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The attainment of high-quality wave concentration and manipulation has always been considered as state-of-
the-art technology, especially for integrated photonics and phononics. However, the prevention of energy loss
caused by backscattering or imperfections remains a grand challenge. With the development of the topological
phase of matter, the emergence of topological insulators that support robust conductive edge states but insulating
bulk waves provides a possible solution. Nevertheless, the existing topological insulators can only achieve
wave manipulation in two-dimensional (2D) models along specific hinges. To achieve lossless waveguiding
in three-dimensional space, an acoustic topological insulator with three degrees of freedom is established. The
theoretical dispersion relation is analyzed by introducing an equivalent electric circuit system. The topological
states, including point corner states, one-dimensional hinge states, and 2D surface states are realized by
tweaking the intra- and intercell couplings. Abundant wave propagation behaviors such as surface-restricted,
edge-restricted, and corner-restricted wave transportation are respectively achieved in the first-, second-, and
third-order topological insulators. The twisted 3D path waveguiding without significant energy leaking into
surface and bulk is finally demonstrated. This sound transportation phenomenon may provide a paradigm and
design idea for integrated acoustic devices with unconventional functions.
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I. INTRODUCTION

The topological phases of matter, initially proposed in
electronic systems, have significantly depended on the com-
prehension of condensed matter physics, and gave birth to
topological insulators (TIs) [1–4]. Ascribing to the unprece-
dented boundary states, TIs, which are conductive in edges but
insulating for bulk, have also attracted tremendous research
interest in classical wave applications such as optical systems
[5,6], elastic systems [7–9], and acoustic systems [10,11]. One
hallmark of TIs is the topologically protected interface modes
(TPIMs) localized at the interface of two TIs with distinct
topological phases, leading to robust waveguiding that is im-
mune to defects, disorders, and backscattering [12–14]. For
example, Huo et al. [15] demonstrated three-dimensional (3D)
robust layer-selective elastic wave propagation by designing
a bilayer-stacked platelike structure. Due to their peculiar
properties, TIs are highly desired in numerous application sys-
tems that are related to wave manipulation such as structural
health monitoring [16], noise/vibration control [17,18], and
energy harvesting [19,20]. The key point for designing a TI is
breaking structure symmetry, including inversion symmetry,
time-reversal symmetry, or crystalline symmetry. However,
all the aforementioned approaches follow bulk-boundary
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correspondence, thus requiring gapless topological states [21],
which is one dimension lower than the dimension of the
TI. For instance, a 3D TI only presents two-dimensional
(2D) gapless topological surface states, while a 2D TI only
presents one-dimensional (1D) gapless topological surface
states.

Recently, a new paradigm of TI, namely, higher-order
topological insulators (HOTIs), which feature unconven-
tional bulk-boundary correspondence, has been introduced
[22,23]. In principle, a nth-order dD HOTI can exhibit (d-
1)D, (d-2)D, …, (d-n + 1)D gapped topological states and
(d-n)D gapless topological states, which are the so-called
dimensional hierarchy of HOTI [24,25]. For example, 1D
topological hinge states, and zero-dimensional (0D) topolog-
ical corner states can coexist in principle in a second-order
2D TI. The emergence of HOTIs indisputably broadens the
spectrum of topological materials and offers a methodology
to manipulate waves on surfaces, hinges, or corners, which are
valuable and can be extended to various industrial applications
such as signal transportation and energy trapping. To date,
there have been fruitful methods to design various HOTIs
such as quadrupole HOTIs [26], octupole HOTIs [27], and
spinful HOTIs [28]. While by virtue of the straightforward
concept and easy fabrication, designing by mimicking the Su-
Schrieffer-Heeger (SSH) structure is one of the most popular
methods to design HOTIs [29,30]. For example, Zhang et al.
[31] drilled holes in a square lattice on a homogeneous rigid
material and demonstrated the existence of robust topological
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FIG. 1. The proposed 3D acoustic system with eight air cavities and the corresponding connecting channels. (a) 3D view of a unit cell, (b)
cross-sectional view along the blue dashed frame, (c) 3D view of the extracted air domain in a unit cell, (d) plan of air domain in a unit cell,
and (e) 3D view of the time domain for a finite structure.

corner states for spoof surface acoustic waves in this 2D
second-order topological insulator (SOTI).

The majority of research on HOTIs today focuses on 2D
structures with periodicity in two directions only [32–34]. In
principle, 2D TIs only support the design of SOTIs at most,
while the higher-order TIs, e.g., third-order topological insu-
lators (TOTIs) can only be obtained using higher-dimensional
TIs. Therefore, the exploration of 3D TIs has recently been a
hot topic. In comparison to their 2D counterparts, 3D TIs offer
one more degree of freedom in space for designing topological
phases and thus broadening the scope and diversity of HOTIs.
Theoretically, the 2D topological surface states, 1D topologi-
cal hinge states, and 0D topological corner states can coexist
in a 3D TOTI, which thus provides a versatile tool to ma-
nipulate light, vibration, and sound waves. For example, Xue
et al. [35] designed a diamond lattice structure that consists of
air cavities and interconnected air tubes, from which pressure
concentration at structure corners can be observed. However,
the present state-of-the-art for research related to TIs focuses
on the presence of higher-order topological states and it is
restricted to waveguiding in 2D space. The exploration of
various wave propagation behavior, especially waveguiding
in 3D space, is still in its infancy. In this paper, we fill the
gap of research on the surface-, edge-, and corner-restricted
wave propagation of 3D TIs by designing a cubic lattice
structure with tunable topological order. In particular, the
waveguiding in a 3D twisted path is successfully demon-
strated, which is significant in sound wave manipulation and
acoustic signal processing. A finite element approach using
COMSOL is utilized to validate theoretical dispersion relation
and wave propagation modes. Moreover, the proposed concept
and model in this paper could be easily extended to future
analogy research in elastic systems.

The rest of this paper is organized as follows. Section II
elaborates on the analytical models and the specific geo-
metrical parameters. It also introduces an equivalent electric
circuit system for analyzing the dispersion relation. Section III

presents a comprehensive study on directional bandgap and
topological phases at different high-symmetry points. A
fractional bulk polarization map is presented to illustrate topo-
logical phases in different directions. In Sec. IV, we first
design a 1D first-order topological insulator (FOTI) to demon-
strate the existence of topological edge states, and then the
surface-restricted wave propagation is obtained in a 3D FOTI.
Analogous examples of SOTIs and TOTIs are then presented
in Secs. V and VI, respectively. Finally, we establish robust
waveguiding with right-angle corners for both 2D and 3D
twisted paths in Sec. VII.

II. MODEL AND METHODOLOGY

A. Modeling the acoustic metamaterials

To achieve a series of TIs with topological states along
different directions and tunable order numbers, we herein
propose an acoustic system with an analogy to the 3D SSH
model. As shown in Fig. 1(a), the unit-cell model appearance
is a sealed resin cube of side length a with four small ports
on each surface. A cross section along the blue dashed frame
is presented in Fig. 1(b) to show the internal structure. It is
obvious that the model can be constructed by digging eight
air cavities and the corresponding connecting channels from
the resin cube. The air cavities are also cubic with side length
L and air channel width b. For better illustration, we show the
3D view and the plan of extracted air domain in Figs. 1(c) and
1(d). The center-to-center distance of neighboring air cavities
along the x, y, and z directions are respectively denoted as lx,
ly, and lz, while the air tube distance along any direction is
fixed at a/2. It should be noticed that Figs. 1(a)–1(d) illustrate
a unit cell, while the whole metastructure is a periodic repeti-
tion of the unit cell along the x, y, and z directions, as shown
in Fig. 1(e). As an acoustic analogy of the 3D SSH model,
the topological properties can be analyzed by the fractional
bulk polarization P [36,37]. The respective air cavity distances
i.e., lx,y,z, are the tuning parameters for switching eigenmode
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FIG. 2. Modeling of the equivalent electric system. (a) Air domain of unit cell with intracell air channels marked in orange and intercell
air channels marked in blue. (b) Graphical illustration of the equivalent electric system, where inductors and ground-connected capacitors
are electric counterparts of air channels and air cavities. (d) Schematic of currents I1–I24 in the corresponding branches. (d) Comparison of
dispersion relations for the acoustic system and the electric system with respect to lx = ly = lz = 0.5a.

parity at the high-symmetry point of each direction, which
will be discussed in detail in the following sections.

B. Equivalent electric circuit system

The proposed acoustic system has three degrees of freedom
for tuning purposes, i.e., lx, ly, and lz, such that switching
of the eigenmode parity along different directions can be
made possible. To avoid system complexity, we begin with
an isotropic model i.e., lx = ly = lz. As shown in Fig. 2(a),
we can further categorize the air channels into intercell and
intracell channels, respectively, marked in blue and orange.
Considering the intricacy of the structure, it is difficult to
directly derive an analytical dispersion relation of the acoustic
system. Inspired by the topological electric system [38,39]
and an analogy between electric systems and the proposed
acoustic system [40–42], we introduce an equivalent electric
system in Fig. 2(b) to analytically solve the band structure.
According to Liao et al. [43], the gray cavities and blue
(orange) channels in acoustic systems can be respectively

equivalent to the ground-connected gray capacitors and blue
(orange) serial inductors, of which the equivalent capacitance
C and inductance L2 (L1) can be calculated by [41]

C = V

ρ0c2
0

, Li = ρ0
li
S
, (1)

where li (i = 1, 2) represents the length of intracell (orange)
channels or intercell (blue) channels, V denotes the volume
of the air cavity, ρ0 = 1.21 kg/m3 is the air density, c0 = 343
m/s is the sound velocity propagating in the air, and S is the
cross-sectional area of the channels. The voltage and current
in the electric system represent the pressure difference and
volume flux in the acoustic system, respectively. In addition,
the equivalence between the acoustic and electric systems has
several limitations and assumptions, including (i) neglecting
nonlinear material properties, (ii) neglecting viscosity, (iii)
assuming the acoustic system is heat insulated, (iv) the wave-
length of the acoustic wave must be significantly larger than
the tube length i.e., lx, ly, and lz, and (v) the volume of the
cavities must be significantly larger than the tubes.
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We first denote the current at each branch as Ii (i =
1, 2, . . . , 24) with direction as indicated in Fig. 2(c), where
the gray dashed arrows are intercell currents and the black
solid arrows are intracell currents. Subsequently, by applying
Kirchhoff’s current law at nodes a − h, we obtain

I1 + I5 + I9 = I3 + I11 + I7 + ∂

∂t
VaC (2a)

I3 + I6 + I10 = I8 + I12 + I1eiqx + ∂

∂t
VbC, (2b)

I2 + I13 + I7 = I4 + I15 + I5eiqy + ∂

∂t
VcC, (2c)

I4 + I14 + I8 = I16 + I6eiqy + I2eiqx + ∂

∂t
VdC, (2d)

I11 + I17 + I21 = I19 + I23 + I9eiqz + ∂

∂t
VeC, (2e)

I19 + I22 + I12 = I24 + I17eiqx + I10eiqz + ∂

∂t
Vf C, (2f)

I18 + I23 + I15 = I20 + I21eiqy + I13eiqz + ∂

∂t
VgC, (2g)

I20 + I16 + I24 = I18eiqx + I23eiqy + I14eiqz + ∂

∂t
VhC. (2h)

According to the current directions in Fig. 2(c) and the def-
inition of voltage and current across an inductor V = LdI/dt ,
we may rewrite the equations above as

Ia =
(

3

iωL1
+ 3

iωL2
+ iωC

)
Va −

(
1

iωL1
+ e−iqx

iωL2

)
Vb

−
(

1

iωL1
+ e−iqz

iωL2

)
Ve −

(
1

iωL1
+ e−iqy

iωL2

)
Vc, (3a)

Ib =
(

3

iωL1
+ 3

iωL2
+ iωC

)
Vb −

(
1

iωL1
+ eiqx

iωL2

)
Va

−
(

1

iωL1
+ e−iqz

iωL2

)
Vf −

(
1

iωL1
+ e−iqy

iωL2

)
Vd , (3b)

Ic =
(

3

iωL1
+ 3

iωL2
+ iωC

)
Vc −

(
1

iωL1
+ e−iqx

iωL2

)
Vd

−
(

1

iωL1
+ e−iqz

iωL2

)
Vg −

(
1

iωL1
+ eiqy

iωL2

)
Va, (3c)

Id =
(

3

iωL1
+ 3

iωL2
+ iωC

)
Vd −

(
1

iωL1
+ eiqx

iωL2

)
Vc

−
(

1

iωL1
+ e−iqz

iωL2

)
Vh −

(
1

iωL1
+ eiqy

iωL2

)
Vb, (3d)

Ie =
(

3

iωL1
+ 3

iωL2
+ iωC

)
Ve −

(
1

iωL1
+ e−iqx

iωL2

)
Vf

−
(

1

iωL1
+ eiqz

iωL2

)
Va −

(
1

iωL1
+ e−iqy

iωL2

)
Vg, (3e)

I f =
(

3

iωL1
+ 3

iωL2
+ iωC

)
Vf −

(
1

iωL1
+ eiqx

iωL2

)
Ve

−
(

1

iωL1
+ eiqz

iωL2

)
Vb −

(
1

iωL1
+ e−iqy

iωL2

)
Vh, (3f)

Ig =
(

3

iωL1
+ 3

iωL2
+ iωC

)
Vg −

(
1

iωL1
+ e−iqx

iωL2

)
Vh

−
(

1

iωL1
+ eiqz

iωL2

)
Vc −

(
1

iωL1
+ eiqy

iωL2

)
Ve, (3g)

Ih =
(

3

iωL1
+ 3

iωL2
+ iωC

)
Vh −

(
1

iωL1
+ eiqx

iωL2

)
Vg

−
(

1

iωL1
+ eiqz

iωL2

)
Vd −

(
1

iωL1
+ eiqy

iωL2

)
Vf . (3h)

Here Eqs. (3a)–(3h) can be expressed into a matrix format
as

I = JV, (4)

where J is the grounded Laplacian matrix with
J =(iωC + W/iω) and

I = [Ia Ib Ic Id Ie I f Ig Ih]T
, (5)

V = [Va Vb Vc Vd Ve Vf Vg Vh]T
, (6)

C =

⎡
⎢⎢⎢⎢⎣

C 0 · · · 0 0
0 C · · · 0 0
...

. . .
. . .

. . .
...

0 · · · · · · C 0
0 · · · · · · 0 C

⎤
⎥⎥⎥⎥⎦

8×8

, (7)

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
L1

+ 3
L2

− 1
L1

− e−iqx

L2
− 1

L1
− e−iqy

L2
0 − 1

L1
− e−iqz

L2
0 0 0

− 1
L1

− eiqx

L2

3
L1

+ 3
L2

0 − 1
L1

− e−iqy

L2
0 − 1

L1
− e−iqz

L2
0 0

− 1
L1

− eiqy

L2
0 3

L1
+ 3

L2
− 1

L1
− e−iqx

L2
0 0 − 1

L1
− e−iqz

L2
0

0 − 1
L1

− eiqy

L2
− 1

L1
− eiqx

L2

3
L1

+ 3
L2

0 0 0 − 1
L1

− e−iqz

L2

− 1
L1

− eiqz

L2
0 0 0 3

L1
+ 3

L2
− 1

L1
− e−iqx

L2
− 1

L1
− e−iqy

L2
0

0 − 1
L1

− eiqz

L2
0 0 − 1

L1
− eiqx

L2

3
L1

+ 3
L2

0 − 1
L1

− e−iqy

L2

0 0 − 1
L1

− eiqz

L2
0 − 1

L1
− eiqy

L2
0 3

L1
+ 3

L2
− 1

L1
− e−iqx

L2

0 0 0 − 1
L1

− eiqz

L2
0 − 1

L1
− eiqy

L2
− 1

L1
− eiqx

L2

3
L1

+ 3
L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(8)
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FIG. 3. Dispersion relation in the FBZ with respect to (a) lx = ly = lz = 0.9a and (b) lx = ly = lz = 0.1a, where the diagram of the FBZ is
shown in the inset. (c) Eigenmodes of both cases at a higher symmetry point R for the first band.

According to Kirchhoff’s current law, the current vector I
must be a zero vector. Therefore, by assuming the voltage at
each node that varies in the form of V =φeiωt , we can rewrite
the grounded Laplacian matrix as

Wφ =ω2Cφ. (9)

After introducing a gauge transformation φ̄ =C−1/2φ and
D =C−1/2WC−1/2, Eq. (8) can be further expressed in the
following form:

Dφ̄ =ω2φ̄. (10)

By determining eigenvalues of the dynamical matrix D,
one can obtain the dispersion relation of the equivalent electric
circuit system.

To validate the equivalent electrical system, we further
compare the dispersion solution from Eq. (10) with the finite
element method (FEM) result of acoustic system solved using
COMSOL MULTIPHYSICS. At an initial state, the geometrical
parameters are defined as a = 1 m, L = 0.3a, b = 0.04a, and
lx = ly = lz = 0.5a. As shown in Fig. 2(d), the dispersion
relation in the first Brillouin zone (FBZ), highlighted as a
red pyramid, is sufficient for analysis because of system pe-
riodicity. As observed, the equivalent electrical system (red
solid line) and acoustic system (black dashed line) show sat-
isfactory agreement. Taking the high-symmetry point R as
an example, the analytical and numerical solutions are, re-
spectively, 72.6 and 68.7 Hz, with a 5.4% difference, which
is acceptable. Moreover, obvious degeneracy characteristics
resulting from the system symmetry can be observed. The
structure owns four eigenmodes at the � point while it de-

generates into three, two, and one eigenmode at points X, M,
and R, respectively.

III. UNIT-CELL ANALYSIS

A. Isotropic unit cells

A unit cell with identical intra- and intercell coupling, i.e.,
l1 = l2 presents a continuous dispersion relation with obvious
degeneracy characteristics in Fig. 2(d). In this section, we
retain an isotropic structure where lx = ly = lz, but introduce
distinct intra- and intercell coupling, i.e., l1 �= l2. Two cases
with lx = ly = lz = 0.9a and lx = ly = lz = 0.1a are investi-
gated, of which the dispersion relations are respectively shown
in Figs. 3(a) and 3(b). Because this paper focuses on sub-
wavelength scale and analyzes higher-order topology, only the
lowest bandgap and its corresponding topological properties
will be investigated, although high-frequency bandgaps do
exist. After setting l1 �= l2, the degeneracy of the first two
bands is lifted so that a complete bandgap ranging from 50.93
to 69.95 Hz occurs. It can be observed that these two cases
show identical bandgap ranges but with distinct eigenmodes
at a higher symmetry point R. As shown in Fig. 3(c), lx =
ly = lz = 0.9a corresponds to an eigenmode that is symmetric
along neither the xz, xy, nor the yz plane, nor is it denoted as
an unsymmetric mode (marked by blue cycle). By contrast,
the eigenmode for lx = ly = lz = 0.1a (marked by red cycle)
is symmetric about the xz, yz, and xy planes. The changing
of eigenmodes suggests this structure can achieve topological
phase transition from nontrivial to trivial by simply tweaking
the air cavity distance. For isotropic cases, the symmetry
along any plane is promised to be identical to the Pm3m
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FIG. 4. Dispersion relation along �-X -M-Y -�-Z for (a) lx = 0.1a, ly = 0.5a, lz = 0.5a; (b) lx = 0.9a, ly = 0.5a, lz = 0.5a; (c) lx = 0.5a,
ly = 0.1a, lz = 0.5a; (d) lx = 0.5a, ly = 0.9a, lz = 0.5a; (e) lx = 0.5a, ly = 0.5a, lz = 0.1a; and (f) lx = 0.5a, ly = 0.5a, lz = 0.9a, where the
Brillouin zone and eigenmodes at the corresponding higher symmetry points are shown in the insets.

symmetry (threefold rotation symmetry and three mirror sym-
metries) of this cubic SSH lattice. Therefore, the eigenmodes
are either symmetrical or unsymmetrical along all planes.

B. Anisotropic unit cells

From the analysis of isotropic unit cells in Sec. III A,
it is obvious that a complete bandgap could be opened by
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tweaking the cavities distance, and the eigenmodes show
identical symmetry properties about all planes i.e., either
symmetrical or unsymmetrical. In this section, anisotropy is
introduced to the 3D SSH acoustic system, and the direc-
tional bandgaps and the corresponding topological properties
are analyzed. To begin with, it is significant to emphasize
the dispersion relation along �-X -M-Y -�-Z [see the red box
inserted in Fig. 4(a)] is used in this section instead of adopting
the FBZ [see the red pyramid in Fig. 3(a)], such that the
directional bandgaps can be clearly observed. Two anisotropic
cases, lx = 0.9a and lx = 0.1a with ly = lz = 0.5a, are first
studied to demonstrate the x-direction bandgap. As shown in
Figs. 4(a) and 4(b), the degeneracy at the X point is lifted
because of the unequal intracell and intercell coupling along
the x direction. Comparatively, the degeneracy of other points
is preserved, hence the bandgap denoted as BGx only occurs
along the �X direction, the frequency ranges of which are
identical. However, by observing the eigenmodes of the first
band at the X point, reversing of the symmetry about the
yz plane is noticed by changing lx from 0.9a to 0.1a. It is
interesting to highlight that the symmetry property along the
other two planes, i.e., the xz and xy planes, are not affected.
An analogous analysis for the y and z directions are also
performed and the result is presented in Figs. 4(c) and 4(d)
and Figs. 4(e) and 4(f). It can be concluded from Fig. 4 that
the opening or closing of bandgaps in the �X , �Y , and �Z di-
rections only depends on lx, ly, and lz, respectively. Moreover,
topological phase transition follows the same configuration,
which means the symmetry property about the yz, xz, and xy
planes is independently related to lx, ly, and lz. This property
provides possibilities for designing different order TIs that are
polarized along different directions.

C. Fractional bulk polarization

The previous analysis for isotropic and anisotropic unit
cells demonstrates the dependence of the type of eigen-
mode on air cavity distance. Topological phase transition in
a specific direction can be observed. Here, we introduce 3D
fractional bulk polarization P = (Px, Py, Pz ) to characterize
the topological properties. Note that some researchers employ
Zak phase θZak

i (i = x, y, z) to describe topological properties
[44,45], which is actually related to bulk polarization with
Pi = θZak

i /2π . The 3D fractional bulk polarization is defined
as the integral of Berry connection over the FBZ [46,47]

P = 1

(2π )3

∫ ∫ ∫
FBZ

d3k Tr(An), An = i〈un|∂k|un〉, (11)

where k is the wavevector, ∂k is the vector gradient operator
in k space, |un〉 is the Bloch function, and subscript n refers to
the nth bands below the bandgap. It should be noted that the
band index n is equal to 1 in this study because we only focus
on the lowest bandgap. The bulk polarization is identical along
all directions for isotropic unit cells, i.e., Px = Py = Pz, since
the crystalline symmetry is preserved. Comparatively, distinct
bulk polarization values can be obtained for anisotropic unit
cells. It is rather difficult to determine P from Eq. (11) directly.
Determining the polarization Pi (i = x, y, z) from parities of
eigenmodes at the corresponding higher symmetry points is

FIG. 5. Fractional bulk polarization map that indicates the rela-
tion between the topological phase and air cavities distance, i.e., lx ,
ly, and lz. (a) Isometric map and (b) different isometric map with (a)
but with 180 ° rotation about the lz axis.

preferred [48,49].

Pi = 1

2

(∑
n

qn
i mod 2

)
, (−1)qn

i = ηn(Di )

ηn(�)
, (12)

where Di (i = x, y, z) represent higher symmetry points
along the x, y, and z directions, respectively, i.e.,
Dx = X [k = (π/a, 0, 0)], Dy = Y [k = (0, π/a, 0)], and
Dz = Z[k = (0, 0, π/a)]. ηn (n = 1) refers to parity of the
first band, where symmetric eigenmodes give even (+) parity
and unsymmetrical modes give odd (−) parity. It should
be noticed the reference plane for symmetry estimation
differs with directions. For example, we take the yz plane for
reference when estimating the symmetry property for Dx, and
the xz (xy) plane is selected for Dy (Dz). Therefore, the bulk
polarization Pi is 0 (1/2) if the eigenmodes of the first band
at the corresponding higher symmetry point are symmetric
(unsymmetrical).

To establish the whole relation between cavity distance
li and P values, we further conduct a series of parametric
studies and summarize the bulk polarization map in Fig. 5
and Table I. Based on li, we divide the bulk polarization map

TABLE I. Details of color and bulk polarization with respect to
regions I–VIII.

Region Color Bulk polarization value

I  P = (0, 0, 0)

II  P = (1/2, 0, 0)

III  P = (0, 1/2, 0)

IV  P = (1/2, 1/2, 0)

V  P = (0, 0, 1/2)

VI  P = (1/2, 0, 1/2)

VII  P = (0, 1/2, 1/2)

VIII  P = (1/2, 1/2, 1/2)
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FIG. 6. Dispersion analysis of 1D FOTIs. (a) 1D FOTIs with unit cells spreading along the z, y, and x direction, respectively. (b)–(d)
correspond to dispersion relations in the 2D FBZ. (e) Mode shape of the TPIM for the FOTI that spreads along the z direction. (f) Acoustic
pressure distribution along the z direction for the eigenmodes in (e).

into eight regions that are denoted by RI-RVIII and marked by
different colors. Every region has its unique color and bulk
polarization value. It can be concluded from Fig. 5 and Table I
that Pi is only related to the corresponding li. For example,
Py is promised to be 0 (1/2) only if ly < a/2 (ly > a/2),
while lx and lz are insignificant, which agrees well with our
conclusion in Fig. 4. Such properties offer a clear strategy for
obtaining different order or directional topological phases in
a parametric space.

IV. FOTI

A. One-dimensional FOTI

The dispersion relation analyses in the previous sections
demonstrated controllable directional bandgap and topolog-
ical phase transition. Here, we propose three 1D FOTIs to
establish the directional TPIM. According to bulk-boundary
correspondence [30,50], a TPIM along one specific direction
can be formed at the interface of two domains with common
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FIG. 7. Wave propagation analysis of 3D FOTIs. (a) Schematic diagram and (b) surface-restricted yz plane waveguiding at f = 56.78 Hz
of the 3D FOTI with RI unit cells and RII unit cells. (c) Schematic diagram and (d) surface-restricted xz plane waveguiding at f = 56.78 Hz of
the 3D FOTI with RI unit cells and RIII unit cells. (e) Schematic diagram and (f) surface-restricted xy plane waveguiding at f = 56.78 Hz of
the 3D FOTI with RI unit cells and RV unit cells.

bandgap regions but opposite topological phases along that
specific direction. Therefore, three supercells in Fig. 6(a) that
are composed of four RI and four RV unit cells but spread
along different directions are designed. The first supercell
spreads along the z direction and periodic boundary conditions
(PBCs) are applied to the other two directions. The other two
supercells follow analogous configurations. The dispersion
relations are presented in Figs. 6(b)–6(d) by sweeping the
wave vector along the 2D FBZ [see the red triangle in
Fig. 6(b)]. It is obvious that a TPIM only occurs for the
supercell spreading along z, since RI [P = (0, 0, 0)] and RV

[P = (0, 0, 1/2)] unit cells only provide a z-direction phase
transition. Unlike gapless TPIMs in (spin) Chern insulators
[1,51], this structure exhibits a gapped TPIM band, which
predicts the existence of higher-order topological insulators.
The sound pressure field of the TPIM at 56.78 Hz is shown
in Fig. 6(e), from which we can notice pressure localization at
the interface. As PBCs are applied to the x and y directions, we
can promise the existence of sound wave propagation along
the xy plane for a 3D FOTI, which will be investigated in
the following section. Moreover, it can also be quantitatively
observed from Fig. 6(f) that the acoustic pressure is much

higher around the interface, and it decays rapidly away from
it. The pressure is attenuated to near zero within 1.5a from the
interface.

B. Three-dimensional FOTI

The analysis in Sec. IV A predicts the presence of
surface-restricted wave propagation in 3D FOTIs. Due to
single-directional phase conflict and PBCs along the other
directions, a 3D FOTI with different Pz components should
have xy surface-restricted wave propagation and vice versa.
Therefore, three kinds of 3D FOTI, as inserted in Figs. 7(a),
7(c), and 7(e), are designed to verify the prediction. Tak-
ing Fig. 7(a) as an example, the structure is composed of
6×6×6 unit cells, where the nontrivial (yellow) parts are
RII [P = (1/2, 0, 0)] unit cells and the others are trivial RI

[P = (0, 0, 0)] unit cells. Note that the RI and RII parts are
interconnected with no gap, but we split them in the diagram
for better presentation. By setting a 56.78 Hz point excitation
at the connecting corners (red star) between RI and RII parts,
we obtain the wave propagation mode in Fig. 7(b), where an
RII pressure field is shown independently. It can be seen the
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FIG. 8. Dispersion analysis of 2D SOTIs. (a) Schematic diagram and (b) dispersion relation of a 2D SOTI with unit cells spreading along
the x and y directions. Eigenmodes of (c) one topological corner state at f = 57.97 Hz; (d) one topological hinge state at f = 54.08 Hz; (e)
one bulk state at f = 48.99 Hz; and (f) acoustic pressure distribution for the corner state at f = 57.97 Hz.

56.78 Hz sound wave propagates strictly along the intersur-
face of the yz plane. Together with the analogous phenomenon
for the xz plane [inserted in Figs. 7(c) and 7(d)] and the xy
plane [inserted in Figs. 7(e) and 7(f)], we successfully demon-
strate the surface-restricted wave propagation along different
planes in the 3D FOTIs. The wave propagation plane can be
easily switched by tweaking the cavities distance i.e., lx, ly,
and lz. With the ability to confine wave propagation in a spe-
cific plane, this new model shows great application potential
in structural damage detection [52] and wave filtering [53].

V. SOTI

A. Two-dimensional SOTI

In Sec. IV, TPIMs and the corresponding surface-restricted
wave propagation of FOTIs are established using unit cells

with single-directional phase conflict. According to bulk-
boundary correspondence, the dual-directional topological
phase conflict is able to generate lower-order topological
states at the “boundary of boundary” because of convergence
of two orthometric 1D interface polarization. The so-called
“bulk-boundary-corner” correspondence is defined by a topo-
logical corner charge as [54]

Qcorner = PiPj (i, j = x, y, z and i �= j), (13)

where a nonzero Qcorner can ensure the presence of topo-
logical corner states. A 90 ° terminated corner is necessary
for obtaining corner states, hence a 1D SOTI is theoretically
nonexistent. As shown in Fig. 8(a), we design a 2D SOTI
with 12×12 unit cells whose right bottom quarter (green part)
belongs to RIV [P = (1/2, 1/2, 0)] and the other parts belong
to RI [P = (0, 0, 0)]. Since phase conflict originates from Px
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FIG. 9. Wave propagation analysis of 3D SOTIs. (a) Schematic diagram and (b) edge-restricted z-directional waveguiding at f = 57.97 Hz
of the 3D SOTI that is composed of RI unit cells and RIV unit cells. (c) Schematic diagram and (d) edge-restricted y-directional waveguiding at
f = 57.97 Hz of the 3D SOTI that is composed of RI unit cells and RVI unit cells. (e) Schematic diagram and (f) edge-restricted x-directional
waveguiding at f = 57.97 Hz of the 3D SOTI that is composed of RI unit cells and RVII unit cells.

and Py, we spread the unit cells along the x and y directions
and apply a PBC to the z direction. The dispersion can thus
be solved by only sweeping the z-direction wave vector kz.
As shown in Fig. 8(b), the hinge states (blue dots) and corner
states (red dots) occur in the bulk bandgap range (gray region).
More specifically, the pure corner states only occupy 54.09–
57.97 Hz, while the hinge states and corner states coexist from
49.89 to 54.09 Hz. Moreover, there is a frequency range above
corner states, i.e., 57.97–68.34 Hz, in which all propagation
modes are prohibited. This frequency range is referred to as a
complete bandgap. The eigenmodes of one corner state, one
hinge state, and one random bulk state are respectively shown
in Figs. 8(c)–8(e). It can be observed the acoustic pressure in

the hinge states localizes at the two orthometric interbound-
aries between the RI and RIV parts. Then, we can notice
the dimensional hierarchy from hinge states to corner states.
In Fig. 8(c), the acoustic pressure is highly confined at the
boundary of boundary, which is a corner. It is easy to imagine
that the corner in the 2D plane could be extended to a line in
the 3D space, hence edge-restricted wave propagation can be
achieved. Comparatively, the acoustic pressure is distributed
throughout the whole structure in bulk states, which suggests
free propagation of the sound wave. Moreover, the pressure
map of corner states is presented in Fig. 8(f) for a quantitative
analysis of the pressure distribution. It can be noticed pressure
is localized around the center and it decays rapidly from it.
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FIG. 10. Eigenfrequency analysis of 3D TOTI. (a) Schematic diagram of the proposed 3D TOTI that is composed of 4 × 4 × 4 RVIII unit
cells and surrounded by two layers of RI unit cells. (b) Eigenfrequencies and corresponding solution numbers. Eigenmodes of (c),(d) two
topological surface states at f = 50.42 Hz and f = 50.43 Hz, (e),(f) two topological hinge states at f = 55.41 Hz and f = 55.67 Hz, and
(g),(h) two topological corner states at f = 60.46 Hz and f = 60.88 Hz.

The pressure approaches zero at the location about 1.5a away
from center.

B. Three-dimensional SOTI

In Sec. IV, the surface-restricted wave propagation is
obtained in 3D FOTIs, while in Sec. V A, we show the
lower-dimensional energy localization (corner state) in SOTI.
Therefore, it is natural to think whether edge-restricted wave
propagation can be obtained in higher-order topological in-
sulators. As shown in Figs. 9(a), 9(c), and 9(e), we propose
three kinds of 3D SOTIs that are analogous to the structure
in Fig. 7 but the nontrivial region has different bulk polariza-
tion. For SOTIs, the dual-directional phase conflict should be
ensured, hence we chose RI as the trivial part and RIV, RVI,
and RVII as the nontrivial part, respectively. Taking Fig. 9(a)
as an example, the bulk polarization of green (RIV) parts and

gray (RI) parts are respectively P = (1/2, 1/2, 0) and P =
(0, 0, 0). Then, the edge-restricted wave propagation along
the z direction is obtained by giving a 57.97 Hz excitation at
the interconnetcing corner (red star), as depicted in Fig. 9(b).
By using the same analysis approach, we demonstrate wave
propagation along the y and x edges in Figs. 9(d) and 9(f).

VI. TOTI

In the previous sections, a FOTI with single-directional
phase conflict and a SOTI with dual-directional phase con-
flict have demonstrated the topological 1D interface states,
2D hinge states, 2D corner states, and the corresponding
surface-restricted and edge-restricted wave propagation
modes. The higher-order cases will be discussed in this sec-
tion. Based on the definition of 3D corner charge (Qcorner =
PxPyPz ), the 3D corner states can be ensured by nonzero bulk
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FIG. 11. Wave propagation analysis of the 3D TOTI. (a) Schematic diagram of the proposed 3D TOTI. (b) Installation layout of the
excitation source, corner detectors, hinge detectors, and surface detectors. (d) Mean pressure obtained by different detectors with respect to the
excitation frequency from 26 to 76 Hz. Wave propagation behavior of (d) f = 47.2 Hz that belongs to the surface states region, (e) f = 52.7
Hz that belongs to the hinge states region, (f) f = 60.3 Hz that belongs to the corner states region, and (g) f = 66 Hz that belongs to the
bandgap region.

polarization along three directions simultaneously. Moreover,
it can be observed from Fig. 5 and Table I that there ex-
ist two regions with triple-directional phase conflict, e.g., RI

[P = (0, 0, 0)] and RVIII [P = (1/2, 1/2, 1/2)]. Therefore, we
propose a TOTI [inserted in Fig. 10(a)], which consists of
4 × 4 × 4 RVIII unit cells surrounded by two layers of RI unit
cells. The eigenfrequencies and corresponding solution num-
bers of this structure are solved and presented in Fig. 10(b).
As predicted, several surface states, hinge states, and corner
states take place in the bulk gap range, which are respectively
marked by purple, blue, and red dots. In principle, the number
of corner states depends on the number of interconnected
corners. As a cubic structure, the proposed model has eight
corners that match well with the corner states number [see
the inserted local plot in Fig. 10(b)]. Two eigenmodes of each
state are shown in Figs. 10(c)–10(h), where only the pressure
field of RI parts is presented for a clearer presentation. It

is obvious the sound pressure is restricted on the surfaces
but insulated in the bulk for surface states. By contrast, the
pressure concentrates at a lower-dimensional geometry (edge)
for topological hinge states and it decays rapidly into surface
and bulk. For the eigenmodes of red dots, it can be noticed
the pressure is discretely confined at the corners but insulated
for either edge, surface, or bulk, which is a smoking gun
of topological corner states. By solving eigenmodes of the
proposed structure, the presence of topological corner states
is successfully demonstrated. However, the actual wave prop-
agation behavior in this 3D SOTI is still unclear.

After eigenmode analysis, we further conduct a frequency
domain study to investigate the wave propagation behavior of
3D TOTI. As shown in Fig. 11(a), the model is completely
identical to that in Fig. 10(a), but instead of solving eigen-
modes, we give a sound excitation and observe the frequency
response. The source and detector installation locations are

144307-13



WANG, CHEN, SHI, AND LIM PHYSICAL REVIEW B 109, 144307 (2024)

FIG. 12. Waveguiding in the twisted 2D path. (a) Schematic diagram of the proposed structure for 2D twisted waveguiding. (b) Local plot
of the extracted RVIII part where the output face is marked by blue shading. (c) Wave propagation mode of f = 45 Hz where surface-restricted
wave propagation can be observed. (d) Pressure map at the output face of f = 45 Hz. (e) Wave propagation mode of f = 54 Hz where
edge-restricted wave propagation can be observed. (f) Pressure map at the output face of f = 54 Hz.

shown in Fig. 11(b), where the yellow star indicates excita-
tion, and the red, blue, and green dots are, respectively, corner,
hinge, and surface detectors. Note that there are 6 corner
detectors, 9 hinge detectors, and 27 surface detectors, hence
the corresponding mean pressure values are calculated for
reference. By observing the result in Fig. 11(c), we notice the
whole frequency range can be divided into several different
parts based on the dominant states. For example, the mean
pressure obtained of the surface detector in the green region
(44.9–47.4 Hz) is obviously higher than the hinge and corner
detectors. The propagation mode of the surface state at 47.2
Hz (green star) is shown in Fig. 11(d), in which the wave
can only propagate along the surfaces. We also notice that
the hinge regions (blue regions) are not continuous, which
matches the conclusion in Fig. 10(b). The propagation mode
in Fig. 11(e) demonstrates the existence of edge-restricted

wave propagation at the frequency range of hinge states.
Comparatively, the corner detectors only receive one pressure
peak at 60.3 Hz (red star), of which the pressure is highly
confined at the corners [as depicted in Fig. 11(f)]. For the gray
regions, all detectors receive near-zero sound pressure, which
is a hallmark of the bandgap state. The prediction is confirmed
by the pressure distribution of 66 Hz in Fig. 11(g), where
the sound energy is obviously confined around the excitation
region.

VII. WAVEGUIDING IN TWISTED PATH

A. Twisted 2D path

Waveguiding, a design to ensure a wave can only propagate
along a designed path, is one of the most important appli-
cations of topological metamaterials. In Secs. V and VI, the
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FIG. 13. Waveguiding in the twisted 3D path. (a) Schematic diagram of the proposed structure for 3D twisted waveguiding. (b) Local plot
of the extracted RVIII part where the output face is marked by blue shading. (c) Wave propagation mode of f = 49 Hz where surface-restricted
wave propagation can be observed. (d) Pressure map at the output face of f = 49 Hz. (e) Wave propagation mode of f = 55.5 Hz where
edge-restricted wave propagation can be observed. (f) Pressure map at the output face of f = 55.5 Hz.

surface- and edge-restricted waveguiding along a straight path
has been demonstrated. However, waveguiding in a twisted
path has not been studied yet. The demonstration of twisted
waveguiding can not only extend the application scenario but
also validate the robustness of waveguiding against sharp cor-
ners. Given this, we propose a structure in Fig. 12(a), which
is composed of an “L”-shape nontrivial region (purple region)

and the surrounding trivial region (gray region). These two
regions are respectively made up of RVIII and RI unit cells.
Therefore, two bent hinge paths and three bent surface paths
are formed. As graphically illustrated in Fig. 12(b), we first
give a sound source at the top left corner (red star) of the input
surface and detect the pressure map of the output surface (blue
shadow). When the excitation frequency ( f = 45 Hz) is in
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FIG. 14. Robustness of waveguiding. (a) Schematic diagram of the proposed structure with cavity defect. (b) Surface waveguiding with
cavity defect at 49 Hz. (c) Edge waveguiding with cavity defect at 55.5 Hz. (a) Schematic diagram of the proposed structure with channel
defect. (b) Surface waveguiding with channel defect at 49 Hz. (c) Edge waveguiding with channel defect at 55.5 Hz.

the surface states region, i.e., the green region in Fig. 11(c),
we can notice from Fig. 12(c) the sound wave will propagate
along the intersurfaces neighboring the source. The pressure
map of the output surface in Fig. 12(d) also demonstrates the
phenomenon quantitatively. Note that the coordinate origin
of the pressure map is located at the highlighted red cycle
in the output surface. Subsequently, we adjust the excitation
frequency to 54 Hz, which belongs to the hinge states region,
i.e., the blue region in Fig. 11(c). It can be noticed from
Fig. 12(e) that the sound wave transports along the interedge
strictly without significant energy loss at the 90 ° corner. The
pressure map in Fig. 12(f) provides quantitative evidence, in
which the detected pressure at the top right corner (exit of
hinge) is much higher than other locations.

B. Twisted 3D path

The majority of the previous research [11,55] only showed
waveguiding in the 2D path as presented in Secs. VI and
VII A. However, the twisted 3D waveguiding that is essential
for signal detection and processing is still unexplored. Due to
this research gap, we further propose a structure in Fig. 13(a),
which consists of one interedge and two intersurfaces between
the RVIII and RI parts. It can be noticed the waveguiding path
has two 90 ° corners in the xy and xz planes, respectively,
so that a 3D path for surface- and edge-restricted waveguid-
ing is designed. In Fig. 13(b), it shows a local plot of RVIII

parts, where the red star and red cycle represent the excitation
source and the coordinate origin of pressure maps, respec-
tively. Moreover, the output face is marked by a blue shadow.

After giving a 49 Hz excitation that belongs to the surface
states region, we can observe obvious surface-restricted wave
propagation along the two intersurfaces in this twisted 3D
structure from Fig. 13(c). To provide a quantitative compar-
ison, the pressure distribution of the output face is shown in
Fig. 13(d), where the pressure of two edges neighboring the
coordinate origin is obviously higher than the other locations.
When the excitation frequency turns to the hinge states region
such as 55.5 Hz, the edge-restricted wave propagation along
the 3D path without significant energy loss is obtained in
Fig. 13(e). The pressure map in Fig. 13(f) also demonstrates
that the sound wave only propagates along the designed edge
while it is insulated for the bulk and surface.

C. Robustness of waveguiding

One of the most peculiar properties of topological
states is the robustness against sharp corners and minor
imperfections. After demonstrating waveguiding along paths
with 90 ° corners in Secs. VII A and VII B, we further inves-
tigate two types of structure defects, i.e., cavity defect and
channel defect for their robustness against minor imperfec-
tions. As shown in Fig. 14(a), the cavity defect, in which the
blue cavity has a larger side length (L = 0.34 m) than normal
cavities (L = 0.3 m), indicates fabrication imperfection. The
surface-restricted and edge-restricted waveguiding with cavity
defect can be clearly observed in Figs. 14(b) and 14(c). For
surface waveguiding, sound pressure propagates along the two
interfaces strictly without obvious distinction when compared
to a normal case. In terms of edge waveguiding, the wave
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transmission at the defect location seems to be influenced, but
from a global viewpoint, we can still notice robust waveguid-
ing along the designed path. In addition, the channel defect
in Fig. 14(d), representing possible air channel blocking after
prolonged service, is introduced at the blue cavity by deleting
several air channels. Despite the defect, both surface and edge
waveguiding can still be clearly observed in Figs. 14(f) and
14(g), respectively. Therefore, we successfully demonstrate
the robustness of the designed waveguiding structure against
minor imperfections in this section.

VIII. CONCLUSION

In conclusion, we establish 3D TIs that are composed of
eight air cavities and corresponding inter- or intracell air chan-
nels. An equivalent electric system is introduced to provide a
theoretical approach with analysis for the dispersion relation.
Very good agreement between the numerical solutions and the
analytical result is obtained. Thanks to the three tuning de-
grees of freedom, i.e., lx, ly, and lz, the model can obtain both
complete and directional bandgaps. Moreover, we showed
the symmetry properties of eigenmodes at higher symmetry
points that are closely related to air cavity distance. To quanti-
tatively characterize the topological phases, we introduced the
concept of fractional bulk polarization with a map plot. From
the bulk polarization map, it is concluded that the topological
phases at different higher symmetry points, i.e., X , Y , and Z

are independently related to the air cavity distance along the
corresponding directions, i.e., lx, ly, and lz.

Subsequently, three different 1D FOTIs are established to
prove that TPIM occurs only if the unit cells spread along
the direction with phase conflict. The surface-restricted wave
propagation along different planes is obtained by applying
this property. For a higher-order model, e.g., SOTI, wave
propagation becomes edge restricted rather than the surface.
As for TOTI, the dimensional hierarchy is followed such that
the sound wave is concentrated at the corners. Therefore,
it is concluded that wave propagation can be confined in a
lower dimension, i.e., surface-edge-corner with a higher-order
TI, i.e., FOTI-SOTI-TOTI. Finally, the surface-restricted and
edge-restricted waveguides in both the 2D twisted path and the
3D twisted path are demonstrated. We believe the proposed
3D TI has great application potential in acoustic sensing, 3D
acoustic manipulation, acoustic field concentration, etc.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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