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Phononic dynamical axion in magnetic Dirac insulators
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In cosmology, the axion is a hypothetical particle that is currently considered as candidate for dark matter.
In condensed matter, a counterpart of the axion (the “axion quasiparticle”) has been predicted to emerge in
magnetoelectric insulators with fluctuating magnetic order and in charge-ordered Weyl semimetals. To date, both
the cosmological and condensed-matter axions remain experimentally elusive or unconfirmed. Here, we show
theoretically that ordinary lattice vibrations can form an axion quasiparticle in Dirac insulators with broken
time- and space-inversion symmetries, even in the absence of magnetic fluctuations. The physical manifestation
of the phononic axion is a magnetic-field-induced phonon effective charge, which can be probed in optical
spectroscopy. By replacing magnetic fluctuations with lattice vibrations, our theory widens the scope for the
observability of the axion quasiparticle in condensed matter.
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I. INTRODUCTION

In the past 15 years, much effort has been devoted in
condensed-matter physics to the study of the “axion term”
θE · B, where E and B are the electric and magnetic fields
(respectively) and θ is the so-called axion field [1,2]. Such
axion term arises in the electromagnetic Lagrangian of certain
conventional magnetoelectric materials [3], Dirac insula-
tors [4], Weyl semimetals [5], and superconductors with
vortices [6].

In 2010, a seminal paper [7] proposed that magnetic
topological insulators with broken space-inversion and time-
reversal symmetries host a time dependent θ , whose dynamics
originates from the fluctuations of the magnetic order param-
eter. The action describing magnetic fluctuations could thus
be mapped to that of the cosmological axion. This “axion
quasiparticle” of condensed matter was predicted to produce
exotic physical effects [7–9] and has been recently recog-
nized as a detection tool for the cosmological axion [10].
Unfortunately, the axion quasiparticle remains undetected in
insulators, in part because the dynamical θ induced by mag-
netic fluctuations is rather small [11]. On a related note, an
axion quasiparticle was predicted to emerge in Weyl semimet-
als with charge density wave order [5,12]. While evidence
supporting the prediction of Ref. [5] has been reported in
recent magnetotransport measurements [13], such claim has
not been confirmed in subsequent experiments [14,15] and
the properties of the putative axion quasiparticle remain to be
studied in detail [16].

Ever since the publication of Ref. [7], magnetic fluc-
tuations and their coupling to electrons have been widely
regarded as quintessential for the emergence of the axion
quasiparticle in magnetic insulators. In this paper, we propose
an alternate route for the generation and detection of the ax-
ion quasiparticle, by showing that ordinary lattice vibrations
in a Dirac insulator with broken inversion and time-reversal

symmetries can induce a sizable dynamical axion term in the
absence of magnetic fluctuations.

The rest of this paper is organized as follows. In Sec. II,
we review the definition of the phonon effective charge within
the action formalism, and notice that magnetic-field-induced
phonon effective charge is a signature of a phononic axion.
Then, we identify a basic mechanism whereby lattice vibra-
tions producing fluctuations in the scalar Dirac mass lead to
an axion term in the electromagnetic Lagrangian.

In Sec. III, we use a functional integral formalism to cal-
culate the phonon-induced axion term in three-dimensional
Dirac insulators with broken time- and space-inversion sym-
metries. We study a model Hamiltonian of a Dirac fermion
coupled to electromagnetic gauge fields and to a phonon field.
By integrating out the Dirac fermion, we find an axion term
δθphE · B, where δθph is proportional to the lattice displace-
ment from equilibrium and to the electron-phonon coupling.
We calculate δθph as a function of the phonon frequency and
the temperature, identifying a maximum of δθph when the
phonon frequency coincides with the energy gap of the insu-
lator. While lattice-mediated magnetoelectric responses have
been evaluated in earlier density functional theory studies
[17,18], to our knowledge there has been neither a calculation
of the dynamics of a phonon-induced axion term, nor an
investigation of the role of electron-phonon interactions. Both
items are central to our paper.

In Sec. IV, we point out the experimental signatures of the
phononic axion: The magnetic-field-induced phonon effective
charge is in principle measurable in infrared or Raman spec-
troscopies. We conclude the paper in Sec. V with a summary
and discussion.

II. PHONON EFFECTIVE CHARGE

A. Definition

The central quantity of the present paper is the phonon
effective charge (PEC). It is defined as the change (in linear
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response approximation) of the unit-cell dipole moment pro-
duced by a given phonon mode [19,20],

Q(q0, q) ≡ Vc
∂P(q0, q)

∂u(q0, q)

∣∣∣∣
u=0

, (1)

where q0 and q are the phonon frequency and wave vector,
respectively, u is the phonon normal coordinate, Vc is the unit-
cell volume, and P is the electric polarization. For brevity, we
omit the phonon mode index throughout this paper.

Because P is a polar vector, the only phonon modes with
Q �= 0 are those that transform as polar vectors under the
symmetry operations of the crystal [21]. Long-wavelength
acoustic phonons have negligible PEC in spite of trans-
forming like polar vectors, as they describe an overall
translation of the unit cell (without producing a change in the
intraunit-cell dipole moment). In this paper, we will focus on
long-wavelength optical phonons, which can have a sizable
magnitude of Q (of the order of an electron charge) and are
detectable in optical spectroscopy.

B. Connection with the action formalism

In the imaginary-time action formalism, the PEC appears
as a direct phonon-photon coupling [22,23],

SQ[A, u] = i

h̄βV
∑

q

Pph(q) · E(−q)

= i

h̄βV
1

Vc

∑
q

Q(q) · E(−q)u(q), (2)

where V is the crystal volume, q is the shorthand notation for
wave vector and (imaginary) frequency, β = 1/(kBT ) is the
inverse of temperature, Pph is the phonon contribution to elec-
tric polarization, and E is the electric field. For Fourier trans-
forms, we use the conventions f (x) = 1/(βV )

∑
q exp(−iq ·

x) f (q) and f (q) = ∫
dx exp(iq · x) f (x), where x is the short-

hand notation for position and (imaginary) time.

C. Connection with the dynamical axion

The action describing the electrodynamics of certain
three-dimensional Dirac insulators contains, aside from the
conventional Maxwell term, a topological term [2]

Sθ [A] = ie2

4π2 h̄

∫
dx θ (x)E(x) · B(x), (3)

where B is the magnetic field, θ is the axion angle, and e is
the electron’s charge. In insulators with time-reversal or in-
version symmetry, θ is a quantized topological invariant, with
θ = 0 (mod 2π ) for trivial insulators and θ = π (mod 2π ) for
topological insulators. When those symmetries are broken,
θ = θ (x) becomes a function of spacetime known as the
dynamical axion.

If the magnetic field B is constant in time and uniform in
space (B = B0), Eq. (3) can be rewritten as

Sθ [A] = ie2

4π2h̄

1

h̄βV
∑

q

θ (q)B0 · E(−q). (4)

Comparing Eqs. (4) and (2), we extract an axion-related PEC
of the form

Qθ (q) = Vc
e2

4π2 h̄

∂θ (q)

∂u(q)

∣∣∣∣
u=0

B0, (5)

where we have assumed that θ is an analytic function of the
lattice displacement. Accordingly, the PEC in Dirac insulators
consists of two distinct terms,

Q = Q0 + Qθ .

The first term is the conventional PEC coming from the
Maxwell action. The second term is a topological or axionic
PEC, since it comes from Sθ . From Eqs. (1) and (4), we infer

Qθ = Vc
∂Pθ

∂u

∣∣∣∣
u=0

, (6)

where Pθ = −ih̄βV (δSθ /δE) is the electric polarization in-
duced by a magnetic field [4]. Thus, Qθ can be interpreted as
the phonon-induced modulation of the topological magneto-
electric effect. It manifests itself if and only if θ depends on
the phonon field u. The theoretical [22,23] and experimental
[24] existence of Qθ was reported in Weyl semimetals, i.e.,
Dirac materials characterized by zero Dirac mass. We will see
in the next sections that Dirac insulators can also have this
nontrivial PEC.

D. Physical origin of Qθ

We now discuss a simple mechanism through which θ

can depend on u. Let us consider a Dirac insulator with
time-reversal and space-inversion symmetries, where θ is
quantized. The low-energy electronic bands are described by
a Dirac Hamiltonian with a mass. The sign of that mass
determines whether θ is equal to 0 or π (mod 2π ) [4,25];
thus, changing the sign of mass (i.e., going through a band
inversion) implies a topological phase transition.

In the presence of a long-wavelength (q � 0) optical
phonon coupled to electrons, the Dirac mass is modulated [26]
as a function of time t ,

m(t ) = m + δm(t ) = m + gu(t ), (7)

where m is the unperturbed Dirac mass, δm(t ) is the in-
stantaneous mass fluctuation induced by electron-phonon
interactions, and g is the difference between the optical defor-
mation potentials for the bottom of the conduction band and
the top of the valence band. Because generic Dirac materials
do not have electron-hole symmetry, the optical deforma-
tion potentials are indeed different for the conduction band
minimum and the valence band maximum. Accordingly, g
is generically nonzero. In addition, because the Dirac mass
respects all crystal symmetries, a fully symmetric A1 phonon
can lead to g �= 0. Moreover, we anticipate that g is indepen-
dent of m for small m, so that phonons can invert the bandgap.

If |gu| < |m|, the phonon-induced modulations of m(t ) are
not large enough to close the energy gap of the insulator; the
(quantized) value of θ is thus independent of u. In contrast,
if |gu| > |m|, phonons produce dynamical (oscillatory) band
inversions and therefore change the value of θ . We infer that
θ depends on u when |m| < |gu|. Since |gu| is a small energy
scale, it follows that θ depends on u (and thus Qθ is nonzero)
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only in the vicinity of a topological phase transition (m � 0).
As such, Qθ is a diagnostic tool for the topological phase tran-
sition. This idea can be regarded as a counterpart of Ref. [27]
for three-dimensional systems.

A caveat for the preceding idea is in order. This caveat is
analogous to the one that applies to the surface Hall effect
originated from the axion term [4]. If the entire crystal has
time-reversal symmetry, there is no way to determine how θ

changes in the course of a band inversion; e.g., it could equally
likely be 0 → π or 0 → −π . Yet, these two options corre-
spond to opposite values of Qθ . Thus, one cannot observe any
Qθ when time-reversal symmetry is preserved everywhere. In
order to have an observable Qθ , time-reversal symmetry must
be broken at least on the surface of the material [28]. The
symmetry breaking perturbation then dictates the change of
θ across the band inversion (e.g., it chooses between 0 → π

and 0 → −π ).
Below, we will consider the situation where time-reversal

symmetry and space-inversion symmetry are broken in the en-
tire bulk. As a consequence, θ will not be quantized and θ will
depend not only on the sign of m, but also on its magnitude. As
such, phonons that modulate m will also modulate θ . Unlike
in the time-reversal symmetric case, the u dependence of θ

will be nonzero even far from a band inversion. In certain
regimes of physical relevance, we will still predict a signifi-
cant maximum of |Qθ | as m crosses zero. Yet, as we will show,
a more generic statement is that |Qθ | has a maximum when the
phonon frequency matches the energy gap of the insulator.

III. MICROSCOPIC THEORY OF THE PHONON-INDUCED
AXION TERM

In this section, we provide an explicit calculation of ∂θ/∂u
(and therefore Qθ ) for a three-dimensional Dirac insulator
with broken time-reversal and space-inversion symmetries.
We take h̄ ≡ 1 unless otherwise noted.

A. Partition function

The starting point is the partition function of the system in
the imaginary time formalism, given by

Z =
∫

D[ψ, ψ̄, A, n, u]e−S, (8)

where ψ and ψ̄ are fermion Grassmann fields, n is the field
associated to amplitude fluctuations of the magnetic order, u
is the phonon field and A is the electromagnetic gauge field.
In Eq. (8), the total action reads

S = S(0)
ph [u] + S(0)

mag[n] + S(0)
em[A] + SQ0 [A, u]

+ Se[ψ, ψ̄] + Sint[ψ, ψ̄, A, u, n], (9)

where the three first terms represent the actions for free
phonons, magnetic fluctuations, and photons, respectively.
The action SQ0 [A, u] is given by Eq. (2), where Q0 ex-
cludes the contribution from low-energy Dirac fermions (to be
computed below). The action Se represents free, low-energy
electrons of the Dirac material,

Se[ψ, ψ̄] =
∫

dxψ̄ (τ x∂τ + h0)ψ, (10)

where ∂τ is the (imaginary) time derivative,

h0 = −iτ xτ zσ · ∂ + m + m5τ
xτ y (11)

is the Dirac Hamiltonian with the Dirac velocity defined as
unity, σ i and τ i are the Pauli matrices associated with spin
and orbital degrees of freedom, respectively, m is the scalar
(symmetry-preserving) mass, and m5 is the axial mass. The
latter breaks space-inversion P and time-reversal T within
the volume of the insulator, while preserving PT . The micro-
scopic origin of m5 is magnetic (usually antiferromagnetic)
order.

The Hamiltonian in Eq. (11) describes the low-energy elec-
tronic bands of a Dirac insulator with an energy spectrum

E±(k) = ±
√

k2 + m2 + m2
5 ≡ ±Ek (12)

and an energy gap


 = 2
√

m2 + m2
5. (13)

Each energy band is twofold degenerate. With Eq. (11), Se can
be rewritten as

Se[ψ, ψ̄] =
∫

dxψ̄ (−i/∂ + m + im5γ
5)ψ, (14)

where the Feynman slash notation /∂ = γ μ∂μ = γ · ∂ + γ 4∂τ

has been used. The matrices γ μ, μ = 1, 2, 3, 4, form a repre-
sentation of the Clifford algebra defined by {γμ, γν} = 2gμν =
−2δμν . The fifth matrix γ 5 = γ 4γ 1γ 2γ 3, also called chiral
matrix, anticommutes with all the other matrices: {γ 5, γ μ} =
0 [29]. The form of these matrices in terms of the Pauli
matrices can be deduced by comparing Eq. (10) and Eq. (14):
γ = −iτ yσ, γ 4 = iτ x, and γ 5 = τ z.

Finally, the interacting part of the action in Eq. (9) reads

Sint[ψ, ψ̄, A, u, n]

=
∫

dxψ̄ (−e/A + δm(u) + iδm5(n)γ 5)ψ. (15)

The first term in the right-hand side of Eq. (15) represents
the electron-photon interaction, which is obtained by minimal
coupling. The last two terms of Eq. (15) represent a scalar and
pseudosacalar Yukawa interaction, respectively. In the second
term, the electron-phonon interaction leads to a correction
of the Dirac mass, i.e., δm(u) = gu. Analogously, magnetic
fluctuations couple to electrons through a correction of the
axial mass, i.e., δm5(u) ∝ n [7].

An interaction similar to Eq. (15) has been considered in
Ref. [30]. In that paper, δm originates from the fluctuations
of an unspecified order parameter. In our model, δm is a
consequence of simple lattice vibrations not requiring an order
parameter.

B. Dirac fermion contribution to the PEC

In order to obtain the low-energy electronic contribution to
the phonon effective charge, which will result in Qθ , we pro-
ceed by integrating out the Dirac fermions. Then, the partition
function becomes

Z =
∫

D[A, n, u]e−Seff
, (16)
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where

Seff = S(0)
ph [u] + S(0)

m [n] + S(0)
em[A] + SQ0 [A, u]

− Tr ln
[
β
(
G−1

0 + V
)] (17)

is the effective action for phonons, magnons, and photons. In
the last term of Seff, the trace Tr is over spacetime as well as
over the spin and orbital degrees of freedom, and

G−1
0 = −i/∂ + m + im5γ

5, (18)

V (x) = −e/A(x) + δm(x) + iδm5(x)γ 5 (19)

are the inverse of the free fermion Green’s function and the
perturbation, respectively. Expanding the last term of Seff in
powers of V , one gets [31,32]

Seff = S(0)
ph [u] + S(0)

m [n] + S(0)
em[A] + SQ0 [A, u]

− Tr ln
[
βG−1

0

] −
∞∑
j=1

S j[A, u, n], (20)

where S j = −Tr[−G0V ] j/ j. We will now focus our attention
on S3, since it is the lowest-order correction that can host a
term with a structure similar to Eq. (3). Specifically, we con-
centrate on third-order terms containing two electromagnetic
perturbations and one bosonic perturbation (either a phonon
or a magnon). In Fourier space, these terms can be written as

e2

(βV )3
tr

∑
q,p

Aμ(q)Aν (p)

× [
iδm5(−q − p)T μν

5 (q, p) + δm(−q − p)T μν (q, p)
]
,

(21)

with the amplitudes

T μν

5 (q, p) =
∑

k

tr[G0(k)γ μG0(k − q)γ νG0(k − q − p)γ 5],

T μν (q, p) =
∑

k

tr[G0(k)γ μG0(k − q)γ νG0(k − q − p)].

Here, k is the fermion wave (four-)vector, whereas p and q are
bosonic wave (four-)vectors. The operator tr denotes the trace
over spin and orbital degrees of freedom. Furthermore,

G0(k) = −/k + m + im5γ
5

−k2 + m2 + m2
5

(22)

is the Fourier transform of the free fermion Green’s function.
We use the convention −k2 = k2 + κ2

n , with κn = π (2n +
1)/β and n ∈ Z.

Using Eq. (22), applying the identity tr(γ μγ νγ ργ σ γ 5) =
−4εμνρσ [29] and assuming a constant magnetic field B0

[whereby B(p) = βVB0δp,0], we identify and collect the ax-
ion terms of Eq. (21),

Sθ
3 = ie2

4π2βV
∑

q

[δθmag(q) + δθph]E(−q) · B0, (23)

where

δθmag(q) = −32π2I3(q)m δm5(q),

δθph(q) = −32π2I3(q)m5 δm(q) (24)

are the magnetic and phononic contributions to the dynamical
axion, and

I3(q) =
∫

k

1(−k2 + 
2

4

)[−(k − q)2 + 
2

4

]2 (25)

is an integral with units of energy−2 (so that δθmag and δθph

are dimensionless). In Eq. (25), we have defined∫
k

≡ 1

β

∑
κn

∫
d3k

(2π )3
.

In Eq. (23), the overall i factor ensures that the topological
part of the action is imaginary in Euclidean signature.

If I3 were a constant or weakly dependent on q (which
requires a large enough energy gap of the insulator), the axion
terms in Eq. (24) could have been easily obtained by applying
Fujikawa’s method [2,10,30]. Yet, since we are interested in
the q dependence of I3, our perturbative approach of comput-
ing a triangle Feynman diagram is well suited.

The dynamical axion δθmag induced by magnetic fluctu-
ations has been widely discussed (if only in the regime of
constant I3) [2]. In contrast, the phononic contribution δθph is
new. It shows that phonons constitute an axion quasiparticle
in Dirac insulators that have a nonzero static m5, without
recourse to magnetic fluctuations.

A physical manifestation of δθph is the magnetic-field-
induced phonon effective charge Qθ introduced in Sec. II.
Combining Eqs. (5) and (24), using δm(q) = gu(q) and restor-
ing the h̄ factors, we get

Qθ (q) = −8
e2

h̄
m5VcgI3(q)B0. (26)

Let us discuss some salient properties of Eq. (26). First, Qθ

satisfies the expected symmetry conditions for a phonon ef-
fective charge: it transforms as a polar vector (because m5

is a pseudoscalar and B0 is a pseudovector) and it is even
under time reversal (because both m5 and B0 are odd under
T ). Second, Qθ is a dynamical phonon effective charge, since
it depends on the frequency via the integral I3. Third, Qθ is
odd in m5 and even in m because I3 is an even function of
m5 and m. Consequently, Qθ can be reversed by reversing the
magnetic order that is responsible for m5.

A caveat is in order here. According to our approach,
the electronic band parameters (m, m5, the Dirac velocity
v) appearing in Eq. (26) are those of bare Dirac electrons.
Yet, it is known that phonons renormalize those parameters
[33–37]. Thus, a concern might be that the value of 
 appear-
ing in Eq. (26) differs significantly from the experimentally
measured energy gap. This concern can be assuaged if we
reinterpret the band parameters in Eq. (26) as being already
renormalized by all remaining the phonon modes. Specifi-
cally, suppose that we wish to evaluate the phonon effective
charge of a mode λ at wave vector q. We begin by integrating
out all the other phonons (i.e., mode λ at all q′ �= q, and
modes λ′ �= λ at all q′.) Accordingly, the action for the bare
Dirac fermions is renormalized. Neglecting the frequency de-
pendence of the electronic self-energy, we integrate out the
dressed electrons to get an effective action (and from there
the effective charge) for the phonon mode λ at wave vector q.
The outcome will have the same form as in Eq. (26), albeit
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with renormalized band parameters. With such caveat, in our
numerical estimates below we will assume that 
 corresponds
to the experimentally measured value of the energy gap.

The rest of this section will be devoted to a quantitative
calculation of Qθ . For experimental expediency, we consider
long wavelength optical phonons with q � (0, ωl ), where
ωl = 2π l/β (l ∈ Z). An analytical continuation iωl → q0 +
iη (with a small η > 0) allows to determine the physically
measured Qθ as a function of the phonon frequency q0. While
I3(q0) is common to magnons and phonons in Eq. (24), earlier
studies on magnetic axions have only discussed the regimes of
zero temperature and |q0| 
 
. Below, we generalize those
results to arbitrary gaps and temperatures.

C. Frequency and temperature dependence of Qθ

The Matsubara sum in Eq. (25) can be carried out [31,32]
to find

I3(ωl ) = − 1

16π2

∫ ∞


/2
dE

sech2
(

βE
2

)√
E2 − 
2/4

E2
(
4E2 + ω2

l

)2 ×

× [
βE

(
4E2 + ω2

l

) − sinh(βE )
(
12E2 + ω2

l

)]
,

(27)

for l �= 0. The l = 0 term can be discarded as we cannot
have a zero-frequency optical phonon. At zero temperature,
Eq. (27) can be solved analytically to obtain

I3(ωl ) =
ln

(
ωl/
 +

√
1 + ω2

l /

2
)

8π2ωl


√
1 + ω2

l /

2

, (28)

with I3(q0) = I3(ωl → −iq0 + η). Let us discuss this result
in some detail.

When the bosonic (magnon or phonon) frequency q0 is
much smaller than the energy gap 
 of the insulator, I3(q0) �
1/(8π2
2) is approximately constant and real. If in addition
|m5| 
 |m|, we have I3(q0) � 1/(32π2m2) and therefore re-
cover the well-known result δθmag = −δm5/m [2].

The low-frequency expression I3(q0) � 1/(8π2
2) sug-
gests that the dynamical axion fields δθph and δθmag will be
largest when 
 → 0, namely at the magnetic and topological
phase transition (m, m5 → 0). Such statement, echoed in the
recent literature [10,38], is technically incorrect because the
low-frequency expression for I3(q0) is no longer appropriate
when 
 becomes comparable to or smaller than h̄q0. In such
regime, I3(q0) is complex and significantly q0 dependent. In
particular, it follows from Eq. (28) that I3(q0), and by associ-
ation δθ and Qθ , have a maximum not at 
 = 0, but instead
at 
 = h̄q0. If η → 0, this maximum becomes a divergence:
for 
/(h̄q0) → 1+, the divergence comes from the real part of
I3(q0), while for 
/(h̄q0) → 1− the divergence comes from
the imaginary part of I3(q0). Therefore I3 is discontinuous
at 
 = h̄q0. A small but finite η regularizes the divergence.
There is also a logarithmic divergence of I3(q0) when 
 = 0,
but it is without physical consequence because δθmag and δθph

vanish in this case.
The characteristic energy scale for long-wavelength mag-

netic fluctuations is small (q0 � 1meV) [10]. Therefore, as far
as δθmag is concerned, 
 � h̄q0 is the experimentally relevant

regime for typical values of 
; this partially justifies the use
of a constant and real I3(q0) in earlier studies of magnetic
dynamical axions. In contrast, for δθph, the regime 
 � h̄q0

becomes of increased experimental relevance because the typ-
ical optical phonon frequency can easily exceed 10 meV.

When 
 < h̄q0, the action for the axion quasiparticle is
not local in time, i.e., cannot be expressed in the form shown
in Eq. (72) of Ref. [2]. Indeed, while the bare phonon ac-
tion is local in time when written in terms of the lattice
displacement u, it is no longer so when it is written in
terms of the axion field, as δθph(q0) ∝ I3(q0)u(q0) implies
δθph(t ) ∝ ∫

dt ′I3(t − t ′)u(t ′). A similar statement applies to
δθmag. Thus, the simple axion quasiparticle actions proposed
in Refs. [2,7,10] hold only when the energy gap of the insula-
tor far exceeds the characteristic bosonic (phonon or magnon)
frequency and should not be extrapolated to the situation in
which the energy gap of the insulator is closing.

For reasonable parameter values (h̄q0 � m � m5 ∼
10 meV, g � 5 eV/Å, u � 0.01Å), it follows from Eqs. (24)
and (28) that δθph ∼ 1. This estimate suggests that
phonon-induced axion terms in Dirac materials can be sizable
at low temperature (in topologically trivial magnetoelectric
insulators like BiFeO3 and Cr2O3, the static value of θ is
∼10−3 [2]).

From Eq. (24), it appears at first glance that δθph should
vanish when m5 → 0. A closer inspection shows that to be the
case, except when h̄q0 = 2|m| and η is infinitesimal. Indeed,

lim
m5→0,η→0

(
lim

h̄q0→2|m|
δθph

)
= −gu

π

2

|m|
m2

sgn(m5) (29)

does not vanish. It is remarkable that, when the phonon fre-
quency matches the electronic energy gap, a sizable phononic
axion should be present in materials that break T and P only
infinitesimally. In practice, a small but nonzero value of η and
finite temperature T will lead to limm5→0 δθph = 0. Yet, the
remnants of Eq. (29) are evident at η, kBT 
 |m|, in the form
of a pronounced maximum of δθph in the vicinity of m5 = 0.

Figures 1 and 2 illustrate the statements in the preceding
paragraphs, for a small but finite value of η. In Fig. 1, we show
|Qθ | as a function of m, for fixed m5. When 2|m5| > h̄q0 (i.e.,

 > h̄q0 for all values of m), |Qθ | has a maximum at m = 0,
which gets more pronounced for smaller values of |m5|. The
story changes when 2|m5| � h̄q0. In this case, both 
 > h̄q0

and 
 < h̄q0 are possible depending on the value of m, and a
sharp maximum of |Qθ | is found at the value of m that satisfies

 = h̄q0.

For completeness, Fig. 2 displays |Qθ | as a function of
m5, for fixed m. Similar comments apply as for Fig. 1. When
2|m| > h̄q0 (i.e., 
 > h̄q0 for all values of m5), |Qθ | has a
maximum for small but nonzero |m5|, which gets more pro-
nounced as |m| gets smaller. When 2|m| � h̄q0, the maximum
of |Qθ | takes place at 
 = h̄q0. In the special case 2|m| = h̄q0

[discussed in Eq. (29)], |Qθ | can be large for very small values
of m5.

Quantitatively, the preceding figures show that |Qθ | �
0.01e − 0.1e can be attainable for modest magnetic fields
(note that our theory is not reliable at high magnetic fields,
where Landau quantization of electronic bands should be
taken into account). Such values of |Qθ | may be experimen-
tally observable, as indicated in the next section.
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FIG. 1. Modulus of the axionic phonon effective charge as a function of the scalar Dirac mass m, for fixed axial mass m5. Curves were
obtained at zero temperature from Eqs. (26) and (28). The dotted lines represent the values of m for which 
 = h̄q0, where 
 is the energy
gap of the insulator and q0 is the phonon frequency. (Left) |m5| > h̄q0/2. (Middle) |m5| = h̄q0/2. (Right) |m5| < h̄q0/2. The parameter values
are B0 = 1 T for the magnetic field, h̄q0 = 10 meV for the phonon frequency, g ≈ 1 eV/Å for the optical deformation potential, Vc = 1 nm3

for the unit-cell volume and η = 0.01h̄q0 for the frequency broadening factor (exception: η = 0 for the solid-black line).

Thus far, we have concentrated on the zero-temperature
regime. At finite temperature, Eq. (27) must be solved numer-
ically. The results for the real and imaginary parts of Qθ are
displayed in Fig. 3. For simplicity, we have assumed that m

and m5 are independent of temperature and that the only T
dependence comes from I3. When kBT 
 
, we find that the
zero-temperature results discussed above still hold to good ap-
proximation. When kBT � 
, however, I3 and hence |Qθ | are

FIG. 2. Modulus of the axionic phonon effective charge as a function of the axial mass m5, for fixed scalar mass m. Curves were obtained
at zero temperature from Eqs. (26) and (28). The dotted lines represent the values of m5 for which 
 = h̄q0, where 
 is the energy gap of the
insulator and q0 is the phonon frequency. (Left) |m| > h̄q0/2. (Middle) |m| = h̄q0/2. (Right) |m| < h̄q0/2. The parameter values are the same
as for Fig. 1.
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FIG. 3. Real and imaginary part of the axionic phonon effective charge as a function of m̃ = m/h̄q0 for different values of the dimensionless
temperature t = (β h̄q0 )−1 and for fixed m5 = 4 meV. Curves were obtained from Eqs. (26) and (27) by numerical integration. The doted lines
represent the values of m̃ for which 
 = h̄q0, where 
 is the energy gap of the insulator and q0 is the phonon frequency (h̄q0 = 10 meV). The
parameter values are the same as for Fig. 1.

strongly suppressed. Thus, in order to observe a dynamical ax-
ion, it is required that the energy gap of the insulator be large
compared to the thermal energy. The thermal suppression of
the axion term has been overlooked or underemphasized in
recent references [10,38], which have argued that the largest
dynamical axion will take place when 
 � 0.

IV. EXPERIMENTAL IMPLICATIONS OF THE
PHONON-INDUCED DYNAMICAL AXION

In this section, we discuss the physical consequences of
the phonon-induced dynamical axion term and the axionic
phonon effective charge.

The phonon-induced axion term modifies Maxwell’s equa-
tions in a well-established way [2,4] and leads to two transport
currents of topological origin. First, the time derivative of δθph

produces a chiral magnetic effect, whereby a bulk electric
current flows parallel to the magnetic field B0. Second, the
space derivative of δθph leads to an anomalous Hall effect
in the presence of an electric field. For the long-wavelength
optical phonons considered in this paper, δθph is approxi-
mately uniform in the bulk of the insulator. Consequently, the
phonon-induced anomalous Hall current is appreciable only at
the surface of the insulator, where δθph inevitably has a spatial
gradient.

The preceding phenomena are rather generic to dynamical
axions, irrespective of their microscopic origin. An alter-
native, contact-free way to probe the effect of δθph, which
distinguishes the phonon-induced axion from other dynamical
axions, is through optical spectroscopy. We discuss this next.

A. Infrared absorption in a magnetic field

Phonons with nonzero effective charge couple to photons
and lead to light absorption. The axionic part of the effective
charge Qθ can be probed by analyzing this absorption. To
quantify this, we start with the Maxwell’s equations in Fourier
space,

−p(p · E) + p2E = μ0q2
0(ε0E + P), (30)

where E is the total electric field in the insulator, p is its wave
vector, ν is its frequency,

P = Qu/Vc + ε0χe · E (31)

is the total electronic and lattice polarization, Q = Q0 + Qθ

is the phonon effective charge, and χe is the electronic sus-
ceptibility tensor [19]. Herein, we will assume that the Fermi
energy lies inside the energy gap of the insulator and that the
temperature is much smaller than the gap. In addition, we will
ignore the effect of B0 in the electronic susceptibility. As a
result, χe will be approximated as a constant scalar χe.

It is convenient to write E = E‖p̂ + ET , where E‖p̂ is the
longitudinal electric field produced by lattice vibrations and
ET is the transverse electric field due to the incident light (ET ·
p̂ = 0). From Gauss’s law, it follows that p̂ · (ε0E + P) = 0.
Then, Eq. (30) gives

p2ET = μ0ν
2(ε0ET + PT ), (32)

where PT is the transverse part of the polarization.
An expression for PT follows from the equation of motion

for lattice vibrations [19,22,23],

Mc
(
ω2

0 − (ν + iη)2
)
u = Q∗ · E, (33)
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where Mc is the atomic mass in a unit cell, ω0 is the bare
optical phonon frequency (i.e., excluding the Dirac fermion
contribution to it), and Q∗(ν) = Q(−ν). Combining Gauss’
law with Eq. (31), Eq. (33) can be rewritten as

Mc
(
q2

0 − (ν + iη)2
)
u = Q∗ · ET , (34)

where

q2
0 ≡ ω2

0 + |Q · p̂|2
McVcε0(1 + χe)

. (35)

As a result, we arrive at

PT = QT
Q∗ · ET

McVc
(
q2

0 − (ν + iη)2
) + ε0χeET , (36)

where QT ≡ Q − p̂(Q · p̂) is the transverse part of the phonon
effective charge.

Substituting Eq. (36) in Eq. (32) and solving the result-
ing system of equations, one can obtain the dispersion and
the attenuation of light waves entering the crystal. Let us
discuss some simple cases of interest, for which Q is ei-
ther parallel or perpendicular to the photon wave vector p.
When Q||p̂ (longitudinal optical phonon), Eq. (32) results in
p2/ν2 = μ0ε0(1 + χe). Thus, in this case there is no phonon
signature in light absorption. In the case of a transverse optical
phonon (Q ⊥ p̂), two solutions of Eq. (32) are possible. In the
first solution, ET ⊥ Q and p2/ν2 = μ0ε0(1 + χe); thus, the
phonon remains invisible in light absorption spectroscopy. In
the second solution, ET ||Q and p2/ν2 = μ0ε, with a dielectric
function

ε = ε0(1 + χe) + |Q|2
McVc

(
ω2

0 − (ν + iη)2
) . (37)

In Eq. (37), the phonon contributes to ε and thus to light
absorption. Specifically, the absorption coefficient (in units of
inverse length) is given by [39] α = νχI/(nc), where n is the
refractive index, c is the speed of light in vacuum and χI is the
imaginary part of ε/ε0.

The phonon contribution to light absorption is shown in
Fig. 4. It illustrates the most favorable scenario for probing Qθ

in infrared absorption, which is when Q0 is nonzero and siz-
able (of the order of e). Generally, Q0 has a fixed direction in
space dictated by the crystal and the phonon mode symmetry,
and its magnitude is independent from (or weakly dependent
on) the magnetic field B0. In contrast, Qθ is proportional and
parallel to B0. In order to simplify our discussion and use
Eq. (37), we suppose that both Q0 and B0 are in the plane
perpendicular to p. When B0 = 0, only Q0 contributes to
the infrared absorption. As B0 is turned on, Qθ influences the
infrared absorption intensity. Since |Q0| � |Qθ |, the leading
axionic contribution to ε in Eq. (37) goes like Q0 · Qθ , whose
sign is reversed by reversing B0. In passing, this is the reason
why a large Q0 is helpful for the detection of |Qθ |. Should
Q0 vanish (which would be the case if the phonon of interest
were infrared inactive at zero magnetic field), then the axionic
correction to ε would scale as |Qθ |2, which is numerically
small compared to |Q0||Qθ |. Figure 4 displays variations in
the absorption coefficient as B0 is rotated. For |Q0| � e �
10|Qθ |, the variations in α exceed 10 cm−1 and are thus in
principle large enough to be measurable in ellipsometry [39].

FIG. 4. Phonon contribution to the light absorption coefficient at
zero temperature, as a function of the photon frequency ν. Curves
were calculated from Eq. (37). The doted line corresponds to ν = ω0,
where ω0 is the transverse (and infrared active) optical phonon fre-
quency. The variable ϕ represents the angle between the conventional
phonon effective charge (Q0) and the external magnetic field (B0).
The parameter values are B0 = 1T (with the exception of a curve for
which B0 = 0), Q0 = e for the conventional phonon effective charge,
Qθ = 0.1e for the axionic phonon effective charge, and η = 0.01ω0

for the frequency broadening factor.

In experiment, electrons will also contribute to the absorp-
tion coefficient α through the imaginary part of χe in Eq. (37).
To avoid masking the phonon contribution discussed above,
insulating materials with Fermi level inside the bulk gap and
temperature smaller than the gap are desirable.

B. LO-TO splitting

As evidenced by Eqs. (34) and (35), longitudinal and trans-
verse optical phonons have different frequencies. Assuming
that the difference in frequencies (
LO−TO) is small compared
to their sums, we can write


LO−TO � |Q|2
2ω0McVcε0(1 + χe)

, (38)

where ω0 is the frequency of the transverse optical (TO)
phonon, and the dynamical part of the effective charge Q can
be evaluated at frequency ω0 to good approximation [40].

Based on the numerical estimates of the preceding section,
we will assume that Q0 � Qθ . When Q changes by a quantity
δQ (e.g., due to a change in the magnetic field), the LO-TO
splitting changes by

δ
LO−TO ∼ Q0δQ

q0McVcε0(1 + χe)
. (39)

Assuming an experimental resolution of ∼0.1 cm−1 ∼
0.01 meV in 
LO−TO, we can extract the minimum value of
δQ (and thus Qθ ) that can be experimentally resolved. For rea-
sonable parameters (χe � 20, Vc � 125Å3, Mc � 10−24 kg,
h̄q0 � 10 meV, Q0 � e), it follows that δQ (and thus Qθ ) must
exceed ∼0.2e in order to be observable. It is not inconceivable
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to have such values of Qθ , though detection appears challeng-
ing and may require high magnetic fields.

V. DISCUSSION AND CONCLUSIONS

In summary, we have presented a theoretical study on how
lattice vibrations can produce a dynamical axion in three-
dimensional Dirac insulators with a static axial mass m5.
The phononic axion manifests physically through a phonon
effective charge (the “topological” or “axionic” PEC) that is
proportional and parallel to an external static magnetic field.
This axionic PEC switches sign under m5 → −m5 (when the
magnetic order responsible for m5 is reversed), and is maximal
when the electronic energy gap coincides with the phonon
frequency. Our paper hopes to increase the observability of
the axion quasiparticles in insulators by proposing additional,
phonon-based, probes for their detection and excitation.

Phonon-induced axion terms were predicted earlier in Weyl
semimetals [22,23], and their possible observation reported
in experiment [24]. Our present study can be regarded as an
extension of those earlier studies on insulating materials. The
main similarity between topological semimetals and insula-
tors resides in the general form of the axionic PEC [Eq. (6) in
the present paper], which is the same for both systems. There
are nonetheless quantitative differences. In Weyl semimetals,
the axionic phonons are those that couple to electrons as
axial gauge fields. In contrast, in Dirac insulators with broken
time-reversal and space-inversion symmetries, scalar phonons
can also behave like axion quasiparticles. In addition, the fre-
quency and temperature dependence of the phonon-induced
axion term is very different in semimetals and insulators,
owing to the energy gaps of the latter.

Candidate insulators in which our results can be tested are
primarily those belonging to the MnBiTe family [41]. These
are layered materials with intrinsic magnetic order. In a given
layer, the magnetic moments of the Mn atoms are aligned
with one another in the direction perpendicular to the layer. At
the same time, the Mn magnetic moments in adjacent layers
are antialigned with respect to one another. Mn2Bi2Te4 thin
films with an even number of septuple layers [42] and bulk
Mn2Bi2Te5 [38,43] have been theoretically predicted to host
Dirac fermions with m5 �= 0 [44]. Following conventional
wisdom, the dynamical axion in these materials has been
attributed to fluctuations in the magnetic order. Yet, in the
present paper we have clarified that ubiquitous lattice vibra-
tions can themselves lead to a dynamical axion even when the
magnetic order does not fluctuate. While the coupling between
the magnetic order in MnBi2Te4 and the phonons has been
recently measured [45], no connection has been recognized or
explored between phonons and axions.

One subtlety of Mn2Bi2Te5 is that it is near a
ferromagnetic-antiferromagnetic phase boundary [46]. As a
result, the application of a modest magnetic field of �10 T
[47] can induce a phase transition from the antiferromagnetic
to the ferromagnetic phase [43], the latter having m5 = 0. As

such, the topological PEC will be a nonmonotonic function
of the magnetic field in this material. We note also that the
temperature dependence of m5 (neglected in our paper) can be
taken advantage of for the purposes of experimental detection
of the topological PEC. For example, m5 (and consequently
the topological PEC) will vanish above the Néel transition
temperature.

In order to avoid complications arising from the magnetic-
field- and temperature dependence of m5, it would be more
convenient to have a material with stronger antiferromagnetic
order. Recently, Ni2Bi2Te5 has been theoretically predicted
[46] to be a dynamical axion insulator with a Néel temper-
ature approaching room temperature (as opposed to 20 K
in Mn2Bi2Te5). In this case, the ground-state magnetic order
(i.e., the value of m5) is presumably more robust under the ap-
plication of a magnetic field, and a field-induced topological
PEC can be more easily observed.

There are various possible directions for future research.
On the technical side, our theory could be refined by including
certain aspects that have been omitted, such as the Zeeman
splitting, Landau levels, and electron-electron interactions. On
the conceptual side, our theory could be extended by incor-
porating surface effects. In this paper, we have for simplicity
considered an infinite bulk. It could be interesting to calculate
the phonon-induced axion dynamics when the bulk preserves
inversion and time-reversal symmetries (so that θ is quan-
tized) but the surface breaks both symmetries. In this situation,
following the heuristic arguments of Sec. II D, the phonon
effective charge might be a diagnostic tool for a topological
phase transition. On the practical side, our predictions are
based on a toy model and the numerical parameter values
adopted therein (the energy gap of the insulator, the phonon
frequency, the unit-cell volume, the strength of the electron-
phonon coupling, etc.) are for indicative purpose only. Since
the observability of the effects we predict is contingent on
said values, it appears important to adapt our theory to real
materials with input from first-principles calculations.

Finally, it could be interesting to explore the implications
of our theory for the ongoing search of the cosmological ax-
ion. Recent papers have proposed to detect dark matter using
phonons with conventional effective charges in nontopolog-
ical materials [48,49], or magnetic axions in topological
materials [50]. A natural question is whether the phononic
axion quasiparticles proposed in our paper, with their mag-
netically tunable phonon effective charge, could have any use
in the detection of the cosmological axion.
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