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Magnetic structure and component-separated transitions of HoNiSi3
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HoNiSi3 is an intermetallic compound characterized by two successive antiferromagnetic transitions at
TN1 = 6.3 K and TN2 = 10.4 K. Here, its zero-field microscopic magnetic structure is inferred from resonant
x-ray magnetic diffraction experiments on a single crystalline sample that complement previous bulk magnetic
susceptibility data. For T < TN2, the primitive magnetic unit cell matches the chemical cell. The magnetic
structure features ferromagnetic ac planes stacked in an antiferromagnetic ↑↓↑↓ pattern. For TN1 < T < TN2,
the ordered magnetic moment points along �a, and for T < TN1 a component along �c also orders. A symmetry
analysis indicates that the magnetic structure for T < TN1 is not compatible with the presumed orthorhombic
Cmmm space group of the chemical structure, and therefore a slight lattice distortion is implied. Mean-field
calculations using a simplified magnetic Hamiltonian, including a reduced set of three independent exchange
coupling parameters determined by density functional theory calculations and two crystal electric field terms
taken as free-fitting parameters, are able to reproduce the main experimental observations. An alternative
approach using a more complete model including seven exchange coupling and nine crystal electric field terms is
also explored, where the search of the ground state magnetic structure compatible with the available anisotropic
magnetic susceptibility and magnetization data is carried out with the help of an unsupervised machine learning
algorithm. The possible magnetic configurations are grouped into five clusters, and the cluster that yields the best
comparison with the experimental macroscopic data contains the parameters previously found with the simplified
model and also predicts the correct ground-state magnetic structure.

DOI: 10.1103/PhysRevB.109.144402

I. INTRODUCTION

The heavy rare-earth (R) elements have rich magnetic
phase diagrams with multiple phase transitions. For instance,
Dy and Ho display helical antiferromagnetic (AFM) struc-
tures with propagation vectors along the hexagonal axis below
TN = 179 and 132 K, respectively [1,2]. Upon further cool-
ing, Dy orders ferromagnetically below TC = 85 K whereas
Ho develops a conic spiral structure below TC = 20 K. Such
intriguing behavior results from a strong interplay between
the long-range Ruderman-Kittel-Kasuya-Yosida (RKKY) ex-
change coupling, temperature-dependent crystal electric field
(CEF) parameters, and also anisotropic magnetic dipole inter-
actions in some cases [3].

As could be anticipated, some R-based compounds also
show intriguing properties, such as different components of

*Present address: Swiss Light Source, Paul Scherrer Institute, 5232
Villigen-PSI, Switzerland.

the total magnetic moment ordering independently at differ-
ent temperatures. This phenomenon has been observed in a
few compounds such as DyB4 [4] and HoRh2Si2 [5]. DyB4
crystallizes in a primitive tetragonal lattice, with space group
P4/mbm. At the Néel temperature TN2 = 20.3 K, a collinear
AFM ordering with the magnetic moment oriented along the
tetragonal �c direction develops. Another AFM ordering occurs
at TN1 = 12.7 K, where an ab component of the magnetic
moment orders [4,6,7] accompanied by a slight monoclinic
distortion [6,7]. HoRh2Si2 has a body-centered tetragonal
lattice (I4/mmm space group). The higher-temperature phase
transition at TN2 = 29.5 K is related to the AFM ordering of
the Ho magnetic moments along the �c axis. Below TN1 =
11.0 K, the ordered magnetic moments tilt away from the �c
axis, with the tilting angle being temperature dependent and
vanishing at TN1 [5,8–10]. In these two systems, it is claimed
that quadrupole interactions play a role in the occurrence
of the split transitions [4–7,11,12], since strong spin-orbit
coupling correlates spin and orbital degrees of freedom, thus
enabling the ordering of high order multipoles. On the other
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FIG. 1. Crystal structure of HoNiSi3 [18,19], with solid black
line defining the unit cell. The crystal structure of the R ions can be
seen as ABBA stacking of rectangular layers along the �b direction.

hand, a mean-field approximation with nearest-neighbor ex-
change interaction and CEF parameters up to fourth order is
sufficient to properly capture the macroscopic properties for
both compounds at zero field [10,13,14].

The RNiSi3 (R = Y, Gd-Lu) intermetallic series crystallizes
in a C-centered orthorhombic lattice (Cmmm space group, see
Fig. 1). For R = Gd and Tb, ferromagnetic (FM) ac planes are
found to be stacked antiferromagnetically in a ↑↓↑↓ pattern
below TN = 22.2 and 33.2 K, respectively, with spontaneous
moments pointing along �a [15]. Conversely, in YbNiSi3 the
stacking follows a ↑↓↓↑ pattern with moments pointing along
�b [16]. The distinct stacking patterns of the magnetic end
members of this series bring attention to the intermediary
members R = Dy-Tm, for which only macroscopic magnetic
measurements are available so far [17,18]. The behavior of
HoNiSi3 is particularly interesting. Magnetic susceptibility
and specific heat data reveal successive component-separated
phase transitions at TN1 = 6.3 K and TN2 = 10.4 K associated
with AFM ordering of the �c and �a moment components (Mc

and Ma, respectively). Whether or not higher multipole de-
grees of freedom are present and responsible for the features
shown by HoNiSi3, the natural subsequent step in the attempt
to understand its ground state is determining its magnetic
structure. Once the magnetic structure is resolved, additional
constraints can be imposed on developing a theoretical micro-
scopic model that describes the macroscopic data.

In this paper, we investigate the microscopic magnetism of
HoNiSi3 by combining a resonant x-ray magnetic diffraction
experiment and magnetic simulations using both a simplified
model and a complete set of exchange and CEF parame-
ters. We find that the magnetic structures of both phases I
(T < TN1) and II (TN1 < T < TN2) are commensurate with
the chemical structure and share the same primitive unit cell,
similar to GdNiSi3 and TbNiSi3. Also, representation analysis
shows that the magnetic structure of phase II is described by
a single irreducible representation of the Cmmm space group.
In contrast, two distinct irreducible representations are needed
for phase I (one for each magnetic component), implying that
a combined structural and magnetic phase transition must take
place at TN1. In fact, the magnetic space group symmetry is
reduced from orthorhombic Cmmm′ in phase II to at least

monoclinic C2′/m in phase I. The detailed low-temperature
magnetic orderings obtained in this paper and the thermo-
dynamic measurements reported in Ref. [18] allow us to
compute possible exchange constants and CEF parameters.

We also show how to combine the use of an unsupervised
machine-learning algorithm to explore the whole parameter
space of the magnetic Hamiltonian compatible with the avail-
able thermodynamic measurements and find a set of possible
ground-state magnetic structures. This approach could be par-
ticularly useful when the number of parameters is large and
the experimental data are not sufficient to determine them
uniquely.

II. RESONANT X-RAY MAGNETIC
DIFFRACTION EXPERIMENT

A. Experimental details

A platelet-shaped single crystal of HoNiSi3 was grown
from the melt in Sn flux as described elsewhere [18,20].
Sample dimensions are 0.30 × 0.58 × 0.15 mm3. Its largest
natural face was employed in the measurements and corre-
sponded to the crystallographic ac plane. Rocking curves of
general hkl reflections reveal mosaic widths between 0.02◦
and 0.04◦ full width at half maximum.

Resonant x-ray diffraction measurements were performed
at the x-ray diffraction and spectroscopy (XDS) beamline of
the UVX ring of the Brazilian Synchrotron Light Laboratory
in Campinas, with a 4 T superconducting multipolar wiggler
source [21]. The sample was mounted at the cold finger of
a continuous-flow cryostat (base temperature 4.7 K) with a
cylindrical Be window. The cryostat was attached vertically
to the Eulerian cradle of a Huber 6 + 2 circle diffractome-
ter appropriate for single-crystal x-ray diffraction, thus the
probed scattering processes take place in the horizontal plane.
The energy of the incident photons was selected by a double
Si(111) crystal monochromator, with LN2 cooling in the first
crystal, whereas the second crystal was bent for sagittal fo-
cusing. The beam was vertically focused by a bent Rh-coated
mirror placed downstream the monochromator, which also
provided filtering of higher harmonics. The experiments were
performed in the horizontal scattering plane, i.e., parallel to
the linear polarization of the incident photons (π ). A po-
larimeter stage was mounted upstream a scintillator detector,
which enabled selecting either the ππ ′ or πσ ′ polarization
channels. For our experiments taken near the Ho L3 edge, a
Ge(333) analyzer was employed, yielding 2θanalyzer = 89.66◦.

R-based magnetic compounds show strong dipolar res-
onances at the L2,3 edges, reaching maximum intensities
at energies ∼2 eV above the corresponding edge positions
[15,22–24]. As a preliminary x-ray fluorescence scan for
HoNiSi3 determined the Ho L3 absorption edge to be at 8.074
keV (not shown), the photon energy was set at 8.076 keV in
our search for resonant magnetic reflections. In different runs,
the sample was mounted in either AB or BC configurations,
probing the ab and bc scattering planes, respectively [see the
insets of Figs. 2(a) and 2(b)]. For dipolar resonances, the mag-
netic x-ray diffraction signal is sensible only to projections
of the magnetic moment along the scattering vector [25]. As
previous magnetic susceptibility data indicate that there is no
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FIG. 2. Intensities of the (a) 0 14 0 reflection in AB configuration
and (b) 0 10 0 reflection in BC configuration of HoNiSi3. All the
measurements were done on resonance (E = 8.076 keV) and at
the πσ ′ configuration. The distinct magnetic transition temperatures
obtained from these data, TN1 = 6.7(3) K (b) and TN2 = 10.3(5) K
(a), are highlighted. The intensities in (a) and (b) are normalized by
the average values above TN2 and TN1, respectively. Insets: Schematic
view of the AB and BC configurations.

�b component for the ordered Ho moment in HoNiSi3 [18],
the AB and BC configurations probe the �a and �c components,
respectively.

B. Results and analysis

A candidate magnetic structure of HoNiSi3 would be the
↑↓↓↑ stacking pattern along �b such as found in YbNiSi3

[16], with propagation vector �k = [1, 0, 0]. In this case,
the magnetic structure would break the C centering of the
charge crystal structure, and the magnetic reflections would
be located in charge-forbidden hkl positions of the reciprocal
space with odd h + k. Attempts to observe such reflections
at low temperatures (T < TN1) in resonance condition
were unsuccessful. In addition, 1D reciprocal space scans
were performed along selected high-symmetry directions
([0,4,0] ↔ [0,6,0], [0.5, 10, 0] ↔ [0.5, 12, 0], [1, 13, 0] ↔
[1, 15, 0], [0, 13, 0] ↔ [0, 13, 1], [0, 13.5, 0] ↔ [0, 13.5, 1],
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FIG. 3. Symbols: Same data of Fig. 2 plotted as a function of the
reduced temperature T/TN , where TN = TN2 = 10.3 K for the 0 14
0 reflection in the AB configuration (blue squares) and TN = TN1 =
6.7 K for the 0 10 0 reflection in BC configuration (green squares).
Data are translated vertically and multiplied by an arbitrary factor for
better visualization. Solid red lines are mean-field calculations for
the square of the sublattice magnetization along �a (M2

a ) and along
�c (M2

c ).

and [0, 14, 0] ↔ [0, 14, 1] (r.l.u)), and no evidence of a
magnetic signal was found, disfavoring the possibility of a
magnetic structure with noninteger �k components.

The remaining possibility for the magnetic structure of
HoNiSi3 is the same ↑↓↑↓ stacking along �b with �k =
[0, 0, 0] found in GdNiSi3 and TbNiSi3 (Ref. [15]). This struc-
ture retains the C centering of the charge structure, leading to
magnetic reflections at the same Bragg positions of the charge
reflections. Since magnetic x-ray reflections are dramatically
weaker than charge reflections even in R L-edge resonances,
it is a substantial challenge to confirm this magnetic structure.
We follow the same methodology employed in our previous
work [15]. Bragg reflections with particularly low structure
factors for the charge crystal structure are chosen, and πσ ′
polarization is employed to further suppress the charge signal,
even though some of it is still observed due to polarization
leakage. The temperature dependence of the residual intensi-
ties is used to evidence any possible magnetic contribution.
Figure 2(a) shows the temperature dependence of the 0 14
0 reflection with the sample mounted in the AB configura-
tion, which is sensitive to magnetic moments along �a (see
Sec. II A). The intensity is nearly constant between T ∼ 11
and 20 K, whereas a continuous increment is observed be-
low TN2 = 10.3(5) K, consistent with a magnetic diffraction
signal associated with the magnetic ordering transition for
Ma previously reported with magnetic susceptibility data [18].
Figure 2(b) shows the temperature dependence of the 0 10 0
reflection intensity in the BC configuration, showing a clear
increment below TN1 = 6.7(3) K that is consistent with the
reported magnetic ordering transition temperature for Mc [18].
Figure 3 shows the same experimental data of Fig. 2 plotted as
a function of the reduced temperature T/TN , taking as TN the
distinct critical temperatures TN1 and TN2 for the data taken
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FIG. 4. Experimental magnetic structure of HoNiSi3 for
(a) TN1 < T < TN2 (phase II) and (b) T < TN1 (phase I), determined
by a combination of resonant x-ray magnetic diffraction and
macroscopic magnetic experiments, with Ho1 and Ho2 as used for
the symmetry analysis in Sec. III A. Below TN1, the magnetization
on each site has components both on the �a and �c axes.

in the AB and BC configurations, respectively. This plot is
appropriate for comparison with theoretical calculations (see
below).

Besides confirming the component-separated magnetic
transitions in HoNiSi3 by a microscopic technique, our
diffraction data reveal a magnetic structure where FM ac
planes are stacked in a ↑↓↑↓ pattern along the �b direction.
The experimental magnetic structures for phase II (TN1 <

T < TN2) and phase I (T < TN1) are displayed in Figs. 4(a)
and 4(b), respectively.

III. THEORY

A. Symmetry analysis

The experimental magnetic structures shown in Figs. 4(a)
and 4(b), inferred from the ↑↓↑↓ stacking pattern obtained
here in combination with the moment directions obtained
from previous magnetic susceptibility measurements [18],
are compared with the symmetry-allowed magnetic structures
considering the magnetic propagation vector �k = [0, 0, 0].
Although our diffraction data also suggest magnetic moments
along �a and �c, we cannot rule out from them any compo-
nent along �b (not seen in either magnetic susceptibility and
magnetization isotherm measurements [18]). In the nuclear
crystal structure of HoNiSi3 with Cmmm space group, the Ho
ions occupy the 4 j Wyckoff site [(0, y, 0.5) and (0,−y, 0.5) +
C-centering atomic coordinates]. The possible magnetic struc-
tures were determined independently through representation
analysis using the SARAH suite [26] and the magnetic space
group formalism using the Bilbao Crystallographic Server
[27]. In the decomposition of the magnetic representation,
six one-dimensional irreducible representations (irreps) of the
Cmmm space group, appearing one time each, can generate
magnetic ordering. Three of them give rise to FM order, and
the remaining ones give rise to AFM structures with moments
along each crystallographic direction. These representations
are shown in Table I along with their respective magnetic
space groups. Thus, at phase II the magnetic structure is
described by the �8 (mGM−

2 ) representation, or alternatively

TABLE I. Irreducible representations �n [27] leading to AFM
structures with �k = [0, 0, 0] for the Cmmm space group of the chem-
ical structure, along with the symmetry-allowed magnetic moments
at the Ho1 and Ho2 positions not related by the C centering of the
crystallographic unit cell (see also Fig. 4). The magnetic space group
corresponding to each representation is also given.

� Ho1 Ho2 Magnetic space group

�2 (mGM−
1 ) (0,my, 0) (0,−my, 0) Cm′m′m′

�8 (mGM−
2 ) (mx, 0, 0) (−mx, 0, 0) Cmmm′

�4 (mGM−
3 ) (0, 0, mz) (0, 0, −mz) Cm′mm

by the Cmmm′ magnetic space group. At phase I, an addi-
tional component along �c arises, which can be described with
�4 (mGM−

3 ). Combining both (mGM−
2 ) and (mGM−

3 ) repre-
sentations, the resulting magnetic space group at phase I is
C2′/m.

The possible magnetic structures that fulfill Landau’s cri-
teria of second-order phase transitions with a single irrep are
the ones with magnetic moments pointing along the unit cell
directions. In HoNiSi3, there are two phase transitions, and for
each of them, a single irrep drives the transition. The magnetic
space group of the highest symmetry that is consistent with
these two irreducible representations is monoclinic C2′/m.
Thus, the low symmetry of the magnetic structure below TN1

is indicative of a monoclinic lattice, in contrast to the reported
orthorhombic Cmmm space group of the charge structure.
These considerations point to a symmetry-lowering structural
phase transition that occurs simultaneously with the magnetic
transition at TN1. Such monoclinic distortion was not clearly
manifested in our present x-ray diffraction experiment. We
should mention that the direct observation of small mono-
clinic distortions with respect to a parent orthorhombic lattice
poses a significant challenge. For such, a high-resolution
x-ray diffraction experiment optimized for such a goal
would be needed, which is beyond the scope of the present
paper.

B. General structure of the magnetic Hamiltonian

The magnetic phases and transitions observed in HoNiSi3

can be understood using a magnetic model that considers
exchange interactions between the magnetic moments located
at the Ho3+ ions and CEF effects:

H = Hint + HCEF. (1)

In metallic 4 f -magnetic systems like HoNiSi3 and GdNiSi3,
the magnetic couplings are dominated by the RKKY mech-
anism, which leads to exchange couplings between the
magnetic moments at the R ions,

Hint =
∑
i< j

Ki j Ĵi · Ĵ j, (2)

where Ĵi is the angular momentum operator of the magnetic
moment located at site i and Ki j is the RKKY exchange
coupling constant between magnetic moments i and j. Ki j can
be AFM (Ki j > 0) or FM (Ki j < 0) and are expected to decay
with the inverse cubic distance between sites i and j.
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FIG. 5. Putative magnetic configurations used for the DFT calculations. The first configuration represents a simple FM order, while the
remaining ones are different AFM arrangements. The configuration AF1 is compatible with the magnetic ordering found experimentally for
YbNiSi3 [16], while configuration AF4 corresponds to the magnetic ordering found for Gd/TbNiSi3 [15]. Each of the seven exchanges Ki is
depicted by a red arrow.

The CEF effects depend on the point symmetry of the R
ion sites in the lattice and the orbital angular momentum of
the ground-state multiplet of the ion. The point symmetry of
the R sites is C2v (m2m), which allows for nine CEF terms up
to sixth order [28]:

HCEF =
∑

n=2,4,6

∑
m=0,2,...,n

Bm
n Ôm

n . (3)

C. Magnetic simulations guided by density-functional
theory calculations

1. Determination of the exchange couplings

To calculate the exchange coupling parameters, we focus
first on the structurally related but simpler material GdNiSi3.
In this compound, the magnetic moments at the Gd3+ ions
are, according to Hund’s rule, given by the L = 0, S = 7/2
multiplet for which the CEF effects are not relevant [29]. This
makes the density functional theory (DFT) determination of
the total energy global minimum in each magnetic configura-
tion much simpler, avoiding the large uncertainty due to the
presence of multiple metastable configurations of the L 	= 0
systems [30–32]. Ab initio calculations were done following a

procedure similar to the one described in Refs. [33,34]. Total-
energy DFT calculations were thus carried out for GdNiSi3

considering eight possible collinear magnetic structures (see
Fig. 5). These calculations were performed using the gen-
eralized gradient approximation (GGA) of Perdew, Burke,
and Ernzerhof for the exchange and correlation functional as
implemented in the WIEN2K code [35,36]. A local Coulomb
repulsion was included for a better treatment of the highly
localized 4 f states using GGA + U , within the fully local-
ized limit for the double counting correction [37]. A value of
Ueff = U − J = 6 eV was used for the effective local Hub-
bard parameter, which has been successfully implemented
before for Gd compounds [38]. In the DFT calculations, we
considered the experimental lattice parameters [15,18] and
relaxed the internal positions. A supercell of 2 × 1 × 2 unit
cells was used to calculate the exchange couplings out of the
magnetic configurations of Fig. 5. In this case, a 9 × 3 × 9 k-
mesh was used to sample the Brillouin zone. The resulting
energies are shown in Table II. The lowest energy was reached
for the AF4 structure, which is indeed the experimentally
found structure of this compound [15].

The next step is to parametrize the energy of each possible
magnetic structure in terms of up to seven exchange coupling
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TABLE II. Energy values relative to the AF4 configuration, ob-
tained via DFT calculations for each magnetic configuration shown
in Fig. 5. The energies are normalized by S2 and the number of atoms
N .

Configuration Energy (eV/S2/N)

FM 0.088
AF1 0.011
AF2 0.079
AF3 0.044
AF4 0.000
AF5 0.044
AF6 0.064
AF7 0.045

parameters Ki’s, according to

EFM/J2 = −2K0 − 2K1 − K2 − 4K3 − 2K4 − 4K5 − 4K6,

EAF1/J2 = 2K0 − 2K1 − K2 + 4K3 − 2K4 − 4K5 − 4K6,

EAF2/J2 = −2K0 − 2K1 + K2 + 4K3 − 2K4 − 4K5 + 4K6,

EAF3/J2 = 2K1 − K2 − 2K4 + 4K5,

EAF4/J2 = 2K0 − 2K1 + K2 − 4K3 − 2K4 − 4K5 + 4K6,

EAF5/J2 = 2K1 + K2 − 2K4 + 4K5,

EAF6/J2 = 2K0 − 2K1 − K2 + 4K3 + 2K4 + 4K5,

EAF7/J2 = 2K1 + K2 + 2K4 − 4K5 − 4K6 (4)

(see Fig. 5 for the definition of each Ki). By combining the
data in Table II with Eqs. (4), the seven Ki’s (i = 0 − 6) are
directly obtained and shown in Table III.

In practice, it is often the case that only a few couplings
(Ki j for i and j nearest neighbors) need to be considered
to obtain an accurate description of the magnetic proper-
ties [33,34,39]. Here, we also consider a simplified model
with only three independent exchange constants, namely, K0,
K1 ≡ K4, and K2, therefore setting K3 = K5 = K6 = 0 (see
Fig. 5). The constrained exchange constants are obtained by
the procedure described above, and the results are also shown
in Table III.

TABLE III. Exchange Ki constants values obtained through DFT
and mean-field fittings for GdNiSi3. For Ho, only the de Gennes scal-
ing values from mean-field fittings are presented. Positive (negative)
exchange represents AFM (FM) interactions.

DFT Simplified mean field

Ki constant Gd (K) Gd (K) Ho (K)

K0 2.31 1.86 0.10
K1 0.93 −0.214 −0.012
K2 −0.030 1.16 0.064
K3 −0.020
K4 −0.78 −0.214 −0.012
K5 −0.46
K6 0.15

TABLE IV. TN and θ of GdNiSi3 obtained from experimental
data, CMC, QMC, and mean-field models using the DFT parameters
shown in Table III.

Mean-field

Exp. CMC QMC Full Simplified

TN (K) 22.2(2) 13.5(5) 17.5(5) 36 30.1
θ (K) −30(3) −19.9(3) −27.2(3) −19 −21.1

Once the magnetic exchange couplings for GdNiSi3 are
obtained, the corresponding ones for HoNiSi3 can be esti-
mated using a de Gennes scaling [40]. This scaling, usually
valid for most R, considers that the interactions between
magnetic moments only involve the spin part of the total mag-
netic moment. Under this hypothesis, the couplings can be
rescaled, projecting the spin moment onto the total magnetic
moment, resulting in Ki j (R) = (gJ − 1)2Ki j (Gd) (the square
comes from the two-moment interaction that involves two
projections), where gJ is the gyromagnetic factor of the R
being considered. For R compounds, this scaling is frequently
performed to estimate the ordering temperature [18,41]. The
thus obtained Ki values for HoNiSi3 under the simplified
model with three independent exchange constants are also
given in Table III.

Classical (CMC) and Quantum Monte Carlo (QMC) simu-
lations using the ALPS package [42,43], as well as mean-field
calculations using Hint were performed to obtain the magneti-
zation and specific-heat curves for GdNiSi3. The results for
TN and the Curie Weiss (CW) temperature θ are shown in
Table IV. The advantage of using the mean-field model is the
possibility of finding an analytic expression for TN and θ as a
function of the couplings. For this system, they are given by

TN = 1
3 J (J + 1)(2K0 − 2K1 + K2 − 4K3

−2K4 − 4K5 + 4K6), (5a)

θ = 1
3 J (1 + J )(2K0 + 2K1 + K2 + 4K3

+2K4 + 4K5 + 4K6). (5b)

If we consider the simplified model, these equations yield TN

and θ shown in Table IV. Considering the full model (seven
exchange couplings), the values are slightly modified to TN =
36 K and θ = −19 K.

Although the mean-field approximation leads to an overes-
timation of the transition temperature of GdNiSi3, it provides
the correct physical picture. We thus base our analysis of
HoNiSi3 on the mean-field approximation to be able to per-
form simulations for a wide range of the model’s parameters.

2. Minimal model and mean-field approximation for HoNiSi3

In this section, we develop a minimal model that is able to
explain the available experimental results. As we show below,
the bulk properties of HoNiSi3 can be explained using only
two of the nine CEF terms in Eq. (3). The tendency of the
magnetic moments to stay in the ac plane, as observed in both
low-temperature AFM phases, can be accounted for using the
CEF term,

Ô2
2 = J2

a − J2
b , (6)
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with a negative coefficient B2
2. The observed tilting of the

magnetic moment towards the �c direction in phase I can be
described using a positive B0

4 for the CEF operator:

Ô0
4 = 35J4

c − 30J (J + 1)J2
c + 25J2

c

+ 3J2(J + 1)2 − 6J (J + 1). (7)

Mean-field [44] calculations of the magnetization as a
function of temperature and external magnetic field were per-
formed to fit the available experimental data [18] using B2

2 and
B0

4 as fitting parameters. Including all CEF parameters allowed
by symmetry up to the sixth order in the fitting procedure does
not lead to a significant improvement of the fits, nor does
it change the physical picture obtained using only two pa-
rameters (nevertheless, their effect is examined in Sec. III D).
In the fitting procedure of the simplified model presented in
this subsection, a smaller de Gennes factor (∼0.055 rather
than 0.0625) for Ho3+ was used to compensate for the over-
estimation of the transition temperatures by the mean-field
approximation. The obtained parameters are B2

2 = −0.85 K
and B0

4 = 2.1 mK.
Figure 6 presents the mean-field results (solid lines) for the

simplified magnetic Hamiltonian using the estimated model
parameters obtained as described above. For a comprehensive
comparison, we included the experimental data (filled sym-
bols) taken from Ref. [18]. First, two peaks in the magnetic
specific heat as a function of temperature emerge in the mean-
field results, corresponding to a paramagnetic (PM)-AFM and
an AFM-AFM transition. Additionally, as can be seen in
Fig. 6(a), the transition temperatures are in good agreement
with the measured values. The magnetic entropy [see inset of
Fig. 6(a)] is ∼R ln(4) for T ∼ TN2, which can be attributed to
the B0

4 CEF term (see below). Also, the magnetic susceptibility
in the �a direction as a function of the temperature presents a
peak at TN2, while the corresponding one in the �c direction
has a peak at TN1 [see Fig. 6(b)], in close similarity to the
experimental results. The behavior of χc follows a CW law
for T > TN1 while χa follows closely a CW law for T > TN2.
Figure 6(c) shows the calculated magnetization as a function
of the external magnetic field. As in the experimental data,
it presents a flop transition to a state where the magnetic
moments in the �a or �c direction become FM for an external
magnetic field in the same direction. We also see that for both
theoretical and experimental results, the higher magnetization
is attained when the magnetic field is along the �a direction.
The resulting magnetic structure from the model is depicted in
the inset of Fig. 6(c), in full agreement with the experimental
structure determined in this work (see Sec. II B).

As the intensities of the AFM Bragg reflections reported
in Sec. II B are proportional to the square of the sublattice
magnetization [45], they can be also calculated using the
mean-field model. The solid lines in Fig. 3 show M2

a and M2
c

as a function of the reduced temperature T/TN , where TN is
taken here as the mean-field TN1 for the M2

c curve and TN2 for
M2

a . It can be seen that the comparison with experimental data
is quite satisfactory.

To gain further insight into the physical origin of the
observed AFM-AFM transition, we also analyze the system
under the molecular field approximation. In the mean-field
approach, a cluster of eight Ho3+ ions was used to determine

FIG. 6. Mean-field results (lines) and experimental data [18]
(symbols) for (a) total magnetic specific heat of HoNiSi3 as a func-
tion of the temperature. Inset shows the released entropy up to 30 K.
(b) The magnetic susceptibility as a function of temperature for
external magnetic field of H = 1 kOe along with �a and �c directions.
Inset shows the inverse magnetic susceptibility up to 300 K (lines
are almost indistinguishable from symbols). (c) Magnetization at
T = 2.2 K as a function of an external magnetic field parallel to the
�a and �c directions. Inset shows the mean-field magnetic structures at
phases I and II.

the magnetic order as a function of temperature and external
magnetic field. In the absence of an external magnetic field,
the two ordered phases correspond to the AF4 configuration,
differing only in the direction of the magnetic moments. As
a consequence, the mean-field approach can be reduced to
a molecular field approximation in which a single magnetic
moment is under the influence of the CEF and of an effective
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TABLE V. Eigenvalues Ei (in K) and associated eigenfunctions of Ho3+ (J = 8) for the CEF Hamiltonian HCEF with parameters B2
2 =

−0.85 K and B0
4 = 2.1 mK.

Ei Eigenfunctions

0.0 0.46(| − 6〉 + | − 4〉 + |4〉 + |6〉) + 0.24(| − 2〉 + |2〉) + 0.17|0〉
0.2 0.19(| − 7〉 + | − 1〉 + |1〉 + |7〉) + 0.55(| − 5〉 + |5〉) + 0.35(| − 3〉 + |3〉)

1.8 0.51(| − 6〉 − |6〉) + 0.46(| − 4〉 − |4〉) + 0.18(| − 2〉 − |2〉)

2.2 0.21(| − 7〉 − |7〉) + 0.59(| − 5〉 − |5〉) + 0.32(| − 3〉 − |3〉)

27.6 0.47(| − 6〉 + |6〉) − 0.19(| − 4〉 + |4〉) − 0.40(| − 2〉 + |0〉 + |2〉)

31.9 0.33(| − 7〉 − | − 3〉 − |3〉 + |7〉) + 0.26(| − 5〉 + |5〉) − 0.46(| − 1〉 + |1〉)

36.4 0.48(−| − 6〉 + |6〉) + 0.41(| − 4〉 − |4〉) + 0.32(| − 2〉 − |2〉)

43.1 0.57(−| − 7〉 + |7〉) + 0.39(| − 3〉 − |3〉) + 0.16(| − 1〉 − |1〉)

51.5 0.59(| − 7〉 + |7〉 − 0.30(| − 5〉 + |5〉) + 0.25(| − 1〉 + |1〉)

58.4 0.24(| − 6〉 + |6〉) − 0.48(| − 4〉 + |4〉) + 0.26(| − 2〉 + |2〉) + 0.53|0〉
59.9 0.37(| − 7〉 − |7〉) + 0.39(−| − 5〉 + |5〉) + 0.41(| − 3〉 − |3〉) + 0.22(| − 1〉 − |1〉)

86.1 0.35(−| − 4〉 + |4〉) + 0.61(| − 2〉 − |2〉)

86.7 0.20(| − 5〉 + |5〉) − 0.51(| − 3〉 + |3〉) + 0.44(| − 1〉 + |1〉)

103.3 0.70(| − 8〉 + |8〉)

103.3 0.70(| − 8〉 − |8〉)

126.1 0.28(−| − 3〉 + |3〉) + 0.65(| − 1〉 − |1〉)

126.2 0.14(| − 4〉 + |4〉) − 0.46(| − 2〉 + |2〉) + 0.73|0〉

magnetic field generated by the interaction with the other
magnetic moments:

Hmol = B2
2Ô2

2 + B0
4Ô0

4 − �Heff · Ĵ. (8)

Here �Heff = λ〈Ĵ〉, where λ is determined by the exchange
interactions, and 〈Ĵ〉 is calculated in a self-consistent way.
For a single magnetic moment with J = 8, the Hilbert space
is spanned into 2J + 1 states (|m〉 with m = −J, . . . , J). The
eigenvalues and eigenvectors of Hmol can be readily obtained
by diagonalizing the associated 17 × 17 matrix. This allowed
us to obtain 〈Ĵ〉 at finite temperatures and find a self-consistent
solution. A numerical calculation pursuing this route repro-
duces the mean-field results once the correct AF4 order is
selected to determine λ.

In the PM phase, Heff = 0, and Hmol is reduced to the CEF
terms. For simplicity, we set at this point B2

2 to zero, but we
reintroduce it at a later stage. The remaining term Ô0

4 with
a positive B0

4 gives rise to a fourfold ground-state degener-
acy (Jc = −6,−5, 5, 6) which is consistent with the entropy
[∼R ln(4)] obtained in the PM phase for T � TN2 [see inset of
Fig. 6(a)].

For temperatures slightly below TN2, a nonzero �Heff

emerges, signaling the transition to the AFM phase. The di-
rection of �Heff is given by the direction of maximal magnetic
susceptibility and determines the direction of 〈Ĵ〉. To find the
direction of maximal susceptibility, we turn on a small ex-
ternal magnetic field (H 
 TN2) in the PM phase (T � TN2),
where 〈Ĵ〉 = 0, and consider the �a and �c directions (in the
absence of the Ô2

2 term the problem is symmetric under ro-
tations around the �c axis). An external magnetic field in the �c
direction does not change the eigenvectors of the system (Jc is
a good quantum number for B2

2 = 0) but changes their relative
energies, leading to a susceptibility proportional to 1/T . A

magnetic field in the �a direction, however, produces a different
effect because Jc is no longer a good quantum number. The
magnetic field mixes terms that differ in �Jc = ±1 and leads
to a susceptibility in the �a direction that does not decrease as
the temperature increases up to sufficiently high temperatures
where it becomes larger than the one in the �c direction. The
PM to AFM transition occurs at a temperature where χa > χc.

The inclusion of the Ô2
2 term using the estimated value for

B2
2 = −0.85 K leads to a small breaking of the ground-state

degeneracy (the energies of the four lowest lying states differ
by ∼2 K, see Table V) but does not change the entropy signif-
icantly for T ∼ TN2. This term further increases the magnetic
susceptibility in the �a direction compared to �c and reduces the
temperature above which the susceptibility in the �a direction
becomes larger than in the �c direction. It also breaks the sym-
metry between the �a and �b directions, decreasing the magnetic
susceptibility in the latter direction.

Below TN2, the magnetic moments order in the �a direction.
As a result, the susceptibility with the field in this direc-
tion decreases while the susceptibility with the field in the
�c direction keeps increasing [see Fig. 6(b)]. At sufficiently
low temperatures, the susceptibility in the �a direction is no
longer the largest, and it becomes energetically favorable to
tilt 〈Ĵ〉, with a component in the �c direction. This leads to the
AFM-AFM transition at TN1. The tilting angle can be obtained
considering a classical magnetic moment and minimizing the
energy of the CEF. At low temperatures, the magnetic moment
is contained in the ac plane and forms an angle α with the �c
axis, where

tan(α) =
√

5B0
4(8J2 − 6J + 5) + B2

2

5B0
4(6J2 + 6J − 5) − B2

2

. (9)
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Using B2
2 = −0.85 K and B0

4 = 2.1 mK estimated above
and J = 8, we obtain α = 41.2◦. Future microscopic exper-
iments, such as (i) neutron diffraction when larger crystals
become available, (ii) nuclear magnetic resonance [46,47], or
(iii) resonant x-ray magnetic diffraction experiment with a
more efficient rejection of charge scattering and a geometry
allowing for azimuthal scans, may be able to determine α

experimentally, which could then be compared with our pre-
dicted value.

D. Full model ground-state configurations

In this subsection, we explore the parameter space of the
magnetic model [see Eq. (1)] and the corresponding ground-
state configurations consistent with the existing magnetization
and magnetic susceptibility data. Our objective is to use
HoNiSi3 as a case study to analyze whether the possible
magnetic structures can be constrained using this experimen-
tal data. Restricting the possible ground states may assist in
directing subsequent experiments and DFT calculations to
accurately determine the magnetic structure of a material.
Accordingly, we exclude here the x-ray data and coupling
parameters derived from DFT plus de Gennes scaling in this
analysis.

To perform this study, we focus on magnetic structures
with an eight-site cluster that corresponds to two crystallo-
graphic unit cells (repeated in the a direction). Our proposed
magnetic model incorporates the nine CEF terms permitted
by symmetry and the seven exchange couplings illustrated
in Fig. 5. The model parameters could theoretically be de-
termined by fitting the experimental data to the outcomes
from solving the model Hamiltonian. However, due to the
high number of parameters, limitations inherent in the model,
and the computational demands of solving it via Monte Carlo
methods, this strategy is deemed impractical.

Instead, we adopt an approximate mean-field approach,
which generally offers a rapid and reliable means to capture
the primary qualitative aspects of the experimental data for
compounds exhibiting magnetic order. The primary limitation
of this approach is its inability to uniquely determine the
parameters, as multiple parameter sets may yield similar fit
qualities.

To address this challenge, we explored the parameter space
beginning with randomly chosen parameters, employing a
subplex minimization technique [48] to optimize the fit. The
minimized cost function is defined as

�2 =
∑
ζ=a,c

(
βζ

∑
i

(
χ

Exp
ζ ,Ti

− χ theor
ζ ,Ti

)2

+ γζ

∑
i

(
MExp

ζ ,Hi
− M theor

ζ ,Hi

)2

)
. (10)

Here χ
Exp
ζ ,T and MExp

ζ ,H represent the experimental magnetic
susceptibility and magnetization, at temperature T and field
H , respectively, and ζ = a, c indexes the external field direc-
tion. The theoretical mean-field values are denoted by χ theor

ζ ,T

and M theor
ζ ,H . The normalization factors βζ and γζ are deter-

mined through a preliminary minimization process to ensure
a balanced contribution from both magnetic susceptibility and

magnetization to the cost function. The minimization process
is repeated for 1000 random initial parameter sets and the
200 fits with the lowest cost function are selected. Finally, the
ground states corresponding to the selected sets of parameters
are classified using a machine learning approach.

To characterize ground-state magnetic structures to be fed
to the machine-learning procedure, we use the square modulus
of the spin structure factor,

Sζ

�Q =
∣∣∣∣∣
∑

l

〈
Jζ

�Rl

〉
ei �Rl · �Q

∣∣∣∣∣
2

, (11)

where 〈Jζ

l 〉 is the mean value of the ζ = a, b, c component
of the magnetic moment at site �Rl , and �Q = (πna/a)â +
(2πnb/b)b̂, where a and b are the lattice parameters of the
conventional cell of HoNiSi3, na = 0, 1, and nb = 0, 1, 2, 3.
Sζ

�Q is insensitive to symmetry-related configurations (e.g., an
inversion of all magnetic moments).

The 24 = 3 × 2 × 4 values of �Q form the feature vec-
tor �v = (Sa

0,0, Sa
0,1, . . . Sc

1,3) for the machine-learning analysis,

where na and nb in Sζ
na,nb

determine the �Q value. The similar-
ity between the ground states is quantified by the Euclidean
distance between the different feature vectors.

To analyze the data, we use the Uniform Manifold Approx-
imation and Projection (UMAP) [49] procedure, a dimension
reduction algorithm (as implemented in TENSORFLOW [50]).
UMAP is a state-of-the-art unsupervised machine-learning
algorithm for dimension reduction based on manifold learn-
ing techniques and topological data analysis. It works by
estimating the topology of high-dimensional data and using
this information to construct a low-dimensional representa-
tion that preserves the proximity relationships in the data.
This dimensional reduction is useful for visualizing the data
and for clustering. The steps of this procedure are described
schematically in Fig. 7. Each dot in Fig. 7(d) represents a 2D
projection of the original feature vectors �v (we recall that �v is
the square modulus of the structure factor). Five clusters cor-
responding to five different ground-state magnetic structures
can be clearly distinguished.

The Sζ
na,nb

values corresponding to the magnetic configu-
rations for all ground states in a given cluster are shown in
Fig. 8, where only the 15 nonzero components of the square
modulus of the structure factor are plotted for each �v. Nine
of the Sζ

na,nb
are zero for all ground states. For example, there

are no configurations with weight on S �Q=(0,0) that would cor-
respond to a FM component. Cluster 5 has correlations that
correspond to those observed in GdNiSi3, TbNiSi3 (magnetic
order AF4 in Fig 5), as well as in HoNiSi3. The best fit
obtained (the lowest value of �2) corresponds to a magnetic
configuration found within this cluster. The ground-state con-
figurations in cluster 4 present AFM (FM) correlations along
the �a(�b) axis. Cluster 3 corresponds to states with FM planes
stacked antiferromagnetically in a ↑↑↓↓ pattern while in clus-
ter 1 the stacking pattern is ↑↓↓↑. In the latter, correlations
along the �b axis are similar to the ones observed in YbNiSi3.
Finally, in cluster 2, the correlations are similar to those found
in cluster 5 but with a nonzero spin component in �b direction.

The ground-state configurations in cluster 5 correspond to
the one obtained experimentally and deduced from the DFT
analysis (Sec. III C 2). See Table VI for a set of parameters in
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FIG. 7. Flowchart of the procedure used to catalog the possible
fitting parameters. (a) shows a general measurement that can be
described by a Hamiltonian with an interaction and a CEF term.
(b) shows that in the multidimensional parameter space, a regular
seed can be good enough to find an excellent fit (continuous lines
represent fit quality contours). (c) illustrates the case for HoNiSi3:
Most seeds fall on different fitting parameters. An absolute mini-
mum could be hidden on the irregular landscape. (d) shows the 2D
projection of the different feature vectors originally embedded in the
24-dimensional space after applying UMAP. In this panel, the feature
vector (of each dot) corresponds to the 24 components of the square
modulus of the spin structure (see main text). The obtained clusters
are clearly separated. Figure 8 shows explicitly the spin structures
(configuration) that are grouped in each cluster.

FIG. 8. Clustered square modulus of the structure factor and rep-
resentative magnetic configurations. The cluster labels correspond
to the ones determined in Fig. 7(d). The plot on the left shows the
nonzero components of the square modulus of the structure factor
Sζ

na,nb
for all the selected ground states. The panel on the right

shows two projections of a representative spin configuration for each
cluster.

TABLE VI. Two sets of parameters. Those in the simple model
column are the ones used in Sec. III C 2. Those in the optimized
column are obtained by a minimization procedure as described in
Sec. III D. For comparison, we show in the last line the value of the
cost function �2 for the two sets of parameters.

Parameter Simple model Optimized

K0 0.10 0.066
K1 −0.012 0.014
K2 0.064 −0.00018
K3 −0.012
K4 −0.012 −0.011
K5 −0.018
K6 0.034
O0

2 0.16
O2

2 −0.85 −0.7
O0

4 0.0021 0.0083
O2

4 −0.026
O4

4 −0.0055
O0

6 −0.000052
O2

6 −0.000093
O4

6 0.00013
O6

6 −0.00028
�2 225 204

cluster 5 that yields a fit to magnetic measurement as good as
the one reported in Sec. III C 2.

This analysis shows that in spite of the complexity of this
system due to its low symmetry, giving rise to a large set
of CEF and coupling parameters, the magnetic susceptibility
and magnetization experimental data can be used to narrow
considerably the search for possible ground states using com-
putationally inexpensive mean-field calculations and basic
machine-learning tools.

IV. CONCLUSIONS

In summary, resonant x-ray diffraction experiments were
conducted on HoNiSi3 in the temperature range where distinct
magnetically ordered phases I and II were inferred from pre-
vious specific heat and magnetic susceptibility measurements
[18]. Our presented data show that both phases are character-
ized by a commensurate magnetic structure with propagation
vector �k = [0, 0, 0] formed by a ↑↓↑↓ stacking pattern of
FM ac planes with Ho magnetic moments being parallel to
�a axis in phase II and within the ac plane in phase I. A
symmetry analysis indicates that the magnetic phase I is not
consistent with the presumed Cmmm space-group symmetry
of the chemical crystal structure, and therefore a (possi-
bly very small) monoclinic distortion is inferred. Magnetic
simulations were performed using different approaches to
guide the choice of exchange and CEF parameters. First, a
simplified model using a reduced number of fixed exchange
parameters obtained from DFT and a few CEF terms taken
as fitting parameters was able to capture the experimental
magnetic structure, as well as the magnetic susceptibility,
magnetization, and specific heat curves. In addition, a method-
ology based on an unsupervised machine-learning algorithm
was employed to search for the possible magnetic structures of
the ground state. Remarkably, the parameters that give the best
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comparisons to the experimental susceptibility and magneti-
zation data, as well as those that are consistent with the sim-
plified model, belong to the same cluster that yields the correct
magnetic structure. The methodology employed here may be
extended to other magnetic materials where the complete set
of exchange and CEF parameters are not known a priori.
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