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Finite-temperature dynamics in 0-flux and π-flux quantum spin ice:
Self-consistent exclusive boson approach
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Quantum spin ice (QSI) is an emblematic three-dimensional U (1) quantum spin liquid (QSL) on the py-
rochlore lattice that hosts gapless photon-like modes and spinon excitations. Despite its notable status and the
current rise of strong material candidates Ce2(Zr, Sn, Hf )2O7, there are still only a few analytical approaches to
model the low-energy physics of QSI. These analytical methods are essential to gain insight into the physical
interpretation of measurements. We here introduce the self-consistent exclusive boson representation (SCEBR)
to model emergent spinon excitations in QSI. By treating the presence of other emergent charges in an average
way, the SCEBR extends the range of validity of the exclusive boson representation previously introduced
in [Hao, Day, and Gingras, Phys. Rev. B 90, 214430 (2014)] to numerous cases of physical relevance. We
extensively benchmark the approach and provide detailed analytical expressions for the spinon dispersion, the
Bogoliubov transformation that diagonalizes the system, and the dynamical spin structure factor for 0- and
π -flux QSI. Finite-temperature properties are further investigated to highlight essential differences between the
thermodynamic behavior of the 0- and π -flux phases. We notably show that the SCEBR predicts a reduction
of the spinon bandwidth with increasing temperature, consistent with previous quantum Monte Carlo results,
through suppression of spinon hopping by thermal occupation. The SCEBR thus provides a powerful analytical
tool to interpret experiments on current and future candidate material that has several advantages over other
widely used methods.
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I. INTRODUCTION

A quantum spin liquid (QSL) is a paramagnetic state of
a frustrated spin system that supports deconfined fractional
excitations and emergent gauge fields as a consequence of
its long-range entanglement [1–9]. Quantum spin ice (QSI),
which is theoretically predicted to be stabilized on the py-
rochlore lattice [see Fig. 1(a)], is one of the most paradigmatic
examples of a QSL. It provides a three-dimensional lattice
realization of compact quantum electrodynamics. As such, it
hosts emergent gapless photon-like modes as well as gapped
spin-1/2 charges of the emergent electric field known as
spinons and topological defects (visons) [10–15]. However,
the experimental discovery of a QSI has not received definitive
evidence and is still a current endeavor in condensed matter
physics.

In that respect, the identification of dipolar-octupolar
pyrochlores as promising platforms for QSI [16] and the sub-
sequent determination that Ce2Sn2O7 is a prospective material
realization [17,18] has spawned the beginning of a new era of
excitement and breakthrough in the field—the dawn of new
“Ice Age” so to speak. The material candidates Ce2Zr2O7

[19–25], Ce2Sn2O7 [17,26,27], and Ce2Hf2O7 [28,29] show
no sign of ordering or spin freezing down to the lowest ac-
cessible temperature. Their microscopic couplings have also
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been estimated through the fitting of various thermodynamics
measurements and determined to be in a region of param-
eter space that stabilizes the so-called π -flux QSI where
hexagonal plaquettes of the pyrochlore lattice are threaded
by a static π flux of the emergent gauge field. Some contro-
versy remains about the microscopic parameters of Ce2Sn2O7

[30]. Such experimental advances have naturally led to a
plethora of theoretical investigations [18,31–40]. Despite the
large number of theoretical studies and wide availability of
experimental results on material candidates, few analytical
approaches are available to model the low-energy physics of
the π -flux phase. The only available method is arguably the
large-N approximation of gauge mean-field theory (GMFT)
[41,42]. Such analytical approaches are highly desirable to
understand future and current experiments since they can pro-
vide a clear physical interpretation of observed phenomena.
They are essential tools to complement brute-force numerical
methods. Novel analytical methods further have the advantage
that they can now be comprehensively benchmarked against
numerical results [38,39,43,44] and compared to experiments
[19–21,24,27,29].

This paper introduces the self-consistent exclusive boson
representation (SCEBR) to describe spinon dynamics analyt-
ically in QSI. The SCEBR is based on the GMFT approach
but does not require the usual large-N approximation. It is
instead a direct self-consistent extension of the exclusive bo-
son representation introduced by Hao, Day, and Gingras [45],
which increases its range of validity further away from the
perturbative regime. The extension makes the exclusive boson

2469-9950/2024/109(14)/144410(20) 144410-1 ©2024 American Physical Society

https://orcid.org/0000-0003-1211-901X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.144410&domain=pdf&date_stamp=2024-04-12
https://doi.org/10.1103/PhysRevB.90.214430
https://doi.org/10.1103/PhysRevB.109.144410


FÉLIX DESROCHERS AND YONG BAEK KIM PHYSICAL REVIEW B 109, 144410 (2024)

(a) (b)

(c)

FIG. 1. (a) The pyrochlore lattice formed by a network of up-
(green) and down-pointing (purple) tetrahedra. (b) The pyrochlore
lattice sites sit at the bond center of its parent (i.e., premedial)
diamond lattice. (c) Ground-state energy per diamond lattice unit cell
as a function of transverse coupling in the low-density approximation
to the exclusive boson formulation for 0- and π -flux QSI.

representation a proper theoretical method to study finite-
temperature effects and the π -flux phase in parameter regimes
relevant to dipolar-octupolar materials. We first show that the
exclusive boson in its initial formulation fails to describe
the π -flux phase beyond the perturbative Ising limit because
the low-density approximation of Ref. [45] fails. The SCEBR
is then introduced to demonstrate that this issue can be me-
diated by treating the finite density of charges in an average
way. In the initial spin model, a finite density of charges
inhibits their movement because it is unfavorable for them to
hop where a charge is already present since double charge
occupancy is energetically suppressed. The essence of the
SCEBR is to incorporate this effect by globally reducing the
hopping of spinons in a self-consistent manner.

We further explore this construction by extensively study-
ing the XXZ Hamiltonian. Detailed analytical expressions
for the spinon dispersions and the Bogoliubov transforma-
tions that diagonalize the bosonic quadratic Hamiltonian are
provided for the 0- and π -flux states. These expressions are
used to study the dynamical and equal-time properties of
QSI. The spinon contribution to the dynamical spin structure
factor relevant for experiments on dipolar-octupolar com-
pounds is reported. It is shown that this produces a broad
continuum with a single local maximum as a function of
energy for 0-flux QSI (0-QSI) and three sharp peaks for
π -flux QSI (π -QSI). The associated equal-time structure fac-
tors show snowflake-like patterns in the (h, h, l ) plane with
opposite intensity profiles. Such dynamical and equal-time
signatures are consistent with 32-site exact diagonalization
and previous investigations using the large-N approxima-
tion to GMFT [36,38]. Finite-temperature results are finally

explored. Detailed characterization of the thermodynamics
behavior highlights that, for 0-QSI, two crossover temper-
atures are expected to separate the trivial high-temperature
paramagnet from the intermediate classical spin ice, and the
low-temperature QSI [43,44,46,47]. In contrast, we predict a
single crossover directly from the trivial paramagnet to π -QSI
for coupling strengths beyond the perturbative Ising limit.
Furthermore, we show that, as the temperature increases, the
spinon bandwidth slowly decreases due to a thermal suppres-
sion of spinon hopping. Such a thermally induced mobility
reduction is consistent with previous quantum Monte Carlo
(QMC) investigation [43]. The introduced method is one of
the first analytical approaches to partially capture such a
subtle effect—a testimony to its potential future usefulness.
The SCEBR is thus an analytical approach that has been
benchmarked for several use cases and has been shown to
be valuable in understanding dipolar-octupolar systems or any
future QSI material candidate.

The rest of the paper is organized as follows: In Sec. II, we
review the usual GMFT construction and its physical motiva-
tion before introducing the SCEBR. We then explore several
results obtained with the SCEBR at zero and finite tempera-
ture in Sec. III and IV, respectively. We end by discussing our
paper’s implication and potential future directions in Sec. V.

II. THEORETICAL MODEL

A. Conventions

As represented in Fig. 1(a), the magnetically active ions in
spin ice decorate the pyrochlore lattice—a face-centered cubic
Bravais lattice with basis vectors (setting the lattice constant
to unity)

a1 = 1
2 (ŷ + ẑ), a2 = 1

2 (x̂ + ẑ), a3 = 1
2 (x̂ + ŷ), (1)

and four sublattices. Here x̂, ŷ, and ẑ are unit vectors in the
global cubic directions [100], [010], and [001]. The posi-
tion of the sublattices can be expressed by δi = 1

2 ai (i =
0, 1, 2, 3) where we introduced a0 = 0 for convenience.
Pyrochlore sites are denoted using the following sublattice-
indexed pyrochlore coordinates (SIPC)

Ri = (r1, r2, r3)i = r1a1 + r2a2 + r3a3 + δi. (2)

All pyrochlore sites are located at the center of nearest-
neighbor bonds on the parent (premedial) diamond lattice
illustrated in Fig. 1(b), whose sites are located at the center
of the up- and down-pointing tetrahedra. Each A sublattice
(up tetrahedron) of this parent lattice is connected to four B
sublattices (down tetrahedra) by the vectors

b0 = −1
4 (x̂ + ŷ + ẑ), b1 = 1

4 (−x̂ + ŷ + ẑ),

b2 = 1
4 (x̂ − ŷ + ẑ), b3 = 1

4 (x̂ + ŷ − ẑ). (3)

To label the position of the sites on this parent diamond lat-
tice, we introduce the sublattice-indexed diamond coordinates
(SIDC) defined by

rα = (r1, r2, r3)α = r1a1 + r2a2 + r3a3 − ηα

2
b0, (4)

where α ∈ {A, B} labels the diamond sublattice, and ηA = 1
and ηB = −1 such that −ηαb0/2 correspond to the sublattice
displacement.
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B. Spin Hamiltonian

To construct the formalism and explore it in the simplest
possible setting, we consider the following XXZ model:

H =
∑

〈RiR′
j〉

(
J‖S‖

Ri
S‖

R′
j
− J±

(
S+

Ri
S−

R′
j
+ S−

Ri
S+

R′
j

))
, (5)

where J‖ > 0, the sum is over nearest-neighbor pyrochlore
lattice sites, and the spins are defined in sublattice-dependant
local axis coordinates (see Appendix A). S+ and S− are rais-
ing and lowering operators with respect to S‖ (i.e., [S‖, S+] =
S+ and [S‖, S−] = S−). At this stage, we do not make any
assumptions about the transformation properties of the spins.
We will only specify whether we are considering effective
spin-1/2, non-Kramers doublet, or dipolar-octupolar pseu-
dospins [48] when computing physical observables.

C. Gauge mean-field theory

1. Perturbative regime

In the Ising or classical spin ice limit (i.e., J± = 0), the
above XXZ model can be rewritten as

H = J‖
2

∑
rα

Q2
rα

, (6)

where we have defined the charge operator living on the parent
lattice

Qrα
= ηα

3∑
μ=0

S‖
rα+ηαbμ/2, (7)

and dropped irrelevant constant terms. In this form, it is clear
that the energy is minimized by requiring that all tetrahedra
have two S‖ spins pointing in and two pointing out (i.e., two-
in-two-out) such that Qrα

vanishes for all tetrahedra. Since
there are many ways to satisfy this energetic constraint known
as the “ice rules,” the Ising limit has an extensively degenerate
ground-state manifold that grows with the system’s volume.

Upon the addition of a small transverse coupling (i.e.,
|J±| � J‖), one can derive a new effective Hamiltonian
within the spin ice manifold by integrating out the gapped
charges. The lowest order contribution gives an effective ring-
exchange Hamiltonian that can be mapped to a compact U (1)
gauge theory of the form [10,11]

Heff ∼ −J3
±/J2

zz

∑
�

cos(∇ × A)�. (8)

The sum is over hexagonal plaquettes of the pyrochlore
lattice, and the lattice curl is defined by the counterclock-
wise sum (∇ × A)� ≡ ∑

〈i, j〉∈� Ai, j . For J± > 0, it is
now well established from sign-free quantum Monte Carlo
(QMC) simulations that the above compact U (1) gauge
theory stabilizes a deconfined or Coulomb phase with 0-
flux threading the hexagonal plaquettes (i.e., (∇ × Ā)� = 0)
[11,43,44,46,47,49]. This deconfined phase is thus a U (1)
QSL, known as 0-flux QSI, that hosts emergent photons
as well as gapped monopoles of the emergent electric and
magnetic field that are commonly referred to as spinons and
visons, respectively [12]. In the perturbative treatment out-
lined above, there exists a unitary transformation between the

J± < 0 and J± > 0 regime that maps 0-flux QSI to another
QSL known as π -flux QSI since it is characterized by (∇ ×
Ā)� = π . However, the sign problem in QMC for J± < 0
makes any theoretical predictions for π -QSI, apart from its
existence close to the Ising point, extremely challenging.

2. Slave-spinon construction

Beyond the perturbative regime, configurations with Qrα
�=

0 will become increasingly important. As such, theoretical
description cannot be restricted to the spin ice manifold
anymore, and the gapped excitations need to be considered
explicitly. Gauge mean-field theory (GMFT), as introduced
by Savary and Balents in Ref. [41] and further extended in
Refs. [16,18,31,35,36,42,50–56], is a well-established slave-
particle construction that describes the U (1) deconfined
phases without relying on perturbative arguments. GMFT
explicitly considers the gapped matter field by introducing
bosonic particles that conceptually correspond to defect tetra-
hedra breaking the ice rules (i.e., Qrα

�= 0) at the center of
each tetrahedron. To do so, the initial spin-1/2 Hilbert space
on the pyrochlore lattice Hspin = ⊗RiHS=1/2 is augmented to
a new larger one Hbig = Hspin ⊗ HQ, where HQ = ⊗rα

HQrα

is the Hilbert space of the bosonic field Qrα
∈ Z that lives on

the parent diamond lattice. In this new slave-spinon space, the
dominant spin component is mapped to the emergent electric
field while the transverse parts are written as spinon bilinears
dressed by the emergent photon

S+
rA+bμ/2 = 1

2�†
rA

eiArA ,rA+bμ �rA+bμ
, (9a)

S‖
rα+ηαbμ/2 = ηαErα,rα+ηαbμ

. (9b)

�†
rα

and �rα
are spinon raising and lowering operators that can

be written in terms of the canonically conjugate variable to the
bosonic charge ϕrα

(i.e., [ϕrα
, Qrα

] = i) as �†
rα

= eiϕrα . These
O(2) quantum rotors respect the constraint |�†

rα
�rα

| = 1 by
construction. The emergent vector potential A and electric
field E are also canonically conjugate and act within the
initial Hspin subspace of Hbig. For the above to be a faithful
representation of the initial spin Hilbert space, the discretized
Gauss’s law

Qrα
=

3∑
μ=0

Erα,rα+ηαbμ/2 ≡ (∇ · E )rα
(10)

needs to be enforced on every tetrahedron. Since the spin
raising/lowering operator defined in Eq. (9a) accompanies the
flipping of the electric field (by eiA) with the creation of a
spinon-antispinon pair, it always maps a physical wavefunc-
tion to another one that respects Eq. (10).

Using this construction, the initial XXZ model can be fully
rewritten in terms of a compact U (1) lattice gauge theory
coupled to quantum rotors

H = J‖
2

∑
rα

Q2
rα

− J±
4

∑
rα

∑
μ,ν �=μ

�
†
rα+ηαbμ

�rα+ηαbν

× eiηα(Arα ,rα+ηαbν −Arα ,rα+ηαbμ ). (11)

The dominant J‖ term represents the energy cost for the cre-
ation of emergent charges, and J± leads to an intrasublattice
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spinon hopping. Spinons on different diamond sublattices are
effectively decoupled. The Hamiltonian further has the fol-
lowing U (1) gauge structure

�rα
→ �rα

eiχrα ,

Arαr′
β

→ Arαr′
β
− χr′

β
+ χrα

,

as a direct consequence of Gauss’s law (10).

3. Mean-field approximation

To get a tractable model, we fix the gauge field connection
to a constant background A → Ā. This effectively decouples
the dynamical gauge field Hspin and matter HQ sectors. The
spinons are then described by coupled quantum rotors with
background fields. One can formulate such an approximation
as an operator mean-field decoupling [41], a variational calcu-
lation [50], or as a saddle-point approximation of a coherent
state path integral [35]. To fix the gauge field background
Ā, the usual approach is to make an Ansatz with ∇ × Ā = 0
for J± > 0 and ∇ × Ā = π for J± < 0 based on the pertur-
bative argument discussed in Sec. II C 1. However, as shown
in Refs. [35,36], one can consider symmetry fractionalization
in GMFT in a manner analogous to the projective symme-
try group classification for Schwinger bosons and Abrikosov
fermions parton construction [57–60] to compute all gauge
field configurations that respect certain symmetries explicitly.
Such a treatment shows that the only choices that respect all
lattice symmetries (in the absence of external fields) are the 0-
and π -flux states, and thus offer rigorous reasons why we can
restrict ourselves to these two Ansätze.

Even after such approximations, one is still left with cou-
pled quantum rotors, which are inherently interacting systems
because of the hard constraint on their length. In its most used
form, the quantum rotors are then treated using a large-N ap-
proximation by relaxing the operator identity |�†

rα
�rα

| = 1 to
an average one 〈�†

rα
�rα

〉 = κ , which is enforced using a La-
grange multiplier. The most obvious and widely used choice
κ = 1 is plagued by many inconsistencies. It produces the
dispersion ε(k) = J‖ in the Ising limit instead of the expected
result ε(k) = J‖/2. With κ = 1, GMFT also overestimates the
stability of the deconfined phase by predicting that the transi-
tion to a magnetically ordered phase occurs at J±/J‖ ≈ 0.192.
In contrast, QMC results show that it should appear around
J±/J‖ ≈ 0.05 [43,44,46,47,49]. Because it overestimates the
spinon dispersion, GMFT with κ = 1 also predicts that the
two-spinon continuum for 0-flux QSI is about a factor of 2
higher than what is seen in QMC [43]. Surprisingly, all of the
above-mentioned discrepancies can be cured simultaneously
by choosing κ = 2 as explained in Refs. [34,35]. In such a
case, one recovers the expected dispersion in the Ising limit,
agrees with the QMC results of Ref. [43] and the exact diago-
nalization (ED) results of Ref. [38] for the position of the two-
spinon continuum in 0- and π -QSI respectively, and predicts
the transition from 0-QSI to the ordered state at the critical
value J±/J‖ ≈ 0.048. Even if physical results are recovered
with such a simple change, one could still be worried about the
current lack of a clear physical interpretation as to why κ = 2
works and κ = 1 does not. It would thus be advantageous
from a physical, analytical, and numerical point of view if one
could avoid solving the large-N self-consistency equation.

D. Exclusive boson representation

The exclusive boson representation of the O(2) quantum
rotor introduced by Hao, Day, and Gingras in Ref. [45]
is an alternative to the above large-N formulation. In such
a scheme, the local charge Hilbert space HQrα

= {|Q〉|Q ∈
{−2,−1, 0, 1, 2}} is split into the product of two bosonic
Hilbert spaces Hd ⊗ Hb = {|nd , nb〉|nd , nb ∈ Z+} for the
spinons that carry positive (Hd ) and negative (Hb) charges re-
spectively. The initial charge and raising operators are mapped
to

�rα
= 1√

1 + d†
rα

drα
+ b†

rα
brα

(
drα

+ b†
rα

)
, (12a)

Qrα
= d†

rα
drα

− b†
rα

brα
, (12b)

where the creation/annihilation operators satisfy the usual
bosonic canonical commutation relations.

To get a faithful representation of the initial Hilbert space,
we enforce the constraint |�†

rα
�rα

| = 1 by requiring that only
one species of boson can be on a site at a time. This is
equivalent to stating that(

b†
rα

brα

)(
d†

rα
drα

) = nb
rα

nd
rα

= 0 (13)

for all rα , which directly implies that

brα
drα

= b†
rα

d†
rα

= 0. (14)

In terms of the Hilbert space state, this is equivalent to re-
moving all states of the form |nb, nd〉 where both nb �= 0 and
nd �= 0, or equivalently by making the unique identification
|Q〉 = |nd , 0〉 if Q > 0 and |Q〉 = |0, nb〉 if Q < 0. This ex-
clusiveness constraint could be imposed by introducing an
infinitely large repulsion between the b and d bosons or us-
ing a Lagrange multiplier. The finite-occupation constraint
|Qrα

| � 2 also implies that(
b†

rα

)m = (
d†

rα

)m = bm
rα

= dm
rα

= 0 (15)

for any m � 3.

1. Low-density approximation

To get a tractable model, we will first follow Ref. [45]
and assume that the density of bosons is small enough that
boson-boson interactions, as well as the exclusiveness (13)
and maximum occupation constraints (15) can be neglected.
In doing so, the bosonic charge and raising operators take on
the simplified forms

�rα
≈ drα

+ b†
rα

, (16a)

Q2
rα

≈ d†
rα

drα
+ b†

rα
brα

. (16b)

The Hamiltonian, for the matter sector, is then

H = J‖
2

∑
rα

(
d†

rα
drα

+ b†
rα

brα

)

− J±
4

∑
rα

∑
μ,ν �=μ

eiηα(Ārα ,rα+ηαbν −Ārα ,rα+ηαbμ )

× (
d†

rα+ηαbμ
+ brα+ηαbμ

)(
drα+ηαbν

+ b†
rα+ηαbν

)
, (17)
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FIG. 2. (a) Average tetrahedron occupation and (b) spinon gap
as a function J±/J‖ using the low-density exclusive boson approach
(dashed lines) and the self-consistent exclusive boson representa-
tion (full lines). Calculations use 0-flux and π -flux QSI for J± > 0
and J± < 0, respectively (i.e., the lowest-energy state). The black
dash-dotted line in panel (a) is the average occupation in the infinite-
temperature limit 〈n〉 = 3/4.

where the gauge field background is chosen such that ∇ ×
Ā = 0 and ∇ × Ā = π for the 0-flux and π -flux Ansätze,
respectively. Many different gauge-equivalent choices yield
the same fluxes and physical results. In the following, we use
the gauge fixing of Ref. [35] summarized in Appendix B.
The above low-density approximation to the exclusive bo-
son representation has several advantages over the large-N
approach. First, it disentangles all physical processes hid-
den in the hopping term �†� (i.e., spinon-antispinon pair
creation/annihilation and positive/negative spinon hopping)
as shown in the Hamiltonian above. Second, there are no
self-consistency conditions to solve. Last, the physical jus-
tification for the approximation and its expected regime of
validity are clear. Indeed, the above approximation is ev-
idently valid close to the Ising limit (|J±| � J‖) at low
temperature (T � J‖). Beyond such a regime, the validity of
the low-density approximation is uncertain and needs to be
verified.

A byproduct of the absence of self-consistency conditions
to solve is that the above boson Hamiltonian can be diago-
nalized analytically. We present in Appendix B the analytical
form of the dispersion and the Bogoliubov transformation [61]
that diagonalizes the system for 0- and π -QSI. The resulting
ground-state energy per diamond lattice unit cell as a function
of J± is shown in Fig. 1(c). The 0-flux and π -flux phases are
more stable for J± > 0 and J± < 0, respectively, as expected
from the above perturbative argument. We also present in
Fig. 2 the spinon dispersion gap and tetrahedron occupation

density

〈nα〉 = 1

Nd.u.c.

∑
r

(〈
d†

rα
drα

〉 + 〈
b†

rα
brα

〉)
, (18)

where Nd.u.c. is the number of diamond lattice unit cells and
〈n〉 = 〈nA〉 = 〈nB〉 because of the sublattice symmetry. We
see that the bosons condense (i.e., the spinon gap vanishes)
at J±/J‖ = 1/12 for the 0-flux state and at J±/J‖ = −1/4
for the π -flux state. When the bosons condense, the U (1)
QSL undergoes an Anderson-Higgs transition where the U (1)
gauge fluctuations are gapped out. This condensation point
thus signals a transition to a magnetically long-range ordered
phase.

We here comment on a subtle but important point. It is
often mentioned that the spinons are conceptually analogous
to tetrahedra that break the ice rules. One might then be
tempted to identify 〈n〉 with the spinon density. However, the
above conceptual intuition is only approximately valid close
to the Ising limit. Indeed, at zero temperature, the ground
state is always a spinon vacuum independently of the value
of 〈n〉 (see Appendix B for details). The true spinons are
quantum coherent excitations above the QSI ground state,
which is formed by a large superposition of quantum states. In
the perturbative regime, this superposition is mostly formed
by states in the 2-in-2-out manifold, implying that 〈n〉 ≈ 0.
However, far from the Ising point, spin configurations that
break the ice rules can also have a significant contribution (i.e.,
〈n〉 �= 0). We then emphasize that 〈n〉 is not to be confused
with the average spinon number. As such, we will refer to it
as the average tetrahedron occupation in the rest of the article.

Coming back to Fig. 2, the tetrahedron occupation remains
negligible even at the transition point for 0-QSI. The gap also
closes for a similar value to QMC. This justifies a posteri-
ori the small density approximation for the 0-flux phase. In
contrast, for the π -flux phase, the transition seen at J±/J‖ =
−1/4 contradicts numerous existing results. Indeed, the large-
N approach to GMFT [36,42], ED [32,62], pseudofermion
renormalization group [39], finite-temperature Monte Carlo
[63], numerical linked cluster, series expansion [64], and
convolutional neural network quantum states variational cal-
culations [65] all predict that there should not be any phase
transition as J±/J‖ is tuned from the Ising to the Heisenberg
point (i.e., J±/J‖ = −1/2). The above failure of the low-
density approximation to the exclusive boson representation
can be rationalized by noticing the sharp rise of the density
around the condensation point in Fig. 2(a). The tetrahedron
occupation even rises above the infinite-temperature limit
〈n〉 = 3/4. When T → ∞ all 16 tetrahedron configurations
become equally likely (i.e., six 2-in-2-out, four 3-in-1-out,
four 1-in-3-out, and two all-in-all-out) such that 〈n〉 = 3/4. In
this high-occupation regime, the low-density approximation
fails and is naturally expected to yield unphysical results.

2. Self-consistent scheme

Although the above “zeroth-order” low-density approxi-
mation is valid for small values of the transverse coupling
|J±| and low temperatures, we have seen that it breaks down
in physically relevant cases where the density of spinons be-
comes non-negligible, such as the π -QSI for large |J±|. To
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improve the quantitative agreement of the theory, a natural ap-
proach would be to try and rigorously consider bosons-boson
interactions generated by higher-order terms in the density
expansion and the exclusiveness constraint.

Instead, we propose to consider the spinon interactions in a
mean-field manner by introducing the self-consistent exclusive
boson representation (SCEBR) of the quantum rotor. In this
SCEBR, the rotor operator of Eq. (12a) is replaced by

�rα
≈ 1√

1 + 〈nα〉
(
drα

+ b†
rα

)
, (19)

where the mean-field parameter 〈nα〉 is determined self-
consistently using Eq. (18). In this framework, the spinon
hopping term is now

J±�
†
rα+ηαbμ

�rα+ηαbν
≈ J±

1 + 〈nβ〉
(
d†

rα+ηαbμ
+ brα+ηαbμ

)
× (

drα+ηαbν
+ b†

rα+ηαbν

)
, (20)

where β �= α. It can then be seen that the only effect of the
SCEBR is to renormalize the transverse coupling J± to the
smaller value

J̃± = J±
1 + 〈n〉 , (21)

where once again 〈n〉 = 〈nA〉 = 〈nB〉 because the two sublat-
tices are decoupled. Therefore, the presence of tetrahedra that
break ice rules inhibits, in an average way, the hopping of
spinons on the lattice.

Looking at Fig. 2, the results for 0-QSI using the SCEBR
are, for all intent and purposes, unaffected since the tetrahe-
dron occupation always remains negligible such that J̃± ≈ J±.
For π -QSI, the position of the magnetic transition signifi-
cantly changes and occurs just before the Heisenberg point.
This prediction is in much better agreement with existing
results from the literature. Hence, the SCEBR is expected to
be valid for a larger parameter regime than the low-density ap-
proximation. It thus makes the exclusive boson representation
a useful analytical tool in more physical situations of interest.
The following sections explore physical predictions from the
SCEBR at zero and finite temperatures.

III. RESULTS AT T = 0

We first explore physical predictions of the SCEBR at
T = 0 for both the 0- and π -flux phases. The main purpose

of this section is to benchmark the T = 0 results of the
SCEBR in comparison to other methods such as the large-N
approach [36] and exact diagonalization [38]. We find that
the agreement between the SCEBR with previous theoretical
investigations and experiments [19,21,27] gives strong sup-
port to its validity. In the next section, we move on to use
the SCEBR in a relatively less explored theoretical territory:
spinon behavior at finite temperatures.

Notice that the only effect of the SCEBR, in com-
parison to the previous exclusive boson approach without
self-consistency, is to replace the microscopic transverse cou-
pling J± by the renormalized one J̃±. Therefore, the analytical
expression for the dispersion and Bogoliubov transformation
that diagonalize the system with the SCEBR are the same as
in the low-density approximation with the simple replacement
J± → J̃±. Detailed derivations of these expressions are given
in Appendix B. For 0-QSI, there is a single spinon band of the
form

ε0-flux(k) = 1

2

√√√√√J‖

⎛
⎝J‖ − 2J̃±

∑
a,b�=a

cos

(
ka

2

)
cos

(
kb

2

)⎞⎠,

(22)

where the wavevector is written in global Cartesian coordi-
nates k = kxx̂ + kyŷ + kzẑ. It is then straightforward to see
that the spinon gap is located at the zone center and given
by

�0-flux
spinon = 1

2

√
J‖(J‖ − 12J̃±), (23)

such that the critical value of the transverse coupling at which
the spinons condense (i.e., the transition point from the U (1)
QSL to the ordered state) is

(
J̃±
J‖

)0-flux

c

= 1

12
(24)

as mentioned previously.
For π -QSI, translation symmetry is fractionalized

[35,36,53,66,67]. This leads to an enlargement of the unit cell
and a spectral periodicity enhancement of the dispersion. We
then find that π -QSI has two nondegenerate bands

επ-flux
± (k) = 1

2

√
J‖(J‖ ± 2

√
J̃2±(3 − sin(kx ) sin(ky) − sin(kx ) sin(kz ) − sin(ky) sin(kz ))) (25)

with a gap of

�π-flux
spinon = 1

2

√
J‖(J‖ − 4|J̃±|), (26)

which implies that the spinons condense at(
J̃±
J‖

)π-flux

c

= 1

4
. (27)

The above dispersion has a particular structure, which is
also present in the large-N approach [36,42]. There are lines
of dispersion minima (maxima) that occur for the επ-flux

− (k)
(επ-flux

+ (k)) band at momenta

ka = (
n + 1

2

)
π, kb = (

n + 2m − 1
2

)
π, kc ∈ R, (28)

where n, m ∈ Z, and (a, b, c) is any permutation of the
(x, y, z) triplet.
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Next, to make a connection with experiments and com-
pare the SCEBR with previous theoretical investigations using
the large-N theory, we compute the dynamical spin structure
factor

Sab(q, ω) = 1

Nd.u.c.

∑
Ri,R′

j

Pab
i j (q)eiq·(Ri−R′

j )

×
∫

dteiωt
〈
Sa

Ri
(t )Sb

R′
j
(0)

〉
, (29)

which is directly relevant for momentum-resolved inelastic
neutron scattering experiments. With unpolarized neutrons,
the prefactor denotes the transverse projector

Pab
i j (q) =

[
êa

i · êb
j −

(
êa

i · q
)(

êb
j · q

)
|q|2

]
, (30)

where êa
i are basis vectors (i.e., a = x, y, z) for the local

spin coordinates at the i = 0, 1, 2, 3 pyrochlore sublattice (see
Appendix A).

In the following, we will report Szz(q, ω) since these are
the dynamical correlations that are directly relevant for in-
elastic neutron scattering on dipolar-octupolar candidates. In
dipolar-octupolar systems, two of the pseudospin components
(Sx, Sz) transform as dipoles and one (Sy) as an octupole. This
implies that the most general symmetry allowed Hamiltonian
with nearest-neighbor coupling can be written as an XYZ
model H = ∑

〈RiR′
j〉[JxxSx

Ri
Sx

R′
j
+ JyySy

Ri
Sy

R′
j
+ JzzSz

Ri
Sz

R′
j
] and

that the magnetic field linearly couples only to Sx and Sz.
However, gxx ≈ 0 due to the underlying octupolar magnetic
charge density of Sx [16,26]. Neutron scattering at small mo-
mentum transfer is then only sensitive to 〈SzSz〉 correlations.
In the case where the dominant interaction is between Sz

components (i.e., J‖ = Jzz), this implies that neutrons only see
the emergent photon 〈SzSz〉 ∼ 〈EE〉 since Sz ∼ E from the
above mapping to emergent quantum electrodynamics. In con-
trast, if the dominant coupling in the XYZ model is between
the Sx or Sy components (i.e., J‖ = Jxx or J‖ = Jyy) neutrons
scattering would probe the two-spinon continuum 〈SzSz〉 ∼
〈�†��†�〉. In the former case, the spin structure factor can
be computed using Gaussian quantum electrodynamics, as
explained in Ref. [11]. In the latter, GMFT (using the large-N
or SCEBR) provides an analytical tool to make predictions
about measurements. Experiments on dipolar-octupolar com-
pounds Ce2Zr2O7 [21,22,24,25], Ce2Sn2O7 [17,26,27], and
Ce2Hf2O7 [28,29] indicate that, in all of them, the dominant
coupling is either Jxx or Jyy. We will similarly assume that
J‖ = Jxx or J‖ = Jyy [i.e., 〈SzSz〉 is independent of this choice
because of the U (1) symmetry of the XXZ model]. The 〈SzSz〉
correlations are then determined by the spinons and directly
relevant to experiments on dipole-octupole systems. Detailed
derivation and analytical expressions for the dynamical spin
structure factor at finite temperature are given in Appendix C.

Figure 3 presents the spinon dispersion and Szz(q, ω) for
0-QSI. Alongside these results, the single spinon density of
states (DOS)

ρ (1)(ω) =
∑
k,m

δ(ω − εm(k))/Nu.c. (31)
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FIG. 3. (a) Spinon dispersion and corresponding single spinon
density of states ρ (1)(ω), and (b) dynamical spin structure factor
Szz(q, ω) (assuming J‖ = Jxx or J‖ = Jyy) and two-spinon density of
states ρ (2)(ω) for 0-flux QSI with J±/J‖ = 0.06. White lines repre-
sent the lower and upper edges of the two-spinon continuum.

and the two-spinon density of states

ρ (2)(ω) =
∑

k,q,m,n

δ(ω − εm(k) − εn(q))/N2
u.c. (32)

=
∫

d�ρ (1)(�)ρ (1)(ω − �) (33)

are also shown. In the above equations, m, n are band indices,
Nu.c. is the number of GMFT unit cells, and the sum is over the
associated reduced first Brillouin zone. As already mentioned,
the spinon dispersion has a single band with a minimum at the
zone center. The associated dynamical spin structure factor
produces a broad signal with most of the spectral weight close
to the upper edge of the two-spinon continuum. This observa-
tion can be understood by noticing that the two-spinon DOS
is negligible close to the lower edge and reaches its maximum
around the upper edge of the continuum. These results are
similar to the ones obtained in the large-N [36] approach and
also consistent with the QMC results of Ref. [43].

For π -QSI, the spinon dispersion and dynamical corre-
lations are reported in Fig. 4. The two primarily flat bands
can be clearly observed. Associated with this dispersion,
the single spinon DOS has two peaks centered around the
flat bands and vanishes at intermediate energy, where the
two bands meet at Dirac points. The dynamical spin struc-
ture factor has three peaks as a function of energy for
a given momentum transfer (the third peak close to the
upper edge of the two-spinon continuum is faint). These
peaks are a smoking-gun signature unique to π -QSI as high-
lighted in Ref. [36]. The three-peak structure is a direct
consequence of the two flat spinon bands. To understand
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FIG. 4. (a) Spinon dispersion and corresponding single spinon
density of states ρ (1)(ω), and (b) dynamical spin structure factor
Szz(q, ω) (assuming J‖ = Jxx or J‖ = Jyy) and two-spinon density
of states ρ (2)(ω) for π -flux QSI with J±/J‖ = −0.2. White lines
represent the lower and upper edges of the two-spinon continuum.

this observation, one should recall that the dynamical spin
structure factor is weighted by the two-spinon DOS (see
Appendix C). Using the definition of the two-spinon DOS
(32), it can be seen that there are three main contribu-
tions ρ (2)(ω) ∼ ∑

k,q δ(ω − ε−(k) − ε−q) + δ(ω − ε−(k) −
ε+q) − δ(ω − ε+(k) − ε+q). The first contribution with two
spinons in the lower band yields the lowest-energy peak, the
second one with two spinons in different bands corresponds
to the intermediate peaks, and the third one is due to two
spinons in the second spinon band. Recent experiments on
candidate material Ce2Sn2O7 have reported hints of this three-
peak structure using backscattering neutron spectroscopy on
powder samples [27].

Figure 5 presents the equal-time (energy-integrated) struc-
ture factor Szz(q) = ∫

dωSzz(q, ω) in the (h, h, l ) plane for
0- and π -QSI. It also reports the contribution to the equal-
time structure factor for the spin-flip Szz

SF(q) and nonspin-flip
Szz

NSF(q) channels with neutron polarized perpendicular to
the scattering plane. These quantities are relevant to energy-
integrated inelastic neutron scattering with polarized neutrons.
Szz

SF(q) and Szz
NSF(q) are calculated using Eq. (29) using the

prefactors Pzz
i j,SF(q) = (êz

i · ẑsc)(êz
j · ẑsc) and Pzz

i j,NSF(q) = (êz
i ·

q×ẑsc

|q×ẑsc| )(ê
z
j · q×ẑsc

|q×ẑsc| ), respectively, where ẑsc is a unit vector
perpendicular to the scattering plane.

When examining the figure, it should be noticed that the
equal-time structure factor for 0- and π -flux show inverse
patterns in intensity. This offers another way to distinguish
0- and π -QSI experimentally. In particular, π -flux (0-flux)
QSI displays a high-intensity (low-intensity) snowflake-like
pattern (or so-called rod motifs [68]) in Szz(q) and Szz

SF(q).
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FIG. 5. (1) Equal-time structure factor Szz(q) in the (h, h, l )
plane and its contribution to the (2) spin-flip and (3) nonspin flip
channel with neutrons polarized perpendicular to the scattering plane
for (a) π -flux QSI with J±/J‖ = −0.2 and (b) 0-flux QSI with
J±/J‖ = 0.06.

The nonspin-flip channel of the π -flux (0-flux) state shows
strong scattering along the zone boundaries (zone center).
This inverted intensity can be understood by noticing that
at the Ising point, the dominant spin component correlations
〈S‖S‖〉 show strong classical spin ice correlation (e.g., pinch
points [13,69,70]), whereas the two transverse correlators
(〈SzSz〉 and 〈SySy〉 if J‖ = Jxx or 〈SzSz〉 and 〈SxSx〉 if J‖ =
Jyy) are completely flat and featureless in momentum space.
When the transverse coupling J± becomes nonzero, the domi-
nant correlations remain mostly unaffected, but the transverse
ones develop ferromagnetic (antiferromagnetic) correlations
for J± < 0 (J± > 0). Since 〈SzSz〉 is mainly determined by J±,
it is natural to understand why it essentially shows the oppo-
site behavior when J± changes sign. The SCEBR predictions
for the equal-time structure factor of π -QSI should also be
compared with energy-integrated inelastic neutron scattering
measurements on candidate material Ce2Zr2O7 [19,21]. The
two are strikingly similar.

IV. FINITE-TEMPERATURE RESULTS

A. Thermodynamics and crossovers

Another advantage of the SCEBR formulation is that it can
be straightforwardly generalized to study QSI at finite tem-
peratures. Instead of using a ground-state expectation value
when computing 〈n〉 in the self-consistency condition (21),
one simply has to use a thermal average. As an example of
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FIG. 6. (a) Average tetrahedron occupation as a function of tem-
perature and transverse coupling. Also shown is the approximate
scaling of the vison gap �vison ∼ 12|J±|3/J2

‖ and a contour line for
the tetrahedron occupation in the T → ∞ limit 〈n〉 = 3/4. (b) The
associated renormalized transverse coupling J̃± = J±/(1 + 〈n〉).

results that can be obtained with the formulation, Figure 6(a)
presents the average tetrahedron occupation as a function of
temperature and transverse coupling for both 0- and π -QSI.
As expected, we see that the tetrahedron occupation slowly
rises as a function of temperature up to a point where it even
goes beyond the T → ∞ limit 〈n〉 = 3/4. The fact that the
occupation goes beyond this value is an artifact of the the-
ory because the exclusiveness (13) and maximum occupation
constraints (15) have been dropped. The contour line that in-
dicates when the system reaches 〈n〉 = 3/4 is an approximate
indicator of the temperature where the system crosses over
from a constrained (cooperative) to a trivial high-temperature
paramagnet. This estimate for the crossover position is of the
same order of magnitude as in QMC, where the crossover
region starts at about kBT/J‖ = 1 and ends around kBT/J‖ =
0.1 for 0-QSI [43,44]. The 〈n〉 = 3/4 line also provides an
estimate for the range of validity of the SCEBR since the
theory should only be valid at temperatures below this limit.
Figure 6(a) also shows the estimated scaling of the vison gap
[i.e., magnetic monopole of the emergent U (1) gauge the-
ory] as a function of transverse coupling �vison ∼ 12|J±|3/J2

‖
[10,15,71–74]. Above this energy scale, thermally excited
gauge fluxes should become increasingly important. Such a
graphical representation of the different energy scales at play
highlights crucial differences between 0- and π -QSI at finite
temperatures.

The finite-temperature behavior of 0-flux QSI is already
well established [43,44,46,47]. As the system is cooled down,
it undergoes two successive crossovers at temperatures that
we will denote by T1 and T2. These are characterized by
(nonsingular) peaks in the heat capacity. The first one occurs
around kBT1 = O(J‖), and marks a transition from a trivial
paramagnet to classical spin ice (i.e., a constrained or cooper-

ative paramagnet). At this crossover, the entropy per site goes
from the high-temperature limit of S = kB ln(2) to a plateau
around Pauling’s entropy S = kB ln(3/2)/2. This signals that,
after the crossover, the system is energetically constrained to
the spin ice manifold and is described by thermal fluctuations
within these 2-in-2-out states. At the second crossover tem-
perature controlled by the vison gap kBT2 = O(J3

±/J2
‖ ), the

entropy is quenched S → 0 as the system transitions from a
classical to a quantum spin liquid with genuine deconfined
fractional excitations and emergent gauge fields. After this
temperature, the fluxes are frozen, and the dynamic of the
system is controlled by quantum coherent effects rather than
thermal fluctuations. Because the 0-flux phase is only stable
for small values of the transverse coupling, the vison gap is
always much smaller than the leading coupling. Consequently,
the first and second crossover are well separated (i.e., kBT1 �
kBT2). This is clearly seen in Fig. 6(a) where the 〈n〉 = 3/4
contour line is always at a much higher temperature than the
approximate vison gap for J± > 0.

This should be contrasted with π -QSI. Due to its enhanced
stability to the transverse coupling, there is a significant pa-
rameter regime where the vison gap and leading coupling J‖
are of the same order of magnitude. This has important con-
sequences. First, it implies that one can reach the QSI regime
(kBT < kBT1 and kBT < kBT2) at much higher temperatures
relative to the microscopic exchange scale J‖. This makes
the prospect of experimentally accessing the QSI regime with
currently available methods much more promising in the π -
flux than the 0-flux phase. Second, the similar energy scale
of the vison and spinon gap implies that one should expect
a single crossover directly from the trivial paramagnet to
the QSI. In thermodynamic measurements, one should then
expect a single broad nonsingular peak in the heat capacity
where the entropy per site goes from S = ln(2) to zero without
any intermediate plateau. Of course, the vison gap should
be significantly renormalized compared to the naive scaling
illustrated in Fig. 6 for large values of |J±|/J‖. Nevertheless,
we expect the above arguments to remain valid.

B. Finite-temperature spinon dynamics

Figure 6(b) presents the associated renormalized trans-
verse coupling as a function of temperature. Because of the
rise in the average tetrahedron occupation, the renormalized
transverse coupling slowly decreases as the temperature is in-
creased for a given initial value of J±/J‖. Transverse coupling
mediates spinon hopping in the XXZ model. The above thus
describes a thermal inhibition of spinon hopping processes.
Indeed, a high density of tetrahedron occupancy should dis-
favor spinon hopping since it reduces the number of hopping
processes possible, and double tetrahedron occupancy is en-
ergetically disfavored. The SCEBR thus captures this effect
in an average way through a self-consistent reduction of the
transverse coupling.

To see the potential physical consequences of this ther-
mally induced spinon hopping suppression, we present the
dynamical spin structure factor Szz(q, ω) at finite tempera-
tures up to kBT/J‖ = 0.4 in Figs. 7 and 8 for 0- and π -QSI,
respectively. As already mentioned, the SCEBR should not
remain valid up to these very high temperatures. Nevertheless,
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FIG. 7. Finite-temperature dynamical spin structure factor
Szz(q, ω) (assuming J‖ = Jxx or J‖ = Jyy) for 0-QSI with J±/J‖ =
0.06 at (a) kBT/J‖ = 0.1, (b) kBT/J‖ = 0.2, (c) kBT/J‖ = 0.3, and
(d) kBT/J‖ = 0.4. The multiplicative factor is the scale of the color-
bar with respect to results at kBT/J‖ = 0.1.

we push through in order to see what potential effects the
theoretical formulation captures/misses at these finite tem-
peratures. The first effect, which is immediately noticeable
upon inspection of these figures is the reduction of the en-
ergy range where Szz(q, ω) is nonzero (i.e., the width of
the two-spinon continuum) with increasing temperature. This
thermal suppression of the spinon bandwidth has been seen
in QMC simulation on 0-QSI. Ref. [43] reported that the
bandwidth of the transverse dynamical spin structure factor
decreases when temperature increases. In this QMC study,
the continuum also evolves from having clear local maxima
at specific high-symmetry points to mostly featureless and
momentum independent. The SCEBR thus offers an analytical
approach that captures some of these effects and provides a
clear underlying mechanism.

Nonetheless, we emphasize that important physical effects
are clearly missed due to the approximations that go into
the SCEBR of GMFT. Most notably, The approach does not
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FIG. 8. Finite-temperature dynamical spin structure factor
Szz(q, ω) (assuming J‖ = Jxx or J‖ = Jyy) for π -QSI with J±/J‖ =
−0.2 at (a) kBT/J‖ = 0.1, (b) kBT/J‖ = 0.2, (c) kBT/J‖ = 0.3, and
(d) kBT/J‖ = 0.4. The multiplicative factor is the scale of the color-
bar with respect to results at kBT/J‖ = 0.1.

consider thermally excited fluxes (i.e., visons) that should
undoubtedly play an important role at high temperatures. In
a sense, GMFT only considers the average (0 or π ) flux back-
ground while neglecting any fluctuation around it. It is known
that the presence of random thermal fluxes can also lead to
the localization of fractional excitation in spin liquids [75–78].
Thermal fluxes thus also provide an additional explanation for
the suppression of the continuum bandwidth reported in QMC
but are not considered by our current description.

Another notable effect seen in Figs. 7 and 8, is the
emergence of a quasielastic signal close to ω = 0. The
physical origin of this signal is most explicit by remarking
that the dynamical spin structure factor is of the generic
form (see Appendix C) Szz(q, ω) ∼ ∑

k,m,n(1 + nB(εm(k)))
(1 + nB(εm(k − q)))δ(ω − εm(k) − εn(k − q)) + nB(εm(k))
(1 + nB(εm(k − q)))δ(ω + εm(k) − εn(k − q)) + nB(εm(k))
nB(εm(k − q))δ(ω + εm(k) + εn(k − q)), where nB is the
Bose-Einstein distribution. At zero temperature, when
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the ground state is a spinon vacuum, the only allowed
process in inelastic neutron scattering is the scattering of the
neutron by the creation of a spinon pair from the vacuum
[i.e., δ(ω − εm(k) − εn(k − q))]. Accordingly, Szz(q, ω)
is only nonzero within the two-spinon continuum. At
finite temperature, there is a finite density of thermally
excited spinons. A neutron can then be scattered by
deexciting a thermal spinon while exciting another one [i.e.,
δ(ω + εm(k) − εn(k − q))] for an approximately vanishing
net energy transfer. It is exactly this kind of process that leads
to the quasielastic contribution seen in the dynamical spin
structure factor.

V. DISCUSSION

In this paper, we have introduced the self-consistent ex-
clusive boson representation (SCEBR). The SCEBR is an
analytical description of spinon excitations in QSI based on
the GMFT construction that, rather than using a large-N ap-
proximation, represents the O(2) quantum rotor by a set of
two mutually exclusive bosons as in Ref. [12]. We have shown
that the low-density approximation initially introduced fails
for the π -flux phase beyond the perturbative Ising limit. To
mediate these issues and extend the range of validity of the
exclusive boson construction, the effect of a finite density
of emergent charges can be treated in an average way. The
essential element of the SCEBR is a self-consistent reduction
of spinon hopping caused by the presence of neighboring
emergent charges.

We have then explored the formalism and its physical
predictions in detail. We have used analytical expressions
for the spinon dispersion and Bogoliubov transformation to
compute the dynamical and equal-time spin structure factor
of 0- and π -QSI. This was used to show that the spinon
contribution to the DSSF has a broad continuum with a single
peak as a function for energy for the 0-flux state in contrast
to three sharp peaks for π -flux—in agreement with previous
large-N treatment [36]. The equal-time structure factors rel-
evant for dipolar-octupolar systems Szz(q) display snowflake
patterns in the (h, h, l ) that are opposite in intensity for 0-
and π -QSI, consistent with ED [38] and pseudofermion func-
tional renormalization group [39]. We then moved to discuss
finite-temperature results. Our approach highlighted apparent
differences in thermodynamic expectation for the π - and 0-
flux cases. There should be a single crossover from a trivial
paramagnet to the QSL for π -QSI (beyond the perturbative
Ising limit) in contrast to two crossovers with an intermediate
classical spin ice regime for 0-QSI. Examination of spinon
dynamics at finite temperature further highlighted that the
SCEBR predicts a reduction of the two-spinon continuum
width with temperature due to hopping suppression by ther-
mally excited charges. A similar effect was previously noted
in QMC simulation on 0-QSI.

The SCEBR thus offers an analytical approach that has
been benchmarked and can be readily used to study material
QSI candidates. It should further be noted that the SCEBR has
several advantages over the usual large-N approach to GMFT.
It is more analytically tractable, and its expected range of
validity is more evident due to its transparent physical motiva-
tion. Separating the positive and negative charges makes the

physical interpretation and calculations of different processes
more explicit. It also yields more sound results when studying
finite-temperature phenomena [50]. A final advantage already
emphasized and explored in Ref. [45] is that the method is
more straightforwardly amenable to improvement via stan-
dard diagrammatic many-body treatments than the large-N
approach.

The SCEBR opens the door to many theoretical investi-
gations of interest. The model could be used to study the
XYZ model or any other more general microscopic model
of interest rather than the simple XXZ considered in this
article. It could be interesting to see how the phase diagram
predicted by the SCEBR differs from the ones obtained for
the symmetry-allowed model relevant to the dipolar-octupolar
[36], the effective spin-1/2 [41,50], and the Non-Kramers
cases [42]. Similarly, one could look at how predictions for
the equal-time and dynamical correlations differ from results
obtained using the large-N and other methods for these more
general models.

On top of being used in more general and complex
situations, the formalism could also be extended in many
significant ways. One could explicitly consider spinon-gauge
interactions by expanding gauge fluctuations around the sad-
dle point (i.e., A → A + Ã) similarly to Refs. [45,56,79].
When solving the self-consistency condition in the SCEBR,
one would have to use the full interacting Green’s function
rather than the noninteracting one. It would be interesting
to see how predictions for the phase diagram and dynamical
properties differ in the interacting and noninteracting cases.
As mentioned in the main text, an important aspect neglected
in the current formulation is the presence of thermally excited
fluxes that should play an important role at finite temperatures.
It would be highly desirable to construct a model that could
incorporate these to have more accurate models of QSI at
finite temperatures. This is especially true for π -QSI, where
physical insight is much harder to develop due to the sign
problem in QMC. The SCEBR could potentially be a starting
point for such a nontrivial generalization. More broadly, we
hope this alternative approach can help guide the search for
QSI materials by offering a tool to help interpret measure-
ments and potentially highlight novel experimental signatures.
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APPENDIX A: LOCAL COORDINATES

Spins on the four different pyrochlore sublattices are
defined in a local frame. The basis vectors of these sublattice-
dependant coordinates systems are given in Table I.
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TABLE I. Local sublattice basis vectors.

i 0 1 2 3

êz
i

1√
3
(1, 1, 1) −1√

3
(−1, 1, 1) −1√

3
(1, −1, 1) −1√

3
(1, 1, −1)

êy
i

1√
2
(0, −1, 1) 1√

2
(0, 1, −1) −1√

2
(0, 1, 1) 1√

2
(0, 1, 1)

s êx
i

1√
6
(−2, 1, 1) −1√

6
(2, 1, 1) 1√

6
(2, 1, −1) 1√

6
(2, −1, 1)

APPENDIX B: ANALYTICAL DIAGONALIZATION
OF THE QUADRATIC HAMILTONIANS

1. Generalities

By Fourier transforming the field operator for the b and d
bosons

brα
= 1√

Nu.c.

∑
k

bk,rs,αeik·rα , (B1a)

drα
= 1√

Nu.c.

∑
k

dk,rs,αeik·rα , (B1b)

where Nu.c. is the number of unit cells for a given GMFT
Ansatz, and the sum is over the associated reduced first Bril-
louin zone, the Hamiltonian can be rewritten as

H =
∑

k

∑
α∈{A,B}

��†
k,αHα (k) ��k,α. (B2)

We have introduced the notation

��†
k,α = (

d†
k,1,α, ..., d†

k,Ns,α
, b†

k,1,α, ..., b†
k,Ns,α

,

× d−k,1,α, ..., d−k,Ns,α, b−k,1,α, ..., b−k,Ns,α

)
. (B3)

Ns is the number of diamond unit cells in the GMFT unit cells
of a specific Ansatz. Ns = 1 and Ns = 4 for 0- and π -flux,
respectively.

In all cases, provided the Hα matrix is positive definite, we
can diagonalize it with a Bogoliubov transformation Pα (k) of
the form

��k,α = Pα (k)��k,α, (B4)

where the new eigenmodes

��†
k,α =(

γ
†
k,1,α, ..., γ

†
k,2Ns,α

, γ−k,1,α, ..., γ−k,2Ns,α

)
(B5)

are defined such that

P†
α (k)Hα (k)Pα (k)

= diag(ε1,α (k), ..., εNs,α (k), ε1,α (k), ..., εNs,α (k))

= diag(ω1,α (k), ..., ω2Ns,α (k)). (B6)

To preserve the canonical commutation relation, the Bogoli-
ubov transformation has to satisfy the para-unitary condition
[61]

P†
α (k)JPα (k) = J, J = (σ z ⊗ 12NSL,2NSL ). (B7)

One can directly find the spectrum by computing the
eigenvalues of JHα . The eigenvalues of this matrix are
(ε1,α (k), ..., εNs,α (k),−ε1,α (k), ...,−εNs,α (k)).

To make calculations and interpretation more explicit, we
can consider the different blocks of the Bogoliubov transfor-

mation

Pα (k) =
(

P11
α (k) P12

α (k)

P21
α (k) P22

α (k)

)
. (B8)

These different blocks satisfy

(
P11

α (k)
)∗ = P22

α (−k), (B9a)(
P12

α (k)
)∗ = P21

α (−k), (B9b)

and can be used to conveniently rewrite the initial b and d
bosons in terms of the γ eigenmodes as

bk,rs,α =
2Ns∑
σ=1

([
P11

α (k)
]

(b,rs ),σ γk,σ,α + [
P12

α (k)
]

(b,rs ),σ γ
†
−k,σ,α

)
,

(B10a)

dk,rs,α =
2Ns∑
σ=1

([
P11

α (k)
]

(d,rs ),σ γk,σ,α + [
P12

α (k)
]

(d,rs ),σ γ
†
−k,σ,α

)
,

(B10b)

b†
k,rs,α

=
2Ns∑
σ=1

([
P11

α (k)
]∗

(b,rs ),σ γ
†
k,σ,α + [

P12
α (k)

]∗
(b,rs ),σ γ−k,σ,α

)
,

(B10c)

d†
k,rs,α

=
2Ns∑
σ=1

([
P11

α (k)
]∗

(d,rs ),σ γ
†
k,σ,α + [

P12
α (k)

]∗
(d,rs ),σ γ−k,σ,α

)
,

(B10d)

where the following notation is used

(d, rs) ≡ rs, (B11a)

(b, rs) ≡ rs + Ns. (B11b)

These eigenmodes satisfy

〈γ †
k,σ,αγq,ρ,β〉 = nB(ωσ,α (k))δk,qδσ,ρδα,β, (B12)

where nB(ωσ (k)) is the Bose-Einstein distribution. This
directly implies that the Bogoliubov operator annihilates
the ground state at T = 0 (i.e., the ground state is a
Bogoliubov/spinon vacuum),

γk,σ,α|ψGS〉 = 0. (B13)

The corresponding ground-state energy per diamond lattice
unit cell is

EG.S. = 1

Nu.c.

∑
k,σ,α

(
ωσ,α (k) − 1

2

)
. (B14)
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2. Diagonalization of the 0-flux Hamiltonian

For the 0-flux phase, the gauge field background is Ārα,r′
β

=
0 everywhere. The corresponding Hamiltonian is

H0-flux
α (k)

= J‖
2
14×4 − J̃±

4

⎛
⎜⎜⎜⎜⎝

M(k) 0 0 M(k)

0 M(k) M(k) 0

0 M(k) M(k) 0

M(k) 0 0 M(k)

⎞
⎟⎟⎟⎟⎠,

(B15)

where we have defined

M(k) =
∑
i, j �=i

eik·(ai−a j )

= 4

(
cos

(
kx

2

)
cos

(
ky

2

)
+ cos

(
kx

2

)
cos

(
kz

2

)

+ cos

(
ky

2

)
cos

(
kz

2

))
. (B16)

By direct diagonalization of the matrix JH0-flux(k), one can
find that there is a single nondegenerate spinon band of the
form

ε(k) = 1
2

√
J‖(J‖ − J̃±M(k)), (B17)

as stated in the main text.
Furthermore, the Hamiltonian can be diagonalized by a

Bogoliubov transformation of the form

P(k) =

⎛
⎜⎜⎜⎜⎜⎝

cosh(θk ) 0 0 sinh(θk )

0 cosh(θk ) sinh(θk ) 0

0 sinh(θk ) cosh(θk ) 0

sinh(θk ) 0 0 cosh(θk )

⎞
⎟⎟⎟⎟⎟⎠,

(B18)

where θk satisfies

tanh (2θk ) = J̃±M(k)

2J‖ − J̃±M(k)

�⇒ θk = 1

2
ln

(√
J‖

J‖ − J̃±M(k)

)
, (B19)

such that

cosh (2θk ) = (2J‖ − J̃±M(k))

2
√

J‖(J‖ − J̃±M(k))

= 1

ε(k)

(
J‖
2

− J̃±
4

M(k)

)
, (B20a)

sinh (2θk ) = J̃±M(k)

2
√

J‖(J‖ − J̃±M(k))

= J̃±M(k)

4ε(k)
, (B20b)

as already established in Ref. [45].

3. Diagonalization of the π-flux Hamiltonian

In the π -flux QSI phase, we use the same gauge fixing as
in Refs. [35,36]

Ā(r1,r2,r3 )A,(r1,r2,r3 )B
= 0, (B21a)

Ā(r1,r2,r3 )A,(r1+1,r2,r3 )B
= n1π (r2 + r3), (B21b)

Ā(r1,r2,r3 )A,(r1,r2+1,r3 )B
= n1πr3, (B21c)

Ā(r1,r2,r3 )A,(r1,r2,r3+1)B
= 0. (B21d)

The associated Hamiltonian matrix takes the form

Hπ-flux
α

= J‖
2
116×16 − J̃±

2

⎛
⎜⎜⎜⎜⎝

Nα (k) 0 0 Nα (k)

0 Nα (k) Nα (k) 0

0 Nα (k) Nα (k) 0

Nα (k) 0 0 Nα (k)

⎞
⎟⎟⎟⎟⎠,

(B22)
with

NA(k) =

⎛
⎜⎜⎜⎜⎝

C(ky, kz ) C(kx, kz ) − iS(kx, ky) C(kx, ky) − iS(kx, kz ) −iS(ky, kz )

C(kx, kz ) + iS(kx, ky) −C(ky, kz ) −iS(ky, kz ) C(kx, ky) + iS(kx, kz )

C(kx, ky) + iS(kx, kz ) iS(ky, kz ) −C(ky, kz ) −C(kx, kz ) − iS(kx, ky)

iS(ky, kz ) C(kx, ky) − iS(kx, kz ) −C(kx, kz ) + iS(kx, ky) C(ky, kz )

⎞
⎟⎟⎟⎟⎠, (B23a)

NB(k) = (NA(k))∗, (B23b)

where we have used the following notation to simplify the
presentation

C(ka, kb) = cos

(
ka + kb

2

)
= C(kb, ka), (B24a)

S(ka, kb) = sin

(
ka − kb

2

)
= −S(kb, ka). (B24b)

By direct diagonalization of the matrix JHπ-flux(k), one can
find that there are two nondegenerate spinon bands of the form

ε±(k) = 1
2

√
J‖(J‖ ± 2|J̃±|λ(k)) (B25)

with
λ(k) = [3 − sin (kx ) sin(ky) − sin (kx ) sin (kz )

− sin(ky) sin (kz )]1/2, (B26)
as presented in the main text.
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The Hamiltonian can be diagonalized in two steps. First,
we perform a block-diagonal unitary transformation of the
form [since the matrix is block diagonal, it is a valid Bogoli-
ubov transformation that respects Eq. (B7)]

Uα (k) =

⎛
⎜⎜⎝

Uα (k) 0 0 0
0 Uα (k) 0 0
0 0 Uα (k) 0
0 0 0 Uα (k)

⎞
⎟⎟⎠, (B27)

such that the Uα (k) matrix diagonalizes Nα (k),

U †
α (k)Nα (k)Uα (k) = �α (k). (B28)

�α (k) is the diagonal matrix

�(k) = diag(λ(k), λ(k),−λ(k),−λ(k)). (B29)

Because Nα (k) is an Hermitian matrix and we have NA(k) =
(NB(k))∗, it should be noted that

�A(k) = �B(k) ≡ �(k) (B30)

and

UA(k) = (UB(k))∗. (B31)

Therefore, by acting with Uα (k), the Hamiltonian takes the
form

U†
α (k)Hπ-flux

α (k)Uα (k)

= J‖
2
116×16 − J̃±

4

⎛
⎜⎜⎝

�(k) 0 0 �(k)
0 �(k) �(k) 0
0 �(k) �(k) 0

�(k) 0 0 �(k)

⎞
⎟⎟⎠.

(B32)
The UA(k) matrix can be explicitly expressed as

UA(k) =
⎛
⎝ | | | |

uA,1(k) uA,2(k) uA,3(k) uA,4(k)
| | | |

⎞
⎠, (B33)

where

uA,1(k) = 1

2
√

λ(k)(−C(ky, kz ) + λ(k) + S(ky, kz ))

⎛
⎜⎜⎜⎜⎝

i(C(kx, ky) − i(C(kx, kz ) − iS(kx, ky) + S(kx, kz )))

−C(ky, kz ) + λ(k) + S(ky, kz )

i(−C(ky, kz ) + λ(k) + S(ky, kz ))

C(kx, ky) − i(C(kx, kz ) − iS(kx, ky) + S(kx, kz ))

⎞
⎟⎟⎟⎟⎠, (B34a)

uA,2(k) = 1

2
√

λ(k)(−C(ky, kz ) + λ(k) − S(ky, kz ))

⎛
⎜⎜⎜⎜⎝

−i(C(kx, ky) + iC(kx, kz ) + S(kx, ky) − iS(kx, kz ))

−C(ky, kz ) + λ(k) − S(ky, kz )

−i(−C(ky, kz ) + λ(k) − S(ky, kz ))

C(kx, ky) + iC(kx, kz ) + S(kx, ky ) − iS(kx, kz )

⎞
⎟⎟⎟⎟⎠, (B34b)

uA,3(k) = 1

2
√

λ(k)(C(ky, kz ) + λ(k) − S(ky, kz ))

⎛
⎜⎜⎜⎜⎝

i(C(kx, ky) − i(C(kx, kz ) − iS(kx, ky) + S(kx, kz )))

−C(ky, kz ) − λ(k) + S(ky, kz )

−i(C(ky, kz ) + λ(k) − S(ky, kz ))

C(kx, ky) − i(C(kx, kz ) − iS(kx, ky) + S(kx, kz ))

⎞
⎟⎟⎟⎟⎠, (B34c)

uA,4(k) = 1

2
√

λ(k)(C(ky, kz ) + λ(k) + S(ky, kz ))

⎛
⎜⎜⎜⎜⎝

−i(C(kx, ky) + iC(kx, kz ) + S(kx, ky) − iS(kx, kz ))

−C(ky, kz ) − λ(k) − S(ky, kz )

i(C(ky, kz ) + λ(k) + S(ky, kz ))

C(kx, ky) + iC(kx, kz ) + S(kx, ky) − iS(kx, kz )

⎞
⎟⎟⎟⎟⎠. (B34d)

Next, the Hamiltonian (B32) can be fully diagonalized by using a transformation of the form

V (k) =

⎛
⎜⎜⎜⎜⎝

V1(k) 0 0 V2(k)

0 V1(k) V2(k) 0

0 V2(k) V1(k) 0

V2(k) 0 0 V1(k)

⎞
⎟⎟⎟⎟⎠, (B35)

where

V1(k) =
(

cosh(θ1(k))12×2 0

0 cosh(θ2(k))12×2

)
, (B36a)
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V2(k) =
(

sinh(θ1(k))12×2 0

0 sinh(θ2(k))12×2

)
. (B36b)

Acting with this transformation after Uα (k), we get

V†(k)U†
α (k)Hπ-flux

α (k)Uα (k)V (k)

= J‖
2

⎛
⎜⎜⎜⎜⎝

(V1(k))2 + (V2(k))2 0 0 2V1(k)V2(k)

0 (V1(k))2 + (V2(k))2 2V1(k)V2(k) 0

0 2V1(k)V2(k) (V1(k))2 + (V2(k))2 0

2V1(k)V2(k) 0 0 (V1(k))2 + (V2(k))2

⎞
⎟⎟⎟⎟⎠

− J̃±
4

(V1(k) + V2(k))�(k)(V1(k) + V2(k))

⎛
⎜⎜⎜⎜⎝

1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1

⎞
⎟⎟⎟⎟⎠. (B37)

The system is diagonalized if

tanh (2θ1(k)) = J̃±λ(k)

2J‖ − J̃±λ(k)
�⇒ θ1(k) = 1

2
ln

(√
J‖

J‖ − J̃±λ(k)

)
(B38a)

tanh (2θ2(k)) = J̃±λ(k)

2J‖ + J̃±λ(k)
�⇒ θ2(k) = 1

2
ln

(√
J‖

J‖ + J̃±λ(k)

)
. (B38b)

In summary, the full Bogoliubov transformation that diagonalizes the π -flux Hamiltonian is

Pα (k) = Uα (k)V (k) =

⎛
⎜⎜⎜⎜⎝

Uα (k) 0 0 0

0 Uα (k) 0 0

0 0 Uα (k) 0

0 0 0 Uα (k)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

V1(k) 0 0 V2(k)

0 V1(k) V2(k) 0

0 V2(k) V1(k) 0

V2(k) 0 0 V1(k)

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

Uα (k)V1(k) 0 0 Uα (k)V2(k)

0 Uα (k)V1(k) Uα (k)V2(k) 0

0 Uα (k)V2(k) Uα (k)V1(k) 0

Uα (k)V2(k) 0 0 Uα (k)V1(k)

⎞
⎟⎟⎟⎟⎠, (B39)

where

Uα (k)V1(k) =

⎛
⎜⎜⎝

| | | |
uα,1(k) cosh(θ1(k)) uα,2(k) cosh(θ1(k)) uα,3(k) cosh(θ2(k)) uα,4(k) cosh(θ2(k))

| | | |

⎞
⎟⎟⎠, (B40a)

Uα (k)V2(k) =

⎛
⎜⎜⎝

| | | |
uα,1(k) sinh(θ1(k)) uα,2(k) sinh(θ1(k)) uα,3(k) sinh(θ2(k)) uα,4(k) sinh(θ2(k))

| | | |

⎞
⎟⎟⎠. (B40b)

APPENDIX C: SPIN STRUCTURE FACTOR

1. Generalities

Let us first compute the dynamical spin structure factor in the sublattice-dependant local spin frame (i.e., without the global
transverse projector)

Sab
LF(q, ω) = 1

Nd.u.c.

∑
Ri,R′

j

eiq·(Ri−R′
j )
∫

dteiωt
〈
Sa

Ri
(t )Sb

R′
j
(0)

〉
. (C1)
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The matter sector gives access to the transverse components S+− and S−+. Let us evaluate them in general using the SCEBR.
In the following, diamond lattice positions will be denoted by

rα = ru.c. + rs − ηα

2
b0, (C2)

with ru.c. and rs labeling the position of the GMFT Ansatz unit cell and sublattice, respectively. rs will denote the index (used
in constructing the Hamiltonian and Bogoliubov transformation) for the sublattice rs. The pyrochlore sublattice indices μ, ν =
0, 1, 2, 3 will also be employed.

First, for S+−(q, ω) we have

S+−(q, ω) = 1

Nd.u.c.

∑
Ri,R′

j

eiq·(Ri−R′
j )
∫

dteiωt
〈
S+

Ri
(t )S−

R′
j
(0)

〉

= 1

Nd.u.c.

∑
rA,r′

A

∑
μ,ν

eiq·(rA−r′
A+(bμ−bν )/2)

∫
dteiωt

〈
S+

rA+bμ/2(t )S−
r′

A+bν/2(0)
〉

= 1

Nd.u.c.

∑
rA,r′

A

∑
μ,ν

eiq·(rA−r′
A+(bμ−bν )/2)

∫
dteiωt 1

4

〈
�†

rA
(t )eiArA,rA+bμ �rA+bμ

(t )�†
r′

A+bν
(0)e−iAr′A,r′A+bν �r′

A
(0)

〉

= 1

4Nd.u.c.(1 + 〈n〉)2

∑
rA,r′

A

∑
μ,ν

eiq·(rA−r′
A+(bμ−bν )/2)e

i(ArA,rA+bμ−Ar′A,r′A+bν
)

×
∫

dteiωt
〈(

brA (t ) + d†
rA

(t )
)(

b†
rA+bμ

(t ) + drA+bμ
(t )
)(

br′
A+bν

(0) + d†
r′

A+bν
(0)

)(
b†

r′
A
(0) + dr′

A
(0)

)〉
= 1

4Nd.u.c.N2
u.c.(1 + 〈n〉)2

∑
ru.c.,r′

u.c.

∑
rs,r′

s

∑
μ,ν

eiq·((ru.c.+rs− 1
2 b0 )−(r′

u.c.+r′
s− 1

2 b0 )+(bμ−bν )/2)ei(A(rs ,A),(rs+bμ,B)−A(r′s ,A),(r′s+bν ,B) )

×
∫

dteiωt

〈∑
k1

(
bk1,rs,A(t )eik1·(ru.c.+rs−b0/2) + d†

k1,rs,A
(t )e−ik1·(ru.c.+rs−b0/2))

×
∑

k2

(
b†

k2,r′
s,A

(0)e−ik2·(r′
u.c.+r′

s−b0/2) + dk2,r′
s,A(0)eik2·(r′

u.c.+r′
s−b0/2))〉

×
〈∑

k3

(
b†

k3,rs+eμ,B(t )e−ik3·(ru.c.+rs−b0/2+bμ) + dk3,rs+eμ,B(t )eik3·(ru.c.+rs−b0/2+bμ))

×
∑

k4

(
bk4,r′

s+eν ,B(0)eik4·(r′
u.c.+r′

s−b0/2+bν ) + d†
k4,r′

s+eν ,B
(0)e−ik4·(r′

u.c.+r′
s−b0/2+bν ))〉

= 1

4Nd.u.c.(1 + 〈n〉)2

∑
k1,k2,
k3,k4

∑
rs,r′

s

∑
μ,ν

eiq·((rs−r′
s )+(bμ−bν )/2)ei(A(rs ,A),(rs+bμ,B)−A(r′s ,A),(r′s+bν ,B) )δq,k1−k3δq,k2−k4

×
∫

dteiωt
〈(

b−k1,rs,A(t ) + d†
k1,rs,A

(t )
)(

b†
−k2,r′

s,A
(0) + dk2,r′

s,A(0)
)〉

e−i(k1·(rs−b0/2)−k2·(r′
s−b0/2))

× 〈(
b†

−k3,rs+eμ,B(t ) + dk3,rs+eμ,B(t )
)(

b−k4,r′
s+eν ,B(0) + d†

k4,r′
s+eν ,B

(0)
)〉

ei(−k4·(r′
s−b0/2+bν )+k3·(rs−b0/2+bμ))

Each expectation value can be computed separately. For the expectation value on the A sublattice, we have〈(
b−k1,rs,A(t ) + d†

k1,rs,A
(t )
)(

b†
−k2,r′

s,A
(0) + dk2,r′

s,A(0)
)〉

=
〈∑

σ

([
P11

A (k1)
]∗

(d,rs ),σ γ
†
k1,σ,A(t )+[

P12
A (k1)

]∗
(d,rs ),σ γ−k1,σ,A(t )+[

P11
A (−k1)

]
(b,rs ),σ γ−k1,σ,A(t ) + [

P12
A (−k1)

]
(b,rs ),σ γ

†
k1,σ,A(t )

)
∑

δ

([
P11

A (k2)
]

(d,r′
s ),δγk2,δ,A(0) + [

P12
A (k2)

]
(d,r′

s ),δγ
†
−k2,δ,A

(0) + [
P11

A (−k2)
]∗

(b,r′
s ),δγ

†
−k2,δ,A

(0) + [
P12

A (−k2)
]∗

(b,r′
s ),δγk2,δ,A(0)

)〉

=
∑
σ,δ

[([
P11

A (k1)
]∗

(d,rs ),σ + [
P12

A (−k1)
]

(b,rs ),σ

)([
P11

A (k2)
]

(d,r′
s ),δ + [

P12
A (−k2)

]∗
(b,r′

s ),δ

)〈γ †
k1,σ,A(t )γk2,δ,A(0)〉
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+ ([
P12

A (k1)
]∗

(d,rs ),σ + [
P11

A (−k1)
]

(b,rs ),σ

)([
P12

A (k2)
]

(d,r′
s ),δ + [

P11
A (−k2)

]∗
(b,r′

s ),δ

)〈γ−k1,σ,A(t )γ †
−k2,δ,A

(0)〉]
= δk1,k2

∑
σ

[([
P11

A (k1)
]∗

(d,rs ),σ + [
P21

A (k1)
]∗

(b,rs ),σ

)([
P11

A (k1)
]

(d,r′
s ),σ + [

P21
A (k1)

]
(b,r′

s ),σ

)
eiωσ,A(k1 )t nB(ωσ,A(k1))

+ ([
P12

A (k1)
]∗

(d,rs ),σ + [
P22

A (k1)
]∗

(b,rs ),σ

)([
P12

A (k1)
]

(d,r′
s ),σ + [

P22
A (k1)

]
(b,r′

s ),σ

)
e−iωσ,A(k1 )t ( 1 + nB(ωσ,A(k1)))

]
= δk1,k2

∑
σ

[ fA,1(k1, rs, r′
s, σ )eiωσ,A(k1 )t nB(ωσ,A(k1)) + fA,2(k1, rs, r′

s, σ )e−iωσ,A(k1 )t ( 1 + nB(ωσ,A(k1)))]. (C3)

Similarly, the expectation on the B sublattice is〈(
b†

−k3,rs+eμ,B(t ) + dk3,rs+eμ,B(t )
)(

b−k4,r′
s+eν ,B(0) + d†

k4,r′
s+eν ,B

(0)
)〉

=
〈∑

σ

([
P11

B (k3)
]

(d,rs+eμ ),σ γk3,σ,B(t ) + [
P12

B (k3)
]

(d,rs+eμ ),σ γ
†
−k3,σ,B(t )

+ [
P11

B (−k3)
]∗

(b,rs+eμ ),σ γ
†
−k3,σ,B(t ) + [

P12
B (−k3)

]∗
(b,rs+eμ ),σ γk3,σ,B(t )

)
×
∑

δ

([
P11

B (k4)
]∗

(d,r′
s+eν ),δγ

†
k4,δ,B

(0) + [
P12

B (k4)
]∗

(d,r′
s+eν ),δγ−k4,δ,B(0)

+ [
P11

B (−k4)
]

(b,r′
s+eν ),δγ−k4,δ,B(0) + [

P12
B (−k4)

]
(b,r′

s+eν ),δγ
†
k4,δ,B

(0)
)〉

= δk3,k4

∑
σ

[([
P12

B (k3)
]

(d,rs+eμ ),σ + [
P11

B (−k3)
]∗

(b,rs+eμ ),σ

)
× ([

P12
B (k3)

]∗
(d,r′

s+eν ),σ + [
P11

B (−k3)
]

(b,r′
s+eν ),σ

)
eiωσ,A(k3 )t nB(ωσ,B(k3))

+ ([
P11

B (k3)
]

(d,rs+eμ ),σ + [
P12

B (−k3)
]∗

(b,rs+eμ ),σ

)
× ([

P11
B (k3)

]∗
(d,r′

s+eν ),σ + [
P12

B (−k3)
]

(b,r′
s+eν ),σ

)
e−iωσ,A(k3 )t (1 + nB(ωσ,B(k3)))

]
= δk3,k4

∑
σ

[ fB,1(k3, rs, r′
s, μ, ν, σ )eiωσ,B (k3 )t nB(ωσ,B(k3)) + fB,2(k3, rs, r′

s, μ, ν, σ )e−iωσ,B (k3 )t ( 1 + nB(ωσ,B(k3)))]. (C4)

In both derivations, we have introduced the quantities

fA,1(k1, rs, r′
s, σ ) = ([

P11
A (k1)

]∗
(d,rs ),σ + [

P21
A (k1)

]∗
(b,rs ),σ

)([
P11

A (k1)
]

(d,r′
s ),σ + [

P21
A (k1)

]
(b,r′

s ),σ

)
(C5a)

fA,2(k1, rs, r′
s, σ ) = ([

P12
A (k1)

]∗
(d,rs ),σ + [

P22
A (k1)

]∗
(b,rs ),σ

)([
P12

A (k1)
]

(d,r′
s ),σ + [

P22
A (k1)

]
(b,r′

s ),σ

)
(C5b)

fB,1(k3, rs, r′
s, μ, ν, σ ) = ([

P12
B (k3)

]
(d,rs+eμ ),σ + [

P22
B (k3)

]
(b,rs+eμ ),σ

)([
P12

B (k3)
]∗

(d,r′
s+eν ),σ + [

P22
B (k3)

]∗
(b,r′

s+eν ),σ

)
(C5c)

fB,2(k3, rs, r′
s, μ, ν, σ ) = ([

P11
B (k3)

]
(d,rs+eμ ),σ + [

P21
B (k3)

]
(b,rs+eμ ),σ

)([
P11

B (k3)
]∗

(d,r′
s+eν ),σ + [

P21
B (k3)

]∗
(b,r′

s+eν ),σ

)
. (C5d)

Putting everything back together, we have

S+−(q, ω)

=
∑

k1,k2,
k3,k4

∑
rs,r′

s

∑
μ,ν

∫
dteiωt eiq·((rs−r′

s )+(bμ−bν )/2)ei(A(rs ,A),(rs+bμ,B)−A(r′s ,A),(r′s+bν ,B) ) δq,k1−k3δq,k2−k4δk1,k2δk3,k4

4Nd.u.c.(1 + 〈n〉)2

×
∑
σ,δ

[ fA,1(k1, rs, r′
s, σ )eiωσ,A(k1 )t nB(ωσ,A(k1)) + fA,2(k1, rs, r′

s, σ )e−iωσ,A(k1 )t ( 1 + nB(ωσ,A(k1)))]

× e−i(k1·(rs−b0/2)−k2·(r′
s−b0/2))[ fB,1(k3, rs, r′

s, μ, ν, δ)eiωδ,B (k3 )t nB(ωδ,B(k3))

+ fB,2(k3, rs, r′
s, μ, ν, δ)e−iωδ,B (k3 )t ( 1 + nB(ωδ,B(k3)))]ei(−k4·(r′

s−b0/2+bν )+k3·(rs−b0/2+bμ)) (C6)

= 1

4Nd.u.c.(1 + 〈n〉)2

∑
k1

∑
rs,r′

s

∑
μ,ν

eik1·(bμ−bν )e−iq·(bμ−bν )/2ei(A(rs ,A),(rs+bμ,B)−A(r′s ,A),(r′s+bν ,B) )

×
∑
σ,δ

[ fA,1(k1, rs, r′
s, σ ) fB,1(k1 − q, rs, r′

s, μ, ν, δ)nB(ωσ,A(k1))nB(ωδ,B(k1 − q))δ(ω + ωσ,A(k1) + ωδ,B(k1 − q))
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+ fA,1(k1, rs, r′
s, σ ) fB,2(k1 − q, rs, r′

s, μ, ν, δ)nB(ωσ,A(k1))(1 + nB(ωδ,B(k1 − q)))δ(ω + ωσ,A(k1) − ωδ,B(k1 − q))

+ fA,2(k1, rs, r′
s, σ ) fB,1(k1 − q, rs, r′

s, μ, ν, δ)( 1 + nB(ωσ,A(k1)))nB(ωδ,B(k1 − q))δ(ω − ωσ,A(k1) + ωδ,B(k1 − q))

+ fA,2(k1, rs, r′
s, σ ) fB,2(k1 − q, rs, r′

s, μ, ν, δ)( 1 + nB(ωσ,A(k1)))( 1 + nB(ωδ,B(k1 − q)))δ(ω − ωσ,A(k1)−ωδ,B(k1−q))].

(C7)

To evaluate S−+(q, ω), we proceed in a completely analogous manner to find

S−+(q, ω)

= 1

4Nd.u.c.(1 + 〈n〉)2

∑
k

∑
rs,r′

s

∑
μ,ν

e−ik·(bμ−bν )eiq·(bμ−bν )/2e−i(A(rs ,A),(rs+bμ,B)−A(r′s ,A),(r′s+bν ,B) )

×
∑
σ,δ

[ f ∗
A,1(k − q, rs, r′

s, σ ) f ∗
B,1(k, rs, r′

s, μ, ν, δ)(1 + nB(ωσ,A(k − q)))(1 + nB(ωδ,B(k)))δ(ω − ωσ,A(k − q) − ωδ,B(k))

+ f ∗
A,1(k − q, , rs, r′

s, σ ) f ∗
B,2(k, rs, r′

s, μ, ν, δ)(1 + nB(ωσ,A(k − q)))nB(ωδ,B(k))δ(ω − ωσ,A(k − q) + ωδ,B(k))

+ f ∗
A,2(k − q, , rs, r′

s, σ ) f ∗
B,1(k, rs, r′

s, μ, ν, δ)nB(ωσ,A(k − q))( 1 + nB(ωδ,B(k)))δ(ω + ωσ,A(k − q) − ωδ,B(k))

+ f ∗
A,2(k − q, , rs, r′

s, σ ) f ∗
B,2(k, rs, r′

s, μ, ν, δ)nB(ωσ,A(k − q))nB(ωδ,B(k))δ(ω + ωσ,A(k − q) + ωδ,B(k))]. (C8)

2. Spin structure factor for 0-flux QSI

In the 0-flux phase, A = 0 everywhere and there is a single sublattice

rs ∈ {(0, 0, 0)} �⇒ rs ∈ {0}, (C9)

such that fA,1(k, rs, r′
s, σ ) = fA,1(k, σ ) and fB,1(k, rs, r′

s, μ, ν, σ ) = fB,1(k, σ ). Furthermore, the Bogoliubov transformation that
diagonalizes the system is given in Eq. (B18). We then have

P11(k) = P22(k) =
(

cosh (θk ) 0

0 cosh (θk )

)
, (C10a)

P12(k) = P21(k) =
(

0 sinh (θk )

sinh (θk ) 0

)
. (C10b)

Using this analytical form of the Bogoliubov transformation, the f components are

fA,1(k, σ ) = fB,2(k, σ ) =
(

e2θk

0

)
σ

, (C11a)

fA,2(k, σ ) = fB,1(k, σ ) =
(

0

e2θk

)
σ

. (C11b)

The factors in the evaluation of the dynamical spin structure factor are then∑
σ,δ

fA,1(k1, σ ) fB,1(k1 − q, δ) =
∑
σ,δ

fA,1(k1, σ ) fB,2(k1 − q, δ) =
∑
σ,δ

fA,2(k1, σ ) fB,1(k1 − q, δ)

=
∑
σ,δ

fA,2(k1, σ ) fB,2(k1 − q, δ) = Jxx√
(Jxx − J̃±M(k1))(Jxx − J̃±M(k1 − q))

. (C12)

We thus have the following final form for the dynamical structure factor in the 0-flux phase:

S+−(q, ω) = S−+(q, ω) = 1

4Nd.u.c.(1 + 〈n〉)2

∑
μ,ν

e−iq·(bμ−bν )/2
∑

k

eik·(bμ−bν ) Jxx√
(Jxx − J̃±M(k))(Jxx − J̃±M(k − q))

× [nB(ω(k))nB(ω(k − q))δ(ω + ω(k) + ω(k − q)) + nB(ω(k))(1 + nB(ω(k − q)))δ(ω + ω(k) − ω(k − q))

+ (1 + nB(ω(k)))nB(ω(k − q))δ(ω − ω(k) + ω(k − q))

+ (1 + nB(ω(k)))(1 + nB(ω(k − q)))δ(ω − ω(k) − ω(k − q))]
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= 1

Nd.u.c.(1 + 〈n〉)2

∑
k

Jxx√
(Jxx − J̃±M(k))(Jxx − J̃±M(k − q))

×
(

1 + cos

(
kx

2
− qx

4

)
cos

(
ky

2
− qy

4

)
+ cos

(
kx

2
− qx

4

)
cos

(
kz

2
− qz

4

)
+ cos

(
ky

2
− qy

4

)
cos

(
kz

2
− qz

4

))

× [nB(ω(k))nB(ω(k − q))δ(ω + ω(k) + ω(k − q)) + nB(ω(k))(1 + nB(ω(k − q)))δ(ω + ω(k) − ω(k − q))

+ (1 + nB(ω(k)))nB(ω(k − q))δ(ω − ω(k) + ω(k − q))

+ (1 + nB(ω(k)))(1 + nB(ω(k − q)))δ(ω − ω(k) − ω(k − q))]. (C13)
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