
PHYSICAL REVIEW B 109, 144303 (2024)

Coupled spin-lattice dynamics from the tight-binding electronic structure

Ramon Cardias ,1,2 Simon Streib,3 Zhiwei Lu,1 Manuel Pereiro ,3 Anders Bergman,3 Erik Sjöqvist ,3

Cyrille Barreteau,4 Anna Delin,1,5,6 Olle Eriksson,3,7 and Danny Thonig8,3

1Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology,
AlbaNova University Center, SE-10691 Stockholm, Sweden

2Instituto de Física, Universidade Federal Fluminense, 24210-346 Niterói RJ, Brazil
3Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden

4Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France
5Swedish e-Science Research Center (SeRC), KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden

6Wallenberg Initiative Materials Science for Sustainability (WISE), KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
7Wallenberg Initiative Materials Science for Sustainability (WISE), Uppsala University, Box 516, SE-75120 Uppsala, Sweden

8School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden

(Received 1 November 2023; revised 16 February 2024; accepted 28 March 2024; published 12 April 2024)

We developed a method which performs the coupled adiabatic spin and lattice dynamics based on the
tight-binding electronic structure model, where the intrinsic magnetic field and ionic forces are calculated from
the converged self-consistent electronic structure at every time step. By doing so, this method allows us to
explore limits where the physics described by a parameterized spin-lattice Hamiltonian is no longer accurate.
We demonstrate how the lattice dynamics is strongly influenced by the underlying magnetic configuration,
where disorder is able to induce significant lattice distortions. The presented method requires significantly less
computational resources than ab initio methods, such as time-dependent density functional theory (TD-DFT).
Compared to parameterized Hamiltonian-based methods, it also describes more accurately the dynamics of the
coupled spin and lattice degrees of freedom, which becomes important outside of the regime of small lattice and
spin fluctuations.
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I. INTRODUCTION

The interplay between spin and lattice degrees of freedom
holds paramount significance in various fields of condensed
matter physics, notably in ultrafast dynamics [1–5]. At
extremely low temperatures, ionic motion has been demon-
strated to be negligible compared to spin motion [6–9].
Hence, in this regime, the spin and lattice degrees of free-
dom are treated independently, which effectively describes a
wide range of applications [10]. However, a growing num-
ber of phenomena of interest to the scientific community
necessitate consideration of magnon-phonon coupling when
magnon and phonon frequencies are of similar magnitude.
(i) In multiferroics, the polarization induced by the combi-
nation of the charge and/or magnetic noncollinearity distorts
the lattice, making the spin-lattice coupling the pivotal mech-
anism behind the magnetoelectric effect [4,11–13]. (ii) In
spintronics applications and for terahertz applications, angular
momentum currents can be converted between lattice and
spin degrees of freedom via the spin-lattice coupling [14–16].
(iii) Moreover, in femto-second ultrafast demagnetization pro-
cesses it is debated that the angular momentum transfer is
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mediated by a coupling between lattice, spin, and electronic
degrees of freedoms [17,18].

In the adiabatic approximation, both forms of dynamics
are well understood [10,19]. The magnetization dynamics
usually takes the form of the Landau-Lifshitz-Gilbert (LLG)
equation [20,21]. In such simulations, one often introduces
a coupling to a thermal reservoir, through the Langevin dy-
namics (LD) approach, which ensures that the distribution
of the energy of atomic spins follows a Boltzman distri-
bution [10,22]. Regarding the lattice dynamics, it follows
the principles of Newtonian dynamics [19]. In this case, the
time evolution of the ionic positions is driven by the atomic
forces at every time step. Different techniques to minimize
the atomic forces can be found in the literature [23], in order
to lead the system to its respective relaxed structure. Similar
techniques are also applied to minimize torques in the mag-
netic system [24].

In recent works, progress has been made towards coupling
of these two dynamical processes. One way is to consider
that the spin-spin exchange parameters, e.g., the isotropic
(Ji j) and Dzyaloshinskii-Moriya ( �Di j) interaction, depend on
the atomic displacements, where i, j are the sites indices.
This approach has been considered and applied in Ref. [25],
where a Taylor expansion of an effective spin Hamiltonian
was considered in order to collect these contributions, always
assuming the adiabatic limit.

Moreover, in Ref. [2], classical spin dynamics and ab initio
molecular dynamics were coupled in order to study CrN,
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where the authors were able to identify nonadiabatic effects,
beyond an effective Hamiltonian description, from both the
dynamics of the lattice as well as from the spin. When using
such an effective Hamiltonian to describe the time evolution
of the magnetic moments, it is assumed that their motion do
not affect the parameters calculated from the initial state. Re-
cent literature, however, has shown that this assumption only
holds for small fluctuations around the ground state [26–35].
It can be understood that in strongly noncollinear magnetic
states, the electrons cause a spin current by hop between the
atomic sites of the sample, giving rise to high-order magnetic
interactions (or multi-spin parameters) [36–38]. Another way
to look at this phenomenon is that the interactions between
two sites only depend on their current magnetic configuration
[28,29,31]. Therefore, it is expected that for systems where
it becomes highly relevant to treat strong noncollinear mag-
netic configurations, the spin-Hamiltonian assumption might
break or miss relevant features in magnon and phonon spectra
compared to experiment [31,39]. Therefore, as far as com-
putational tools go to describe spin-lattice dynamics of a
given system, Hamiltonian based models rely on the correct
description of the system electronic structure throughout the
parameters, which can be a delicate job for materials with non-
collinear magnetism, while ab initio methods can only treat a
limited number of atoms, due to the heavy computational cost.

This paper presents a solution that involves computing the
key components of the interconnected spin-lattice dynamics,
including molecular forces and effective magnetic fields, di-
rectly from the electronic structure. The approach utilized here
is based on a Slater-Koster parameterized tight-binding model
using the National Research Laboratory (NRL) formalism
[40–42], to calculate the ground state of a given system at
every time step, from which we evaluate the molecular forces
via the Hellmann-Feynman theorem [43–46] and the effective
magnetic field as the field opposing the constraining magnetic
field [47,48]. Based on this, we performed coupled spin-lattice
dynamics of Cr and Fe clusters (triangular and nanochains
with 10 atoms) to find the ground state, when varying both but
also only one degree of freedom. From this ground state, we
explicitly calculate the parameter for an effective Hamiltonian
and analyze how these parameters—force constants and ex-
change coupling parameters—vary in different situations and
magnetic configurations. Our results show that for small vari-
ations near the magnetic ground state, these parameters are
fairly constant. Far away from the ground state, particularly
for the Cr triangle case where the magnetic ground state is
noncollinear, there is a significant difference. As to the mag-
netic properties, Cr tends to stabilize in a AFM fashion, which
results in the Néel AFM magnetic structure for the triangular
trimer and a collinear AFM for the nanochains. The Fe based
systems present a FM ordering for the triangular trimer and
a spin-spiral like configuration for the nanochains, resulted
from the interplay between short and long range interactions.
During the relaxation process of the atomic positions, we
show how the magnetic moment length varies and how the
lattice dynamics is affected by the motion of the magnetic
moments. In fact, for the Cr trimer, our results reveal that
a distorted magnetic structure can lead to a distorted lattice
structure. Lastly, we compared our tight-binding spin-lattice
dynamics with semiclassical spin-lattice dynamics from the

effective Hamiltonian, which revealed missing contributions
to the effective Hamiltonian in the highly disordered case.

This paper is structured as the following: in Sec. II, we dis-
cuss about the adiabatic spin-lattice dynamics and introduce
the equations regarding the time evolution of the magnetic
moments and ionic positions cause by constraining fields
and forces, directly obtained from the underlying electronic
structure. In Sec. III, we introduce the semiclassical effective
spin-lattice Hamiltonian which is used to compare the tight-
binding with the semiclassical spin-lattice dynamics and for
which we calculated respective parameter. These parameters
are discussed and analyzed for the cluster of Fe and Cr in
Sec. IV. Finally, in Sec.V, the spin-lattice dynamics of these
nanoclusters obtained from tight binding and from an effective
Hamiltonian are presented. We summarize our findings in
Sec. VI.

II. ADIABATIC SPIN-LATTICE DYNAMICS

Following our assumption in Ref. [49], we are interested to
describe physics of magnetic moments e and lattice displace-
ments u on a timescale above 1 fs. Here, adiabatic dynamics
operates under the premise that electrons evolve significantly
faster than the dynamics of the respective degrees of free-
dom [9,50]. This premise is solidly grounded, particularly
for quasiparticle excitations possessing energies considerably
below intrinsic electron energies like Stoner spin splitting
and variations in electron hopping. On comparable energies,
the dynamics of the electron need to be addressed from first
principles methods, e.g., time-dependent density functional
theory (TD-DFT) [8,51].

In the adiabatic approximation, the total energy of the sys-
tem is a function of only the magnetic moment directions {e}
and lattice displacements {u}, where the electronic degrees of
freedom can be regarded as being in a quasiequilibrium state,

E = E ({e}, {u}). (1)

For precise computation of electronic states and, conse-
quently, the total energy within first-principles methods, it
is imperative to rigorously constrain the calculated magnetic
moments with specified ‘input’ moment directions denoted
as e. Without this constraint, the system would naturally
experience a finite torque and revert to the absolute ground
state due to relaxation processes [47,52,53]. Adding an extra
term representing the constraining field Bcon

i at a lattice site
i to the electron Hamiltonian [48,49], we conserve calculated
magnetic moments in the direction e. Here, Bcon

i is obtained
according to Bcon

i · ei = 0 in an iterative, self-consistent algo-
rithm [47,52]. This criterion for the constraining field shows
that its acts perpendicularly to the magnetic moment direction
ei and, thus, do not change the magnetic moment length.

In the constrained electronic solution, the magnetic mo-
ment experiences an intrinsic effective field Beff

i = −Bcon
i

[49]. This field drives the time evolution of the magnetic
moment mi = miei following the Landau Lifshitz Gilbert
equation [10,50]:

ėi = γ

1 + α2
ei × Beff

i + αγ

1 + α2
ei × (

ei × Beff
i

)
, (2)
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where γ is the gyromagnetic ratio, α is the phenomenological
Gilbert damping. We keep the Gilbert damping finite due to
dissipation effects by spin disorder or electron correlation
effects [54]. For instance, the origin of the Gilbert damping
has been discussed to originate from spin-orbit coupling [55].

Regarding the dynamics of the lattice degree of freedom,
the Born-Oppenheimer approximation can be considered,
where the electronic and ionic degrees of freedoms can be
treated separately. Here, forces Fk acting on the atom k
are well defined by the Hellmann-Feynman forces [43–46]
and the adiabatic lattice dynamics simply consists in solving
numerically Newton’s equation of motion to produce the tra-
jectory uk of the atom with mass Mk and momentum pk . Also
here, a friction force proportional to the momentum and scaled
by the parameter ν [23] is added, analogous to the damping
constant α in the case of spin dynamics,

u̇k = pk

Mk
, (3)

ṗk = Fk − νpk, (4)

where ν is the friction force. It should be noted that we ignore
the influence of temperature in both equations of motion, that,
e.g., in Langevin dynamics is introduced via a stochastic field.

In our work, we represent the electronic structure by a
nonorthogonal Slater-Koster parametrized, realspace tight-
binding model implemented in the software package Cahmd
[56]. The Slater-Koster parameters are expanded in terms
of the hopping distance of the electrons between the atoms
according to the NRL tight-binding method. Magnetism is in-
cluded by a Stoner term proportional to the magnetic moments
e. A local charge neutrality term conserves the total charge
of the system. Since the orbital overlap matrix enters via
Mulliken transformation [57] also into the magnetic as well as
charge neutrality terms of the Hamilonian, not only the hop-
ping but also the exchange splitting and charge distribution
in the system become dependent on the lattice displacement.
More details about the model are given in the Supplemen-
tal Material A and in Refs. [41,42]. The electronic structure
is self-consistently iterated with respect to the charge, the
magnetic moment length, and the constraining field up to
the accuracy of 1×10−10, i.e., the relative error of each con-
vergence parameter (charge, magnetic moment length and
constraining field) is of that order. From the solution, we
extract the effective field [48] and calculate from the Hellman-
Feynman theorem the lattice forces [44,58]. More details in
how the effective magnetic field and ionic forces, used in
Eqs. (2) and (4), are calculated can be found in Ref. [48] and
in Appendix C, respectively. It should be noted that we neglect
terms in the effective fields and forces that are proportional to
the variation of the self-consistent parameters, say changes of
the charges with the respective degree of freedom ∂n/∂�e, ∂n/∂ �u
as well as changes of the magnetic moment length with the
respective degree of freedom ∂m/∂�e, ∂m/∂ �u. These gradients are
typically small and negligible.

Having the effective fields and forces, we integrate Eqs. (2)
and (4) using the implicit mid-point method as described in
Ref. [25] using parameters α = 0.1 and ν = 0.1 fs−1. Note
that a common way to solve Eqs. (3) and (4) is to use the
so-called Verlet-type based algorithms [23]. However, these

methods, for the purpose of spin-lattice dynamics, produce
numerical instabilities which lead to the nonconservation of
the total energy of the system.

III. THE SPIN-LATTICE HAMILTONIAN

A well defined procedure is to project the energy in Eq. (1)
to a parametrized Hamiltonian. Following Ref. [25], such a
Hamiltonian can be defined as

HSLD = −1

2

∑
i j

J αβ
i j eα

i eβ
j − 1

2

∑
i jk

�
αβμ

i jk uμ

k eα
i eβ

j

+ 1

2

∑
kl

�
μν

kl uμ

k uν
l + 1

2

∑
k

pμ

k pμ

k

2Mk
, (5)

where J αβ
i j is the exchange tensor, �

αβμ

i jk is the derivative of
the exchange tensor with respect to the lattice displacement

uμ

k , �
αβμ

i jk = ∂J αβ
i j

∂uμ

k
, �

μν

kl is the force constant and the last term

is the kinetic energy in terms of the linear momentum pμ

k
and the mass Mk . In our study, no spin-orbit coupling is
considered such as that the exchange tensor J αβ

i j has only
diagonal, identical terms, and from this point on, the indexes
α and β, are going to be dropped, i.e., �αβμ

i jk = �
μ

i jk . In Eq. (5),
{i, j, k, l} are the site indexes and {α, β, μ, ν} can be x, y or
z. It is important to highlight that in the exchange striction
constants �i jk for nanostructure, the term i = j is finite and is
required to fulfill Newton’s third law for the exchange striction
term in the ferromagnetic collinear state:

∑
i j �

μ

i jk = 0 for all
k. We claim that this set of parameters is, in general, good
enough to calculate the majority of properties, such as critical
temperature, magnetic and lattice ground state and proper-
ties, especially if the magnetic ground state is ferromagnetic.
As the system acquires a noncollinear magnetic texture, the
Hamiltonian in Eq. (5) is no longer complete and high-order
terms need to be taken into account, although it can still
describe the system in a satisfactory manner. From Eq. (5) and
for performing semiclassical spin-lattice dynamics, one can
calculate the effective magnetic field Beff

i = −1/mi
∂HSLD/∂ei

and the ionic force Fk = −∂HSLD/∂uk by taking the derivative
of the spin-lattice Hamiltonian with respect to the magnetic
moment of site i and displacement of site k, respectively
[2,10,27,49].

In order to compare the dynamics with effective fields
and forces from tight binding electronic structure and from
semiclassical parametrization, we calculate the parameters in
Eq. (5) also from the tight binding method. In Ref. [30], we
solved initial challenges to calculate the spin exchange for
an arbitrary noncollinear magnetic configuration. This study
is based on the original work by Lichtenstein et al. [59,60].
The exchange striction term is calculated via the numerical
procedure described in Ref. [25]. On the other hand, the ex-
change striction parameter can also be calculated explicitly
via Green’s function methods as demonstrated in Ref. [61].
The numerical procedure, though, allows to calculate also
the exchange striction for any arbitrary magnetic state due to
corrections coming from the constraint methodology.
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The force constants are obtained from the numerical
derivation of the forces

�
μν

kl = ∂Fμ

k

∂uν
l

, (6)

where {μ, ν} are the cartesian coordinates and {k, l} are the
atomic sites. The �’s are symmetrized according to point
group symmetrical relations. For instance, as a consequence
of the Newton’s third law, the force constants have the follow-
ing sum rule

�
μν

kk = −
∑
k �=l

�
μν

kl . (7)

Also here, the force constants can be explicitly calculated
from the Green’s function of the underlying electronic struc-
ture as proposed by Fransson et al. [62].

In Eq. (5), we explicitly neglect the expansion of the force
constants with respect to the magnetic moment configuration,
following Ref. [3]. These are terms of the form

	
μνα

kli = ∂�
μν

kl

∂eα
i

eα
i uμ

k uν
l , (8)



μναβ

kli j = ∂2�
μν

kl

∂eα
i ∂eβ

j

eα
i eβ

j uμ

k uν
l . (9)

To nevertheless prove the existence of such high-order terms,
we calculate the changes of the force constants when rotating
the magnetic moment.

Due to the explicit form of the constrained isotropic spin-
spin exchange [30], we are able to also time-resolve J αβ

i j .
However, the numerical treatment of the force constants as
well as exchange striction terms, do not allow for a time
resolved output during the spin-lattice tight binding dynamics.
Calculating the parameters of the spin-lattice Hamiltonian
(5) in the ground state of the system, we are also able to
perform semiclassical dynamics based on the HSLD. It should
be noticed that calculations of the parametrization as well
as the semiclassical dynamics are also done via the package
Cahmd [56]. Thus the entire methodology presented is on
equal footing.

IV. PARAMETRIZATION OF THE SPIN-LATTICE
HAMILTONIAN

In the following, we will first discuss the parametriza-
tion of the spin-lattice Hamiltonian, Eq. (5), for trimers and
nanochains of Fe and Cr. These parameters are required to
calculate the effective fields and forces from the Hamiltonian
and to perform semiclassical dynamics. Besides analyzing
the parameters, we will also discuss the magnetic moment
dependent force constants just for the trimer case, to confirm
whether the terms in Eqs. (8) and (9) can be neglected.

A. Triangular trimer

Here, we calculate the spin-lattice Hamiltonian
parametrization using the magnetic and lattice ground
state as reference state. The ground state was obtained by
performing the tight binding spin-lattice dynamics starting
from an arbitrary state (see the next section). Due to the large

energy dissipation, the system converges rapidly (≈500 fs) to
its zero-temperature ground state. In general, the dissipation
time of each channel (lattice or spin) will depend on how far
each channel is from its respective ground state. For instance,
for the Cr trimer case, since the ground state is noncollinear,
the magnetic moments takes longer to reach equilibrium
compared to the lattice counterpart. Here the magnetic ground
state found is ferromagnetic (FM) and Néel antiferromagnetic
(N-AFM) state for Fe and Cr, respectively. In the case of Fe,
the isotropic spin-spin exchange is J12 = 362.8 meV, force
constants are �xx

12 = −5.92 eV/a.u.2, �
xy
12 = −0.40 eV/a.u.2,

and �
yy
12 = 0.23 eV/a.u.2 in an irreducible representation. For

the equilateral triangle sitting in the xy-plane, the elements
�xz,�zx and �yz,�zy are zero by symmetry. The exchange
striction terms are shown in Appendix D and used in Sec. IV.
The magnitude of � is comparable to the values of the
spin-spin exchange or larger as also found in Ref. [25]. Other
symmetries mentioned in Ref. [25] are also confirmed.

For Cr, we have J12 = −143.9 meV, force constants
are �xx

12 = −0.81 eV/a.u.2, �
xy
12 = 0.13 eV/a.u.2, and �

yy
12 =

−0.07 eV/a.u.2. It is important to point out that representing
these interaction in an irreducible form is only possible due
to symmetries available in the ground state. It can be shown
in this case that the pair interactions can be transformed into
another. Breaking the symmetries in the magnetic and lat-
tice ground state breaks also the symmetry relations of the
pair couplings. The same holds also for the exchange stric-
tion terms, which are shown for two high-symmetry cases in
Fig. 1. Important to notice are the points where i = j, which
are finite for these nanostructures. We checked also nanostruc-
tures with periodic boundary conditions and obtained zero for
parameters where i = j (data not shown here). The magnetic
configuration cases are the FM state and the N-AFM state.
Remarkably, both magnitude and relation between different
sites are significantly different. As already shown in Ref. [49],
magnetic states far away from the actual ground state (here
the Néel state) show stronger fluctuations when the internal
degrees of freedom are varied. This causes larger values of
� in the ferromagnetic Cr trimer. Furthermore, the distance
between the atoms turned out to be different for the FM
state compared to the Néel state, after the lattice relaxation
process, which in turn impact electron orbital overlaps that
affects the strength of the spin-spin coupling and variations
of the spin-spin coupling. These strong changes of � have
are also relevant on the dynamics, however, in semiclassi-
cal dynamics often only the values of the ground state are
used. This aspect will be discussed further in more details in
the next section where these parameters are used to perform
spin-lattice dynamics and compared to our tight binding spin-
lattice dynamics implementation.

It has been heavily discussed in the literature how magnetic
interactions are dependent on the underlying magnetic config-
uration of the system [28,30,31,63]. The same question arises
with respect to the force constants: do the force constants de-
pend on the magnetic state? For instance, Ref. [3] concluded
that this dependence is negligible. In order to investigate such
dependence, we calculated the onsite force constants as a
function of the magnetic configuration. The magnetic moment
of a single atom, sitting along the y axis, is rotated around
the z axis while the onsite force constant matrix is calculated
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FIG. 1. The spin-lattice parameter �
μ

i jk for the triangular trimer
of Cr using the ferromagnetic configuration as reference (top) and
the Néel antiferromagnetic configuration as reference (bottom). The
indexes i, j, and k follows the definition of �

μ

i jk = ∂Ji j

∂uμ
k

.

(see Fig. 2). Given the nature of the onsite term, Eq. (7), the
results can be interpreted as how the pairwise force constants
of the other atoms react to the magnetic moment rotation of
the atom considered. The rotation is done taking the ground
state as reference, i.e., FM and N-AFM states for Fe and Cr,
respectively. That magnetic dependence can be seen as the
emergence of high-order terms in the magnetic moment, as
the ones described in Eqs. (8) and (9). In the cases studied
here, the only components that are not zero are �xx, �yy

and �zz. Particularly for Cr, given the noncollinear magnetic
ground state, the �xy = �yx is also not zero and present a
linear dependence as opposed to the quadratic one seen in the
other terms (Fig. 3). It is worth mentioning that components
�zz and �xy = �yx (for the Cr case) are zero if the system
is in a magnetic ground state. The changes are approximately
2% for the �xx and 1% for the �yy components for Fe. For
Cr, the values are 8% and 5% for �xx and �yy, respectively.

(a) Trimer

(b) Nanowire with 10 atoms

FIG. 2. Schematic representation of (a) the triangle trimer and
(b) the nanowire with 10 atoms, with their respective coordinate
system represented by the tripod.

These percentages were obtained comparing the �’s between
θ = 0 rad and 0.87 rad. Note that θ refers to the angle of the
rotated magnetic moment. The element dependence of these
interactions is unclear since it depends on a variety of factors.
Nevertheless, our examples show clearly that terms such as
in Eqs. (8) and (9) are finite, but only the force and fields
from these terms will influence the resulting dynamics, which
would depend on the system being studied.
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FIG. 3. On-site force constant matrix for the rotated magnetic
moment in the Fe and Cr triangular trimer, top and bottom, respec-
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FIG. 4. Spin-lattice parameters �
μ

i jk (exchange striction) and
isotropic spin-spin exchange parameter Ji j for the nanochains of Fe
(top) and Cr (bottom). On the left panel, atom 5 is taken as the
reference atom while varying the k-th atom. On the right panel, atom
5 is also taken as reference while the jth atom is the one varying.
Still on the right panel, for the spin-lattice parameter, the kth atom is
also being fixed.

B. Nanochain

Here, we considered a nanochain with ten atoms along the
x axis, as shown in Fig. 2. Although being a simple one-
dimensional example, there are a set of experimental data of
nanochains supported on a class of metallic surfaces whose
ground state is noncollinear [64–66].

In Fig. 4, we show the calculated exchange striction �
μ

i jk
and the isotropic spin-spin exchange parameter Ji j for a Fe
and Cr based nanochain. In the nanochain case, only the x
component of the spin-lattice parameter, �x

i jk , is not zero by
symmetry. On the left side of the figure, we keep i and j fixed
and vary k, which is the atom being displaced, from the ith
site (�x

565) itself until the end of the chain, k = 10. For that
case, Fe presents a bigger sensitivity to lattice distortions far
away from the local pair {i, j}, as oppose to the Cr nanochain
case which the interaction shows itself more localized. On
the right side, we keep i and k fixed to 5 and vary j until
10. For such case, the spin-lattice interaction for both Fe and
Cr systems are localized with only relevant terms being the
next-nearest and next next-nearest neighbors. For the isotropic
spin-spin interaction, the relevant terms are also for the next-
nearest and the next next-nearest neighbors. Regarding the
force-constants �

μν

lk , only the components xx, yy and zz are
not zero in the nanochain case, with yy and zz having the same
magnitude. The values are �xx

55 = 4.72 eV/a.u.2 for the Fe and
�xx

55 = 3.39 eV/a.u.2 for Cr, while the other components are
�

yy
55 = �zz

55 = −0.12 eV/a.u.2 and −0.34 eV/a.u.2 for Fe and
Cr, respectively. It should be noted that the force constants
are calculated for the respective systems magnetic ground
state. We also verified that the parameters calculated from the

ferromagnetic state as reference are different from the ones
of the ground state, highlighting again their magnetic depen-
dence.

The above analysis of the interactions shows clearly that
a precise description of the parametrized total energy (1)
by a defined Hamiltonian, e.g., Eq. (5), is complex and can
vary from material to material. Based solely on the values
of J’s, φ’s, and �’s, it is challenging to gauge the extent of
the real-world impact that, e.g., the orientation of magnetic
moments has on lattice dynamics or the lattice displacements
have on the magnetic ground state. To delve deeper into as-
sessing the consequences of these alterations, we conducted
semiclassical spin-lattice dynamics analysis in Sec. V B. This
involved employing a classical spin-lattice Hamiltonian with
fixed parameters and contrasting these outcomes with those
obtained from a tight-binding spin-lattice approach. In the
following section, we present the results of this comparative
analysis.

V. SPIN-LATTICE DYNAMICS OF NANOCLUSTERS

We conducted a comparative study by performing spin-
lattice dynamics using two different approaches: the tight-
binding (TB) model described above, and a spin-lattice
Hamiltonian. In the former, we directly computed forces and
the effective magnetic field from the electronic structure. In
the latter, we computed the parameters of the spin-lattice
Hamiltonian, assuming they remained constant during the
dynamical process.

As discussed above, the semiclassical dynamics requests
the energy parametrization from the ground state and, thus,
misses effects that arbitrary configuration {e} and {u} are
doing to the parameters, when not considering even larger
expansions of the total energy in a parametrized Hamilto-
nian. The tight-binding based dynamics, on the other hand,
is able to calculate precisely fields and forces for these ar-
bitrary configuration. Since the magnetic moment lengths
are self-consistently determined at every time-step, the TB
spin-lattice dynamics includes also longitudinal moment fluc-
tuations, which are not addressed at all in typical semiclassical
dynamics [10]. These fluctuations, however, will mainly influ-
ence the precession frequency of the moments, rather then the
actual ground state.

A. Dynamics via tight-binding model

When focus extends beyond dynamics near an equilibrium
state, as is often the case, utilizing tight-binding spin-lattice
dynamics becomes important, at least for the systems consid-
ered here. This is especially pronounced when commencing
from a randomly chosen initial state, a scenario frequently en-
countered when seeking to ascertain the precise ground state
of a nanostructure. The TB spin-lattice dynamics calculations
began with initially disordered magnetic configurations for
both the triangular trimer and nanochain systems. Specifically,
for the trimer, we investigated spin-lattice dynamics in various
scenarios. These scenarios included comparing dynamics with
and without fixing the magnetic moment orientation, which
was initiated from a disordered magnetic configuration.
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FIG. 5. The angle between the magnetic moments of the Fe and
Cr triangular trimer as a function of time in femtoseconds, as well
as their respective exchange coupling parameters calculated at every
time step. In the bottom panel, we show the results when the mag-
netic moments are considered fixed (lattice dynamics only), for the
Cr triangular trimer case. The disordered magnetic moments induce
a distortion in the lattice.

When the magnetic moments are fixed (lattice dynamics
only performed), the results show that the magnetic disorder
induces a distortion in the systems as the atomic sites relax to
their lowest energy positions, as shown in Fig. 5, lower panel.
This is due to the force induced by the noncollinearity. Such
forces are, e.g., due to the exchange striction term in Eq. (5).
However, forces calculated from the tight binding method do
not fully agree to them (see Appendix E) since they contain
also higher order terms, such like forces coming from terms
of the form of Eqs. (8) and (9). This distortion effect is more
dominant for Cr than for Fe with a change in the distance up to
1 a.u. and has also impact on the magnetic exchange coupling,
making it spatially anisotropic.

Now, if the magnetic moments are allowed to relax together
with the atomic sites, i.e., the complete spin-lattice dynamics
is performed, the systems (triangular trimers) find their true
magnetic and molecular ground states, which in all cases
correspond to the atomic sites sitting in the vertices of an
equilateral triangle and the magnetic moments having a ferro-
magnetic ordering for Fe, while having an antiferromagnetic
Néel state for the case of Cr (see the spin configurations in
Fig. 6). The trajectory of the spins towards this ground state
is shown in Fig. 5, upper and center panel. Although we used
the same energy dissipation parameter for both materials, the
relaxation time of the magnetic moments is much larger for
Cr compared to Fe and in the order of hundreds of fem-
toseconds. Similar isotropic spin-spin exchange constants Ji j

argue also for comparable timescales. It can be debated that
during the relaxation process, the Cr magnetic moments cover
a wider range of the configurational space, making higher
order coupling mechanism to most likely play a more crucial
role during the process for the Cr case as opposed to the Fe
case. However, these couplings are hard to resolve for the
constrained dynamics.

Additional insight into the distinct timescales observed can
be obtained by examining both the magnetic moment lengths
and lattice displacements, as depicted in Fig. 6. For Cr, the
magnetic moment length exhibits more significant variations,
reaching up to 0.4 µB, in contrast to Fe, where the variations
are limited to 0.04 µB. Moreover, Cr inherently possesses
larger magnetic moments, which in turn results in a lower
precession magnetic field and, consequently, longer relaxation
times. Analyzing lattice displacements reveals another dis-
parity between Fe and Cr. In the case of Cr, the relaxation
times of the lattice closely match those of the spins. This
suggests a stronger spin-lattice coupling in Cr compared to
Fe. Furthermore, around the 100 fs mark in the case of Cr,
there is a notable divergence in the amplitudes of atomic
distances, despite an initially symmetric atomic position. This
discrepancy hints at an energy transfer between the magnetic
moments and the lattice in Cr, likely due to high-order terms
naturally considered in the TB approach and not taken into
account via spin-lattice Hamiltonian, a phenomenon much
weaker in the case of Fe.

The nanochain case is a slightly more complicated example
compared to the trimer. This is due to the fact that now there
are long range interactions that can compete with each other
and may lead to a set of complex magnetic configurations, in
case of spin-dynamics, and complex structural composition,
in case of lattice-dynamics. We started the nanochains with a
random magnetic configuration and the atoms sitting along the
x axis with a spacing of 4.6 a.u between them, as can be seen
in Fig. 7. In the case of the nanochain with 10 atoms, the first
phenomenon which can be observed is the tendency of nearest
neighbors atoms to occupy positions closer to each other.
This is the so-called Peierls transition or Peierls distortion
[67]. Because electrons are free to move, it creates charge
density waves which induce distortion to atomic positions.
This has been observed before in weakly coupled molecular
chains [68]. As these atoms get closer to each other, their
magnetic moments start to behave similarly, i.e., they act as
a magnetic sub-lattice. For instance, for both Fe and Cr, this
distortion leads to a dimerization of the atomic sites and their
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FIG. 6. Tight-binding spin-lattice dynamics for the triangular trimers of Fe and Cr. For these calculations, both the spin and lattice damping
parameters are set to 0.05. On the left (right), we show the Fe (Cr) triangular trimer relaxation process for the atomic positions (top) and
magnetic moment length (down). The figures in the middle denote the start configuration (left) and the final configuration (right).

magnetic moment directions are then collinear between them-
selves, assuming a ferromagnetic alignment for the Fe and an
antiferromagnetic alignment for the Cr case. Moreover, in the
Fe case, these dimerized magnetic moments form a spin-spiral
(with a long wave-length, as seen in Fig. 7) as the magnetic
ground state. The phenomenon of dimerization was also dis-
cussed in Ref. [62], were the authors highlight the presence of
a dominant bilinear spin-lattice coupling term as the primary
mechanism linking the spin and lattice behavior. Notably, this
coupling term, which plays a crucial role in understanding the
interplay between spin and lattice dynamics, is not considered
in the semiclassical Hamiltonian (5). The omission of this
term is due to the global frame defined in Ref. [30], where
its inclusion would disrupt the time reversal symmetry of the
system. Consequently, the semiclassical description provided
by Eq. (5) would fail in capturing the dimerization effect.
This underscores the distinct advantage of the here proposed
tight-binding method, which accommodates the bilinear and
other possible spin-lattice coupling term, enabling a more
comprehensive analysis of the dimerization phenomenon. An
infinitely long one-dimensional chain must transform under a

Peierls distortion, but it is unclear if one-dimensional chains
of limited size must distort as well. Most likely this is sys-
tem dependent, but we note that the results presented here
are consistent with what one would expect for infinite sized
chains.

Since the nanochain system has an even number of atoms,
we can compare the left half with the right half. In Fig. 7, we
compare the different sides with the same color, but different
linestyles. While the distance between pairs of atoms and their
respective magnetization is shown with a full line for the left
side, the right side is represented with a dashed line. Con-
cerning the time evolution of the distances between different
pairs of atoms, it is expected that both full and dashed lines,
representing equivalent pairs of atoms from different sides, to
behave equally. Instead, one can verify that full and dashed
lines can be distinguished, specially in the beginning of the
simulation. This is due to the fact that although both sides
have equivalent spacing between the atoms, their magnetic
moments are not equivalent. It suggests a transfer of angular
momentum between the magnetic moments and the lattice
which leads to a slightly different lattice dynamics on each
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FIG. 7. Tight-binding spin-lattice dynamics for the nanochains with ten atoms of Fe and Cr. For these calculations, both the spin and lattice
damping parameters are set to 0.5. The figures in the middle denote the start configuration (left) and the final configuration (right). The full lines
concern the atoms in the left half of the chain, while the dashed lines stand for the right half. One can note that during the first femtoseconds
of simulation, they can be easily distinguished due to the disordered magnetic configuration.

side. That effect is, as it was for the trimer system, stronger on
Cr than on Fe.

B. Dynamics via spin-lattice Hamiltonian

It has been widely discussed in the literature the concept
between local and global Hamiltonian [30,63]. While the for-
mer relies on describing locally the energy of a given system,
the latter uses a Hamiltonian with a complete set of parameters
capable of describing the total energy of the system at any
point in the phase space. Although convenient to use the
global approach, the Hamiltonian cannot be known a priori.
A way of avoiding this issue is to extract both ionic forces and
effective magnetic field directly from the electronic structure
as shown in the previous sections.

In this section, instead of calculating the ionic forces and
effective magnetic field directly from the electronic structure,
we use the parameters described in Sec. IV as an input for
a semiclassical spin-lattice Hamiltonian. From this Hamilto-
nian, the forces and effective field are calculated and used

in the coupled spin-lattice dynamics. The goal is to deter-
mine validity of the semiclassical approach for a magnetically
disordered system when comparing it to the tight binding
spin-lattice dynamics. We started the simulation from the
magnetic and structural ground state obtained from above
described tight binding spin-lattice dynamics and by inducing
an initial magnetic disorder while atoms sit in their relaxed
atomic positions. If the system is in a magnetic ordering,
since the ionic forces coming from the exchange striction
will be zero, the atoms will not move during the spin-lattice
dynamics. However, the initial magnetic disorder gives rise
to a net force and the atoms evolve. That can be seen in
Fig. 8.

That movement can be understood as the angular momen-
tum of the magnetic moments is transfer to the lattice, causing
the atoms to move initially and going back to their ground
state after some relaxation time. Surprisingly, we also ob-
served such large discrepancies in the relaxation time between
the Fe and Cr trimer as in the above discussed tight-binding
dynamics. Since the semiclassical Hamiltonian includes the
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FIG. 8. Comparison between the semiclassical (full line) and the tight-binding (dashed line) spin-lattice dynamics. The damping for both
lattice and spin were set to 0.1. The parameters to the semiclassical spin-lattice Hamiltonian were calculated from the systems respective
ground state, which are FM to the Fe trimer and Néel AFM for the Cr. Each system starts with disordered magnetic moments and in their
respective ionic ground state.

parametrization from the magnetic and atomic ground state,
both the magnetization and lattice displacements relax toward
this state.

When comparing the tight-binding (dashed lines) with the
semiclassical (solid lines) in Fig. 8, difference between both
can be seen already in the early femtoseconds of the sim-
ulation and mostly in the displacements of the atoms. This
might be due to the emergence of high-order terms of the
form (8) and (9) which we discussed in Sec. IV but not explic-
itly included in the spin-lattice Hamiltonian (5). Surprisingly,
the magnetic moments in the Fe trimer do not show much
difference between the different methods. The discrepancy
for the Cr trimer case is much more apparent. This is both
in the relaxation time of the respective degree of freedom
as well as in the magnitude of the perturbation. The lattice
displacements are more significant in the tight binding case
compared to the semiclassical model. This behavior can be
comprehended by examining the exchange striction constants
�, as demonstrated in Fig. 1. It is evident that � exhibits
an upward trend when transitioning from the Néel state to a
ferromagnetic state. This increase in � facilitates from the
movement of spins that the atoms more readily displaced in
comparison to the Néel state. An increase in the parameters
also causes a growth in the precession frequency and, thus,
relaxation times become smaller compare to the semiclassical
case where the �’s of the Néel state are used. Furthermore,
besides the pronounced variations in exchange striction, it is
worth noting that other higher-order terms may also contribute
to this disparity observed between tight-binding and semiclas-
sical dynamics.

VI. SUMMARY AND DISCUSSIONS

We have developed a fully integrated spin-lattice dynamics
approach rooted directly in the tight-binding electronic struc-
ture. Unlike traditional methods that relies on a parametrized
classical spin-lattice Hamiltonian, ours extracts molecular
forces and the effective magnetic fields straight from the

tight-binding structure via the Hellman-Feynman theorem and
a self-consistent constraining field, respectively.

Our investigation into semiclassical Hamiltonians for Fe
and Cr trimers and nanochains revealed significant varia-
tions in the Hamiltonian parameters based on the magnetic
reference state. This aligns with literature findings about
the magnetic texture influence on the magnetic interac-
tions [26,28,30,33,35]. More specifically, our tight-binding
spin-lattice dynamics suggests the profound influence of mag-
netic texture on the Cr trimer case, whose ground state is
noncollinear. In this case, parameters calculated from the
ferromagnetic configuration as reference cannot correctly de-
scribe the dynamics of the system. Still, the parameters
calculated from the ground state describe the spin-lattice dy-
namics correctly only locally. i.e., for small variations of the
magnetic moment orientation around the ground state. We
argue that this scenario can be strongly present in systems
whose magnetic ground state is noncollinear, such as 2D
Kagomé magnets [69]. Our results also show that the variance
of the spin-lattice parameters, e.g., exchange parameter and
exchange striction, are only strongly significant in the first
hundreds femtoseconds of the simulation, which suggests a
timescale within electronic effects most likely play a major
role, and after that a semiclassical approach should accurately
describe the dynamics. That timescale will depend essentially
on the damping parameter of each system.

The advantages of our present method is evident. It treats
spin and lattice dynamics simultaneously, directly from the
electronic structure, differing from previous methods like
those in Ref. [2]. The self-consistent electronic structure
calculation at each step enables consideration of magnetic
moment length relaxation, although certain abrupt changes
can only be approximated at this stage.

Concerning computational efficiency, the TB model per-
forms the Hamiltonian diagonalization in order to compute the
forces and fields at every timestep. The diagonalization is the
most time-consuming step during the dynamical calculation,
so it is expected that the calculation timescales with the diag-
onalization process, i.e., O3. A more accurate approach, such
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as the TD-DFT, is computationally more demanding than our
TB method, especially in terms of memory due to the need to
store charge and magnetization densities and the integration
required at every time step. The comparison underscores that
while TB offers certain computational advantages, especially
in scalability and efficiency, the choice of method depends on
the specific requirements of the material system under study,
and a more detailed comparison would require a separate,
focused study of its own.

Looking ahead, we are focusing on incorporating spin-
orbit coupling effects, anticipating even more pronounced
variances between tight-binding and semiclassical dynamics,
especially with noncollinear effects at finite temperatures. In
essence, our new approach offers a complete tool for prob-
ing spin-lattice dynamics from first principles across diverse
materials.
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APPENDIX A: TIGHT-BINDING MODEL

To obtain the electronic structure, we use a tight-binding
model [70] based on the Slater–Koster parameterization [40]
and solve

HCn = εnSCn (A1)

H and S are the real-space Hamiltonian and overlap matrices,
respectively, while Cn is the eigenstate n with energy εn. The
states are represented in a spd basis set. Due to the presence
of the definite and positive S matrix, Eq. (A1) is called a gen-
eralized eigenvalue problem. To transform it to an orthogonal
problem, we apply Cholesky decomposition method.

Hamiltonian consists of a hopping term H0, a local charge
neutrality term Hlcn, and a Stoner term Hst . The Slater-Koster

parameter enter into the hopping term and are furthermore
represented via a polynomial expansion in the distance be-
tween the atoms ri j , multiplied with a Slater-type orbital. This
expansion was motivated by Mehl and Papaconstantopoulos
[41] as well as further refined and applied in Ref. [42]. It has
been demonstrated that the utilization of a tight-binding model
offers a computationally efficient and accurate portrayal of
transition metal elements and alloys [42]. This model is ef-
fective in describing both collinear and noncollinear magnetic
arrangements [27] as well as lattice dynamics and phonon
[71], and its validity has been established by comparing its
results with those obtained from DFT calculations. The pa-
rameter for the hopping part of the Hamiltonian are obtained
from Ref. [72].

The local charge neutrality and the Stoner term are defined
according to Refs. [42,49], respectively. It is important to
mention that the Mulliken transformation [57] need to be ap-
plied to both terms. For the local charge neutrality constant we
use Ulcn = 5 eV. The parameters for the Stoner Hamiltonian
are obtained from Ref. [73] and we used Is = Ip = Id/10 for
the orbital resolved Stoner parameters. We add furthermore
the constrain hamiltonian, as mentioned in the main text.

Equation (A1) is solved by exact diagonalization and self-
consistently in the charge ni, magnetic moment length mi,
and constraint field Bconst

i using Anderssen mixing scheme
and a self-consistent threshold error of 1×10−10. This implies
up to 50 iterations per self-consistent run. The dimension
of the problem is N = 2NorbNatom with Norb being number
of orbitals (here Norb = 18) and Natom being the number of
atoms.

APPENDIX B: TIGHT-BINDING SPIN-LATTICE
DYNAMICS PROCESS

In order to solve the coupled dynamics for magnetic mo-
ment, Eq. (2), and lattice displacement Eq. (4), we need the
effective field as well as the lattice force at each site i. Follow-
ing Ref. [48], the effective field is Beff

i = −Bcon
i , the opposite

of the constraint field. The lattice forces are calculated via the
Hellman-Feynman theorem (see Appendix C). We carefully
checked the obtained effective fields and forces with numer-
ical finite differences of the total energy. It is important that
the total energy needs to be corrected by double counting
terms coming from the Stoner and local charge neutrality
term.

The dynamics Eqs. (2) and (4) are solved via implicit mid-
point method, described in Ref. [25]. The implicit solver uses
about 5 iteration step to be converged within the threshold of
1×10−10. Nevertheless, each step requires a self-consistent
solution of the electronic system in order to obtain the ob-
tained the constraint field and the forces for the updated
magnetic and lattice configuration. This makes the entire pro-
cedure computational demanding and limits the method so far
to systems with maximum 100 atoms.

It should be noticed that the proposed method fails when
abrupt large changes in the self-consistent variables occur.
This would generate extra terms in the electron Hamiltonian
proportional, e.g., to ∂mi/∂uα

k and others, as proposed for the
spin case in Ref. [48].
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APPENDIX C: HELLMANN-FEYNMAN THEOREM
AND TIGHT-BINDING MOECULAR FORCES

Let us consider a basis written in terms of linear combina-
tion of atomic orbitals (LCAO)

|�〉 =
∑

i�

ci�ψi�, (C1)

with i as the atom index and � the orbital type. Then one can
write the overlap matrices as

Si�, j�′ = 〈ψi�|ψ j�′ 〉, (C2)

with the secular equation being

Hi jc j = εSi jc j, (C3)

where we omit from this point on the orbital indexes � and �′
for simplicity. Here, Hi j = 〈ψi|H |ψ j〉. Thus the normaliza-
tion condition can be written as

〈�|�〉 = c∗
i Si jc j = 1, (C4)

where a sum is implicit in the repeated indexes. Similarly, one
can write

〈�|H |�〉 = c∗
i Hi jc j = ε. (C5)

From Eqs. (C4) and (C5), one can derive the following
relations:

∂〈�|�〉
∂λ

= ∂

∂λ
(c∗

i Si jc j ) = 0

∂c∗
i

∂λ
Si jc j + c∗

i Si j
∂c j

∂λ
= −c∗

i

∂Si j

∂λ
c j (C6)

and

∂ε

∂λ
= c∗

i

Hi j

∂λ
c j + ε

[
∂c∗

i

∂λ
Si jc j + c∗

i Si j
c j

∂λ

]
. (C7)

According to the Eqs. (C3) and (C7), we can finally write

�Fk = −2

⎡
⎣∑

�

ck�

∑
j �=k

∑
�′

c j�′

(
∂Hk�, j�′

∂ �Rk

− ε
∂Sk�, j�′

∂ �Rk

)⎤
⎦,

(C8)

where �, �′ are the orbital indexes and {k, j} are the site in-
dexes. Given the fact that both the Hamiltonian Hk�, j�′ and the
overlap matrix Sk�, j�′ are a function of the Slater-Koster table
in the NRL tight-binding approach, the derivative with respect
to the atomic positions �Rk have an analytical expression which
is essentially the derivative of the Slater-Koster table with
respect to the direction cosines. This was done in Ref. [58].
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FIG. 9. The spin-lattice parameter �
μ

i jk for the triangle trimer of
Fe.

More details on the tight-binding model can be seen fully in
Refs. [27,42,49,57].

APPENDIX D: EXCHANGE STRICTION CONSTANTS
FOR FE TRIMER

Here, we present the complementary information about
the exchange striction constants for the Fe trimer in Fig. 9
calculated using the ferromagnetic state as reference.

APPENDIX E: COMPARISON BETWEEN THE FORCES
OBTAINED FROM TIGHT BINDING

AND SEMICLASSICAL MODEL

For the case of the triangle trimers, the comparison of
the atomic forces made in Fig. 8 was done between the
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FIG. 10. Schematic representation of the calculated forces us-
ing the semiclassical model (blue) and the tight-binding electronic
structure (red), for the Fe (left), and Cr (right) triangular trimer. The
arrows point to the direction corresponding to the calculated force
for each atom. The magnitude of the force is proportional to the size
of the arrow.
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semiclassical approach and our tight-binding model. The for-
mer uses the parameterized spin-lattice model [Eq. (5)] to
calculate the ionic forces and the effective magnetic field,
whereas the latter calculates them directly from the tight-
binding electronic structure. The spin-lattice model assumes
the spin-spin, lattice-lattice, and spin-lattice interactions fixed
throughout the dynamics, but we have shown in this pa-
per that for a large perturbation that puts the magnetic

system away from its ground state, these interactions may
vary significantly. In summary, there should be a differ-
ence between the forces calculated from the spin-lattice
model and the tight-binding electronic structure. To ex-
emplify such discrepancy, we show in Fig. 10 the forces
calculated in the beginning (first time step) of the spin-
lattice dynamics simulation shown in Fig. 8 for both triangle
trimers.
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Sanyal, S. Blügel, and C. Etz, Sci. Rep. 12, 18987 (2022).

[36] S. Brinker, M. d. S. Dias, and S. Lounis, arXiv:2202.06154.
[37] S. Brinker, M. dos Santos Dias, and S. Lounis, Phys. Rev. Res.

2, 033240 (2020).

144303-13

https://doi.org/10.1103/PhysRevLett.76.4250
https://doi.org/10.1103/PhysRevLett.121.125902
https://doi.org/10.1103/PhysRevLett.113.165503
https://doi.org/10.1103/PhysRevLett.116.185501
https://doi.org/10.1103/PhysRevB.95.014431
https://doi.org/10.1103/PhysRevB.77.174429
https://doi.org/10.1103/PhysRevLett.83.207
https://doi.org/10.1103/PhysRevLett.88.056404
https://doi.org/10.1103/PhysRevB.58.293
https://doi.org/10.1088/0953-8984/20/43/434210
https://doi.org/10.1038/nphys212
https://doi.org/10.1103/PhysRevB.68.060403
https://doi.org/10.1103/PhysRevLett.121.027202
https://doi.org/10.1103/PhysRevB.101.060407
https://doi.org/10.1103/PhysRevLett.124.117201
https://doi.org/10.1038/s41586-021-04306-4
https://doi.org/10.1038/s41586-018-0822-7
https://doi.org/10.1109/TMAG.2004.836740
https://doi.org/10.1088/0953-8984/20/31/315203
https://doi.org/10.1080/00268976.2012.760055
https://doi.org/10.1016/j.cpc.2015.07.001
https://doi.org/10.1103/PhysRevB.99.104302
https://doi.org/10.1038/s41598-017-04427-9
https://doi.org/10.1103/PhysRevB.103.235436
https://doi.org/10.1038/s41598-020-77219-3
https://arxiv.org/abs/2003.04680
https://doi.org/10.1103/PhysRevB.103.224413
https://doi.org/10.1103/PhysRevLett.111.127204
https://arxiv.org/abs/2206.02415
https://doi.org/10.1103/PhysRevLett.116.217202
https://doi.org/10.1103/PhysRevB.96.144413
https://doi.org/10.1038/s41598-022-20311-7
https://arxiv.org/abs/2202.06154
https://doi.org/10.1103/PhysRevResearch.2.033240


RAMON CARDIAS et al. PHYSICAL REVIEW B 109, 144303 (2024)

[38] M. dos Santos Dias, S. Brinker, A. Lászlóffy, B. Nyári, S.
Blügel, L. Szunyogh, and S. Lounis, Phys. Rev. B 103, L140408
(2021).

[39] D. C. M. Rodrigues, A. Szilva, A. B. Klautau, A. Bergman, O.
Eriksson, and C. Etz, Phys. Rev. B 94, 014413 (2016).

[40] J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
[41] M. J. Mehl and D. A. Papaconstantopoulos, Phys. Rev. B 54,

4519 (1996).
[42] C. Barreteau, D. Spanjaard, and M.-C. Desjonquères,

C. R. Phys. 17, 406 (2016).
[43] R. P. Feynman, Phys. Rev. 56, 340 (1939).
[44] H. Hellmann, Einführung in die Quantenchemie (Deuticke,

Leipzig, 1937).
[45] D. Popov, Int. J. Quantum Chem. 69, 159 (1998).
[46] A. Cabrera and A. Calles, Rev. Mex. Fis. 36, 385 (1990).
[47] G. M. Stocks, B. Ujfalussy, X. Wang, D. M. C. Nicholson,

W. A. Shelton, Y. Wang, A. Canning, and B. L. Györffy,
Philos. Mag. B 78, 665 (1998).

[48] S. Streib, V. Borisov, M. Pereiro, A. Bergman, E. Sjöqvist, A.
Delin, O. Eriksson, and D. Thonig, Phys. Rev. B 102, 214407
(2020).

[49] S. Streib, R. Cardias, M. Pereiro, A. Bergman, E. Sjöqvist, C.
Barreteau, A. Delin, O. Eriksson, and D. Thonig, Phys. Rev. B
105, 224408 (2022).

[50] V. P. Antropov, M. I. Katsnelson, B. N. Harmon, M. van
Schilfgaarde, and D. Kusnezov, Phys. Rev. B 54, 1019 (1996).

[51] N. Tancogne-Dejean, F. G. Eich, and A. Rubio, J. Chem. Theory
Comput. 16, 1007 (2020).

[52] B. Ujfalussy, X.-D. Wang, D. M. C. Nicholson, W. A. Shelton,
G. M. Stocks, Y. Wang, and B. L. Gyorffy, J. Appl. Phys. 85,
4824 (1999).

[53] P.-W. Ma and S. L. Dudarev, Phys. Rev. B 91, 054420 (2015).
[54] H. Ebert, S. Mankovsky, K. Chadova, S. Polesya, J. Minár, and

D. Ködderitzsch, Phys. Rev. B 91, 165132 (2015).
[55] M. C. Hickey and J. S. Moodera, Phys. Rev. Lett. 102, 137601

(2009).
[56] Computer code CAHMD, classical atomistic hybrid multi-

degree dynamics. A computer program package for atomistic
dynamics simulations of multiple degrees of freedom (e.g. elec-
tron, magnetization, lattice vibrations) based on parametrized
Hamiltonians (Danny Thonig, danny.thonig@oru.se, 2013) (un-
published, available from https://cahmd.gitlab.io/cahmdweb/).

[57] T. Schena, Tight-binding treatment of complex magnetic struc-
tures in low-dimensional systems, Diploma thesis, TH Aachen,
2010.

[58] J. Dziedzic, TASK Quarterly 11, 285 (2007).
[59] M. I. Katsnelson and A. I. Lichtenstein, Phys. Rev. B 61, 8906

(2000).
[60] M. I. Katsnelson and A. I. Lichtenstein, J. Phys.: Condens.

Matter 16, 7439 (2004).
[61] S. Mankovsky, S. Polesya, H. Lange, M. Weißenhofer,

U. Nowak, and H. Ebert, Phys. Rev. Lett. 129, 067202
(2022).

[62] J. Fransson, D. Thonig, P. F. Bessarab, S. Bhattacharjee, J.
Hellsvik, and L. Nordström, Phys. Rev. Mater. 1, 074404
(2017).

[63] A. Szilva, Y. Kvashnin, E. A. Stepanov, L. Nordström,
O. Eriksson, A. I. Lichtenstein, and M. I. Katsnelson,
arXiv:2206.02415.

[64] A. Lászlóffy, K. Palotás, L. Rózsa, and L. Szunyogh,
Nanomaterials 11, 1933 (2021).

[65] A. Lászlóffy, L. Rózsa, K. Palotás, L. Udvardi, and L.
Szunyogh, Phys. Rev. B 99, 184430 (2019).

[66] W. Xiao, P. Ruffieux, K. Aït-Mansour, O. Gröning, K. Palotas,
W. A. Hofer, P. Gröning, and R. Fasel, J. Phys. Chem. B 110,
21394 (2006).

[67] W. A. Little, Phys. Rev. 134, A1416 (1964).
[68] R. E. Thorne, Phys. Today 49, 42 (1996).
[69] K.-z. D. Lili Hu, Y. Chen, Y. Zhai, X. Wang, and Q. Xiong, Natl.

Sci. Open 2, 20230002 (2023).
[70] J. Kermode, S. Winfield, G. Csanyi, and M. C. Payne, DFT

embedding and coarse graining techniques, in Multiscale Simu-
lation Methods in Molecular Sciences, edited by J. Grotendorst,
N. Attig, S. Blgel, and D. Marx (NIC, 2009), Vol. 42, pp.
215–228.

[71] D. A. Papaconstantopoulos and M. J. Mehl, J. Phys.: Condens.
Matter 15, R413 (2003).

[72] D. Papaconstantopoulos, Handbook of the Band Structure of
Elemental Solids (Springer, New York, 2014).

[73] S. Rossen, Magnetization disorder at finite temperature: A tight-
binding Monte Carlo modelling and spin dynamics study of
bulk iron and cobalt clusters: theory, numerical implementation
and simulations, Ph.D. thesis, Radboud University Nijmegen,
2019.

144303-14

https://doi.org/10.1103/PhysRevB.103.L140408
https://doi.org/10.1103/PhysRevB.94.014413
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1103/PhysRevB.54.4519
https://doi.org/10.1016/j.crhy.2015.12.014
https://doi.org/10.1103/PhysRev.56.340
https://doi.org/10.1002/(SICI)1097-461X(1998)69:2<159::AID-QUA3>3.0.CO;2-U
https://rmf.smf.mx/ojs/index.php/rmf/article/view/2124
https://doi.org/10.1080/13642819808206775
https://doi.org/10.1103/PhysRevB.102.214407
https://doi.org/10.1103/PhysRevB.105.224408
https://doi.org/10.1103/PhysRevB.54.1019
https://doi.org/10.1021/acs.jctc.9b01064
https://doi.org/10.1063/1.370494
https://doi.org/10.1103/PhysRevB.91.054420
https://doi.org/10.1103/PhysRevB.91.165132
https://doi.org/10.1103/PhysRevLett.102.137601
https://cahmd.gitlab.io/cahmdweb/
https://doi.org/10.1103/PhysRevB.61.8906
https://doi.org/10.1088/0953-8984/16/41/023
https://doi.org/10.1103/PhysRevLett.129.067202
https://doi.org/10.1103/PhysRevMaterials.1.074404
https://arxiv.org/abs/2206.02415
https://doi.org/10.3390/nano11081933
https://doi.org/10.1103/PhysRevB.99.184430
https://doi.org/10.1021/jp065333i
https://doi.org/10.1103/PhysRev.134.A1416
https://doi.org/10.1063/1.881498
https://doi.org/10.1360/nso/20230002
https://doi.org/10.1088/0953-8984/15/10/201

