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Magnetism in the two-dimensional dipolar XY model
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Motivated by a recent experiment on a square-lattice Rydberg atom array realizing a long-range dipolar
XY model [C. Chen et al., Nature (London) 616, 691 (2023)], we numerically study the model’s equilibrium
properties. We obtain the phase diagram, critical properties, entropies, variance of the magnetization, and
site-resolved correlation functions. We consider both ferromagnetic and antiferromagnetic interactions and
apply quantum Monte Carlo and pseudo-Majorana functional renormalization group techniques, generalizing
the latter to a U (1) symmetric setting. Our simulations perform extensive thermometry in dipolar Rydberg atom
arrays and establish conditions for adiabaticity and thermodynamic equilibrium. On the ferromagnetic side of
the experiment, we determine the entropy per particle S/N ≈ 0.5, close to the one at the critical temperature,
Sc/N = 0.585(15). The simulations suggest the presence of an out-of-equilibrium plateau at large distances in
the correlation function, thus motivating future studies on the nonequilibrium dynamics of the system.
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I. INTRODUCTION

Quantum many-body systems with long-range interactions
can harbor richer physics than systems with short-range inter-
actions. Prominent examples are Wigner crystals [1,2], exotic
superconductivity in magic-angle twisted bilayer graphene
[3,4], the fractional quantum Hall effect [5], trapped ions
[6–10], and atoms coupled to cavities [11]. Dipolar interac-
tions in particular may stabilize several strongly correlated
phases such as supersolids [12,13], the Haldane phase [14],
and spin ice [15]. In these systems competing interactions
remain poorly understood and quantum simulation of long-
range interactions, and dipolar interactions in particular, is
therefore highly called for. Although progress in recent years
has been rapid for polar molecules in optical lattices [16–23],
we focus here on the realization of dipolar interactions with
two-dimensional Rydberg atom arrays [24,25] which cur-
rently allow for higher filling fractions. Experimentally, the
dipolar XY model for spin S = 1/2 emerges as the effective
Hamiltonian for atomic tweezer arrays where the effective
spin is encoded in a pair of highly excited Rydberg states;
the model’s U (1) symmetry is inherited from energy con-
servation, which then leads to conservation of excitation
number [26–28]. Despite the continuous U (1) symmetry, the
long-range nature of this interaction (power-law decay with
exponent α = 3) evades the Mermin-Wagner theorem in two
dimensions which applies only for α � 4 [29,30]. This allows
for true long-range order at T > 0. In terms of spin waves,
power-law ferromagnetic (FM) interactions cause the low-
energy dispersion to behave as ωk ∼ k(α−2)/2. For 2 < α < 4,

the k = 0 singularity suppresses the density of spin waves
and their proliferation at small T [31–33]. Such systems have
interesting properties for quantum metrology and sensing
[34–36]. For antiferromagnetic (AFM) dipolar interactions,
frustration effects maintain a linear spin-wave dispersion as
in the short-range case, and thus prevent long-range order at
T > 0.

Progress in experimental techniques for large-scale
Rydberg atom arrays [37–40] has allowed testing the above
predictions in the laboratory: A recent experiment realized
the dipolar XY model on a two-dimensional square lattice
consisting of up to N = L2 = 100 Rydberg atoms in an optical
tweezer array [41], and demonstrated true long-range FM
order in 2D for the first time [41]. The effective Hamiltonian
(with J > 0) reads

HXY +HZ = −J

2

∑
(i, j)

1

r3
i j

(S+
i S−

j + H.c.) +
∑

i

δiS
z
i , (1)

where S±
j = Sx

j ± iSy
j refer to spin-1/2 operators encoded in

two different Rydberg states with term symbols 60S1/2 and
60P1/2 for a 87Rb atom at site r j . The sum is over bonds
(i, j) and ri j = |ri − r j | [42]. The second term describes a
staggered field δi = ±δ for site i on the A or B sublattice,
respectively. The initial state is designed to approximate a
classical Néel state with spins pointing parallel or antiparallel
to the staggered field. Depending on the sign of δ, this corre-
sponds to a high- or low-energy state of HZ. Subsequently,
an exponential ramp reduces |δ|/J from its initial large
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value to zero and thus adiabatically prepares either low- or
high-energy states of the FM Hamiltonian, HXY. The latter can
be interpreted as a low-energy state of the AFM Hamiltonian
−HXY. Using this protocol, the experiment [41] explores the
preparation of long-range ordered states on the FM side, and
maps out a qualitative phase diagram for both the FM and the
AFM.

The ability to perform precise many-body thermometry
on such an experiment, or more generally, any Rydberg sys-
tems with optical tweezers, has hitherto not been achieved.
Overcoming this challenge would provide key insights into
the platform’s ability to simulate more exotic and delicate
phases of matter, such as elusive quantum liquids on frustrated
lattices with AFM couplings, as well as enable more direct
feedback and optimization of the experimental preparation
fidelity. Here we apply finite-temperature, equilibrium nu-
merical methods to the XY model with dipolar interactions.
From this we can estimate the initial and final entropies in
experiment, and establish when the system thermalizes, with
repercussions for future optical tweezer Rydberg experiments.

In the remainder of the paper we first discuss the ferromag-
netic case in Sec. II and then turn to the antiferromagnetic
side in Sec. III. Conclusions are drawn in Sec. IV and the
appendices contain details on further comparisons to the ex-
periment, high-temperature expansion, spin-wave theory, and
the computational methods.

II. FERROMAGNETIC INTERACTIONS (J >0)

We employ quantum Monte Carlo (QMC) simulations with
worm-type [43] updates to study the model, HXY + HZ [see
Eq. (1)] on the square lattice of linear size L with periodic
boundary conditions. The model is sign-free for the FM case,
J > 0. The code is based on an adaptation of Ref. [44]; see
Appendix D for details. There are two quantities convenient
for studying spontaneous U (1) symmetry breaking. The first
one is the spin stiffness, χs, which in a path-integral formula-
tion [45] is related to the fluctuations of the winding number
W = (Wx,Wy), χs = 〈W 2〉/(2β ). Due to the long-range na-
ture of the interactions, we work with odd values of L in order
to avoid ambiguities in W [46].

The second quantity is the in-plane magnetization squared
[41],

m2
⊥ = 1

N

∑
j

C+−( j), (2)

where C+−( j) = 〈S+
j S−

0 + H.c.〉 is the equal-time off-
diagonal spin correlation function for a system with transla-
tion invariance.

According to the theory of finite-size scaling for thermal
transitions, the curves χs(L) for the spin stiffness intersect at
the critical temperature, up to scaling corrections. The same
holds for the curves m2

⊥(L)Lη for the in-plane magnetization
squared. Whereas the critical exponents of long-range XY
models decaying with exponents α � 4 have long been de-
bated [47,48], the dipolar case exhibits, in line with the most
recent review [49], ν = η = 1. Here, η and ν are the anoma-
lous and correlation length critical exponents, respectively.

In Fig. 1(b) we show how the critical temperature for δ = 0
can be read off from the intersection points of the in-plane

FIG. 1. FM case: (a) Phase diagram for the XY model with FM
dipolar interactions and a staggered z-field δ; see Eq. (1). The dotted
line is a guide to the eye separating the paramagnetic phase (PM) and
in-plane XY FM order. (b) Finite-T transition: In-plane magnetiza-
tion squared m2

⊥ multiplied by Lη with η = 1 as a function of inverse
temperature β for linear system sizes L = 17, 33, 65, 127, 257 (with
increasing slope) for the model without staggered field, δ = 0.
(c) Quantum critical point (QCP): Finite-size scaling of the spin
stiffness χs multiplied by the inverse temperature β as a function
of staggered field δ for system sizes as in (b) and scaling the inverse
temperature as β ∼ √

L initiated by β(L = 33) = 16. Error bars are
smaller than marker size in all subplots.

magnetization squared curves, rescaled with Lη=1. Although
we observe some corrections to scaling for small system sizes,
the intersections for the larger system sizes L fall onto a single
point, within our resolution. We thus find the critical tem-
perature Tc/J = 1.923(1). A finite-size analysis of the spin
stiffness yields a compatible value; we refer to Appendix D
for further information on the critical behavior. All our data
are consistent with ν = η = 1. We consequently repeated this
type of analysis for several values of δ ∈ [0, 4], from which
we determine the phase diagram shown in Fig. 1(a).

In order to analyze the T = 0 quantum phase transition
driven by δ, we assume a dynamical exponent z = 1/2 while
ν = η = 1 [49] remain the same as before. This reduces the
scaling forms to a one-parameter set of curves labeled by
the linear system size L, χs(L)β for the spin stiffness, and
m2

⊥(L)Lηβ for the in-plane magnetization squared. Each fam-
ily of curves should intersect at the quantum critical point, δc,
for L large enough. This is shown in Fig. 1(c). The corrections
to scaling appear slightly larger than for the thermal phase
transitions at small values of δ, but the intersection points can
still be extrapolated by a single power-law fit (not shown).
From this we find the location of the quantum critical point
at δc/J = 4.03(2), which is compatible with the rapid drop
in Tc shown in Fig. 1(a) setting in for δ � 3. The transition
temperatures, as well as δc, differ by a factor of two from the
experimentally reported ones, mostly due to finite-size effects
(see below).

In addition to correlation functions, knowing the entropy
as a function of temperature provides another key piece of
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information for characterizing the dipolar XY model. In the
experimental, if preparation is assumed to be adiabatic, then
the entropy S is conserved. To this end, once one characterizes
the entropy of the initial state, one can immediately read
off the temperature and energy of the expected final state
from the QMC data. Knowledge of the entropy density at the
critical temperature provides valuable information about the
feasibility of experimentally reaching an ordered state.

However, entropies S(T ) are cumbersome to compute in
QMC simulations. One approach is to use a fine grid of inter-
nal energy data, E (T ), and to compute [50]

S(T2)−S(T1) = E (T2)−E (T1)

T2
+

∫ T2

T1

E (T ′)−E (T1)

T ′2 dT ′.

(3)
In practice, we calculate S(T ) with both a low- and high-
temperature starting point. For the low-temperature data, we
apply linear spin wave theory (SWT) analysis: The energy
is fitted by E/N = E0/N + γ T 5 for small T up to Tlow =
0.5, from which we extract γ = 0.047(1) which is in rea-
sonable agreement with the SWT prediction γ SW T 
 0.0393
derived in Appendix C. We also observe that finite-size effects
strongly affect E0 and γ . Spin waves absorb very little entropy
due their S ∼ T 4 behavior.

At high temperature, we calculated E (T ) to third order in
J/T in Appendix B. At intermediate temperatures we fitted a
cubic spline through the E/T and E/T 2 curves found from
QMC, which was then integrated according to Eq. (3). The
difference in entropy at the critical temperature then gives a
good measure for the accuracy of our approach. We find the
critical entropy per site S(Tc)/N = 0.585(15); see Fig. 2. The
entropy is seen to drop rapidly between T = Tc and T/J 
 1.

Finally, building on our numerical results, we offer a
number of insights into the recent dipolar Rydberg array
experiment, Ref. [41]. We begin by computing the behavior
of the spin correlation functions for L = 65 with periodic
boundary conditions Fig. 4(a); we note that these system
sizes are significantly larger than those of the experiment.
As the 4Cxx

i j = 4〈Sx
i Sx

j 〉 data in Fig. 4(a) indicate, a plateau
appears for any T < Tc and the sensitivity of the plateau
value, 4Cxx

∞ , which increases rapidly with lowering T , can
serve as an excellent thermometer. For instance, the initial
state in the experiment [41] with N = 42 is Sinit/N ≈ 0.2,
which, via Fig. 2, corresponds to the curve T/J = 1.282 in
Fig. 4(a).

Such a plateau was seen in Ref. [41] and is shown as the
green line in Fig. 3, corresponding to data taken after t = 1 µs.
Contrary to expectations, it cannot be reproduced from an
equilibrium simulation. The initial entropy of the experimen-
tal 10 × 10 system is S/N = 0.30(3), and corresponds to the
cyan spin correlation function in Fig. 3. It, surprisingly, has
a linear slope, which is seen for any correlation function at
higher temperature in the ordered phase. A plateau with such
a low value ∼0.17 as in experiment cannot exist in equilib-
rium at this system size, and this observation must hence be
a nonequilibrium effect. Experimental correlation functions
for longer durations are reasonably well fitted by QMC re-
sults as shown by the magenta curves in Fig. 3. The linear
slope is hence an equilibrium feature of this small system
with open boundary conditions, defying textbook pictures of

FIG. 2. Upper: Entropy as a function of temperature for the dipo-
lar system with δ = 0. The green curve for the AFM case is obtained
from the free energy computed with pm-fRG; the blue curve is for
the FM case where the entropy is determined from integration of
energy (from QMC), Eq. (3). This is done separately in the disor-
dered and ordered phases, each initiated by their analytically known
asymptotic behavior (solid purple for spin waves and dashed purple
for second-order high-temperature expansions; see Appendix B).
The entropy per site at the FM critical temperature Tc/J = 1.923(1)
(vertical dashed black line) is Sc/N = 0.585(15) (horizontal dashed
black line shows the uncertainty window). Lower: Variance of the z
magnetization as a function of temperature for the AFM case (δ = 0)
obtained by pm-fRG and for the FM case with δ = 0 and δ = 2
computed by QMC for a system with linear system size L = 33. The
dashed lines depict linear-in-temperature behavior as predicted by
spin-wave theory (see text).

FIG. 3. Experimental correlators for a 10 × 10 system with open
boundary conditions obtained for various durations t = 1 µs (green
dots) and t = 8 µs (magenta dots), taken from Ref. [41] (and cor-
rected for experimental uncertainties; see Ref. [41] and Appendix A).
QMC curves at temperatures corresponding to the entropy of the
initial system (dashed cyan line where error bars take the uncertainty
on the initial state preparation into account) and the final system
(dashed magenta line), obtained as a best possible fit. The green dots
and green solid line (constant), seen in experiment for short durations
t ∼ 1–2 µs, are not compatible with the QMC, where the correlator
decays linearly (cf. magenta solid line).
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asymptotically constant correlation functions in the thermody-
namic limit. The decay of the plateau at later times (t > 1 µs)
was assumed in Ref. [41] to be driven by decoherence effects;
here we advocate a picture of approaching (and returning
after atom-light interactions; see below) to equilibrium at later
times witnessed by the linearly decaying curves.

The experiment [41] also provides data for the variance
of the z magnetization, (
Mz )2/N = (〈M2

z 〉 − 〈Mz〉2)/N =
4

∑
i, j〈Sz

i Sz
j〉/N . For T/J → ∞ this approaches unity and

for T/J → 0 SWT predicts a linear T dependence with a
slope of 0.443 (at δ = 0); see Appendix C. The QMC results,
shown in the lower panel of Fig. 2, reproduce both asymptotic
behaviors. We thus suggest that (
Mz )2/N can be used as a
thermometer.

On the L = 10 system with open boundary conditions,
QMC likewise finds (
Mz )2/N ∝ T but with a steeper slope;
see Appendix A. We note that since the Hamiltonian, Eq. (1),
conserves the total excitation number, there is no coupling
between different Mz sectors. Although we believe that mod-
eling the initial preparation via a grand-canonical ensemble
is reasonable, dynamical processes could lead to an ensemble
where the width of the Mz distribution is not in equilibrium
with the ensemble of states at a fixed magnetization. Never-
theless, the experimentally reported values for (
Mz )2 (FM,
N = 100, late times) correspond to temperatures which are
consistent—within the (∼ 20%) spread of the experimental
data—to the temperature extracted from the spin correlation
functions. This suggests the following picture for the nonequi-
librium behavior observed in the experiment at intermediate
times: Rare incoherent and Mz nonconserving events broaden
the Mz distribution symmetrically and deposit a small amount
of energy into the system, followed by each Mz sector re-
turning back to equilibrium under its own dynamics. The
microscopic understanding of these events remains an open
question.

III. ANTIFERROMAGNETIC INTERACTIONS (J < 0)

In the AFM case, frustration due to long-range couplings
prevents the use of QMC. Instead, we apply the recently
developed pseudo-Majorana functional renormalization group
(pm-fRG) [51–53]. This diagrammatic method is oblivious to
frustration and builds on a faithful representation of spin-1/2
operators in terms of three Majorana fermions, Sx

j = −iηy
jη

z
j ,

Sy
j = −iηz

jη
x
j , and Sz

j = −iηx
jη

y
j [54]. Spin Hamiltonians with

bilinear spin interactions are thus mapped to purely interacting
Majorana systems which are then treated by the functional
renormalization group [55] with a Matsubara frequency cut-
off. So far, pm-fRG has only been applied to Heisenberg
systems with full SO(3) spin rotation symmetry, and the mod-
ifications required to treat the U (1) symmetric case as well
as further details on pm-fRG are given in Appendix E. As
the inclusion of magnetic fields is more complicated we here
focus on the case δ = 0. As (pm-)fRG involves a truncation
of the hierarchy of flow equations, it is important to carefully
gauge the validity of the results as T/|J| is lowered towards
the strong-coupling regime. As a first check of pm-fRG, we
resort to the FM case and compare Cxx

i j from pm-fRG to the
error-controlled QMC results. The agreement is excellent for

(pm-fRG   /QMC   )

(a)

(b)

FIG. 4. Equilibrium equal-time correlator Cxx
i j versus distance.

(a) FM case: The data are computed with QMC (dots) for linear
system size L = 65 and for various temperatures above and below
the critical temperature Tc/J = 1.923(1). Statistical error bars are
smaller than the symbol size. The magenta curve corresponds to an
entropy comparable to the initial state entropy in the (much smaller)
N = 42 experimental system; the green curve is close to the one
reported in Fig. 3(a) of Ref. [41] after readout errors have been
taken into account (this agreement is coincidental; see text). The pm-
fRG data (diamonds) for T/J = 2.222 are shown for comparison.
(b) AFM case: The data are computed with pm-fRG for an essentially
infinite system. Lines are guides to the eye.

T/J = 5 (data not shown) while differences of just a few
percent are found close to the phase transition at T/J =
2.222; see Fig. 4(a). While entering an ordered phase with
fRG is difficult, the critical temperature can easily be found
[52] and we obtain T pm-fRG

c /J = 2.02, only 5% off from the
QMC result and with matching critical exponents.

On the AFM side, we resort to two independent internal
consistency checks between 2- and 4-point vertices detailed
in Appendix E. First, we compare E (T ) computed from the
separate flow equation of the free energy [51] and via 〈HXY〉
using the equal-time correlators. The second check invokes
an exact constant of motion related to the pm representation.
Comparing the outcome of these consistency checks to other
models where exact benchmark data are available (FM side,
small spin clusters) suggests that pm-fRG data are reliable
with a few-percent error for T/|J| � 0.5. The results for the
correlator Cxx

i j at various temperatures between T = 2.5|J|
and T = 0.5|J| are reported in Fig. 4(b). Note that the full
checkerboard-like AFM correlation pattern only builds up
at low enough T ; for example, the next-nearest neighbors
become positively correlated only below T 
 1.0|J|. The en-
tropy S(T ) is straightforwardly obtained from the free energy
mentioned above; see Fig. 2(a). We also provide the pm-fRG
estimate for (
Mz )2(T ); see Fig. 2(b). In Appendix A, we
fit the short-distance parts of the experimentally measured
correlators to thermal pm-fRG data.
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IV. CONCLUSION

Using large-scale numerical methods we compute the ther-
modynamics for dipolar spin-1/2 models with XY symmetry
and staggered field δ, with emphasis on the experimentally
measurable spin correlation functions and the variance of the
z magnetization. We also revealed the T -δ phase diagram on
the FM side where the critical temperature Tc = 1.923(1)J
at δ = 0. The corresponding entropy per particle is Sc/N =
0.585(15). The zero-temperature FM transition is found at
δc/J = 4.03(2). Our numerical simulations confirm that the
entropy density of the resulting thermal state (on the FM
side) at late times in the experiment of Ref. [41] places it in
the ordered phase in the thermodynamic limit. However, our
results also suggest that the experimentally observed correla-
tion function plateau could be an intrinsically nonequilibrium
feature. Understanding the origin of this intermediate-time
plateau, and whether such a plateau generally emerges as
a nonequilibrium precursor to order, is an intriguing open
question. More broadly, characterizing the dynamical adia-
batic preparation of many-body phases and understanding the
features that govern the approach to equilibrium represents an
overarching theme that will be crucial for pushing the frontiers
of Rydberg-based quantum simulations, and quantum spin
liquids in particular [56,57].

Numerical data for this paper are available [58].
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APPENDIX A: COMPARISON TO EXPERIMENT

1. FM case

In this section we reanalyze the spin correlation function
obtained in experiment in the protocol [41] expected to be adi-

FIG. 5. Entropy per site (left axis) and m2
⊥ (right axis) for

systems of size L = 33 and L = 65 with periodic boundary condi-
tions (PBC) and for a system of size L = 10 with open boundary
conditions (OBC).

abatic. The experimental system consisted of a 10 × 10 square
lattice with open boundary conditions. We note that the 6 × 7
system was already analyzed in great detail in Ref. [41]. The
system was prepared using optical tweezers in a Néel state
in a strong staggered field with 2δ/J = 9 MHz/0.77 MHz =
11.69 (note again the different unit convention resulting in
a factor 2 difference with Ref. [41]). The staggered field
was ramped down exponentially with a time constant τ =
0.3 µs. The spin correlation function was plotted as a function
of radial distance for several durations of the experiment.
The strongest correlations were observed at t = 1 µs. These
notably show a plateau for distances beyond 5 lattice spac-
ings, indicative of the finite-size correlation function of a
symmetry-broken state. For larger durations, the plateau dis-
appears and one observes a linear decay of correlations with
distance. At t = 8 µs, the signal has dropped by about 25%
compared to t = 1 µs.

The entropy per particle of the distribution of the initially
prepared Néel states is estimated as SN=100

init /N = 0.30(3) for
N = 100 and SN=42

init /N ≈ 0.2 for N = 42. These estimates are
justified as follows. Restricting ourselves to the A sublattice
and neglecting holes, for N = 42 this is the configurational
entropy associated with the measured magnetization, 〈ZA〉 =
0.89. For N = 100, no value is provided in Ref. [41], but
taking the higher values of ηA = 0.07(1) and ηB = 0.10(1)
into account (cf. Table I in Ref. [41] for their meaning), which
the authors of Ref. [41] communicated to us, the magnetiza-
tion is considerably lower, 〈ZA〉 ∼ 0.81(1), and the resulting
configurational entropy considerably higher than for N = 42.

We simulated the experimental L = 10 system in equilib-
rium with QMC simulations and show the entropy and m2

⊥
in Fig. 5 where we also compare to L = 33 and L = 65.
It is apparent that the finite-size effects are substantial for
the experimental system size. We checked that excluding the
boundary sites in the radial averaging in order to obtain the
spin correlation functions (and thus m2

⊥) increases its value by
a factor ∼1.1 (as compared to Fig. 5 where boundary sites are
included), but does not change the shape of the function and
is therefore not a dominant factor. A direct comparison with
experimental data is however complicated due to a number of
factors; most notably (i) the detection errors (up to 10%) lead
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FIG. 6. Dots denote spin correlation functions obtained for var-
ious experimental durations t = 1 µs (green), t = 2 µs (blue), and
t = 8 µs, taken from Ref. [41] (and multiplied by 1.208; see text
and Ref. [41]). Note that the values of the experimental data at short
distances are underestimated because of the presence of holes and
the fact that HXY is active during the X to Z rotation. Also shown
are the spin correlation functions obtained in quantum Monte Carlo
simulations (dashed lines) for a 10 × 10 system with open boundary
conditions, zero magnetic field, and zero staggered field δ. The radial
averaging is performed over all sites of the lattice. We argue that
an equilibrium approach is justifiable for times t � 2 µs. The cyan
data indicate the range of values compatible with the error bars
on the initial entropy, S/N = 0.30(3). The dashed yellow curve is
incompatible with the experimental data, and therefore provides a
clear upper bound to the temperature in experiment.

to a correction of the value of the correlations that amounts to
up to 20% [41], which is the same for N = 42 and N = 100
systems; (ii) the measurement of correlations in the x direction
requires a rotation, but this is done in the presence of HXY,
which generates additional interaction terms that are expected
to have an r−3 dependence; (iii) one expects 5% holes in the
system due to failed Rydberg excitations, which affect both
initial entropies and readout measurements; (iv) the prepa-
ration protocol involves ramps that are expected to be close
to be adiabatic; (v) the many-body effects of spontaneous
emission, jitter, etc., are not quantified, and lie outside the
model Hamiltonian.

An attempted comparison of the spin correlation functions
between experiment and QMC simulations is shown in Fig. 6.
This cannot be seen as a full benchmark however, since we
did not take the holes into account, and the measurement
errors are not fully understood due to noncommuting terms.
We further multiplied the experimental data from Ref. [41] by
a factor 1.208, which is the readout error [41]. But we expect
that the leading behavior can be caught, for not too small
distances at least. As we will see below, the results are highly
counterintuitive because of the too small system size. The
most striking observation is that none of the relevant QMC
correlation functions show a plateau, not even at temperatures
as low as the ones corresponding to Sinit/N : The system size is
too small to observe a plateau in equilibrium at those temper-
atures. We therefore conclude that the experimental data for
t = 1 µs are not in equilibrium.

FIG. 7. Variance of the z magnetization per site as a function of
temperature for a system of linear size L = 10 with open bound-
ary conditions inspired by the experimental setting [41]. The linear
temperature dependence, predicted by linear spin-wave theory, is
respected at low temperatures but with a different slope because
of the finite system size. The linear temperature dependence holds
however far beyond the regime of linear spin-wave theory (almost
everywhere in the ordered phase), and thus enables experimental
thermometry independent of numerical simulations, provided that
the data are in equilibrium.

In fact, the shape of the experimental data at later times
t � 2 µs is much closer following the QMC calculations. In
Fig. 6 we attempted to find the temperatures that reasonably
match the experimental data for t = 2 µs and t = 8 µs (and in
between; not shown). The QMC data are therefore suggestive
of an alternative picture for the experimental data. We believe
that at t � 2 µs the system is close to equilibrium, and that a
thermal ensemble is a reasonable approximation to describe
the system for larger times, at least up to t = 8 µs. We also
find in the QMC (see Fig. 7) that (
Mz )2 takes 73(3)% of its
infinite temperature value, in agreement with the experimental
result at t � 2 µs [41], but not for t = 1 µs, where it is much
closer to the t = 0 µs value, ∼60% (and the latter also agrees
with our Sinit). The value for the variance computed by QMC
relevant to the t = 8 µs duration is 0.81. Based on the ex-
perimental information, we expect one spontaneous emission
event resulting in a loss on a 10 × 10 lattice every µs, creating
a defect of energy scale ∼J . The value of J/2 = 0.77 MHz is
indicative of a strong tendency to quasiequilibrium at increas-
ing temperatures; cf. the discussions in Refs. [62,63]. Other
sources of decoherence (some of which are nonextensive)
seem to be at work at similar frequencies. It is therefore con-
ceivable that phase coherence builds up in the first µs, remains
incomplete, and is largely interrupted at the timescale ∼1 µs.
If we can approximate the experimental system (cf. Fig. 6)
for t = 2 µs with a thermal ensemble at β = 0.82 [S/N =
0.41(2)] and the one for t = 8 µs with a thermal ensemble at
β = 0.72 [S/N = 0.50(2)], then we can estimate the entropy
production as Ṡ/N ≈ 0.015(3) per µs, which is rather low.
If we separate ramp dynamics from such heating sources
during the first 2 µs (and take the latter again as constant),
then the contribution to the change in entropy from the ramps
is just 0.41(2) − 0.30(3) − 0.03(1) = 0.08(6). Although this
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FIG. 8. AFM case: Experimental spin correlation functions mea-
sured after t = 2 µs (blue dots), t = 4 µs (orange dots), and t = 8 µs
(green dots), obtained from the authors of Ref. [41] (private com-
munication). As in the FM case, we have multiplied the measured
data with a factor of 1.208 to take into account measurement errors.
The data for small distances are well reproduced by thermal pm-fRG
simulations (dashed line, infinite system) at temperatures T/|J| =
0.56, 0.78, and 0.96, respectively. The corresponding entropies are
S/N = 0.550, 0.596, and 0.618.

is not entirely negligible, it is comparable to other sources
of decoherence and certainly small compared to the entropy
originating from the initial state preparation. This is consistent
with the analysis of Ref. [41], which numerically found that
the spin-neutral energy gaps for this protocol were large (i.e.,
of order J).

There are two big questions that will be left for future work.
The first one is how the system thermalizes, and under what
conditions a grand-canonical approach is justified. The second
one is what might explain the experimental out-of-equilibrium
correlation function at t = 1 µs. Whether the experimentally
observed plateau can be given any dynamical meaning is
certainly an interesting question.

2. AFM case

We now turn to the AFM case where the correlations in the
experimental L = 10 system were found to be short range. We
thus expect that finite-size corrections are much less important
than on the FM side and compare the experimental data to the
pm-fRG results obtained for an essentially infinite and
translation-invariant system. While pm-fRG can also handle
small finite systems with open boundaries [51], treating an
L = 10 system (without translation symmetry) is currently
beyond the method’s capabilities.

The thermometry of the experimental results at t = 2 µs,
t = 4 µs, and t = 8 µs (courtesy of the authors of Ref. [41])
is shown in Fig. 8. We match the short-range correlations for
|ri − r j | � 2 to pm-fRG data obtained at T/|J| = 0.56, 0.78,
and 0.96, respectively. For distances beyond two lattice spac-
ings the experimental signal is very weak but still significantly
larger than the pm-fRG results. Comparing the entropies of
the temperatures associated to t = 2 µs and t = 8 µs (cf. Fig. 2
of the main text) we obtain a heating rate of Ṡ/N = 0.0113 per
µs, in good agreement with the FM case. The experimental
value of (
Mz )2/N = 0.57(2) at t = 2 µs [41] is about 20%

smaller than the value 0.71 obtained from the pm-fRG at
T = 0.56.

A possible explanation for this discrepancy could be ad-
ditional experimental imperfections (like imperfect rotation
for the measurement in the X basis due to the presence of
HXY; see the discussion above) that apparently lead to an
underestimation of short-range correlations. This would mean
that the temperatures extracted in Fig. 8 are be underesti-
mated, and the true correlations including data beyond two
lattice spacings could be fitted by smaller temperatures. It is
plausible that this temperature, which is currently out of reach
for pm-fRG, would also be consistent with the measured value
of (
Mz )2/N = 0.57(2).

APPENDIX B: HIGH-TEMPERATURE EXPANSION

The high-temperature expansion (HTE) of the energy E (T )
serves to check our numerical method implementation and
is used to facilitate the entropy calculation from the energy
following Eq. (4) of the main text. The results are valid for
both signs of J = ±|J| (FM/AFM) but we restrict ourselves
to δ = 0.

The energy is expressed as E = tr[He−βH ]/tr[e−βH ] which
we expand to order β2 using tr[H] = 0,

E = −β
tr[H2]

tr[1]
+ 1

2
β2 tr[H3]

tr[1]
+ O(β3). (B1)

We find

tr[H2] = N

2
2N−22

(
J

2

)2 ∑
r �=0

(
1

r3

)2

, (B2)

where we considered clusters of two (different) sites. The first
term avoids overcounting of the bonds; the second takes into
account the trace over sites outside of the cluster. The third
factor captures the fact that the two cluster-basis states |↑,↓〉
and |↓,↑〉 contribute to the trace and the remaining factors
come from the Hamiltonian and the cluster sum

∑
r �=0 1/r6 ≡

φ2 
 4.6589. Likewise,

tr[H3] = N

3
2N−36

(
J

2

)3

2
1

2

∑
r1,2 �=0,r1 �=r2

r−3
1 r−3

2 |r1 − r2|−3

︸ ︷︷ ︸
≡φ3
13.6527

,

(B3)
where we now have 6 contributing states
|↑,↑,↓〉, |↑,↓,↑〉, |↓,↑,↑〉 (and all spins flipped) to the
trace of the 3-site cluster. The rightmost factor of 2 indicates
the two possible pathways of flipping a state back to itself and
1/2 avoids overcounting (due to r1 ↔ r2). In summary, with
tr[1] = 2N , we obtain (see Fig. 9)

E/N = −βJ2

16
φ2 + β2J3

64
φ3 + O(β3). (B4)

From Eq. (4) of the main text, we conclude for the entropy

S/N = J2(Jφ3 − 3T φ2)

96T 3
+ ln(2). (B5)

In order not to overburden the entropy plot Fig. 2 in the main
text due to the different signs for the FM and AFM case in
third order, we only plotted the HTE to second order. In the
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FIG. 9. Energy per site as a function of inverse temperature βJ
in the high-temperature regime. Results are shown for the AFM case
obtained by pm-fRG (blue dots) and for the FM case obtained by
QMC (red and cyan dots for L = 33 and L = 65, respectively, with
periodic boundary conditions and using the bare potential). The en-
ergies are compared with the predictions of Eq. (B4) with truncations
to second order (dashed black line) and third order (dashed green line
for the FM case and dashed purple line for the AFM case).

actual calculations leading to Fig. 2 in the main text we used
the more precise third-order results.

APPENDIX C: SPIN WAVE THEORY (FM CASE)

In this section we detail the spin-wave theory (SWT) calcu-
lations for the low-temperature behavior of the internal energy

E (T ) = 〈H〉 
 E (T = 0) + γ
T 5

|J|4 (C1)

and the fluctuations of the z magnetization (Mz = 2
∑

i Sz
i

[41]),

(
Mz )2/N = 4
∑

i

〈
Sz

i Sz
j

〉 
 κ
T

|J| . (C2)

The SWT for dipolar XY models has first been considered
in Ref. [31]; it builds on the representation of spin-1/2 op-
erators in terms of Holstein-Primakoff bosons, Sx

i = −1/2 +
a†

i ai, Sy
i 
 (ai − a†

i )/(2i), Sz
i 
 (ai + a†

i )/2 and the Fourier
transform ai = 1√

N

∑
q eiq·ri aq. The noninteracting part of the

spin-wave Hamiltonian reads [31]

H = E0,MF + 1

2

∑
q

Eq +
∑

k

Eqb†
qbq, (C3)

Eq = 1

2
|J|√ε0(ε0 − εq) 
 1

2
|J|

√
2πq|ε0|, (C4)

where E0,MF = −|J| ε0
8 N is the classical ground state en-

ergy and ε0 
 9.033 and the precise form of εq is given in
Ref. [31]. The bosonic operators bq are defined via a Bogoli-
ubov transformation, aq = uqbq + vqb†

−q and a†
−q = vqbq +

uqb†
−q, where uq = u−q = coshθq, vq = v−q = sinhθq, and

tanh(2θq) = − εq

2ε0−εq

 − ε0−2πq

ε0+2πq .

To find the spin wave contribution to the energy per spin,
we compute

E (T ) − E (T = 0)

N
= 1

N

∑
q

Eq

eβEq − 1
. (C5)

We consider small T , expand for small q, take N → ∞, and
extend the Brillouin zone integration to infinity,

E (T ) − E (T = 0)

N


 1

2π

∫ ∞

0
qdq

1
2 |J|√2πq|ε0|

eβ 1
2 |J|√2πq|ε0| − 1

= T

π

[
2T 2

|J|2π |ε0|
]2 ∫ ∞

0
dx

x4

ex − 1
= 96ζ (5)

π3ε2
0︸ ︷︷ ︸

≡γ

T 5

|J|4 , (C6)

and read off γ 
 0.03935.
For the fluctuations of the z magnetization, we use〈
Sz

i Sz
j

〉 = 1

4
〈(ai + a†

i )(a j + a†
j )〉

= 1

4N

∑
q

eiq·(ri−r j )(1 + 2〈b†
qbq〉)(vq + uq)2 (C7)

and substitute (vq + uq)2 

√

2π
ε0

q. For T = 0, we have

[
Mz(T = 0)]2/N

= 4
∑

i

〈
Sz

i Sz
j

〉
T =0

=
√

2π

ε0

∑
q

√
q

1

N

∑
i

eiq·(ri−r j ) = 0,

(C8)

while for T > 0, the asymptotic
√

q in the last equation is
replaced by a constant. We take β < ∞ large but fixed and
obtain

(
Mz )2/N = 4
∑

i

(〈
Sz

i Sz
j

〉
T

− 〈
Sz

i Sz
j

〉
T =0

)

=
√

2π

ε0

1

N

∑
i

∑
q

2
√

q

eβEq − 1
eiq·(ri−r j )


 T

√
2π

ε0

∑
q

2
√

q
1
2 |J|√2πqε0

1

N

∑
i

eiq·(ri−r j )

= 4/ε0︸︷︷︸
κ

T

|J| ,

where κ 
 0.443.

APPENDIX D: QUANTUM MONTE CARLO
SIMULATIONS (FM CASE)

1. Algorithm

Path-integral quantum Monte Carlo (QMC) methods are
among the most successful numerical methods to study (ef-
fectively) bosonic systems of finite extent in thermodynamic
equilibrium with T = 1/β > 0. To set up the theoretical
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framework it is convenient to write the Hamiltonian as H =
H0 − H1, where H0 = HZ is diagonal in the computational
basis and H1 = −HXY causes a transition from one basis
state to another. We work in the computational basis, defined
as the eigenstates of the spin-1/2 Sz operators on every site.
The algorithm is based on the perturbative time-ordered ex-
pansion of the partition function in continuous imaginary
time,

Z = Tr e−βH = Tr e−βH0

∞∑
n=0

∫ β

0
dτ1

∫ τ1

0
dτ2

. . .

∫ τn−1

0
dτn H1(τ1) . . . H1(τn). (D1)

The trace is taken with respect to all states in the computa-
tional basis. The positivity of this expansion is necessary and
requires J > 0 (i.e., the dipolar spin-exchange terms must be
ferromagnetic).

The Heisenberg operators are defined as

H1(τk ) = eτkH0 H1e−τkH0 . (D2)

The central quantity of interest in the worm algorithm [43]
is the single-particle Green’s function G(A, τA; B, τB) defined
as the thermal average G(A, τA; B, τB) = 1

Z 〈T [S+
A (τA)

S−
B (τB) + H.c.]〉, where T is the time-ordering operator.

These extra operators S+
A (τA), S−

B (τB) are referred to as
worm operators. A worm algorithm is an algorithm in which
valid configurations for the partition function are strongly
modified by the following procedure (respecting detailed
balance for every update): First, a worm pair is inserted in
an existing configuration; second, (one of) these worms (is)
are shuffled around in imaginary time and over the entire
lattice; and third, the worm pairs are removed when they
are again close to each other. This results in a nearly totally
decorrelated new configuration. The algorithm is known to
be particularly successful for models with U (1) or SU (2)
symmetry breaking with short-ranged interactions. The
implementation here is based on Ref. [44], with two small
changes: (i) Our potential energy terms, HZ, are purely local,
resulting in a very fast evaluation of them; (ii) the long-range
nature of the spin-exchange terms means that updates
which insert or remove such a spin-exchange term must be
modified compared to the nearest-neighbor case. We found
it convenient to compute the sum of the dipolar potential
over the lattice, N = ∑

(i, j)
1

r3
i j

, and consider the normalized

dipolar potential a probability distribution from which to
select the site j given i. This leads to a very fast algorithm, in
which large system sizes L ∼ 100–200 can straightforwardly
be simulated. The presence of a dipolar interaction term
Sz

i Sz
j would however lead to a serious reduction in accessible

system sizes and also cause a substantial slowdown because
any evaluation of the potential energy term involves a sum
over the entire lattice.

The QMC calculations use periodic boundary conditions
unless we study the experimental setup. Lattice distances
in this case are always understood as follows: In order to
compute the distance between two sites at ri and r j , one
computes (r j,x − ri,x ) and if this difference is larger than L/2
or smaller than −L/2, then one shifts by L in order to bring

FIG. 10. Upper: Energy per site as a function of temperature
T/J for a system with periodic boundary conditions, showing strong
finite-size effects. The energy is fitted against the predictions of
Eq. (D4) (dashed lines). Lower: At low temperatures, the energy
difference with the ground state energy is given by a form predicted
by linear spin wave theory (dashed line, ∼T 5). It remains valid up to
T/J ≈ 0.8, although the fits work best up to T/J ≈ 0.4.

the separation back into the interval ] − L/2, L/2]. The same
procedure is applied along the y axis.

Because the dipolar potential decays slowly on a two-
dimensional lattice, finite-size effects are expected to be
important, especially at low temperatures. It is often argued
in the literature [64,65] to replace the dipolar potential by
an Ewald-like resummed potential, in which one sums over
periodic images. Specifically,

V resum(r = (x, y)) =
∑
n,m

V (x + nL, y + mL). (D3)

In order to compare correlation functions with experiment,
we always worked with the bare potential. For the determi-
nation of critical properties we found it also convenient to
work with the bare potential as we found the interpretation of
the correlation functions more straightforward. However, for
properties at low temperature where the system is far more
sensitive to the tail of the potential, the resummed potential
provides a substantial advantage in reducing the finite-size
effects. Therefore, in the entropy calculation (Fig. 4 of the
main text) we resorted to the resummed potential.

2. Low-temperature analysis

At low temperature, the FM system shows true long-range
order with in-plane magnetic XY order. The lowest excitations
are spin waves with dispersion ε = c

√
k for a sufficiently

large system [31]. On dimensional grounds, this leads to the
following form for the energy per site,

E (T → 0)

N
= E0

N
+ γ T 5 + · · · . (D4)

This is confirmed from QMC in the top panel of Fig. 10,
where we also observe strong finite-size effects on E0. For
comparison, note that the energy for the L = 65 system with
the resummed potential is only 3% lower than the energy
of a product state with all spins oriented in the x direction.
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FIG. 11. Lower: Data for the rescaled in-plane magnetization
squared can be collapsed onto a single curve in the critical region
for a system with δ = 0 in the vicinity of the critical temperature.
Critical exponents are ν = 1 and η = 1, and the applied inverse criti-
cal temperature is βc = 0.5198. Upper: Collapse of the spin stiffness
for the same system.

The T 5 power law of the spin waves is seen on the log-log
plot of Fig. 10 (bottom) for systems with linear system size
L = 33 and L = 65 with periodic boundary conditions, after
shifting the energy by the fitted ground state energy. Our fitted
values of γ (γ = 0.047 for L = 65, resummed potential, and
γ = 0.0594 for L = 65, bare potential) are close but devi-
ate slightly from the prediction of spin wave theory (γ =
0.03935). This is because of the remaining finite-size effects,
uncertainties about the fitting interval, and a strong covariance
between γ and the unknown ground state energy. With a free
γ , the T 5 behavior remains valid up to T/J ≈ 0.8, although
the fits are best stabilized up to T/J = 0.4. The entropy (per
particle) of the spin waves is given by S(T ) = 5/4γ T 4, and
remains hence very low, even at T/J ≈ 1, as could have been
expected: the dipolar interactions modify the dispersion of the
spin waves (compared to short-range models) in such a way
that the energy of the ground state wins over the proliferation
(entropy) of the spin waves. Note that uncertainties in γ do not
strongly affect the entropy at higher temperatures, given our
resolution of several percent on the entropy, and our cutoff of
the low-energy theory at T/J = 0.5.

3. Critical behavior

We provide additional plots in order to discuss the critical
behavior of the second-order phase transitions. In Fig. 11 it is
shown that with the right critical exponents η = 1 and ν = 1,
the curves of the (scaled) in-plane magnetization squared m2

⊥
and the spin stiffness χs can be collapsed onto a single curve
as a function of a (scaled) inverse temperature in the vicinity
of the critical temperature. For the curves corresponding to the
smallest system sizes L < 65, small deviations are visible due
to finite-size effects. The same behavior is seen for the quan-
tum phase transition where we scaled the inverse temperature
β as β = Lz = L1/2; see Fig. 12. The finite-size effects are
more pronounced than for the thermal transition with δ = 0; a
reasonable collapse is only found for L � 97.

FIG. 12. Lower: Data for the rescaled in-plane magnetization
squared can be collapsed onto a single curve in the critical region
in the vicinity of the quantum critical point δc = 4.03. Critical ex-
ponents are z = 1/2, ν = 1, and η = 1. Upper: Collapse of the spin
stiffness for the same system.

4. Correlation functions

Reference [31] makes a prediction for the decay of the
spin-exchange correlation function C+−(x) in the paramag-
netic, critical, and ferromagnetic phases. In the paramagnetic
phase, the decay is a power law with exponent 3 (the same
as the dipolar term in the Hamiltonian). At the critical tem-
perature, the decay is asymptotically 1/x (as expected from
the fact that we established η = 1 already). In the ordered
phase, the spin-exchange correlation function approaches a
constant. We verified this in Fig. 13. In the ordered phase, the
constant is approached as a power law, C+−(x) − m2

⊥ ∼ x−p,
with p = 1.0 at 0 < T < Tc and p = 1.5 at T = 0, according
to Ref. [31]. This is reflected in our data shown in the upper

FIG. 13. The spin exchange correlation function decays asymp-
totically with a power law with power 3 in the paramagnetic phase,
power 1 at the critical temperature, and approaches a constant in the
ordered phase. The usage of the cord function on the x axis is con-
venient to remove the leading order effects of the periodic boundary
conditions. Simulations were performed for δ = 0 and L = 129 with
the inverse temperature indicated in the figure. The results are plotted
along the x axis only.
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FIG. 14. Extracting the decay of the C+−(x) − 〈m2
⊥〉 ∼ x−p and

|Czz(x)| ∼ x−q correlation functions in the ordered phase on ap-
proach to the ground state for a system of linear system size L =
33, with periodic boundary conditions and making use of the bare
potential.

panel of Fig. 14. We are restricted to a linear system size
L = 33 for this calculation, but it turns out that this suffices
to extract p. The case β = 1 is outside the regime where
linear spin wave theory is valid and we clearly extract the
power p = 1.01(2), agreeing with Ref. [31] within error bars.
For the case β = 5 we are close to the ground state, and
this is reflected in a power, p = 1.41(2), a value which is
almost 1.5 and certainly different from p = 1. Our data for
β = 10 (not shown) are very close to the data for β = 5.
Considerably lower error bars would be needed before we
can make use of the data for β = 10, but we expect a value
for p that converges towards 1.5 with increasing β. For the
case β = 2, the extracted power law (p = 1.31) falls in be-
tween the finite temperature and ground state predictions.
This reflects that on a finite system convergence towards
the ground state is faster for small distances than for large
distances.

Spin correlations along the z direction are measured by
the correlation function Czz(x) = 〈Sz(x)Sz(0)〉. The magni-
tude of the values of this correlation function is very small,
given the absence of such interactions in the Hamiltonian.
The prediction of Ref. [31] is |Czz(x)| ∼ x−q, with q = 3
for 0 < T < Tc and q = 5/2 at T = 0. This is also con-
firmed in the lower panel of Fig. 14, where β = 1 lies again
clearly in the 0 < T < Tc regime, and β = 5 close to the
ground state. At higher temperature, the signal of Czz(x) is
too small compared to the statistical noise, so the asymptotic
decay of Czz(x) at Tc and in the paramagnetic phase cannot
be tested, although the correctness of Ref. [31] is beyond
doubt.

APPENDIX E: PSEUDO-MAJORANA FUNCTIONAL
RENORMALIZATION GROUP (pm-fRG)

1. Pseudo-Majorana representation and vertex functions

The pm-fRG developed in Refs. [51,52] builds on the
faithful representation of spin-1/2 operators in terms of three
Majorana fermion operators, Sx

j = −iηy
jη

z
j , Sy

j = −iηz
jη

x
j , and

Sz
j = −iηx

jη
y
j [54]. The Majorana operators fulfill {ηα

i , η
β
j } =

δαβδi j , (ηα
i )2 = 1/2, and ηα

i = (ηα
i )†, where α, β ∈ x, y, z.

Spin Hamiltonians with bilinear spin interactions (like HXY)
are thus mapped to purely interacting Majorana systems
which are then treated by the functional renormalization group
[55]. The pm-fRG is similar to the previously established
T = 0 pseudofermion fRG [66] which, however, builds on
a complex-fermionic spin representation. However, the latter
introduces nonphysical states in the Hilbert space causing a
number of problems; see Ref. [67].

The central building blocks of the pm-fRG are 2- and 4-
point Majorana imaginary-time-ordered correlation functions.
Their Fourier transforms can be expressed via the Grassmann
functional field integral formalism, e.g.,〈

ζ
α1
i1

(ω1)ζ α2
i2

(ω2)
〉 = T δω1,−ω2δi1,i2δα1,α2 Gi1α1 (ω1). (E1)

Here, ζ α
i is the (anticommuting) Grassmann field cor-

responding to the Majorana operator ηα
i and ω1,2 are

fermionic Matsubara frequencies. The Kronecker deltas on
the right-hand side follow from imaginary-time translation
symmetry, the local Z2 gauge symmetry of the pseudo-
Majorana representation (ηα

i → −ηα
i ∀α), and time-reversal

symmetry, respectively. While Eq. (E1) defines the (full)
Majorana propagator Gi1α1 (ω1), the one-line irreducible
self-energy � j,α (ω) = iγ j,α (ω) and the one-line irreducible
vertex Viα1,iα2, jα3, jα4 (ω1, ω2, ω3, ω4) ≡ Vi j;α1α2;α3α4 (s, t, u) are
defined via the tree expansion [51,52]. For the vertex, it is con-
venient to switch to combined bosonic Matsubara frequencies
s = ω1 + ω2, t = ω1 + ω3, and u = ω1 + ω4.

2. pm-fRG flow equations

To implement the renormalization group idea in an exact
way [68], the pm-fRG introduces a multiplicative Matsubara
frequency cutoff dependent on a scale � in the bare propaga-
tor, G(0)

i,α (ω) = 1/(iω) → G(0),�
i,α (ω) = ϑ�(|ω|)/(iω). We take

ϑ�(|ω|) = ω2/(ω2 + �2), but we checked that the results
do not depend significantly on this particular choice. When
� → ∞, the bare propagator vanishes G(0),� → 0. Then the
vertices are trivial and frequency independent with Vi j;xz;xz =
Vi j;yz;yz → −Ji j as the only nonzero contribution.

We use lattice symmetries (translation and point-group)
and U (1) spin rotation symmetry to reduce the number of
independent components of the vertex. However, the list of in-
dependent vertices (Vi j;xx;xx, Vi j;zz;zz, Vi j;xx;yy, Vi j;xx;zz, Vi j;xy;xy,
and V �

i j;xz;xz) is still significantly larger than in the case with
full Heisenberg SO(3) spin rotation symmetry considered so
far within pm-fRG [51,52,69].

The pm-fRG proceeds in lowering the cutoff � to zero
where the original theory is recovered. One-loop flow equa-
tions describe the � dependence of the self-energy γ �

i,α

and vertex functions V �. To write them in compact form,
we define G�

iα (ω) = −ig�
iα (ω) and parametrize g�

iα (ω) =
[ω/ϑ�(ω) + γ �

iα (ω)]−1. In addition, the single-scale propaga-
tor [68] is given by

ġ�
iα = [g�

iα (�)]2

[
�ϑ ′

�(�)

ϑ2
�(�)

− ∂�γ �
iα (ω)

]
. (E2)
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The last term in Eq. (E2) takes into account certain con-
tributions generated by the flowing 6-point vertex (Katanin
truncation), but the omission of the remaining parts of
the n-point vertex at level n = 6, 8, 10, . . . constitutes the
main approximation involved in the practical application of

pm-fRG. This approximation is rigorously justified in the
perturbative regime T/|J| � 1 [67], but for small T care is
needed to gauge the validity of the results; see below.

The flow equation for the free energy per spin f [68]
involves only 2-point quantities (giα, γiα),

∂� f � = −T

2

∑
�

ϑ ′
�(�)ϑ−1

� (�)[2g�
ix(�)γ �

ix (�) + g�
iz (�)γ �

iz (�)], (E3)

and the initial condition is f �→∞ = −T ln(2) [51]. The flow equations for the self-energies with trivial initial conditions are

∂�γ �
ix (ω) = −T

2

∑
�

∑
j

ġ�
jx(�)[V �

ji;xx,xx(0,� − ω,� + ω) + V �
ji;xx,yy(0,� − ω,� + ω)] + ġ�

jz(�)V �
ji;zz,xx (0,� − ω,� + ω),

(E4)

∂�γ �
iz (ω)=−T

2

∑
�

∑
j

2ġ�
jx(�)V �

ji;xx,zz(0,� − ω,� + ω) + ġ�
jz(�)V �

ji;zz,zz(0,� − ω,� + ω). (E5)

The flow of the 4-point vertices is

∂�V �
i j;α1α2;α3α4

(s, t, u) = X �
i j;α1α2;α3α4

(s, t, u) − X̃ �
i j;α1α3;α2α4

(t, s, u) + X̃ �
i j;α1α4;α2α3

(u, s, t ), (E6)

where we abbreviated the first contribution involving a lattice sum over sites k,

X �
i j;α1α2;α3α4

(s, t, u)

= −T
∑
�

∑
β1,2

∑
k

ġ�
k,β1

(�)g�
k,β2

(� + s)V �
ik;α1α2;β2β1

(s,−� − ω2, ω1 + �)V �
k j;β1β2;α3α4

(s,−� + ω3,−� + ω4). (E7)

The remaining terms are given by X̃ �
ii;α1α2;α3α4

(s, t, u) = X �
ii;α1α2;α3α4

(s, t, u) for the on-site (ii) “bond.” For nontrivial bonds, i �= j,
there is no internal lattice sum in X̃ :

X̃ �
i j;α1α2;α3α4

(s, t, u) = T
∑
�

∑
β1,2

[ġ�
i,β1

(�)g�
j,β2

(� + s) + g�
i,β1

(�)ġ�
j,β2

(� + s)]

×V �
i j;α1β1;α2β2

(ω1 + �, s,−� − ω2)V �
i j;β1α3;β2α4

(−� + ω3, s,−� + ω4). (E8)

The β1,2 sums run over the Majorana flavors x, y, z and the required combinations of α1α2; α3α4 identified above are yet to be
inserted. The numerical complexity is reduced by a number of symmetries related to the anticommutation relation of Grassmann
fields [52].

Finally, at the end of the flow � → 0, physical observables like spin susceptibilities χαα
i j (iν) = 〈Sα

i (iν)Sα
j 〉 can be computed,

e.g.,

χ xx
i j (iν) = δi jT

∑
ω

gix (ω)giz(ω − ν) + T 2
∑
ω,ω′

gix(ω)giz(ω − ν)g jx (ω′ + ν)g jz(ω′)Vi j;yz;yz(ν, ω − ω′ − ν, ω + ω′). (E9)

Equal-time correlators can then be obtained from χ xx
i j (iν) via a sum over ν,

Cxx
i j = 〈

Sx
i Sx

j

〉 = δi j

4
+ T 3

∑
�

∑
ω,ω′

gix(ω)giz(ω − �)g jx(ω′ + �)g jz(ω′)Vi j;xz;xz(�,ω − ω′ − �,ω + ω′). (E10)

For further details on the numerical implementation, we refer
to Refs. [51,52].

3. Consistency checks for the AFM case

As mentioned above, it is important to critically assess
the validity of the pm-fRG results in the low-temperature
regime. For the FM case, as explained in the main text, we
have directly compared the pm-fRG against various results
of the error-controlled QMC; see, e.g., Cxx

i j in Fig. 1. For the
AFM case, beyond comparison to HTE for large T (Fig. 9) no

independent benchmarks are available and we have to resort
to method-intrinsic consistency checks.

A first check involves the energy per spin E/N . This quan-
tity can be calculated as 〈HXY〉/N based on the equal-time
correlators of Eq. (E10) which depend directly on the 4-point
vertices V ; see black dots in Fig. 15(a). The energy can as
well be calculated from the derivative of the free energy,
E/N = ∂β ( f β ) (brown crosses), where f is obtained from
its own flow equation (E3) which depends on V only indi-
rectly via its appearance in the self-energy flows. Thus, an
agreement between both ways to calculate the energy signals
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FIG. 15. Benchmarking the pm-fRG on the AFM side (J = 1): (a) Energy per spin over temperature as calculated from pm-fRG, both
via 〈HXY〉 from equal-time correlators Cxx

i j (dots) and from E/N = ∂β ( f β ) (crosses) where f is the free energy per spin. The horizontal line
denotes the DMRG ground state energy reproduced from Ref. [41]. (b) Ratio of local spin susceptibilities (at ν = 0) calculated via the 4-point
pseudo-Majorana vertex � and directly from the Majorana propagator g. We show the susceptibility ratio both for in-plane (x) and perpendicular
(z) direction.

an internal consistency between 2- and 4-point objects. The
data shown in Fig. 15(a) reveal good agreement between both
approaches. The difference grows as T is lowered, reaching
7% at T = 0.5. We suggest that this strategy is generally
applicable to gauge the validity of fRG simulations beyond
the pm-fRG.

A similar but independent check specific to pm-fRG builds
on the fact that for any spin-1/2 Hamiltonian written in terms
of pseudo-Majoranas, the operator � j ≡ −2iηx

jη
y
jη

z
j is a con-

stant of motion, i.e., � j (τ ) = � j . Using �2
j = 1/2, one finds

that the local spin susceptibility can be calculated as

χ xx
j j (iν = 0) =

∑
n

1

π (2n + 1)
g jx(ωn), (E11)

where we focused on the static part. Again, this expression
does not involve the vertex V directly, in contrast to the
general expression (E9). The ratio of χ xx

j j (iν = 0) calculated
either by Eq. (E9) or Eq. (E11) is shown in Fig. 15(b). Its
deviation from unity represents a measure for the violation of
the constant-of-motion property and signals the degree of in-
ternal inconsistency between 2- and 4-particle objects caused
by the fRG truncation. Again, the ratio grows with decreasing
T and for T = 0.5 deviates from unity by 4%. In other models
with available benchmarks like small spin clusters, deviations
of this size have been found associated to few-percent errors

in common observables like susceptibilities or equal-time cor-
relators.

Comparing the outcome of these consistency checks to
other models where exact benchmark data is available (FM
side, small spin clusters) suggests that the pm-fRG results for
the AFM case are to be trusted within a few-percent error
margin for the reported temperature range T � 0.5J . Note
however that even a perfect consistency between 2- and 4-
point vertices would not be a guarantee for the exactness of a
many-body calculation. For example, such a consistency is a
general feature of conserving approximations.

Finally, via variation of the maximally allowed spatial
range of the 4-point Majorana vertex in pm-fRG, the actual
spin-spin correlation length can be estimated. The data in
Fig. 1 of the main text are obtained by cutting off the Ma-
jorana vertex function Vi j for |ri − r j | > 16, but the results
for susceptibilities do not change when this range is lowered
to 10. This is in contrast to the finite-size scaling behavior that
is found for the FM side in the vicinity of Tc (data not shown).
We thus conclude that for the AFM case, (i) the pm-fRG data
presented are essentially for an infinite system and (ii) the low-
est temperature T = 0.5 achievable in pm-fRG is still above
the critical temperature for the anticipated Kosterlitz-Thouless
transition which would be signaled by a diverging correlation
length [70].
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