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Application of the Green’s function formalism to the interplay between avalanche and multiphoton
ionization induced by optical pulses
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A fundamental brick of light-matter interaction at large optical intensities is the generation of a plasma. The
optically induced plasma in turn plays a fundamental role in determining the optical propagation. The plasma
generation is a result of the interplay between multiphoton, tunnel, and avalanche ionization. Here we use the
basic rate equations to discuss an analytical model for the interaction between these physical effects. After
defining a nonlinear impulse response for the system, we describe how the interplay depends on the features of
the optical pulses. Our approach strongly simplifies the modeling of the propagation of ultrashort pulses, paving
the way to a much easier and faster interpretation of experimental observations, with potential impact on the
broad fields of ultrafast light-matter interaction and laser micromachining.
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I. INTRODUCTION TO NONLINEAR PHOTOIONIZATION

The interaction of intense optical pulses with matter is
a topic of central interest in physics. Indeed, the nonlinear
optical regime is intrinsically a strongly out-of-equilibrium
system due to the rapidity in the exchange of energy between
the electromagnetic field and the atoms [1,2]. This allows
the experimental investigation of new regimes in condensed
matter physics, including many-body problems and Floquet
systems [3,4] or the measurement of the material properties,
using, for example, high harmonic generation [5–7]. Beyond
the basic physics, the problem is of primary importance
because strong lasers can modify the properties of a mate-
rial in a temporary manner [2,6] or by inducing permanent
modifications, a phenomenon widely exploited in laser micro-
machining [8,9].

One common feature of the interaction between intense
light and matter is the formation of plasma [10,11]. The
impinging photons provide energy to the electrons of the
material, thus inducing a considerable amount of electronic
transitions towards higher energy states. This process takes
place even in materials which are transparent in the linear
regime due to the tunnel ionization (TI) [12] and multipho-
ton ionization (MPI) [13]. Once free carriers are generated,
the optical field is accelerating them, on average providing
an increase in the kinetic energy. The accelerated electrons
can then collide with other less energetic electrons, inducing
a field-dependent and concentration-dependent amplification.
Such an effect is called avalanche ionization (AI), and it is
often associated with the dielectric breakdown [14].

On theoretical grounds, the problem of the strong coupling
between light and matter can be solved quantum mechanically
using Time-Dependent Density Functional Theory [15], yet
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a very demanding approach from a computational point of
view. At a larger scale, the dynamics of the sea of electrons
subject to an optical field can be solved using the machinery
of the Boltzmann’s transport equations [16]. In most cases,
this method is prohibitive given it requires the full knowledge
of the energy dispersion for the electrons and of the loss
mechanisms (e.g., excitons and electron-phonon coupling). A
common and prolific approach is to define a distribution for
the excited electrons ne(r, t ) averaged over the energetic and
momentum states, thus depending only on space and time.
This approximation works well in a wide range of materials,
including liquids [17], amorphous solids [18], and semicon-
ductors [19]. Neglecting electron diffusion in space, ne is then
dictated by the rate equation [13,20,21]

∂ne

∂t
= WPI(I ) +

(
αavI − 1

τel

)
ne − σn2

e . (1)

In Eq. (1) I (r, t ) is the optical intensity of a field with cen-
tral frequency ω. The first term on the right-hand side (r.h.s.)
WPI is the photoionization rate (PI) as predicted by Keldysh’s
theory for atomic transitions under the influence of a periodic
field [13,22]; the second term on the r.h.s. αavIne accounts for
the electrons excited by the avalanche effect [14,21]; the third
term −ne/τel accounts for the average lifetime of the excited
electrons due to the various recombination mechanisms. Fi-
nally, the last term proportional to the square of the density
represents the nonlinear (with respect to the electron density
ne) recombination effects, such as Auger.

Keldysh’s theory is amazingly capable of modeling both
tunneling and multiphoton ionization: the transition between
the two regimes is demarcated by the so-called Keldysh pa-
rameter γ ∝ ω

q

√
mcnε0Eg/I , where Eg is the band gap of the

material, c is the speed of light, ε0 is the vacuum dielectric per-
mittivity, and finally m and q are the mass and the charge of the
electron, respectively [23]. In the MPI case γ is large, in turn
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yielding WPI ≈ 1
h̄ω

∑
N

αN
N IN , where αN is the cross section for

the ionization involving N photons. As shown below, the
type of ionization (TI or MPI) does not significantly change
our results, in fact providing only a different mathematical
relationship between the optical intensity and the source of
electrons. Thus, for simplicity, we will restrict ourselves at
first to MPI and neglect TI. At the end of the article we
will show how our approach works when the full Keldysh
formula is applied. Incidentally, we are for now considering
the general case of multiple multiphoton transitions, although
usually the smallest one fulfilling Nh̄ω � Eg is the relevant
one.

II. SOLUTION VIA THE GREEN FUNCTION FORMALISM

The usage of a rate equation to model the plasma formation
in strong optical fields was described by Shen in his seminal
book on nonlinear optics [24], and later expanded to its final
form by Kennedy in 1995 [17]. More complicated versions
introducing different energetic states have been discussed
[25,26], but the fundamental physics does not depend strongly
on that. Furthermore, as discussed, for example, in Ref. [27],
the optical breakdown is usually not strongly affected by
σn2

e , which can then be neglected. The role of the nonlinear
recombination term is discussed in Appendix C. Interestingly,
in Ref. [28] an analytic formula for the model including
nonlinear recombination terms in the case of square pulses is
calculated, thus permitting to assess the relevance played by
this recombination term. Under the assumptions made, Eq. (1)
is linear with respect to the electronic distribution ne: it can
then be solved using the Green’s function formalism [29]

ne(r, t ) = 1

h̄ω

∑
N

αN

N

∫ ∞

−∞
IN (r, t ′)G(r, t, t ′) dt ′, (2)

where the impulse response is

G(r, t, t ′) = eαav
∫ t

t ′ I (r,τ )dτ e−(t−t ′ )/τel u0(t − t ′). (3)

In Eq. (3) u0 is the Heaviside function, necessary to fulfill
the causality condition. The Green’s function also retains the
reciprocity property given that G(r, t, t ′) = G(r, t ′, t ). Equa-
tions (2) and (3) are the core of the reasoning and findings we
are developing in this paper. In this form and as anticipated
earlier, it is clear that the form of the field-induced ionization
solely changes the forcing term in Eq. (1), thus not affecting
the solution method we are proposing here. As a matter of
fact, solutions of Eq. (1) in terms of an integral were already
sketched in the original paper by Kennedy [17], and explicitly
written by Feng and collaborators in Ref. [27]. Nonetheless,
such an integral solution has not been explored in depth to
discuss the interplay between MPI and AI; indeed, verbatim
from Ref. [27]: “Since the analytic solution (8) is not very
informative, we have numerically solved the density equa-
tion.” Oppositely to the reported view, we show that writing
such an integral in terms of the Green’s formalism permits
us to disclose how field ionization (either MPI or TI) and
AI are working together and explore the underlying physical
behavior. In Appendix A we also provide the generalization of
Eq. (3) to the case where electron diffusion is accounted for in
the rate Eq. (1).

III. GENERAL PROPERTIES OF THE SOLUTIONS

The first advantage of our approach is the possibility to
clearly distinguish the origin of the excited electrons and how
MPI and AI interact with each other. To further simplify the
notation, hereafter we will focus on the case when only one
single multiphoton transition is relevant: the generalization
to multiple simultaneous transitions is straightforward. From
Eqs. (2) and (3) the net generation of excited electrons per unit
time is

∂ne

∂t
= αN

Nh̄ω

{
IN (t ) +

[
αavI (t ) − 1

τel

] ∫ t

−∞
IN (t ′)

× eαav
∫ t

t ′ I (τ )dτ e−(t−t ′ )/τel dt ′
}

. (4)

Equation (4) allows immediate physical interpretation: the
excitation rate is the sum of the instantaneous MPI (first term
on the r.h.s.) plus the avalanche electrons generated at each
instant normalized with respect to the lifetime τel (the integral
term). The seed for the avalanche electrons is provided by the
MPI at former times, whereas the history of the pulse intensity
I (t ) determines the overall amplification for each electron
generated by MPI. Although Eq. (4) is somehow trivial under
our model based upon the temporal Green’s function, it cannot
be easily extracted from numerical solutions of Eq. (1).

We now turn our attention to describe the type of response
modeled through Eq. (3). For the sake of simplicity, hereon
we will omit the spatial dependence, which is not relevant in
our current discussion. Once a shape for the pulse is fixed, the
Green’s function depends only on the product αavI0, where I0

is the intensity peak. The shape of the response of the ma-
terial depends on the relative position along the pulse profile
[i.e., G(t, t ′) �= G(t − t ′)] through the avalanche term; i.e., the
response is not invariant with respect to time shifts; accord-
ingly, the distribution ne is not given by a simple temporal
convolution. On a more physical ground, Eq. (2) tells us that
ne at a given instant t is the sum of the electrons excited by
MPI at each previous instants, but such electron density needs
to be weighted with respect to the amount of amplification—
fixed by the net balance between avalanche and losses—the
electrons have been subjected to. From Eq. (3), the position
tmax of the extrema of the Green’s function G vs t is

I (tmax) = 1

τelαav
. (5)

The causality condition imposes the additional constraint
tmax > 0. The former equation holds valid irrespective of the
temporal shape I (t ). Generally speaking, Eq. (5) correctly
predicts that, for larger αav or for longer electron lifetime
τel , the maximum of the avalanche-generated electrons shifts
towards the trailing edge of the pulse, regardless of when the
seed electrons (i.e., t ′) have been generated.

The fluence is the temporal integral of the intensity I .
Defining the time-windowed fluence F (t1, t2) as the amount
of fluence between the two instants t1 and t2, Eq. (3) provides

G(t, t ′) =
[

1 + αn
av

∞∑
n=1

F n(t ′, t )

n!

]
e−(t−t ′ )/τel u0(t − t ′). (6)
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The optical response (free electrons actually change both the
imaginary and the real part of the refractive index) of the
material can then be controlled by shaping the imping-
ing pulses, with potential applications in the novel field of
photonic materials encompassing a time-dependent response
[30,31]. Furthermore, as the intensity is ramping up, more
terms in Eq. (6) become relevant: the joint action of MPI and
AI effectively behaves like a multiphoton ionization of order
N + n [32], but encompasses an additional memory effect
registering the previous slices of the optical pulses already
passed through the material [33].

We now focus on how the MPI and AI interact. Given
that Eq. (6) provides the amount of electrons excited by an
impulsive pulse placed in t = t ′, the avalanche process excites
more electrons than the MPI once:

lim
t→∞ F (t ′, t ) >

1

αav
. (7)

This means that the share of AI-excited electrons with respect
to the ones ascribed to MPI depends primarily on the flu-
ence which crossed the material after the excitation instant t ′.
Hence, the shape of the pulse—including the pulse duration
τ—determines the (continuous) transition between the two
regimes; the transition between MPI and AI occurs at a given
instant t ′ along the optical pulse. When the maximum fluence
F (−∞,∞) is lower than 1/αav, MPI remains the dominant
mechanism exciting the electrons to the conduction band.

Actually, Eq. (7) alone does not ensure the dominance
of AI over MPI in the ionization process. Indeed, AI could
be dominant at the front edge of the pulse, where the low
intensity generates a modest number of seed electrons via the
MPI to be later accelerated by the avalanche process. To assess
this matter, we can calculate which instant t ′ (we dub it t∗)
contributes the largest number of electronic transitions. By de-
riving the integrand of Eq. (2) and setting such time derivative
(with respect to t ′) equal to zero, we find the condition

∂I

∂t
= αav

N
I2 − I

Nτel
. (8)

For the sake of simplicity, let us assume a single-humped
pulse shape; see Fig. 1 for a graphical solution of the equa-
tion [34,35]. Until not otherwise specified, hereafter we will
employ dimensionless units to investigate the solutions of
Eq. (1); at the end of the paper, we will provide examples
in physical units for the sake of comparison with experi-
mental works. The r.h.s. of Eq. (8) needs to be positive to
ensure t∗ < 0 to achieve net gain, thus setting the constraint
I0 > 1/(αavτel ) with I0 being the maximum intensity. In fact,
in the absence of avalanche (αav = 0) and for τel → ∞, the
maximum of ne corresponds to the intensity peak. When αav

is large enough, the instant t∗ moves towards the front edge
of the pulse, where the temporal derivative ∂I/∂t [l.h.s. of
Eq. (8)] is nonvanishing and positive; see the red curves in
Figs. 1(a)–1(c). Thus, larger intensities enhance the shift of t∗
towards earlier instants; the larger the αav the larger the shift
is [compare the blue and orange curves in Fig. 1(d)]. Finally,
greater N favors the MPI by decreasing the temporal shift of
t∗ with respect to lower N [compare the blue and green curves
in Fig. 1(d)].

FIG. 1. (a–c) Graphical solution of Eq. (8) for a Gaussian pulse
featuring a pulse duration τ = 1 and a peak intensity I0 equal to 0.1
(a), 1 (b), and 10 (c). Red and blue curves correspond to the left-hand
side (l.h.s.) and r.h.s. of Eq. (8), respectively. In (a)–(c) we assumed
αav = 2. (d) Behavior of t∗ vs I0 for three different pairs of αav and N
as labeled in the legend. Here we have fixed τel = 50.

IV. COMPUTATION FOR SPECIFIC PULSE SHAPES

We now proceed with showing applications of Eqs. (2)
and (3) for specific optical pulse shapes: the scope is to
demonstrate the versatility of our approach in determining the
influence of the pulse shape on the plasma generation. We
make the additional assumption that the shape of the optical
pulse is fixed: we are thus neglecting self-phase modulation, in
both space and time [23]. To be more quantitative and provide
closed-form solutions for ne, we now suppose the pulse to be
a square function, I (t ) = I0rectτ (t ), where the rect function is
nonvanishing and equal to 1 only for |t | < τ/2. After defining
the net gain g(I0) = αavI0 − 1/τel , Eq. (2) with the help of
Eq. (6) provides

ne(t ) = αN IN
0

g(I0)Nh̄ω

{[
eg(I0 )(t+ τ

2 ) − 1
]
rectτ (t )

}
+ nmax

e e− t−τ/2
τel u0

(
t − τ

2

)
. (9)

Equation (9) is actually in agreement with the analytical
results reported in Ref. [28], where the full recombination
Eq. (1) is solved for a square pulse, the equation in turn
becoming a Riccati one. In Eq. (9) we also defined the peak
of the electron density as

nmax
e = αN IN

0

g(I0)Nh̄ω

(
eg(I0 )τ − 1

)
. (10)

Numerical simulations confirm the validity of our solution;
see Appendix B. The interpretation of Eq. (9) is straight-
forward: during the pulse the number of electrons grows
exponentially with the intensity-dependent net gain g(I0). The
density ne achieves its maximum nmax

e at the end of the
pulse (t = τ/2), then exponentially decays with a lifetime
determined by τel . The interplay between AI and MPI can
be evaluated by expanding the exponential term in Eq. (10)
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FIG. 2. Green’s function for a Gaussian pulse centered in t = 0.
The pulse duration τ is 1 (a, b) and 3 (c, d). The avalanche amplifica-
tion is 1 (a, c) and 6 (b, d), whereas we fixed I0 = 1 and τel = 2τ in all
the panels. Vertical dashed lines is the maximum position according
to Eq. (12).

in its power series. At low gains (g(I0)τ 	 1), we obtain
nmax

e = αN IN
0 τ/(Nh̄ω), i.e., the case of electrons generated

only by MPI. In the opposite limit g(I0)τ 
 1, we have a
purely exponential growth of the first electrons generated at
the leading edge of the pulse, nmax

e ∝ WPI |t=−τ/2 eg(I0 )τ /g(I0).
For the intermediate case we expand the exponential series up
to the quadratic terms, providing the following condition for
the transition to an avalanche-dominated ionization:

αavI0 >
2

τ
+ 1

τel
, (11)

in agreement with Eq. (8).
Thus, in the case of square pulses the transition between

MPI and AI does not depend on the transition order N : the
shortest between the pulse duration τ and the electron life-
time τel is actually determining the transition between the
two regimes. In agreement with the numerical simulations of
Eq. (1), AI becomes dominant after a given threshold intensity
dependent on the pulse duration, with shorter pulses favoring
MPI. Finally, from Eq. (10) it is expected that the nonlin-
ear absorption increases as IN

0 for small enough intensities,
then depending as IN+1

0 when AI kicks in, finally going to a
full exponential increase when AI is largely dominant. This
general trend is upper bounded in real experiments by the
optical breakdown and permanent modifications induced in
the material.

We now pass to the most common case of a Gaussian-
shaped pulse, I = I0e−2t2/τ 2

. The function F is then F (t, t ′) =
I0τ
2

√
π
2 [erf(

√
2t
τ

) − erf(
√

2t ′
τ

)]. From Eq. (5) we get

tmax = τ

√
log (τelαavI0)

2
. (12)

Figure 2 shows the Green’s function for two pulse dura-
tions and two values of I0αav, where we fixed τel = 2τ . The
peak of G vs t is always positioned after the peak of the pulse,
tmax > 0. Due to the exponential amplification, the peak of G
steeply grows for larger products I0αav (comparison between
columns) and for longer pulses (comparison between different
rows), as is well known both from numerical simulations and
experiments [17]. When τel is much longer than the pulse

FIG. 3. Electron density ne vs the time t (vertical axis), param-
eterized with respect to the avalanche coefficient αav (horizontal
axis). The magenta dashed line is the position of the peak given by
Eq. (12). The white solid line is where the electron density becomes
double the excitation due to MPI alone. The yellow solid line is the
set of instants satisfying Eq. (7). The used missing parameters are
I0 = 1, αN = 0.5, h̄ω = 1, τ = 2, N = 2, and τel = 5.

duration τ (e.g., femtosecond pulses), the Green’s function
does not drop significantly for increasing time. On the oppo-
site limit τel 	 τ (e.g., nanosecond pulses), the accumulation
of electrons is hindered, with the maximum of G migrating
towards earlier instants; see Eq. (12).

The results of the integration of Eq. (2) for Gaussian
pulses and αN = 0.5 are shown in Fig. 3. Comparison with
full numerical simulations is discussed in Appendix B. In
agreement with the shape of the Green’s function, ne first
reaches a maximum after the pulse peak and then drops with
a rate determined by τel . The maxima of ne (magenta dashed
line) are always placed at t = tmax, the latter corresponding
to the peak of the Green’s functions, regardless of t ′. With
respect to αav, the shape of ne vs t does not substantially
change, except for an exponential amplification. The interplay
between MPI and AI can be first evaluated by finding the
temporal instants where the density doubles with respect to the
maximum of ne calculated when αav = 0 (white solid line in
Fig. 3). Such a condition is achieved only when αav overcomes
a given threshold, strongly dependent on the other parameters
of the pulse. After achieving the threshold, the curve follows
a hyperbola-like trend. For the sake of comparison with the
theory developed above, we draw in the same graph the points
where the condition defined by Eq. (7) is satisfied (yellow
solid line). The two curves are almost parallel, with the
theoretical prediction being slightly more stringent (i.e., AI
dominance at earlier times and lower avalanche coefficients)
than the numerical one.

Next, we investigate how the maximum electron density
nmax

e varies for different pulse durations τ and avalanche
coefficients αav. Typical results are shown in Fig. 4. In qual-
itative agreement with Eq. (10), the electron density grows
exponentially with both τ and αav. The transition to an
avalanche-driven process, defined as a doubling of ne as in
Fig. 3, is represented by the white solid line in Fig. 4. In
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FIG. 4. Maximum of the electron density vs the AI coefficient
αav and the pulse duration τ for Gaussian pulses featuring I0 = 1. The
density are normalized with respect to the density without avalanche
and plotted in logarithmic scale. The white solid line is the condition
when nmax

e is doubled with respect to the case αav = 0. Here we fixed
I0 = 1, αN = 0.5, h̄ω = 1, N = 2, and τel = 5.

full analogy with Eq. (11), the curve is hyperbolic, but with
a coefficient now dependent on the multiphoton order N .

V. APPLICATION TO FUSED SILICA

We now apply our model to a real case, fused silica illumi-
nated by optical beams emitting at two different wavelengths,
λ = 500 nm and λ = 800 nm. Whereas up to this point our
calculations were carried out in normalized units, we now
move to physical units. From Ref. [36] we take the parame-
ters αav = 4 × 10−4 m2J−1 and Eg = 9 eV, in turn providing
N = 4 at λ = 500 nm and N = 6 at λ = 800 nm. For the
photoionization we employ the full Keldysh formula, thus
accounting for the transition from MPI to TI as the impinging
intensity increases [36].

A. Single pulse excitation

Figure 5 shows the corresponding maximum in the electron
density vs the peak intensity I0 for Gaussian pulses of different
widths and different wavelengths. The solid lines represent the
predicted value in the absence of avalanche and τel → ∞. The
use of the full Keldysh formula is responsible for the abrupt
changes in the distribution. In agreement with the multiphoton
ionization, the slope is steeper for longer wavelength due to
the larger N . When avalanche is accounted for, a sudden expo-
nential growth in ne is taking place. Before such a divergence,
the two cases match well for long enough electron lifetime
τel . Furthermore, the generation of electrons is stronger for
longer pulses for a fixed peak intensity I0. In particular, the
avalanche amplification is strongly enhanced for longer pulse
durations, in agreement with the literature and Eq. (10). The
dashed lines in Fig. 5 (labeled as simplified in each panel)
is the amount of electrons generated starting from the seed
induced by PI only at t = t∗; see Eq. (8) and Fig. 1. When

FIG. 5. Maximum of the electron density ne vs the peak intensity
I0 in fused silica. Wavelength is 500 nm (a, c) and 800 nm (b, d).
Electron lifetime τel is 150 fs (a, b) and 1.5 ps (c, d). Red and
blue curves correspond to a pulse duration τ of 150 fs and 2 ps,
respectively.

τ 	 τel , the exact number of excited electrons is a little bit
larger, but the trend with I0 is almost identical. When τel is
shorter than the pulse duration τ , the approximation is over-
estimating the real amount of excited electrons. In agreement
with Eq. (11), the onset of avalanche for a given peak intensity
is determined by the interplay between electronic lifetime and
pulse duration. In the case of Gaussian pulses, the solution of
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Eq. (11) is a very good proxy for determining the transition to
an avalanche-dominated regime.

B. Double pulse excitation

As a final result, we aim to apply our approach to discuss
how the simultaneous illumination of the material with two
pulses of different duration affects the plasma generation.
Recently, the relevant role of temporal contrast in determin-
ing the modifications in bulk materials has been investigated
experimentally, both in fused silica and in silicon [37,38]. We
consider two pulses illuminating the sample simultaneously:
a short [dubbed Is(t )] and a long pulse [dubbed Il (t )] with a
duration of 150 fs and 10 ps, respectively. We also assume
that the two pulses are perfectly synchronized by placing
the peak of both pulses at t = 0. In applying the Keldysh
formula, we simply used the sum of the two intensities: thus,
we are neglecting possible coherent interference during the
transitions between the excited electronic states; see, e.g., the
coherent control [39]. Equation (3) provides

Gjoint (t, t ′) = eαav
∫ t

t ′ [Is (r,τ )+Il (r,τ )]dτ e−(t−t ′ )/τel u0(t − t ′), (13)

that is, the total avalanche gain is simply given by the multipli-
cation of the separate gains, at least until Eq. (1) holds valid.
The electron density is

ne(t ) =
∫ ∞

−∞
WPI(Is + Il )Gjoint (t, t ′) dt ′. (14)

Figure 6 compares the maximum electron density achieved
for different values of the peak intensities, without (top left
panel) or with (top right panel) avalanche (note the different
scaling on the vertical axis). The horizontal axis is the peak
intensity of the short pulse Is(t ), whereas each curve corre-
sponds to a different peak intensity for the long pulse Il (t ).
Important to stress, here the peak intensity, which actually
depends on the ratio between the pulse energy and the pulse
duration, is kept fixed. We start by discussing the case without
avalanche, which provides the electrons excited by direct field
ionization (either MPI or TI). The joint curve differs from the
case of isolated pulses only when the intensities are compara-
ble, in agreement with the Keldysh formula. When avalanche
is turned on, the exponential gain caused by the short pulse
alone does not significantly change in the presence of a long
pulse with an intensity Il up to 2.0 × 10−12 W cm−2 and lower
than the short pulse (see the blue and the black line in the
bottom row of Fig. 6). When Il approaches the threshold for
avalanche, the exponential gain strongly differs from the gains
calculated when only Is is illuminating the material: indeed,
the amplification, defined as nmax

e /nmax
e (Il = 0) and plotted in

the bottom of Fig. 6, does not saturate to unity when Is gets
larger and larger. Essentially, using two pulses it is possible to
decouple the plasma density from the intensity amplitude and
shape, the latter being nonseparable in the case of single-pulse
illumination. If the long pulse is injected earlier than the short
pulse and with a delay small with respect to τel , such a scheme
can be used to study the interaction between a tunable density
of electrons (fixed by the long pulse, assumed to not induce
permanent modifications in the material) and a short pulse of
variable intensity.

FIG. 6. Top row: Maximum of the electron density ne in fused
silica vs the peak intensity Is0 of the short Gaussian pulse Is with
duration 150 fs without (left side) and with (right side) avalanche.
Bottom row: Ratio between the electron densities with and without
the long pulse, without (symbols) or with (solid lines) avalanche. The
vertical dashed lines show when the two pulses have the same peak
intensity. Each color corresponds to a different peak intensity (see
legend) of the long pulse with duration 10 ps. Wavelength is 800 nm
and τel = 150 fs.

VI. CONCLUSIONS

In conclusion, we introduced an analytical model based
upon the Green’s function formalism to depict the excita-
tion of high-energy electrons in the presence of nonlinear
photo-ionization (i.e., multiphoton and tunnel) and avalanche
ionization. The model allows a versatile and rapid investiga-
tion of how many electrons are excited for a given optical
pulse, in fact, providing a clear picture of the interplay
between different ionizations and its dependence on the pa-
rameters of the optical pulse. Due to its simplicity, the model
can be readily integrated in more advanced algorithms com-
puting the optical propagation in the nonlinear regime, such
as beam propagation method codes or approximated solu-
tions based upon the variational theory. Experimentally, our
model is a fast and efficient tool to describe pump-probe
setups measuring the temporal dynamics of the absorption
after illumination with an intense pulse [40,41]. With respect
to applications, our method represents a rapid solution for esti-
mating the best parameters to inscribe permanent structures in
solids. Finally, our approach paves the way to the employment
of pulse shaping to control the electron density for inputs in
proximity of the onset of avalanche ionization [37].
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APPENDIX A: GENERALIZATION IN THE PRESENCE
OF DIFFUSION

A spatial gradient in the electronic distribution yields an
additional diffusion term in the rate equation

∂ne

∂t
= D∇2ne + WPI(I ) +

(
αavI − 1

τel

)
ne, (A1)

where the nonlinear recombination term has been neglected.
Fourier transforming in space both sides of Eq. (A1) provides

∂ ñe

∂t
= −

(
Dk2 + 1

τel

)
ñe + W̃PI + αav Ĩ ∗ ñe, (A2)

where the asterisks stands for the convolution operator and
the tilde indicates the 3D spatial Fourier transform with wave
vector k. The electron distribution ne is narrower than the
intensity distribution I due to the dependence of WPI on the
power of I . For bell-shaped beams centered in r = 0, in first
approximation we can then write for the temporal Green’s
function

G(k, t, t ′) ≈ eαav
∫ t

t ′ I (0,τ )dτ e
−(t−t ′ )

(
Dk2+ 1

τel

)
u0(t − t ′). (A3)

In agreement with the discussion about the electron loss rate
in Ref. [17], the diffusion acts like an additional term to the
electron lifetime in the excited state. Such a term depends on
the spatial frequency of the harmonic: the larger the frequency,
the shorter the effective lifetime becomes.

APPENDIX B: VERIFICATION VERSUS
NUMERICAL SIMULATIONS

We verified the correctness of our solutions based upon the
Green formalism by simulating Eq. (1) using a second-order
Runge-Kutta method. We test the validity of Eqs. (2) and (3)
by comparing numerical and theoretical results both for rect-
angular and Gaussian waveforms. Figure 7 shows the com-
parison between theory and numerical simulations in the case
of a square pulse: the agreement is perfect within the num-
erical accuracy, hence confirming the validity of our analytical
results. Next we checked the validity in the case of a Gaussian
pulse, the comparison being plotted in Fig. 8. The theoretical
and numerical simulations are once again in agreement for
different values of the parameters, thus confirming the validity
of the Green’s function method for the Gaussian case plotted
in Fig. 2.

FIG. 7. Comparison between theoretical (black solid lines) and
numerical results (red stars) in the case of square pulses. Left side: ne

vs time t for αav = 1. Right side: Logarithm of nmax
e [see Eq. (10)] vs

the avalanche gain αav. The employed parameters are I0 = 1, h̄ω = 1,
τ = 2, N = 2, and τel = 50.

APPENDIX C: ROLE OF THE NONLINEAR
RECOMBINATION TERM

From Eq. (1), the nonlinear recombination term −σn2
e is

half the amplitude of the linear one −ne/τel when

nmax
e = 1

2στel
. (C1)

Thus, the nonlinear recombination term is expected to be-
come relevant once the electron distribution overcomes such
a threshold. We verified such idea by solving numerically
Eq. (1) for σ �= 0 and comparing the density profile with
the results provided by our Green’s function method. The
comparison is provided in Fig. 9 in the case of Gaussian
pulses. In the top panel nmax

e is plotted vs the pulse dura-
tion τ for two different values of the avalanche factor, thus
sharing the same threshold. Incidentally, for σ = 0 the peak
nmax

e can be directly computed as an integral using Eq. (2)
and the condition (12). As predicted, the two solutions start
to diverge once the threshold is overcome, that is, once the
electron density becomes large enough. The nonlinear recom-

FIG. 8. Comparison between theoretical (black solid lines) and
numerical results (red stars) in the case of Gaussian pulses. Left side:
ne vs time t for αav = 1 (lower curve) and αav = 1.5 (upper curve)
with τ = 2 and τel = 5. Right side: nmax

e vs the avalanche gain αav for
τ = 2 and τel = 50. The remaining parameters are I0 = 1, h̄ω = 1,
and N = 2.
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FIG. 9. Interplay between linear and nonlinear recombination
terms for Gaussian pulses. Top panel: nmax

e vs the pulse duration
for σ = 0 (solid lines) and for σ = 0.005 (symbols). The dashed
horizontal line is the transition value provided by (C1). Bottom:
Electron density ne vs the time t for σ = 0 (blue solid lines) and
for σ = 0.005 (orange dashed lines); here αav = 1.5 and the pulse
duration τ is reported in the title of each panel. In all panels we took
I0 = 1, αN = 1, τel = 5, N = 2, h̄ω = 1.

bination becomes more relevant for longer pulses, the latter
favoring the avalanche ionization as discussed in the main
text. Looking at the temporal evolution of ne, the nonlinear
recombination fixes the density to a given value, after which
the electron distribution relaxes with a time constant τel .

The threshold value nth
e can be found by setting the tem-

poral derivative of ne equal to zero; recalling Eq. (5), Eq. (1)

FIG. 10. Maximum electron density nmax
e vs the peak intensity

I0 in the case of Gaussian pulses of duration τ 5 (red curves) and
10 (black curves). Dashed and solid lines are the results for σ = 0
and σ = 5 × 10−4. The brown dashed line is Eq. (C2). The dotted
horizontal line is Eq. (C1). In all panels αav = 1, αN = 1, τel = 5,
N = 2, and h̄ω = 1.

then provides

nth
e = I/I (tmax) − 1

2στel

⎡
⎣1 ±

√
1 + 4στ 2

elWPI

[I/I (tmax) − 1]2

⎤
⎦, (C2)

where the sign is plus when I > I (tmax), and minus otherwise.
For large intensities we obtain nth

e ≈ αavI
σ

: the clamping value
is inversely proportional to σ as expected.

Given that Eq. (C2) is monotonic vs the intensity I , we can
safely change it with I0 in the case of isolated Gaussian pulses.
The maximum of the electron density vs the input intensity is
plotted in Fig. 10. For I small enough to match the condition
nmax

e < 1/(2στel ), the full numerical simulations match our
approach based upon the Green’s function, that is, nonlin-
ear recombination is negligible. When the condition (C1) is
satisfied (dotted horizontal line in Fig. 10), the numerical sim-
ulations bend away from the Green’s function solution, finally
converging to the clamping value nth

e provided by Eq. (C2).
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