been used
for correlations of η can be applied to any cumulant involv-
ing both η and the kernels K (n). The result is the same: the
only terms of order 1 are those for which the corresponding
perturbative graphs have two lines, and no more, connected

to i. Using this, we see that the average of the linear kernel
K (1)αβ (t, t ′) is of order 1 because it has an expansion given by
diagrams

=
∑

j

i i

J αγ

αβ

ij J βδ
ij 〈G(1) γδ (

t t( = ++)K

t, t ′)〉(0)

+
∑
j,k

∫ t

t ′
dt ′′ J αγ

ij J δμ
jk J νβ

ki

× 〈G(1) γδ
j (t, t ′′)〉(0) 〉(0)〈G(1) μν

k (t, t ′′) + ... (53)

All higher response functions (K (n), n � 2) are, instead,
negligible for d → ∞ because their averages and cumulants
are represented by graphs in which more than two lines are
attached to i. In particular, the variance of K (1) is given by a
graph with four lines connected to the origin i, and is negligi-
ble. Thus, K (1) is deterministic: it has negligible fluctuations
in the limit d → ∞.

In addition, we note that since the fluctuation lαβ (t − t ′) =
C′αβ

2 (t − t ′) and the kernel Kαβ (t − t ′) are related to the cor-
relation and the linear response functions of the cavity system
in equilibrium. Thus, it can be shown that they are related by
the FDT [Eq. (35)] (see Appendix A).

To complete the calculation we have to discuss one last
point: the fact that the correct averages over initial conditions
should be computed with the weight (47) and not with the cav-
ity distribution Z ′−1

i exp(−βH ′
i ). The difference between the

two distributions leads to negligible corrections to all cumu-
lants, apart from one: the mean 〈η(t )〉ν2,...,νN ,Si2 ,...,SiN |Si0 . In fact,
the average of η(t ) computed with the cavity distribution is
zero by inversion symmetry. The mean 〈η(t )〉ν2,...,νN ,Si2 ,...,SiN |Si0

at fixed Si0, instead, receives a O(1) contribution. For d → ∞
this contribution can be calculated expanding the distribution
(47) to first order in the coupling β

∑
j Jαβ

i j Sα
i0Sβ

j0. As a result
we find〈

ηα
i (t )

〉
νi2 ,OνiN ,Si20,...,SiN 0|Si0

→
d→∞

∑
j,k

βJαγ
i j Jβδ

ik

〈〈
Sγ ′(i)

j (t )Sδ
k0

〉〉′(i)
νi2 ... νiN ,Si20...SiN 0

= βlαβ (t )Sβ

i0. (54)

Diagrammatically this term is represented by

,i
i(t) = + + +

i i

(55)

which, again, are graphs in which only two lines are connected
to the origin. One of the two lines is now a static line, repre-
senting the term βJαβ

i j Sα
i0Sβ

j0 in the distribution (47).
In all other terms, the difference between the distribution

(47) and the cavity distribution is negligible. In particular,
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the variance lαβ (t − t ′) and the kernel Kαβ (t − t ′) calculated
above remain exact for d → ∞. This can be seen systemati-
cally expanding

〈〈ηα1 . . . ηαn K (n1 ) . . . K (nm )〉〉νi2 ,...,νiN ,Si20,...,SiN 0|Si0

=
∞∑

m=0

βm

m!

∑
j1,..., jm

Jβ1γ1
i j1

. . . Jβmγm
i jm

Sβ1
i0 . . . Sβm

i0

〈〈
Sγ1

j10 . . . Sγm
jm0

× ηα1 . . . ηαn K (n1 ) . . . K (nm )〉〉′(i)
νi2 ...νiN ,Si20,SiN 0

(56)

as a series of connected averages with insertions of S j0 calcu-
lated in the cavity ensemble. Every additional interaction with
Si0 carries an additional external static line attached to i, and
suppresses the graph.

This concludes the derivation. Introducing ζ α
i (t ) =

ηα
i (t ) − βlαβ (t ), and using Eq. (44) we find that the in-

stantaneous magnetic field is for large d: bα
i (t ) = ζ α

i (t ) +
βlαβ (t )Sβ

i0 + ∫ t
0 dt Kαβ (t − t ′)Sβ

i (t ′), with ζ a zero-mean
Gaussian noise having 〈ζ α

i (t )ζ β
i (t ′)〉 = lαβ (t − t ′).

B. General properties of the single-site dynamical problem

The non-Markovian Langevin equations (33) and (34) de-
rive from the equilibrium dynamics of the system and thus
satisfy time-translation invariance (TTI) and the fluctuation-
dissipation theorem. As a result, the single-site response func-
tion gαβ (t − t ′) = 〈δSα

i (t )/δνβ
i (t ′)〉 is related to the single-site

correlation cαβ (t − t ′) = 〈Sα
i (t )Sβ

i (t ′)〉 via the FDT gαβ (t −
t ′) = −β�(t − t ′)dcαβ (t − t ′)/dt = ċαβ

+ (t − t ′). The TTI is
not immediately manifest in the single-site equations because
the term βlαβ (t )Sβ

i0 and the integral
∫ t

0 dt ′Kαβ (t − t ′)Sβ
i (t ′)

seem to depend explicitly on the choice of the origin of time
t0 = 0. However, the two noninvariant terms [the truncation
of the integral at the lower limit and the field βlαβ (t )Sβ

i0]
compensate each other, leading to results which do not de-
pend on the origin of time. This can be verified, for example,
by mapping the Langevin dynamics to an equivalent Marko-
vian problem, in which the colored noise is mimicked by
a bath of harmonic oscillators [61,62]. Integrating out the
bath leads to an equation of motion in which bi(t ) has the
form (34).

In addition to TTI and the FDT, another essential property
of the single-site Langevin problem is that it is consistent with
the static results of Sec. III. All equal-time correlations of
Si(t ) and bi(t ) coincide with the static correlations described
by the distribution (13), when the matrix Lαβ is identified
with the instantaneous correlation lαβ (0). This can be seen
conveniently by studying the correlations at time t = 0, where
the field (34) reduces to bα

i (0) = ζ α
i (0) + βlαβ (0)Sβ

i0. ζ α
i (0)

is a Gaussian field with 〈ζ α
i (0)ζ β

i (0)〉 = lαβ (0). Identifying
lαβ (0) = Lαβ and using that Si0 is weighted by the distribution
(36), it is simple to verify that the joint distribution of Si0 and
bi(0) is exactly the static distribution P(Si, bi ) in Eq. (13). TTI
implies that P(Si(t ), bi(t )) remains the same at all later times.

We finally discuss two equations of motion, which
are useful in the subsequent derivations. Using the
property of Gaussian averages [63] 〈Sα

i (t )ζ β
i (t ′)〉 =∫ ∞

0 dt ′′lβγ (t ′ − t ′′)〈δSα
i (t )/δζ γ

i (t ′′)〉 and the fluctuation-

dissipation relations gαβ (t − t ′) = −β ċαβ
+ (t − t ′),

Kαβ (t − t ′) = −β�(t − t ′)dlαβ (t − t ′)/dt we find, for t � t ′,

aαβ (t − t ′) = 〈
Sα

i (t )bβ
i (t ′)

〉 = βcαγ (t − t ′)lγ β (0)

+
∫ t

t ′
dt ′′gαγ (t − t ′′)lγ β (t ′′ − t ′), (57)

λαβ (t − t ′) = 〈
bα

i (t )bβ
i (t ′)

〉
= lαβ (t − t ′) + β2lαγ (t − t ′)cγ δ (0)lδβ (0)

+ β

∫ t

t ′
dt ′′ Kαγ (t − t ′′)cγ δ (t ′′ − t ′)lδβ (0)

+
∫ t

t ′
dt ′′

∫ t ′′

t ′
dt ′′′ [Kαγ (t − t ′′)

× gγ δ (t ′′ − t ′′′)lδβ (t ′′′ − t ′)]. (58)

The λαβ (t − t ′) correlation in the region t < t ′ follows from
Eq. (58) by symmetry.

For equal times, these relations reduce to the static
equations (16). Taking a time derivative and using the
fluctuation-dissipation relations we find after a Fourier trans-
form Eqs. (42). We note also that Eqs. (57) and (58) are fully
consistent with the time-translation invariance of the colored
single-site dynamics.

C. Self-consistency equations

To conclude, we discuss the derivation of Eqs. (37) and
(38), which are needed to fix the self-consistency of the
single-site problem. When i = j, Eqs. (37) and (38) can be
shown to be equivalent to Eqs. (42), and, thus, are satisfied
automatically.

For noncoincident sites i �= j, the correlations can be stud-
ied by a two-cavity method, with two cavities at i and j. In
this framework, the correlations are analyzed by studying an
effective two-body Langevin equation, in which the effects of
the remaining N − 2 spins are described via a fluctuating bath.

At leading order for d → ∞, the effective two-spin prob-
lem is equivalent to two independent copies of the single-site
Langevin equations [Eqs. (33) and (34)]. Nontrivial correla-
tions between the two sites arise from the leading corrections,
which are of order O(d−�i j/2), and which couple the motion
of the two spins. These corrections are due to (1) the direct
contribution of Si to the field b j (and, vice versa of S j to bi)
and (2) indirect contributions, mediated by the bath.

A diagrammatic analysis analog to that discussed in
Sec. IV A shows that the two-site equations can be written
in the form

Ṡi = −Si × {Si × [Fi + bi(t ) + νi(t )]},
Ṡ j = −S j × {S j × [F j + b j (t ) + ν j (t )]}, (59)

where the components of the fields bα
i (t ) and bα

j (t ) are

bα
i (t ) = ζ α

i (t ) + βlαβ (t )Sβ

i0 +
∫ t

0
dt ′ Kαβ (t − t ′)Sβ

i (t ′)

+ Jαβ
i j Sβ

j (t ) + βrαβ
i j (t )Sβ

j0+
∫ t

0
dt ′ Rαβ

i j (t − t ′)Sβ
j (t ′),
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bα
j (t ) = ζ α

j (t ) + βlαβ (t )Sβ

j0 +
∫ t

0
dt ′ Kαβ (t − t ′)Sβ

j (t ′)

+ Jαβ
ji Sβ

i (t ) + βrαβ
ji (t )Sβ

i0 +
∫ t

0
dt ′ Rαβ

ji (t − t ′)Sβ
i (t ′).

(60)

Here, ζi(t ) and ζ j (t
′) are Gaussian noises with zero mean.

The site-diagonal correlations 〈ζ α
i (t )ζ β

i (t ′)〉 = 〈ζ α
j (t )ζ β

j (t ′)〉
are of order 1 and are equal, up to negligible corrections to
the correlation lαβ (t − t ′) defining the single-site Langevin
equation. In addition, the random fields have a correlation
〈ζ α

i (t )ζ β
j (t ′)〉 = rαβ

i j (t − t ′).
The kernels, similarly, have site-diagonal parts Kαβ (t − t ′)

which are equal for d large to the kernels Kαβ (t − t ′) en-
tering the single-site equation (34). In addition, there are
off-diagonal response terms Rαβ

i j (t − t ′), Rαβ
ji (t − t ′).

Diagrammatically, the off-diagonal corrections encoded in
Eq. (60) correspond to graphs of the form

j ji

i j

k

k

k

i i jj

l lk

k

k kl l
i

i ij j

j

ii j j

l m

k k l

i
=

=

=

+

+

+ +

+ + +

+

+

αβ (t t )R ′

(t t )′ (t) (t  )′

ij

αβ βαr ij

(t)βr αβ
ij

The diagrams imply that correlation and response functions
ri j , Ri j are of order d−�i j/2, with �i j the Manhattan distance
between i and j. At this order, no other diagram contributes,
and thus Eqs. (60) are exact.

The intersite terms are related via rαβ
i j (t − t ′) =∑

k,l �=i, j Jαγ

ik Jβδ

jl 〈〈Sγ ′′(i j)
k (t )Sδ′′(i j)

l (t ′)〉〉′′(i j), Rαβ
i j (t − t ′) =∑

k,l �=i, j Jαγ

ik Jβδ

jl 〈〈G(1)γ ,δ′′(i j)(t, t ′)kl〉〉′′(i j), Rβα
ji (t − t ′) =∑

k,l �=i, j Jαγ

ik Jβδ

jl 〈〈G(1)δ,γ ′′(i j)
lk (t, t ′)〉〉′′(i j) to the equilibrium

correlations 〈〈Sγ ′′(i j)
k (t )Sδ′′(i j)

l (t ′)〉〉′′(i j) and to the response
functions 〈〈G(1)γ ,δ′′(i j)(t, t ′)kl〉〉′′(i j) of the two-cavity system.

Thus, they satisfy the fluctuation-dissipation relations

Rαβ
i j (t − t ′) = −β�(t − t ′)

d

dt
rαβ

i j (t − t ′),

Rβα
ji (t − t ′) = −β�(t − t ′)

d

dt
rβα

ji (t − t ′). (61)

The two-site equations (59) and (60) allow to calculate the
correlations Cαβ

i j (t − t ′), Aαβ
i j (t − t ′), �αβ

i j (t − t ′). The explicit
calculations are presented in Appendix B, and use that for d
large, the equations for the two spins can be solved at first
order in ri j , Ri j , and Ji j . As a result we find

Ċαβ
+i j (ω) = −β ċαγ

+ (ω)
(
Jγ δ

i j + Rγ δ
i j (ω)

)
ċδβ
+ (ω), (62)

Ȧαβ
+i j (ω) = ċαγ

+ (ω)
(
Jγ β

i j + Rγ β
i j (ω)

) + Ċαγ
+i j (ω)Kγ β (ω),

�̇
αβ
+i j (ω) = − 1

β
Rαβ

i j (ω) + Kαγ (ω)Ċγ δ
+i j (ω)Kδβ (ω)

+ (
Jαγ

i j + Rαγ

i j (ω)
)
ċγ δ
+ (ω)Kδβ (ω)

+ Kαγ (ω)ċγ δ
+ (ω)

(
Jδβ

i j + Rδβ
i j (ω)

)
. (63)

Equation (62) has a very simple interpretation: the response
function at noncoincident sites i �= j receives two contribu-
tions of the same order of magnitude (≈ d−�i j/2): one from
the direct interaction Jαβ

i j and one mediated by the cavity.
Combining Eqs. (62) and (63), and using Eqs. (42) we find

relations which do not depend on Ri j , and which are valid both
for i = j and for i �= j:

Ċαβ
+i j (ω) − δi j ċ

αβ
+ (ω) = βĊαγ

+i j (ω)Kγ δ (ω)ċδβ
+ (ω)

− βȦαγ

+i j (ω)ċγ β
+ (ω),

Ȧαβ
+i j (ω) = ċαγ

+ Jγ β

i j − β ċαγ
+ (ω)�̇γβ

+i j (ω)

+ β ċαγ
+ (ω)Kγ δ (ω)Ȧδβ

+i j (ω). (64)

These are equivalent to Eqs. (39), and in real time, to Eqs. (37)
and (38).

V. GLASS TRANSITION

The dynamical analysis allows to distinguish under
which conditions the paramagnetic phase has a liquid-
like or a glasslike behavior. The liquid and the glass
phases can be discerned by the large-time behavior of the
time-dependent correlations: lim|t−t ′|→∞ lαβ (t − t ′) = Lαβ

2 ,
lim|t−t ′|→∞ cαβ (t − t ′) = cαβ

2 , lim|t−t ′|→∞ Cαβ
i j (t − t ′) = Cαβ

2i j ,

lim|t−t ′|→∞ Aαβ
i j (t − t ′) = Aαβ

2i j ... . In the ergodic phase all cor-
relations decay to zero at large times. In the glass phase,
instead, L2, c2, λ2, C2i j are different from zero. In particular,
cαβ

2 , the large-time limit of the spin correlation, can be identi-
fied with the Edwards-Anderson order parameter: cαβ

2 = qαβ

EA.
To locate the occurrence of a glass transition, it is not

necessary to solve the dynamics in detail. In analogy with
the theory of supercooled liquids in d → ∞ [62], the order
parameters L2, c2, a2, λ2 are fixed by closed equations which
make reference only to the static averages and to the long-time
limit of the correlations, and not to their transient behavior.

To derive these equations, we need to discuss the
|t − t ′| → ∞ limit of both the single-site problem and
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the self-consistency relations. We begin by discussing the
single-site problem. When ergodicity is broken and Lαβ

2 �= 0,
the field bi(t ) develops a static component, which remains
constant for an infinitely long time. The single-site colored
Langevin equation in presence of this quenched component
can be analyzed by methods analog to the approach used
in Ref. [62] for the vitrification of a supercooled liquid in
infinite dimensions. In presence of a quenched component,
ζi(t ) can be separated as the sum ζi(t ) = ζ1i(t ) + ζ2i of
two independent parts ζ1i and ζ2i, both having Gaussian
distributions with zero mean. ζ1i(t ) is a dynamic noise, with
a correlation 〈ζ α

1i(t )ζ β

1i (t
′)〉 = lαβ (t − t ′) − Lαβ

2 = lαβ

1 (t − t ′)
which decreases to zero at large times. ζ2i is instead a static
noise, with 〈ζ α

2iζ
β

2i〉 = Lαβ

2 describing the time-persistent part
of the random field ζi. The dynamic and static parts of the
noise are mutually uncorrelated: 〈ζ α

1i(t )ζ β

2i〉 = 0.
The field bi(t ) which enters in the single-site Langevin

equations breaks similarly into static and dynamic parts:

bα
i (t ) = bα

2i + ζ α
1i(t ) + βlαβ

1 (t )Sβ

i0 +
∫ t

0
dt ′ Kαβ

1 (t − t ′)Sβ
i (t ′),

(65)

with bα
2i = ζ α

2i + βLαβ

2 Sβ

i0 and Kαβ

1 (t − t ′) = −β�(t −
t ′)dlαβ

1 (t − t ′)/dt = Kαβ (t − t ′) (the constant Lαβ

2 does
not contribute to the time derivative defining the memory
kernel Kαβ ).

We can assume that the dynamical noises νi and ζ1 drive
the system into an equilibrium state dependent on the static
field mean field b2i. In other words, we assume that after
running the Langevin dynamics from the initial time t = 0 to
a large time, the system relaxes to a Gibbs probability, subject
to the static field b2i.

Analyzing the colored Langevin equations with the
methodology of Refs. [61,62], we find that the asymptotic
large-time distribution is

P1(Si|b2i ) = e−βV (Si )+β(b2i·Si )+ 1
2 β2Lαβ

1 Sα
i Sβ

i∫
S̄ e−βV (S̄)+β(b2i·S̄)+ 1

2 β2Lγ δ

1 S̄γ S̄δ
, (66)

with Lαβ

1 = lαβ

1 (0) = Lαβ − Lαβ

2 . This distribution can be
interpreted as the probability of a single spin within an
individual metastable state. The quenched component b2i rep-
resents a mean field, present within the metastable state, and
acting on the spin Si. When the Gibbs distribution breaks into
a superposition of many nonergodic sectors, the field b2i is
itself a random variable. The probability to extract a value of
b2i can be calculated using the Gaussian distribution of ζ2i and
the equilibrium distribution P1eq(Si0) of the initial conditions
Si0. The result is

Pslow(b2i ) =
∫

S0

∫
d3ζ2

{
δ
(
bα

2i − βLαβ

2 Sβ

0 − ζ α
2

)

× exp
(− L−1αβ

2 ζ α
2 ζ

β

2 /2
)

√
(2π )3 det L2

1

Z1
exp

[− βV (S0)

+ β2LαβSα
0 Sβ

0 /2
]}

= 1

Z1

√
(2π )3 det L2

∫
S0

exp
[ − βV (S0)

+ β(b2i · S0) − L−1αβ

2 bα
2ib

β

2i/2+β2Lαβ

1 Sα
0 Sβ

0 /2
]
,

(67)

and can be interpreted as the probability to find a given value
of the mean field, selecting a metastable state at random in the
Gibbs ensemble.

Since P1eq(Si ) = ∫
d3b2iPslow(b2i )P1(Si|b2i ), the equal-

time averages are consistent with the static analysis. The
separation of the average into a quenched and a vibrational
part, however, allows also to calculate the correlations at large
time separations. In particular, the Edwards-Anderson order
parameter can be calculated as

qαβ

EA = lim
|t−t ′|→∞

〈
Sα

i (t )Sβ
i (t ′)

〉
=

∫
d3b2i Pslow(b2i )

〈
Sα

i

〉∣∣
b2i

〈
Sβ

i

〉∣∣
b2i

= 〈
Sα

i

〉∣∣
b2i

〈
Sβ

i

〉∣∣
b2i

. (68)

Here 〈•〉|b2i = ∫
S • P(S|b2i ) is an average calculated in the

ensemble (66), with b2i fixed, and the overline symbol • =∫
d3b2i • Pslow(b2i ) is an average over b2i, weighted with the

distribution Pslow(b2i ).
More generally, arbitrary averages 〈�1(S(t1))

�2(S(t2))...�n(S(tn))〉 in the limit in which all time
differences are large can be calculated as

〈�1(S(t1))〉|b2i . . . 〈�n(S(tn))〉|b2i . (69)

Equation (69) assumes that within a single state the
dynamics loses correlation at large time, so that for
a fixed b2i, 〈�1(S(t1)) . . . �n(S(tn))〉|b2i ≈ 〈�1(S(t1))〉|b2i ×
· · · × 〈�n(S(tn))〉|b2i when the time separations are large. A
frozen correlation, which persists for large times, emerges
after averaging over the static field b2i.

Equation (68) provides an equation linking the Edwards-
Anderson order parameter to Lαβ , Lαβ

2 , and Lαβ

1 . To fix the
order parameters, we also need to discuss the large-time limit
of the self-consistency equations. To this end, it is convenient
to integrate Eqs. (37) over time. In the limit t − t ′ → +∞ we
find∫ t

t ′
dt ′′ Ċαβ

+i j (t
′′ − t ′)

= −Cαβ

1i j = −δi jc
αβ

1 − β

∫ t

t ′
dt1

{[
Aαγ

i j (t − t1) − Aαγ
i j (0)

]

× ċγ β
+ (t1 − t ′)

} + β

∫ t

t ′
dt1

∫ t1

t ′
dt2

[
Cαγ

i j (t − t1)

− Cαγ
i j (0)

]
Kγ δ (t1 − t2)ċδβ

+ (t2 − t ′), (70)

where Cαβ

1i j = Cαβ
i j (0) − Cαβ

2i j and cαβ

1 = cαβ (0) − cαβ

2 . Since

ċαβ
+ (t1 − t ) and Kγ δ (t1 − t2) are defined by time derivatives

of correlations, they do not contain quenched parts. Thus,
ċαβ
+ (t1 − t ′) and

∫ t1
t ′ dt2Kγ δ (t1 − t2)ċδβ

+ (t2 − t ′) vanish for |t1 −
t ′| → ∞. As a result the integrals are dominated by the region
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in which t1 is near t ′ and far from t . This allows to re-
place in the integrals Aαγ

i j (t − t1) = lim|t−t1|→∞ Aαγ (t − t1) =
Aαβ

2i j , Cαγ
i j (t − t1) = lim|t−t1|→∞ = Cαγ

2i j . Introducing Cαβ

1i j =
Cαβ

i j (0) − Cαβ

2i j , Aαβ

1i j = Aαβ
i j (0) − Aαβ

2i j and using the FDT we
find that Eq. (70) behaves for |t − t ′| large as

β2Cαγ

1i j

∫ t

t ′
dt2 ċδβ

+ (t2 − t ′)[lγ δ (t − t2) − lγ δ (0)]

= β2Cαγ

1i j Lγ δ

1 cδβ

1 = −Cαβ

1i j + δi jc
αβ

1 + βAαγ

1i jc
γ β

1 . (71)

In Eq. (71) we have used again that the integration is domi-
nated by the region in which t2 is far from t .

Analyzing in a similar way Eqs. (38), (57), and (58), and
using that the equal-time correlations satisfy the static rela-
tions (16) we find

Aαβ

1i j + β2cαγ

1 Lγ δ

1 Aδβ

1 = cαγ

1 Jγ β
i j + βcαγ

1 �
γβ

1i j ,

aαβ

1 = βcαγ

1 Lγ β

1 , (72)

λ
αβ

1 = Lαβ

1 + β2Lαγ

1 cγ δ

1 Lδβ

1 ,

where �
αβ

1i j = �
αβ
i j (0) − �

αβ

2i j , aαβ

1 = aαβ (0) − aαβ

2 ,

λ
αβ

1 = λαβ (0) − λ
αβ

2 (t − t ′), �
αβ

2i j = lim|t−t ′|→∞ �
αβ
i j (t −

t ′), aαβ

2 = lim|t−t ′|→∞〈Sα
i (t )bβ

i (t ′)〉, λ
αβ

2 (t − t ′) =
lim|t−t ′|→∞〈bα

i (t )bβ
i (t ′)〉. Introducing the “self-energy”

σ
αβ

1i j = δi j (λ
−1αβ

1 − L−1αβ

1 ) the solutions can be written as

Ĉ1 = −(β2σ̂−1
1 + β Ĵ )−1,

Â1 = Ĉ1Ĵ, (73)

�̂1 = ĴĈ1Ĵ = −kBT Ĵ + (σ̂1 + β Ĵ )−1.

These equations are identical in form to the relations (22).
They show that the vibrational parts Ĉ1, Â1, �̂1 satisfy the
same relations of the full correlations Ĉ, Â, �̂, but with a
different self-energy.

Combining Eqs. (68) and (73) we can write the self-
consistency equations for the order parameters as

cαβ

1 = cαβ − qαβ

EA

= −
∫ π

−π

dd k

(2π )d

[(
β2σ1

−1 + βJ (k)
)−1]αβ

= −
∫ ∞

−∞
dε ν(ε)

[(
β2σ1

−1 + β f (ε)
)−1]αβ

. (74)

In the paramagnetic phase, the solution is trivial: qαβ

EA = 0,
cαβ

1 = cαβ , σ
αβ

1 = σαβ , λ
αβ

1 = λαβ , ... . In the glass phase,
a solution with qEA �= 0 appears. In this case the static cor-
relations Cαβ

i j differ from Cαβ

1i j . The statistical mechanical
fluctuations calculated in Sec. III do not have a completely vi-
brational origin but, rather, a part of the fluctuations becomes
configurational.

VI. APPLICATION: ISOTROPIC HEISENBERG MODEL
ON THE INFINITE-DIMENSIONAL fcc LATTICE

In this section we apply the results to a specific
case: an isotropic antiferromagnet with V (S) = 0, f αβ (x) =
f (x)δαβ = J (x2 − 1)δαβ , and J < 0. As discussed in Sec. II,

FIG. 2. Temperature dependence of the variance of the cavity
distribution L (dashed line) and of the full equilibrium distribu-
tion λ (solid line), in the isotropic model with V (S) = 0, f αβ (x) =
J (x2 − 1)δαβ . The top panel shows the low-temperature region, the
bottom panel a wider range of temperatures. At low T , L(T ) ≈
kBT fmax = kBT |J|. (The dotted line is a guide to the eye highlighting
the asymptotic behavior at T → 0.) The variance λ, instead, ap-
proaches a finite limit f 2

max/(3J2). The temperature dependence λ(T )
is nonmonotonic: λ(T ) has a minimum at T � 0.167|J|. At higher
temperatures the curves L(T ) and λ(T ) approach each other, and
eventually saturate to L(T ) � λ(T ) � 2J2/3 in the limit T → ∞.

this interaction couples only the spins which reside in the
same fcc sublattice (A or B) of the simple hypercubic crystal
and, as a result, the model can be viewed as describing two
independent copies of a spin system on the fcc lattice [53].
The interaction f (x) = J (x2 − 1), in particular, is equivalent
to a model on the fcc lattice with two nonzero antiferromag-
netic couplings: a nearest-neighbor interaction J1 = J/d and
a second-nearest-neighbor interaction J2 = J1/2 = J/(2d ).

Since the maximum of f (x) occurs at x = 0, the system
admits a degenerate manifold of helical ground states, with
modulation vectors belonging to the (d − 1)-dimensional sur-
face defined by the condition εk = 0.

The static properties of the model, computed from the equi-
librium Gibbs distribution as discussed in Sec. III, are shown
in Figs. 2 and 3. In particular, Fig. 2 shows the temperature
dependence of L and λ, calculated numerically using Eq. (28),
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FIG. 3. Equilibrium distribution of the field bi for 10 different
temperatures, equally spaced between 10−3|J|/kB and 0.25|J|/kB

(solid lines). The 10 values of the temperature are, with three-digit
precision, kBT/|J| = 0.001, 0.029, 0.056, 0.084, 0.112, 0.139, 0.167,
0.195, 0.222, 0.25. The dashed line shows the equilibrium distri-
bution of the field bi at the glass temperature Tg � 0.0103|J|/kB.
For the higher temperatures in the plot, the distribution differs from
a Gaussian, but has a bell-like shape with a maximum at bi = 0.
At lower temperatures, the maximum shifts away from bi = 0. For
T → 0, the distribution becomes concentrated on a narrow shell near
the spherical surface |bi| = |J| = fmax.

and the relations L = −3/β2 − 1/σ , λ = 1/σ + β2/(3σ 2).
In the limit of small temperatures, the variance of the cav-
ity distribution L = 〈b2

i 〉′(i)/3 decreases with T and vanishes
for T → 0 as L(T ) ≈ kBT fmax = kBT |J|. The full variance
of the equilibrium distribution λ = 〈b2

i 〉/3, instead, tends to
f 2
max/3 = |J|2/3 for T → 0. In the opposite limit of high

temperatures, L ≈ λ ≈ J 2
2 /3 = ∑

j J2
i j/3 = 2|J|2/3.

The numerical solution shows a further interesting fea-
ture: the dependence of λ on temperature is nonmonotonic.
λ reaches a minimum at a temperature T � 0.167|J| and, for
lower temperatures, starts to grow when T is decreased.

The behavior dλ/dT < 0 occurs in a region of
temperatures for which the equilibrium distribution of
the field p(bi ) = ∫

S P(Si, bi ) = sinh(β|bi|) exp[−(β2L +
L−1b2

i )/2]/[(2πL)3/2β|bi|] is significantly different from
a Gaussian function. The shape of the distribution p(bi ) is
shown in Fig. 3 for various temperatures.

To investigate the occurrence of a glass transition in the
model, we study the self-consistent equations for the order
parameter [Eqs. (68) and (74)], which in the isotropic case
reduce to

c1 = 1

3
− qEA = 1

β
I (β/σ1),

β2c1 = −1/
(
σ−1

1 + L1
)
,

qEA = 1

3
〈Sα〉〈Sα〉 = 1

3
(L(β|b2|))2 (75)

= 1

3
[1 − I1(β2L2)],

L = L1 + L2.

FIG. 4. Numerical analysis of Eqs. (75). The curves show the
function I (β/σ1)/β − I1(β2L2)/3 calculated substituting β/σ1 =
−1/(βc1) − βL1 = −3/[βI1(β2L2)] + βL2 − βL. The x axis is
parametrized by the order parameter qEA(β2L2) = [1 − I1(β2L2)]/3.
The dotted, solid, and dashed curves represent the curves cal-
culated at temperatures respectively equal to T = 0.012|J|/kB,
0.0103|J|/kB, and 0.009|J|/kB. The solutions of the self-consistency
problem are defined by the points at which the curves cross 0. For
high temperature the curve intersects 0 only at the trivial point qEA =
0 (dotted line). A nontrivial solution appears at Tg � 0.0103|J|/kB.
Below Tg, the equations have two solutions qEA±. The physical solu-
tion is qEA+, the one with the largest order parameter.

In these relations I (x) = − ∫ ∞
−∞ dε ν(ε)/[x + f (ε)] is the in-

tegral introduced in Eq. (28), L(x) = 1/ tanh(x) − 1/x is the
Langevin function, and

I1(x) =
∫ ∞

−∞
dy

y[1 − (L(y))2]

(2πx3)1/2
exp

(
− (y − x)2

2x

)
. (76)

The results of a numerical study of these equations are
presented in Fig. 4. At high temperatures, the only solution is
the trivial one. However, at a temperature Tg � 0.0103|J|/kB a
nontrivial solution appears. We interpret Tg as the temperature
of a dynamical glass transition, at which the system vitrifies.
It is interesting to note that Tg is an order of magnitude smaller
than the temperature scales which characterize the behavior of
the static solution. For example, Tg is much smaller than the
temperature T � 0.167|J|/kB at which the derivative dλ/dT
changes sign.

At Tg, the Edwards-Anderson order parameter qEA jumps
discontinuously from 0 to qEA(Tg) � 0.2575. This value cor-
responds to an average local magnetization at Tg equal to
|m| = [〈Sα〉〈Sα〉]1/2 = √

3qEA(Tg) � 0.879. We interpret this
as the average magnitude of the local moments in an amor-
phous state in which the system vitrifies at Tg.

Below Tg Eqs. (75) present two solutions qEA±(T ), which
bifurcate from the transition point. The branch with smaller
overlap, which we denote as qEA−(T ), is an unphysical solu-
tion because it leads to an order parameter which decreases
when T is lowered. The temperature dependence of the so-
lution qEA(T ) = qEA+(T ), with larger overlap, is illustrated
in Fig. 5. Starting from the transition point, qEA(Tg) grows at
small T and eventually 3qEA+ reaches 1 for T → 0.
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FIG. 5. Equilibrium average of the Edwards-Anderson order pa-
rameter qEA(T ) obtained from a numerical solution of Eqs. (75). The
order parameter represented in the figure describes the large-time
limit 3qEA(T ) = lim|t−t ′ |→∞〈Sα (t )Sα (t ′)〉, with an averaging 〈. . . 〉
weighted with the equilibrium Gibbs distribution at temperature T .
This equilibrium qEA may differ in general from the average or-
der parameter which the system presents after a cooling from the
paramagnetic phase T > Tg because the spins remain trapped in a
single metastable state at Tg and fall out of equilibrium at lower
temperatures.

The transition is of a dynamical first-order type, similar to
the transition which occurs in supercooled liquids in d → ∞
[62] and which was predicted in stripe systems [8–14]. At Tg,
the equilibrium statistical properties remain smooth, without
any signature of a phase transition, but the system under-
goes a dynamical arrest. This contrasts, for example, with the
second-order transitions found in random spin glasses [3].

Below Tg the system remains trapped into a single
metastable state and falls out of equilibrium. After cooling
from the high-temperature liquid regime T > Tg to the glassy
region T < Tg, we can expect that the physical thermal prop-
erties are not controlled by the equilibrium distribution at T ,
but by the distribution of metastable states at the temperature
at Tg, at which the system fell out of equilibrium for the first
time. The replica theory is useful to discuss this regime [38].

The analogy with the theory of stripe glasses and with the
Ising model analyzed in Ref. [38] suggests that the system
may present an ideal glass transition at a temperature Ts < Tg,
signaled by the vanishing of the configurational entropy. We
leave open the question whether this transition is present in
the Heisenberg model studied here.

In conclusion, we note that the model analyzed in this
section is a direct extension in infinite dimensions of the
fcc J1-J2 Heisenberg antiferromagnet with J1 = 2J2. In three
dimensions this antiferromagnetic fcc model has been studied
by Balla et al. [39,40]. The analysis of Ref. [39] showed that
the three-dimensional (3D) J1-J2 fcc model ultimately orders
in the limit T → 0, due to an order-by-disorder mechanism.
Our analysis in infinite dimensions predicts that the disor-
dered phase is locally stable, so that ordering must occur via
a first-order transition. The dynamics within the disordered
solution, in addition, undergoes a dynamical glass transition at
a finite T .

VII. CONCLUSIONS

In this paper, we have analyzed a class of infinite-
dimensional frustrated spin models, characterized by the
property that their interaction J (k) presents degenerate sur-
faces in momentum space. Using the cavity method, we
derived in the limit of infinite dimensionality d → ∞ the ex-
act solution of the statistical mechanical properties within the
disordered, paramagnetic phase. By a study of the equilibrium
dynamics of the system, we derived a set of consistency equa-
tions for the glass order parameters. The theory was applied
explicitly to the case of an isotropic model, equivalent after
bipartition of the hypercubic lattice to a Heisenberg model on
the fcc lattice. For this model we identified the temperature
of dynamical vitrification. The transition is of a dynamical
first-order type and is similar to the vitrification predicted in
the theory of stripe glassiness. Although the exact results were
obtained in the limit of infinite dimensions, the power demon-
strated by DMFT methods in describing correlated electron
systems [47–49] indicates the relevance of the results also for
the realistic case of a system in three dimensions.

In comparison to the previous works hypothesizing self-
induced spin-glass states in deterministic frustrated spin
models [15,16] our approach seems to have two advantages.
First, it has an explicit small parameter, albeit formal, and
second it does not use the replica trick, whose applicability
for deterministic systems is not obvious. Instead, we study
the large-time behavior of correlation functions, in the spirit
of the original approach by Edwards and Anderson in the
theory of spin glasses, and of the Götze mode-coupling the-
ory in the context of structural glasses. Importantly, both
approaches lead to the same conclusion that frustration only
can be sufficient for vitrification. This qualitatively supports
the interpretation of the experimental data of Refs. [36,37] as
an observation of a self-induced spin-glass state in elemental
neodymium at low temperatures. Another interesting techni-
cal question concerning the relation between dynamical and
replica approaches will be considered elsewhere.
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APPENDIX A: FOKKER-PLANCK EQUATION
AND FLUCTUATION-DISSIPATION THEOREM

The Fokker-Planck (FP) equation associated with the
Brownian motion of magnetic moments has been discussed
in several works (see, for example, Refs. [59,64–66]).

Here we give a brief derivation of the FP equation,
and discuss the FDT and the Hilbert space represen-
tation of the dynamics. To derive the equations, we
parametrize the spins by two coordinates (θ1

i , θ2
i ). A nat-

ural choice are the spherical coordinates θ1
i = θi, θ2

i = ϕi,
S(θ1, θ2) = (sin θ1 cos θ2, sin θ1 sin θ2, cos θ1), but an arbi-
trary parametrization can be used. In the following we denote
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as θ
μ
i , μ = 1, 2, the coordinates. To avoid confusion, letters

from the beginning of the greek alphabet α, β, γ , δ are
used to denote the Cartesian components of the spins, as
in the main text; letters from the final part of the alphabet
μ, ν, ρ, ... are used, instead, to denote the two-dimensional
parametrization θμ.

In terms of the θ
μ
i , the Langevin equation can be written as

θ̇
μ
i = gμν (θi )[uν (θi ) · Ei], (A1)

where Ei = −Si × [Si × (Ni + νi )] is the right-hand side of
the equation of motion (30), uμ(θ) = ∂S/∂θμ are the tangent
vectors, and gμν (θ) is the inverse of the metric tensor gμν (θ) =
[uμ(θ) · uν (θ)].

Using the theory of Langevin processes on manifolds [63]
and introducing the reparametrization-invariant distribution

ρ(θ1, . . . , θN ) =
〈∏N

i=1 δ[θi − θi(t )]
〉
ν∏N

j=1

√
g(θ j )

(A2)

we find after some computations

∂ρ

∂t
+

N∑
i=1

1√
g(θi )

∂

∂θ
μ
i

{√
g(θi )g

μν (θi )

×
[

[uν (θi ) · Ni]ρ − kBT
∂ρ

∂θν
i

]}
= 0. (A3)

In Eq. (A2) the factor 1/
∏N

j=1

√
g(θ j ), g(θi ) = det gμν (θi ),

is introduced in order to make the probability invariant.
With this normalization ρ is the invariant probability dis-
tribution. It gives the probability to find the system in an
infinitesimal element d� of the configuration space: dP =
ρ(θ1, . . . , θN )d� = ρ(θ1, . . . , θN )

∏
i

√
g(θi )d2θi.

In spherical coordinates g(θi ) = sin2 θi and the infinites-
imal element is the usual d� = ∏N

i=1 sin θidθidϕi. Equa-
tion (A3) becomes in these coordinates

∂ρ

∂t
+

N∑
i=1

{
1

sin θi

∂

∂θi

[
sin θi

((
Nx

i cos θi cos ϕi

+ Ny
i cos θi sin ϕi − Nz

i sin θi
)
ρ − kBT

∂ρ

∂θi

)]

+ 1

sin2 θi

∂

∂ϕi

[(− Nx
i sin ϕi + Ny

i cos ϕi
)

sin θiρ

− kBT
∂ρ

∂ϕi

]}
= 0. (A4)

As a remark, we note that the methodology which leads to
Eq. (A3) assumes the Stratonovich stochastic calculus. Thus,
in Eq. (30) we implicitly assume a Langevin equation (30) de-
fined according to the Stratonovich prescription (see Ref. [66]
for different prescriptions).

The time evolution can be written more compactly intro-
ducing the angular momentum operators [65], which in a
general frame of coordinates can be written as

L α
i • = −iεαβγ gμν (θi )

[
Sβ

i uγ
μ(θi )

] ∂

∂θν
i

•

= − iεαβγ√
g(θi )

∂

∂θν
i

√
g(θi )g

μν (θi )S
β
i uγ

μ(θi ) • . (A5)

These are generators of spin rotations and satisfy the
commutation relations [L α

i , Sβ
j ] = iδi jε

αβγ Sγ

i , [L α
i ,L β

j ] =
iδi jε

αβγ L γ
i . Note that [Sα

i , Sβ
j ] = 0 because the spins here are

simply classical variables.
In terms of the L α

i , the FP equation (A3) can be recast as

∂ρ

∂t
+ H ρ = 0, (A6)

with

H =
N∑

i=1

L α
i

(
iεαβγ Sβ

i Nγ
i + kBT L α

i

)
(A7)

and the components of the angular momentum operators read
as usual

L x
i = i sin ϕi

∂

∂θi
+ i cos ϕi

tan θi

∂

∂ϕi
,

L y
i = −i cos ϕi

∂

∂θi
+ i sin ϕi

tan θi

∂

∂ϕi
, (A8)

L z
i = −i

∂

∂ϕi
.

Using that L α
i H = iεαβγ Sβ

i Nγ
i , it is simple to show that the

operator iεαβγ Sβ
i Nγ

i + kBT L α
i annihilates the Gibbs distribu-

tion ρG = Z−1e−βH . Thus, ρG is stationary in time: ∂ρG/∂t =
−H ρG = 0.

Time-dependent correlation functions can be studied
by setting up a Hilbert-space representation [63,67].
Here, in order to maintain a notation which is manifestly
reparametrization invariant, we find it convenient to
define the scalar product of two functions |�1〉 =
�1(θ1, . . . , θN ), |�2〉 = �2(θ1, . . . , θN ) as 〈�1|�2〉 =∫ ∏

j d2θ j
√

g(θ j )�∗
1(θ1, . . . , θN )�2(θ1, . . . , θN ), including

in the definition of the product the measure
√

g. [In spherical
coordinates

√
g(θ, ϕ) = sin θ and the integrals are the usual∫

d2θ j
√

g(θ j ) = ∫ π

0 dθ j
∫ 2π

0 dϕ j sin θ j .]
If the distribution of the initial conditions at time t = 0 is

|ρ〉, the average of a product of spin variables at later times
can be represented as〈

Sα1
i1

(t1) . . . Sαl
il

(tl )
〉 = 〈1|Sα1

i1
e−H (t1−t2 )

× · · · × e−H (tl−1−tl )Sαl
il

e−H tl |ρ〉,
(A9)

where it is assumed that the times are arranged in the order as
t1 > t2 > · · · > tl > 0. |1〉 is simply a function equal to 1, so
that the scalar product 〈1|�〉 is the integral of �(θ1, . . . , θN )
over the configuration space, computed with the invariant
measure

∏
j d2θ j

√
g(θ j ). In particular, the condition that |ρ〉

is normalized is expressed by 〈1|ρ〉 = 1.
It can be verified that 〈1|L α

i = 0. In fact, for any function
|�〉, Eq. (A5) implies

〈1|L α
i |�〉 = − iεαβγ

∫ N∏
j=1

d2θ j
∂

∂θν
i

[√
g(θi )

× gμν (θi )S
β
i uγ

μ�(θ1, . . . , θN )
] = 0, (A10)
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which vanishes because it is a total divergence, and the
configuration space has no boundary. The relation 〈1|L α

i
implies that 〈1|H = 0, that is, 〈1| is a left eigenvector with
zero eigenvalue. This implies in particular that 〈1|e−H t =
〈1|, which is the conservation of probability: 〈1|ρ(t )〉 =
〈1|e−H t |ρ〉 = 〈1|ρ〉 = 1.

Similarly, the Gibbs distribution |ρG〉 is a right eigen-
vector with zero eigenvalue: H |ρG〉 = 0. In addition for all
i, (iεαβγ Sβ

i Nγ

i + kBT L α
i )|ρG〉 = 0. These relations allow to

write the correlations in the form [63]〈
Sα1

i1
(t1) . . . Sαl

il
(tl )

〉 = 〈1|T {
S α1

i1
(t1) . . . S αl

il
(tl )

}|ρG〉, (A11)

where S α
i (t ) = eH t Sα

i e−H t and T is the time-ordering oper-
ator.

In this representation, the FDT is encoded by the fact that
the time derivative of the correlation function, in the region
t > t ′, is

d

dt

〈
Sα

i (t )Sβ
j (t ′)

〉
= 〈1|[H ,S α

i (t )
]
S β

j (t ′)|ρG〉
= −〈1|S α

i (t − t ′)
[
H , Sβ

j

]|ρG〉
= ikBT εβγ δ〈1|S α

i (t − t ′)L γ
j (0)S δ

j (0)|ρG〉, (A12)

and is proportional to the Kubo formula for the linear response
function Gαβ

i j = 〈δSα
i (t )/δνβ

j (t ′)〉:

Gαβ
i j (t − t ′)

= −i�(t − t ′)εβγ δ〈1|S α
i (t − t ′)L γ

j (0)S δ
j (0)|ρG〉

= −β�(t − t ′)
d

dt

〈
Sα

i (t )Sβ
j (t ′)

〉
. (A13)

Equation (A13) follows from the general formulas of linear
response theory. It can be derived by using that in presence
of a small external field δνα

j (t ) the FP evolution equa-
tions become ∂ρ/∂t + H ρ + H1(t )ρ = 0 with H1(t ) =
iεαβγ

∑N
i=1 L α

i Sβ
i δν

γ

i (t ). The perturbation H1(t ) describes
the effect on the motion of the field δνα

i (t ) which modifies
Ni → Ni + δνi.

In analogy with other purely dissipative equations [63,67],
it is also useful to discuss the FP equation by performing the
transformation ρ → ρ̃, ρ = e−βH/2ρ̃. The transformed opera-
tors are

L̃ α
i = eβH/2L α

i e−βH/2 = L α
i − i

2
βεαβγ Sβ

i Nγ

i ,

S̃α
i = eβH/2L α

i e−βH/2 = Sα
i , (A14)

H̃ = eβH/2H e−βH/2 = kBT
N∑

i=1

L̃ α
i L̃ α+

i .

Here L̃ α+
i = L α

i + iβεαβγ Sβ
i Nγ

i /2 is the adjoint of L̃ α
i (L α

i

and Sα
i are self-adjoint). In this representation H̃ is Hermi-

tian, and has the same left and right eigenvectors. By contrast,
the evolution operator H before the transformation is not
Hermitian [63]. Equation (A14) also shows that H̃ is posi-
tive semidefinite: all eigenvalues of H̃ are � 0. The Gibbs

distribution |ρ̃G〉 = eβH/2|ρG〉 is a ground state and satisfies
L̃ α+

i |ρ̃G〉 = 0.
All results presented in this Appendix, clearly, remain

valid when considering the equilibrium dynamics of a cavity
system.

APPENDIX B: DYNAMICAL
TWO-POINT CORRELATIONS

The derivation in Sec. IV C implies that any dynamical
correlation of Si, bi, S j , b j can be calculated replacing the
definitions bα

i (t ) = ∑
k Jαβ

ik Sβ

k (t ), bα
j (t ) = ∑

k Jαβ

ik Sβ

k (t ), with
Eqs. (60). In more detail, we can calculate the second-order
correlations as

Cαβ
i j (t − t ′) = 〈

Sα
i (t )Sβ

i (t ′)
〉
νi,ν j ,ζi,ζ j ,Si0,S j0

,

Aαβ
i j (t − t ′) = 〈

Sα
i (t )bβ

i (t ′)
〉
νi,ν j ,ζi,ζ j ,Si0,S j0

, (B1)

�
αβ
i j (t − t ′) = 〈

bα
i (t )bβ

i (t ′)
〉
νi,ν j ,ζi,ζ j ,Si0,S j0

,

where Si(t ), S j (t ), bi(t ), b j (t ) are solutions of the two-
site Langevin equations Ṡi = −Si × {Si × [F(Si ) + bi + νi]},
Ṡ j = −S j × {S j × [F(S j ) + b j + ν j]}, with the fields bi and
b j in Eqs. (60). The correlations are determined by averaging
the solutions over the noises νi, ν j , ζi, ζ j , and over the initial
conditions Si0, S j0 of the two spins.

Let us first analyze the correlation Cαβ
i j (t − t ′). Since ri j ,

Ri j , and Ji j are small (≈ d−�i j/2), the spins are only weakly
coupled. For any fixed realization of the noises and the initial
conditions the trajectories can be expanded to first order as

Sα
i (t ) = S̃α

i (t ) +
∫ t

0
dt ′′ G̃α,γ

i (t, t ′′)�bγ
i (t ′′),

Sα
j (t ) = S̃α

j (t ) +
∫ t

0
dt ′′ G̃α,γ

j (t, t ′′)�bγ
j (t ′′),

�bγ

i (t ′′) = Jγ δ

i j S̃δ
j (t

′′) + βrγ δ

i j (t ′′)Sδ
j0

+
∫ t ′′

0
dt ′′′ Rγ δ

i j (t ′′ − t ′′′)S̃δ
j (t

′′′),

�bγ
j (t ′′) = Jγ δ

ji S̃δ
i (t ′′) + βrγ δ

ji (t ′′)Sδ
i0

+
∫ t ′′

0
dt ′′′ Rγ δ

ji (t ′′ − t ′′′)S̃δ
i (t ′′′). (B2)

Here S̃i(t ), S̃ j (t ) are solutions of the single-site Langevin
equations

˙̃Si = −S̃i × {S̃i × [F(S̃i ) + b̃i(t ) + νi]},
˙̃S j = −S̃ j × {S̃ j × [F(S̃ j ) + b̃ j (t ) + ν j]},

b̃α
i (t ) = ζi(t ) + βlαβSβ

i0 +
∫ t ′′

0
Kαγ (t − t ′′)S̃β

i (t ′′),

b̃α
j (t ) = ζ j (t ) + βlαβSβ

j0 +
∫ t ′′

0
Kαγ (t − t ′′)S̃β

j (t ′′), (B3)

and G̃αβ
i (t, t ′), G̃αβ

i (t, t ′) are the corresponding response
functions.
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To find Cαβ
i j (t − t ′) we need to discuss the averaging over initial conditions and over the noise. Since we are studying

equilibrium correlations, the initial conditions must be weighted with the joint probability P2(Si0, S j0) to extract given values Si0

and S j0 of two spins in the Gibbs distribution. This probability can be calculated as

P2(Si0, S j0) =
∫

d3b̄i

∫
d3b̄ jP(Si0, b̄i; S j0, b̄ j ), (B4)

where P(Si, bi; S j, b j ) is the distribution found in the static computation [Eqs. (17) and (19)]. At leading order for d → ∞, it is
sufficient to expand the distribution (19) at first order in Jαβ

i j and Mαβ
i j . After integration over the magnetic fields we find

P2(Si0, S j0) = P1(Si0)P1eq(S j0)
(
1 + βJαβ

i j Sα
i0Sβ

j0 − β2Lαγ Mγ δ
i j LδβSα

i0Sβ

j0

)
. (B5)

The static equation (19), on the other hand, implies that the fields X α
1 = ∑

k �=i, j Jαβ

ik Sβ

k , X α
2 = ∑

k �=i, j Jαβ

jk Sβ

k have a correlation

〈〈X α
1 X α

2 〉〉′′(i j) ≈ −Lαγ Mγ δ
i j Lδβ when they are averaged with the statistical distribution of the cavity system. X α

1 and X α
2 play the

same role of ζ α
i and ζ α

j , the Gaussian noises which enter the dynamical equations (60). We can thus identify 〈〈X α
1 X α

2 〉〉′′(i j) with

the equal-time element rαβ
i j (0) of the correlation rαβ

i j (t − t ′). As a result, we can write the equilibrium distribution of the initial

conditions as P2(Si0, S j0) = P1eq(Si0)P1eq(S j0)[1 + βJαβ
i j Sα

i0Sβ

j0 + β2rαβ
i j (0)Sα

i0Sβ

j0], where P1eq(Si0) is the single-site probability
[Eq. (36)].

Consider now the distribution of the noise. We can formally write the Gaussian probability P2noise[ζi, ζ j] of a given realization
ζi(t ), ζ j (t ) in the form

P2noise[ζi, ζ j] = N2 exp

[
−1

2

∫ ∞

0

∫ ∞

0
dt dt ′ ∑

a=i, j

∑
b=i, j

l−1αβ

ab (t − t ′)ζ α
a (t )ζ β

b (t ′)

]
, (B6)

where l−1αβ

ab (t − t ′) is the inverse of the matrix

lαβ

ab (t − t ′) =
∥∥∥∥∥lαβ

ii (t − t ′) lαβ
i j (t − t ′)

lαβ
ji (t − t ′) lαβ

j j (t − t ′)

∥∥∥∥∥ =
∥∥∥∥∥lαβ (t − t ′) rαβ

i j (t − t ′)

rαβ
ji (t − t ′) lαβ (t − t ′)

∥∥∥∥∥, (B7)

and N2 is a normalization constant. The inverse is intended in the sense of kernels:
∑

c

∫ ∞
0 dt ′′l−1αγ

ac (t − t ′′)lγ β

cb (t ′′ − t ′) =
δαβδabδ(t − t ′).

Expanding to first order in ri j we find

P2noise[ζi, ζ j] � P1noise[ζ1]P1noise[ζ1]

[
1 +

∫ ∞

0
dt

∫ ∞

0
dt ′′

∫ ∞

0
dt1

∫ ∞

0
dt2

(
l−1αγ (t − t1)rγ δ

i j (t1 − t2)l−1δβ (t2 − t ′)ζ α
i (t )ζ β

j (t ′)
)]

,

(B8)

where

P1noise[ζ] = N1 exp

[
−1

2

∫ ∞

0
dt

∫ ∞

0
dt ′l−1αβ (t − t ′)ζ α (t )ζ β (t ′)

]
(B9)

is the noise distribution of the single-site problem.
We can now calculate the correlation. We get three terms at leading order. The first, which we denote as Cαβ

1i j (t − t ′),
comes from the correction of the trajectories [Eq. (B2)] calculated in the unperturbed ensemble. Using that 〈G(n)αβ

i (t, t ′)〉 =
〈G(n)αβ (t, t ′)〉 = gαβ (t − t ′) = −β ċαβ

+ (t − t ′) is the single-site response function we get

Cαβ

1i j (t − t ′) =
∫ t

0
dt ′′ gαγ (t − t ′′)

〈
�bγ

i (t ′′)Sβ
j (t ′)

〉 + ∫ t ′

0
dt ′′ gβγ (t ′ − t ′′)

〈
�bγ

j (t ′′)Sα
i (t )

〉
. (B10)

A second term, Cαβ

2 (t − t ′), comes from the distribution of initial conditions:

Cαβ

2 (t − t ′) = β
[
Jγ δ

i j + βrγ δ
i j (0)

]〈
Sα

i (t )Sγ

i0

〉〈
Sβ

j (t ′)Sδ
j0

〉 = β
[
Jγ δ

i j + βrγ δ
i j (0)

]
cαγ (t )cβδ (t ′). (B11)

Finally, we have a third term arising from the correlation of the noise:

Cαβ

3i j (t − t ′) =
∫ ∞

0
dt1

∫ ∞

0
dt2

∫ ∞

0
dt3

∫ ∞

0
dt4l−1γμ(t1 − t3)rμν

i j (t3 − t4)l−1νδ (t4 − t2)
〈
Sα

i (t )ζ γ
i (t1)

〉〈
Sβ

j (t ′)ζ δ
j (t2)

〉
, (B12)

which, using the properties of Gaussian averages [63], can be rewritten as

Cαβ

3i j (t − t ′) =
∫ ∞

0
dt ′′

∫ ∞

0
dt ′′′ [

gαγ (t − t ′′)gβδ (t ′ − t ′′′)rγ δ
i j (t ′′ − t ′′′)

]
. (B13)
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Collecting all terms Cαβ
i j = Cαβ

1i j + Cαβ

2i j + Cαβ

3i j , and using the FDT, we find and expression manifestly consistent with TTI:

Cαβ
i j (t − t ′) = �(t − t ′)

{[
Jγ δ

i j + βrγ δ

i j (0)
][

βcβδ (0)cαγ (t − t ′) +
∫ t

t ′
dt ′′ gαγ (t − t ′′)cβδ (t ′ − t ′′)

]

+
∫ t

t ′
dt ′′

∫ t ′′

t ′
dt ′′′ gαγ (t − t ′′)rγ δ

i j (t ′′ − t ′′′)gδβ (t ′′′ − t ′)
}

+ �(t ′ − t )

{
[Jγ δ

i j + βrγ δ
i j (0)]

[
βcαγ (0)cβδ (t ′ − t )

+
∫ t ′

t
dt ′′ cαγ (t − t ′′)gβδ (t ′ − t ′′)

]
+

∫ t ′

t
dt ′′′

∫ t ′′′

t
dt ′′gγα (t ′′ − t )rγ δ

i j (t ′′ − t ′′′)gβδ (t ′ − t ′′′)
}
. (B14)

Finally, differentiating over time we find

Ċαβ
+i j (t − t ′) = −β�(t − t ′)

{ ∫ t

t ′
dt ′′ ċαγ

+ (t − t ′′)
[

Jγ δ
i j ċδβ

+ (t ′′ − t ′) +
∫ t ′′

t ′
dt ′′′ (

ċαγ
+ (t − t ′′)Rγ δ

i j (t ′′ − t ′′′)ċδβ
+ (t ′′′ − t ′)

)]}
, (B15)

an expression which in frequency space becomes Eq. (62) in the main text.
Note in passing that for equal times t = t ′, Eq. (B14) reduces to Cαβ

i j = βcαγ [Jγ δ
i j + βrγ δ

i j (0)]cδβ , which is equivalent to the

first of the static equations (20) after the identification rαβ
i j (0) = −Lαγ Mγ δ

i j Lδβ .

We now consider Aαβ
i j (t − t ′) and �

αβ
i j (t − t ′). It is not necessary to go through a detailed calculation, as we did for Cαβ

i j (t − t ′),
because equations of motion analog to Eqs. (42) relate A and � to C.

Writing compactly the fields as

bα
a (t ) = ζ α

a (t ) +
∑
b=i, j

[
βlαγ

ab (t )Sγ

b0 + Jαβ

ab Sβ

b (t ) +
∫ t

0
dt ′′ Kαγ

ab (t − t ′)Sγ

b (t ′)
]
, (B16)

and introducing

Kαβ

ab (t − t ′) = −β�(t − t ′)
d

dt
lαβ

ab (t − t ′) =
∥∥∥∥∥Kαβ (t − t ′) Rαβ

i j (t − t ′)

Rαβ
ji (t − t ′) Kαβ (t − t ′)

∥∥∥∥∥ (B17)

and

Ċαβ

+ab(t − t ′) =
∥∥∥∥∥Ċαβ

+ii(t − t ′) Ċαβ
+i j (t − t ′)

Ċαβ
+ ji(t − t ′) Ċαβ

+ j j (t − t ′)

∥∥∥∥∥ =
∥∥∥∥∥ ċαβ

+ (t − t ′) Ċαβ
+i j (t − t ′)

Ċαβ
+ ji(t − t ′) ċαβ

+ (t − t ′)

∥∥∥∥∥ (B18)

we find, using the properties of Gaussian averages and the FDT,

Ȧαβ

+ab(t − t ′) =
∑
c=i, j

Ċαγ
+ac(t − t ′)Jγ β

cb +
∑
c=i, j

∫ t

t ′
dt ′′ Ċαγ

+ac(t − t ′′)Kγ β

cb (t ′′ − t ′), (B19)

�̇
αβ

+ab(t − t ′) = − 1

β
Kαβ

ab (t − t ′) +
∑

c,d=i, j

{∫ t

t ′
dt ′′

∫ t ′′

t ′
dt ′′′[Kαγ

ac (t − t ′′)Ċγ δ

+cd (t ′′ − t ′′′)Kδβ

db (t ′′′ − t ′)
] + Jαγ

ac Ċγ δ

+cd (t − t ′)Jδβ

db

+ Jαγ
ac

∫ t

t ′
dt ′′Ċγ δ

+cd (t − t ′′)Kδβ

db (t ′′ − t ′) + Jδβ

db

∫ t

t ′
dt ′′Kαγ

ac (t − t ′′)Ċγ δ

+cd (t ′′ − t ′)
}
. (B20)

Ȧαβ

+ab(t − t ′) and �̇
αβ

+ab(t − t ′) are given by convolutions of retarded response functions, acting in sequence. All time integrals
can be extended to −∞ to +∞ because the �(t − t ′) factors in the definition of Ċ+ and K automatically restrict the integration
to the causal region.

This allows to write Eqs. (B19) and (B20) in frequency space as

Ȧαβ

+ab(ω) =
∑
c=i, j

Ċαγ
+ac(ω)

[
Jγ β

cb + Kγ β

cb (ω)
]
, �̇

αβ

+ab(ω) = − 1

β
Kαβ

ab (ω) +
∑

c,d=i, j

[[
Jαγ

ac + Kαγ
ac (ω)

]
Ċγ δ

+cd (ω)
[
Jδβ

db + Kδβ

db (ω)
]]

.

(B21)

We now take the (i j) matrix element of the equations and keep only terms of linear order in Ji j , ri j , Ri j . Using that Jii = Jj j = 0
we find

Ȧαβ
+i j (ω) = ċαγ

+ (ω)
[
Jγ β

i j + Rγ β

i j (ω)
] + Ċαγ

+i j (ω)Kγ β (ω), (B22)

�̇
αβ
+i j (ω) = − 1

β
Rαβ

i j (ω) + Kαγ (ω)Ċγ δ
+i j (ω)Kδβ (ω) + [

Jαγ
i j + Rαγ

i j (ω)
]
ċγ δ
+ (ω)Kδβ (ω) + Kαγ (ω)ċγ δ

+ (ω)
[
Jδβ

i j + Rδβ
i j (ω)

]
, (B23)

which are Eqs. (63) in the main text.
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