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Entropic sampling in frustrated magnets: Role of self-intersecting spaces
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Frustrated magnets typically possess a large space of classical ground states. If this degeneracy is not protected
by symmetry, thermal fluctuations may “select” certain states via order-by-disorder. In this article, we examine
a precursor effect where all ground states are sampled, but with different weights. Geometry plays a key role in
determining the weight distribution and its behavior. We demonstrate this with two examples—both clusters with
four spins coupled by XY interactions. In the first, the classical ground states form a smooth space. In the second,
they form a self-intersecting non-manifold space. Ground-state sampling is very different in these two cases. We
first consider the microcanonical ensemble picture, where fluctuations conserve energy. Phase space arguments
suggest that the first model exhibits energy-independent probabilities. The second shows a dramatic energy
dependence with relative probability increasing as ε−1/2, where ε is the energy of the system. We simulate low-
energy dynamics in both models, confirming the expected behavior. We next consider the canonical ensemble,
where the first model produces temperature-independent probabilities. In the second, relative probability rises
sharply as T −1/2, where T is the temperature. Our results bring out a classical analog of order-by-singularity, a
mechanism that has been recently proposed in the context of quantum spin clusters. The sampling of classical
orders is qualitatively different in systems with self-intersecting ground-state spaces. It grows at low energies and
becomes singular as ε → 0 (microcanonical ensemble) or T → 0 (canonical ensemble). We discuss relevance
for disordered phases in macroscopic magnets, particularly for spiral liquids.
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I. INTRODUCTION

A hallmark of frustrated magnetism is large degeneracy
of classical ground states. Despite being degenerate, ground
states may provide varying scope for fluctuations. Originating
in quantum or thermal effects, fluctuations lead to differences
in zero-point energy and/or free energy. The system settles
into the classical ground state with the lowest (free) energy.
This state is said to have been “selected” by fluctuations.
This phenomenon is well known as “order by disorder” [1,2].
Recent studies have explored the underlying mechanism by
drawing an analogy to particle localization [3–5]. At low
energies, a frustrated magnet can be viewed as a single par-
ticle moving on an abstract space—consisting of all classical
ground states. Fluctuations, be they of quantum or thermal
origin, give rise to a potential on this space. If the potential
is deep enough, the particle localizes at its minimum. This
manifests as the magnet settling into one particular classically
ordered state.

Classical ordering due to order-by-disorder is analogous
to spontaneous symmetry breaking [6,7]. The principles of
statistical mechanics (the ensemble and ergodic hypotheses)
break down so that the system is confined to one out of many
degenerate classical ground states. This occurs only at low
energy (or low temperature) and large system sizes. In this
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article, we consider a precursor state where the hypotheses
of statistical mechanics hold true. We present arguments in
the context of magnetic clusters, where small system size pre-
vents ergodicity breaking. The same arguments could apply
to macroscopic magnets, e.g., above a critical “spontaneous”-
ordering temperature. Indeed, recent studies have explored
“spiral liquid” phases [8–11] wherein a frustrated magnet
simultaneously samples a large set of classical orderings. Our
results suggest that such phases may exhibit a fine structure
encoded in the relative sampling weights.

A key concept in what follows is the space of classical
ground states (CGSS) and its geometric character. Various
CGSS geometries are known to be realized. Examples include
lines [12,13], circle-like closed curves [11,14,15], sheets [13],
surfaces [8], tori [16], intersecting circles [9,17], and even
dense three-dimensional spaces [18]. In macroscopic mag-
nets, the CGSS is usually described in momentum space using
the Luttinger-Tisza approach. In magnetic clusters, the CGSS
is often an abstract space arising from geometric constraints
[16,17,19]. In the context of quantum fluctuations in mag-
netic clusters, studies (by one of the present authors) have
drawn a distinction between two mechanisms that contribute
to state selection [4]. One is driven by a fluctuation-generated
potential that induces localization at its minimum. This is
the only possible mechanism in systems where the CGSS is
a smooth manifold. The second mechanism comes into play
if the CGSS self-intersects, e.g., forming a figure-of-eight. It
arises from bound state formation at a singularity—a quantum
effect driven by the local topology around an intersection
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point [20]. This mechanism has been termed “order by sin-
gularity” [16]. It may have observable consequences, e.g., in
the scaling behavior of the selection-induced energy gap [4].

Here, we consider CGSS sampling in a purely classi-
cal setting. We build upon early work by Moessner and
Chalker [19,21], pointing out contrasting selection behavior
in two magnetic clusters with all-to-all couplings. We expand
on their findings by contrasting two similar clusters—one
with a smooth CGSS and the other with self-intersections.
We demonstrate that this difference gives rise to qual-
itatively different selection behavior. Unlike the smooth
case, self-intersection-driven selection grows dramatically at
low energies.

II. MODELS

We discuss two model magnetic clusters below. The first is
the symmetric quadrumer, a cluster of four spins with all-to-all
XY couplings. It is described by the Hamiltonian

Hsym. = J
∑
i< j

(�Si · �S j )‖, (1)

where the indices i and j run over all pairs chosen from among
four spins. The spins are Heisenberg-like with x, y, and z
components. However, the couplings are of XY nature, i.e.,
(�Si · �S j )‖ ≡ Sx

i Sx
j + Sy

i Sy
j . The coupling constant J is assumed

to be positive and is henceforth set to unity. The resulting
classical ground states have been discussed in Ref. [16]. To
minimize energy, the four spin vectors must lie in the XY
plane and add to zero. This can be viewed as orienting the
spins as two anti-aligned pairs. This can be done in three
distinct ways, each with two free angle variables. This results
in a CGSS consisting of three tori. However, the tori are
not entirely distinct—they intersect pairwise along lines that
represent collinear states. We discuss a simplified view of this
space below.

The second model is the asymmetric quadrumer, also de-
scribed in Ref. [16]. It is very similar to the symmetric
quadrumer, but with two bonds having a stronger coupling
strength. The Hamiltonian is given by

Hasym. = Hsym. + λ{(�S1 · �S2)‖ + (�S3 · �S4)‖}. (2)

Here, λ is the anisotropy parameter. A positive value of λ

forces ground states to have �S1 = −�S2 and �S3 = −�S4, with
all four spins lying in the XY plane. The resulting CGSS is a
single torus, a space parameterized by two angle variables.

In both models, the CGSS is larger than the space of
Hamiltonian symmetries. The only continuous Hamiltonian
symmetry is global rotation about the spin-z axis. With this
symmetry in mind, we work in a frame that co-rotates with �S1.
The first spin �S1 can now be taken to have a fixed orientation,
say along the Y axis. The CGSS of the asymmetric quadrumer
in this frame is shown in Fig. 1(a). It is a circle parameterized
by a single angle A, the angular displacement between �S1 and
�S3. The other two spins are immediately determined as �S2 =
−�S1 and �S4 = −�S3. The CGSS of the symmetric quadrumer
in this frame is shown in Fig. 1(b). It consists of three circles.
The circle parameterized by the angle A is the same as that
in the asymmetric quadrumer case. The circle parameterized
by B has �S3 = −�S1 and �S4 = −�S2, with B representing the

FIG. 1. Classical ground-state spaces (CGSS’) of the two mod-
els. (a) CGSS of the asymmetric quadrumer is a circle, parameterized
by one angle A. Each point on the circle corresponds to a state as
shown in (c) with �S1 = −�S2 and �S3 = −�S4. The angle between �S1 and
�S3 is denoted as A. (b) CGSS of the symmetric quadrumer consists
of three intersecting circles. The angles A, B, and C parameterize
points on each circle—they correspond to states shown in (c)–(e).
The intersection points are marked with red squares. All spins lie
within the XY plane. All states allow for a global rotation about the
Z axis.

relative angle between �S1 and �S2. Similarly, the third circle
has �S4 = −�S1 and �S3 = −�S2, with C representing the relative
angle between �S1 and �S3.

In the symmetric quadrumer, the three circles of the CGSS
intersect pairwise. These points of intersection are collinear
states. For example, the circles parameterized by A and B
share a common point, where �S1 = �S4 = −�S2 = −�S3. As we
show below, these collinear states are favored by fluctuations.

III. PHASE SPACE IN THE
MICROCANONICAL ENSEMBLE

To describe state selection, we consider the low-energy
behavior of the two models. We first adopt the microcanonical
approach where the total energy is held fixed. We restrict
our attention to low energies, i.e., where the total energy is
only slightly higher than the classical ground-state energy. We
describe the resulting phase space and sampling probabilities.

A. Asymmetric quadrumer

Any classical ground state of the asymmetric quadrumer
can be written as

�S1 = −�S2 = n̂(φ1); �S3 = −�S4 = n̂(φ2), (3)

where the length of each spin is taken to be unity. We have
defined n̂(φ) = cos φ x̂ + sin φ ŷ. This state can be viewed as
two rods within the plane, one corresponding to �S1,2 and the
other to �S3,4. In the frame that corotates with �S1 (see Fig. 1),
φ1 is fixed. Choosing a value for φ2 amounts to picking one
particular classical ground state. Low-energy states may have
small deviations away from this state. A generic low-energy
state can be expressed in terms of six fluctuation variables
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{�1, �2, μ1, μ2, m1, m2} as follows:

�S1 = n̂(φ1) + �1 ζ̂ (φ1) + μ1 ẑ + m1 ẑ;

�S2 = −n̂(φ1) + �1 ζ̂ (φ1) + μ1 ẑ − m1 ẑ;

�S3 = n̂(φ2) + �2 ζ̂ (φ2) + μ2 ẑ + m2 ẑ;

�S4 = −n̂(φ2) + �2 ζ̂ (φ2) + μ2 ẑ − m2 ẑ. (4)

Here, μ1 and μ2 represent out-of-plane buckling of the
rods. In contrast, m1 and m2 represent out-of-plane tilting
fluctuations. The components l1 and l2 represent buckling
deformations within the plane. We have defined unit vec-
tors denoted by ζ̂ that are perpendicular to n̂’s, with ζ̂ (φ) =
sin φ x̂ − cos φ ŷ. The expressions in Eqs. (4) include all pos-
sible length-preserving deformations. It can be easily checked
that |�S j |2 is unity ( j = 1, 2, 3, 4), up to corrections that are
quadratic in the fluctuation variables.

Having parameterized low-energy states, we consider
the low-energy phase space. The Hamiltonian of Eq. (2)
reduces to

Hasym. ≈ ECGS + (1 + λ)
(
μ2

1 + m2
1 + μ2

2 + m2
2

)
+ (1 + λ + cos A) �2

+ + (1 + λ − cos A) �2
−. (5)

The “≈” symbol indicates that this form is valid for small
fluctuations, where terms beyond quadratic order can be ne-
glected. Here, ECGS = −2(1 + λ) is the classical ground-state
energy. The variable A = φ2 − φ1 (see Fig. 1) identifies a
point on the CGSS. It encodes the classical ground state that
is closest. We have defined �± = 2(�1 ± �2).

In Eq. (5), we have arrived at an expression for the en-
ergy of low-lying states. As it contains six quadratic terms,
a constant-energy surface is an ellipsoid in six dimensions.
We now take the microcanonical view by demanding that
the energy must lie within (ECGS + ε, ECGS + ε + dε), where
dε � ε � 1. The low-energy condition dictates that the en-
ergy ε must be much smaller than the coupling constant (set
to unity), which sets the energy scale in the problem. The
microcanonical approach allows for a small energy spread dε

that is much smaller than the energy content ε. We arrive at
a region of the six-dimensional phase space—an ellipsoidal
shell. We seek to find the volume of this “accessible” region.
As dε is small, this volume can be expressed as V ε+dε

ε dε.
Going further, we wish to resolve this volume into neighbor-
hoods around each point in the CGSS. To do so, we express
the accessible volume as

V ε+dε
ε dε ∼

{∫
dA v(ε, A)

}
dε, (6)

where A is the angle that parameterizes the CGSS. Relegating
details to the Appendix, we find

v(ε, A) = π3

6

32

(λ + 1)2
√

(1 + λ)2 − cos2 A
3ε2. (7)

We now assert that the principles of statistical mechanics, viz.,
the ergodic and equiprobability hypotheses, hold true. They
dictate that the probability of a certain classical ground state
being sampled is proportional to the volume of the accessible

phase space in its neighborhood, i.e.,

P(A) ∼ v(ε, A) ∼ 1√
(1 + λ)2 − cos2 A

. (8)

From the expression for v(ε, A) in Eq. (7) above, we see that
the probability for any A depends on the energy via an overall
factor of ε2. If we compare two values A1 and A2, we find that
P(A1)/P(A2) is independent of ε. This results in an energy-
independent distribution of probabilities over the CGSS, as
reflected in Eq. (8).

B. Symmetric quadrumer

Starting from the asymmetric quadrumer, we obtain the
symmetric quadrumer by tuning the anisotropy parameter λ

to zero. For any positive value of λ, the CGSS is a circle.
Precisely at λ = 0, the CGSS expands to form three inter-
secting circles as shown in Fig. 1. For simplicity, we restrict
our attention to points on one of the circles when character-
izing the phase space. Similar arguments hold on the other
two circles.

We consider states characterized by Eq. (3) above, shown
in Fig. 1(a). Although they were introduced as classical
ground states of the asymmetric quadrumer, they are ground
states of the symmetric quadrumer as well. They correspond
to one of the circles in the CGSS.

Following the same arguments as in the asymmetric
quadrumer, low-energy states can be parameterized as in
Eq. (4). Their energy takes the same form as given in
Eq. (5), with six quadratic terms. However, a crucial differ-
ence emerges in the λ → 0 limit. Consider the quadratic term
proportional to �2

+. Its prefactor, given by 1 + cos A, vanishes
when A → π . Likewise, the prefactor of the �2

− term vanishes
when A → 0. This reflects the change in CGSS topology as
λ → 0. For a generic value of A, the low-energy Hamiltonian
has six quadratic terms. However, at two special values of A,
the Hamiltonian reduces to five quadratic terms. These points
represent collinear states where the CGSS self-intersects. The
vanishing of one quadratic coefficient can be viewed as mode
softening. At these collinear states, the system may leave one
circle of the CGSS and move to another (see Fig. 1).

This has dramatic consequences for the phase space vol-
ume. In the vicinity of a noncollinear state, arguments from
Sec. III A continue to hold. The phase space v(ε, A) takes
the same form as in Eq. (7) above. The probability of the
state being sampled is P(ε, non − collinear) ∼ ε2. However,
when A = 0 or π , the phase space is qualitatively different. It
constitutes an ellipsoid in five dimensions, with a free sixth
coordinate. This coordinate can be freely integrated over its
range, as it is not constrained by energy—this will contribute
an energy-independent factor to the phase space volume.
Based on these arguments, we may write

v(ε, collinear) ∼ ε3/2. (9)

We have used the fact the volume of an ellipsoidal shell in D
dimensions scales as RD−1dR, where R is the length scale (say,
the semimajor axis). Here, we have D = 5 and R ∼ √

ε so that
the volume scales as ε3/2dε. Crucially, the volume scales as a
different power of energy when compared with noncollinear
states. This leads to a stark difference when comparing

144401-3



ALWYN JOSE RAJA AND R. GANESH PHYSICAL REVIEW B 109, 144401 (2024)

FIG. 2. Sampling probability over the CGSS coordinate A (in degrees) in the asymmetric quadrumer with λ = 2. Plots correspond to
energies ε ∼ 10−6, 10−5, 10−4 (left to right). Data are obtained from energy-conserving Landau-Lifshitz dynamics. In all three panels, they
follow the same curve, obtained from Eq. (8) with λ = 2 and no fitting parameters.

probabilities,

P(ε, collinear)

P(ε, non − collinear)
∼ ε3/2

ε2
∼ ε−1/2. (10)

Unlike the asymmetric quadrumer, relative probability de-
pends on energy. In fact, it varies dramatically when ε → 0,
as collinear states dominate over all others.

IV. PROBABILITIES FROM ENERGY-
PRESERVING DYNAMICS

In the previous section, we have examined relative prob-
abilities over the CGSS from phase space considerations.
The asymmetric quadrumer yields energy-independent rela-
tive probabilities. In contrast, in the symmetric quadrumer,
the weight of collinear states grows sharply at low ener-
gies. We now verify these results by numerical simulations
of low-energy spin-dynamics. As initial conditions for our
simulations, we generate random configurations that lie within
a suitable energy window. As the system evolves in time, we
track the amount of time spent in the vicinity of each classical
ground state. We interpret this as a probability distribution
over the CGSS.

The time evolution of classical magnets is described by the
Landau-Lifshitz equation [22], written succinctly as

d �S j

dt
= �S j × �Beff, j . (11)

The vector �Beff, j represents the effective magnetic field seen
by the jth spin. Its form is obtained by reexpressing the
Hamiltonian as H = −�Beff, j · �S j , where j runs over the four
spins of the cluster. For any given spin, the effective field is
given in terms of all other spins. Equation (11) encodes a set
of twelve coupled ordinary differential equations as we have
four spins ( j = 1, 2, 3, 4) with three components each. Given
an initial condition, the time evolution of the system can be
found by numerical integration by Runge-Kutta methods. Up
to numerical errors, Eq. (11) preserves spin lengths as well as
the energy.

We consider the symmetric and asymmetric quadrumers
within the microcanonical ensemble. We fix a small energy
window (ECGS + ε, ECGS + ε + dε) where ECGS = −2(1 +
λ) is the classical ground-state energy.

A. Dynamics of the asymmetric quadrumer

For each value of ε, we choose an energy interval dε =
2 × 10−3ε. We generate 3 × 104 initial configurations with
energy within this window. Each configuration is time evolved
for 104 time units (time is measured in units of J−1, where
J is the coupling constant—set to unity). As time evolution
proceeds, the low value of energy guarantees that the system
will always be in the vicinity of the CGSS. At each time, we
determine the closest point on the CGSS, i.e., the classical
ground state that is closest to the current configuration, see
Appendix B. To characterize sampling probability, we divide
the CGSS into bins of width one degree (note that the CGSS
is parameterized by angle variables). We interpret the fraction
of time spent in each interval as the probability of sampling
that neighborhood of the CGSS.

Figure 2 shows the obtained probability distributions. The
asymmetry parameter is set at λ = 2. Note that collinear states
(A = 0 or π ) have the highest probability—they are selected
by fluctuations. The figure shows data for three values of ε.
In all three, the data follow the same curve—that given by
Eq. (8). The probabilities follow the same form even as the
energy is varied over three orders of magnitude. This is in line
with the arguments of Sec. III A where ground-state sampling
was argued to be energy independent.

Figure 2 depicts state selection for λ = 2, a strong value
of the anisotropy parameter. For weaker values of λ, the
numerical simulations deviate from the expected probability
distribution. We believe this is tied to the presence of a large
number of periodic orbits. With most initial conditions, the
system evolves in a periodic fashion. As a result, it may not
sample the accessible phase space in a uniform manner.

B. Dynamics of the symmetric quadrumer

We simulate time evolution in the same manner for the
symmetric quadrumer. We vary energy ε over a large range
and fix dε = 2 × 10−3ε. For each energy, we generate 2000
samples as initial conditions for time evolution. We simu-
late time evolution for 5 × 104 time units. As the CGSS
consists of three intersecting circles, we track the nearest
point on this space. Figure 3 shows the obtained probability
distribution over these three circles. This is shown for three
different energies. In all three, the probability is highest at the
intersection points on the CGSS (collinear states). Unlike the
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FIG. 3. Sampling probability in the symmetric quadrumer, obtained from energy-conserving Landau-Lifshitz dynamics. Plots correspond
to energies ε = 10−3, 10−4, and 10−5 (left to right). Seen from the top, there are three circles as shown in the CGSS depicted in Fig. 1(b). The
Z axis represents probability; note that the panels have different Z-axis ranges.

asymmetric quadrumer, the resulting curves vary dramatically
with energy. As energy decreases, the probability curves be-
come more sharply peaked. The selection of collinear states
strengthens with decreasing energy (ε).

Figure 4 compares the relative probability between
collinear states and perpendicular states. The latter are states
where the four spins point toward the corners of a square; as
seen from Fig. 3, these perpendicular states have the lowest
probability on the CGSS. Figure 4 shows that the relative
probability varies strongly with energy. It fits well to ∼ε−1/2

as predicted by phase space arguments in Sec. III B.

V. PROBABILITIES IN THE CANONICAL ENSEMBLE

When coupled to a reservoir, the energy of a system will
vary with time. Phase space is sampled according to the
temperature, a property of the reservoir. We may write the
partition function as

Zcanonical =
∫

e−ε/T V ε+dε
ε dε, (12)

FIG. 4. Relative probability of collinear and perpendicular states
in the symmetric quadrumer vs energy. The X axis represents log(ε)
(logarithm with base 10). Error bars are estimated from the spread
in values with various choices of collinear and perpendicular states.
The data are fit to a curve Prel. ∼ ε−1/2. The configurations shown are
examples of collinear and perpendicular states on the CGSS.

where T is the temperature, measured in units of energy (so
that the Boltzmann constant is unity). The quantity V ε+dε

ε dε

represents the volume of phase space that lies within an energy
window (ε, ε + dε). This is precisely the volume that was
evaluated in the context of the microcanonical ensemble.

At low energies, the volume V ε+dε
ε involves an integral

over all phase space coordinates. As with Eq. (6) above, we
separate out the coordinate that parameterizes the CGSS. For
the asymmetric quadrumer, we write

Zasym.

canonical =
∫

dA zasym.

canonical(A), (13)

where A is the CGSS coordinate. We have

zasym.

canonical(A) =
∫

e−ε/T v(ε, A)dε. (14)

As seen from Eq. (7) above, v(ε, A) ∼ ε2. As a result, the
integral over ε can be carried out in a straightforward fashion.
We have

zasym.

canonical(A) ∼ f (A)
∫ ∞

0
dε e−ε/T ε2 ∼ f (A) T 3. (15)

Here, f (A) is some function that depends on A but not on
ε. The limits in the ε integral are taken to be [0,∞). As ε

represents energy cost over the classical ground state (ε =
Esystem − ECGS), the lowest value it can take is zero. As contri-
butions from high-energy states are exponentially suppressed,
we may safely extend the integration to ε → ∞. At the final
step, we have extracted the temperature dependence. While
the integral can be evaluated explicitly, the T dependence can
be extracted immediately on dimensional grounds.

We now assert that given a point on the CGSS labeled by
A, the probability of the system exploring its neighborhood
is proportional to zasym.

canonical(A). From the expression above,
we see that the temperature dependence in zasym.

canonical(A) comes
from an overall factor of T 3. Given two points on the CGSS,
A1 and A2, the ratio P(A1)/P(A2) will not depend on T . As a
result, the relative probability between any two points on the
CGSS is temperature independent.

We now consider Eq. (12) for the symmetric quadrumer.
We resolve this integral into neighborhoods around each point
of the CGSS. On each of the three circles of the CGSS,
we obtain an equation of the same form as Eq. (13) above.
However, as argued in Sec. III B above, the ε dependence of
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FIG. 5. Probability vs A (in degrees) obtained from Monte Carlo simulations of the asymmetric quadrumer. The plots are for the same
anisotropy λ = 0.2. They correspond to three values of inverse temperature β = 5000, 10 000, and 100 000 (left to right). In all three, data
follow the same curve, that of Eq. (8). Deviations from the curve are comparable to error bars estimated from Monte Carlo runs.

v(ε, A) varies with A. At collinear points (i.e., for A = 0 or
π ), we have v(ε, A) ∼ ε3/2. At all other points, v(ε, A) ∼ ε2.
We carry out the ε integral separately for the two cases. We
have

zsym.

canonical(A = 0, π ) ∼
∫

e−ε/T ε3/2dε ∼ T 5/2. (16)

In contrast,

zsym.

canonical(A �= 0, π ) ∼
∫

e−ε/T ε2dε ∼ T 3. (17)

We now identify zsym.

canonical(A = 0, π ) as the probability of a
collinear state. The probability of accessing a noncollinear
classical ground state is zsym.

canonical(A �= 0, π ). These two proba-
bilities scale differently with temperature, so that

P(T, collinear)

P(T, non − collinear)
∼ T 5/2

T 3
∼ T −1/2. (18)

That is, the relative probability between collinear and non-
collinear states grows as temperature is lowered. In the T → 0
limit, collinear states dominate.

We conclude that sampling-by-thermal-fluctuations is
qualitatively different between the two models. In the asym-
metric quadrumer, the sampling is temperature independent.
In the symmetric quadrumer, sampling bias grows as temper-
ature decreases. In fact, the domination of collinear states is
perfect in the T → 0 limit.

VI. MONTE CARLO SIMULATIONS

We now verify the arguments of the previous section by
explicitly simulating thermal fluctuations. For each cluster,
we carry out Monte Carlo simulations [23] at various tem-
peratures. Single-spin Metropolis moves lead to very low
acceptance as they invariably take the system away from
the ground-state space. Therefore, we employ all-spin moves
where each spin is simultaneously deflected from its orien-
tation by an angle 	(T ). The direction of the deflection is
chosen at random. The angle 	(T ) is varied between 0.2◦ and
1◦to ensure an acceptance rate of ∼20%. For each tempera-
ture, we carry out 500–3000 runs, each consisting of 106–107

moves.
From the Monte Carlo simulations, we extract the sampling

probability over the CGSS. We divide the CGSS circle(s)

into 360 bins, each of width 1◦. At each Monte Carlo time,
we identify the classical ground state that is closest to the
current configuration, see Appendix B. We assign this to one
of the 360 intervals. As the simulation proceeds, we keep track
of the amount of Monte Carlo time spent within each bin.
The fraction of time spent in each bin is interpreted as the
probability of sampling that neighborhood of the CGSS.

Figure 5 shows the result for the asymmetric quadrumer
with λ = 0.2. Probability is plotted against A for three dif-
ferent values of β = 1/T , the inverse temperature. Although
β varies over several orders of magnitude, the probabilities
remain roughly the same. In all three plots, the data follow the
same curve, given by Eq. (8). Note that this curve depends on
the value of the anisotropy parameter λ, but not on T . Figure 6
shows probabilities for four values of λ, but with β held fixed.
In all four, the data follow Eq. (8) with the corresponding
value of λ.

These plots serve as numerical verification of the ar-
guments in Sec. V above. The asymmetric quadrumer

FIG. 6. Probability vs A (in degrees) for the asymmetric
quadrumer obtained from Monte Carlo simulations. The plots are for
the same temperature β = 104. They correspond to four values of the
anisotropy parameter, λ = 0.1, 0.2, 0.5, and 1 (in order of decreasing
spread in the vertical direction). For each λ, the data follow a curve
obtained from Eq. (8) with the corresponding value of λ.
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FIG. 7. Probability over the CGSS for the symmetric quadrumer, obtained from Monte Carlo simulations. The plots correspond to varying
temperatures, β = 102, 103, 104 (from left to right). Seen from the top, we have three circles as shown in Fig. 1(b). The Z axis represents
probability; note that the panels have different Z-axis ranges.

was argued to show temperature-independent sampling. The
degree of bias varies with λ, but not with temperature. These
arguments were based on Eq. (5), with six quadratic terms
in the energy. The equipartition theorem asserts that each
quadratic term contributes a factor of 1/2 to the specific heat.
Indeed, Monte Carlo simulations yield specific heats close to
3 at low temperatures.

Monte Carlo results for the symmetric quadrumer are plot-
ted in Fig. 7. Probability is plotted over the three circles of
the CGSS, for three different values of β. For all three tem-
peratures, we see that the collinear states (intersection points)
have the highest probability. The lowest probability occurs for
perpendicular states where the spin vectors point toward the
corners of a square. As temperature is lowered, the probability
profiles become sharper. The weight at intersection points
(collinear states) grows dramatically.

This observation is quantified in Fig. 8. The X axis
here represents temperature, while the Y axis represents
the relative probability of collinear and perpendicular states,
P(collinear)/P(perpendicular). Here, P(collinear) is the sum
of probabilities of all collinear states (representing three
points of intersection on the CGSS space). As there are

FIG. 8. Relative probability of collinear and perpendicular states
in the symmetric quadrumer, obtained from Monte Carlo simula-
tions. Error bars are estimated from the spread in values resulting
from various choices of collinear and perpendicular states. The rel-
ative probability is plotted against log(T ) (logarithm with base 10).
The data is fit to Prel. ∼ T −1/2.

six perpendicular states in the CGSS, P(perpendicular) is
summed over them. This ratio grows dramatically as T de-
creases. As shown in the figure, the temperature dependence
fits well to ∼T −1/2. This verifies the arguments of Sec. V
regarding state-selection in the symmetric quadrumer.

VII. DISCUSSION

We have discussed sampling of classical ground states
in two small clusters. Our conclusions may be extended to
macroscopic magnets with frustration. The key requirements
for our arguments are: (i) an extended space of classical
ground states that does not result from symmetry, (ii) appli-
cability of the ergodic and equiprobability hypotheses. These
requirements can also be met in macroscopic systems. The
honeycomb J1 − J2 antiferromagnet provides an edifying ex-
ample. Its CGSS is a contour in momentum space, with each
point representing a spiral state [14]. Order-by-disorder gives
rise to a thermal phase transition where one spiral is “selected”
by fluctuations [14]. Above this critical temperature, a “ring
liquid” phase appears [24] where all points on the CGSS are
simultaneously sampled. Our results motivate further studies
of the ring liquid phase. In particular, the sampling behavior
should be qualitatively different at J2/J1 = 1/2—a fine-tuned
point where the CGSS contour self-intersects.

The honeycomb ring liquid is one instance of a potentially
large class of spin liquids, the “spiral liquids” [8–11,25]. At
least two material examples are known: MnSc2S4 and FeCl3.
They show an extended peak in neutron scattering, which
coincides with the CGSS contour expected on theoretical
grounds [26,27]. This can be interpreted as the system sam-
pling the entire set of classical ground states. Studies so far
have not carefully examined the sampling distribution or its
evolution. There are limited results to show the existence of a
phase that samples the entire CGSS, occurring above a critical
ordering temperature, e.g., see Fig. 4 of Ref. [25]. Our results
suggest careful examination of sampling weights in neutron
experiments as well as in simulations, particularly when the
CGSS self-intersects.

We have demonstrated a qualitative difference between two
classes of frustrated magnets. This difference originates from
the topological character of the CGSS, distinguishing systems
with a smooth manifold from those that self-intersect. Sev-
eral materials and models are known in either class. Among
materials, MnSc2S4 [25] is known to have a smooth CGSS
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while ErSn2O7 [28] is proximate to a parameter regime with a
self-intersecting CGSS. Among model systems, smooth
CGSS’ are found on the honeycomb [14], diamond [25], and
BCC [8] lattices, as well as in the square Heisenberg-compass
model [5]. Self-intersections are found on the hyperhoney-
comb [29] and HCP [9] lattices, as well as in the 1D Kitaev
antiferromagnet [4].

In quantum spin clusters with self-intersecting CGSS’,
the geometry of intersections leads to bound-state formation
[20,30]. This constitutes a distinct mechanism for state se-
lection, named order-by-singularity [16]. Our results for the
symmetric quadrumer can be viewed as a classical analog
of this phenomenon. At very low energies, the magnet is
confined to the vicinity of an intersection point. In quantum
magnets, this is due to bound-state formation. In a classical
setting, this is driven by enlarged phase space around singular-
ities. The quantum bound-state problem is strongly influenced
by the codimension of intersections [20]. An interesting future
direction is to explore the role of dimensionality in the classi-
cal problem.
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APPENDIX A: LOW-ENERGY PHASE SPACE

With four spins, phase space volumes are defined as∫ {
4∏

j=1

dSx
j dSy

j dSz
j δ(�S j · �S j − 1)

}
g(�S1, . . . , �S4), (A1)

where g(�S1, . . . , �S4) is the sampling probability of a given
neighborhood. The δ functions enforce unit spin length. With
twelve integration variables and four δ-function constraints,
the phase space volume is effectively eight dimensional. In
the asymmetric quadrumer, low-energy configurations are de-
scribed by Eq. (4) above. We have two degrees of freedom (φ1

and φ2) that select a particular ground state and six (�1,2, m1,2,

and μ1,2) that encode fluctuations. We change the integration
variables to these new coordinates so that the phase space
volume becomes∫

J (φ1, φ2, �1, �2, m1, m2, μ1, μ2)

× dφ1 dφ2 d�1 d�2 dm1 dm2 dμ1 dμ2

× g(φ1, φ2, �1, �2, m1, m2, μ1, μ2), (A2)

where the Jacobian J (φ1, φ2, �1, �2, m1, m2, μ1, μ2) evalu-
ates to 32, up to corrections that are quadratic in fluctuation
variables.

We now consider the phase space of the microcanonical
ensemble. The energy of the system is given by Eq. (5), with
six quadratic terms. We rescale variables to set the coefficient
of each of the six quadratic terms to unity. The accessible
phase space then becomes a spherical shell in six dimensions
with radius ε and thickness dε. This yields the phase-space
volume of Eq. (7).

APPENDIX B: FINDING THE NEAREST
POINT ON THE CGSS

To find sampling probabilities from dynamics or Monte
Carlo simulations, we assign a given configuration to a certain
neighborhood around the CGSS. Consider the asymmetric
quadrumer where the CGSS is a circle. Given a low-energy
configuration, we express it in the form of Eq. (4). For ex-
ample, we identify the in-plane component of (�S1 − �S2)/2 as
n̂(φ1) and that of (�S3 − �S4)/2 as n̂(φ2). Having thus extracted
φ1 and φ2, we identify the CGSS coordinate as A = φ2 − φ1

in accordance with Fig. 1.
In the symmetric quadrumer, we have an additional layer

of complexity. As the CGSS has three circles, we must first
assign a given configuration to one of the circles. To do so,
we consider three vector quantities: �S1 − �S2, �S1 − �S3, and
�S1 − �S4. Based on which of these three has the largest mag-
nitude, we identify the nearest circle. We then proceed in the
same way as with the asymmetric quadrumer to find the angle
coordinate (A, B, or C). If two of these vectors are comparably
large (with magnitude close to 2), the configuration is close to
an intersection point.
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