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Topological enhancement of nonnormality in non-Hermitian skin effects
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The non-Hermitian skin effects are representative phenomena intrinsic to non-Hermitian systems: the energy
spectra and eigenstates under the open boundary condition (OBC) drastically differ from those under the periodic
boundary condition (PBC). Whereas a nontrivial topology under the PBC characterizes the non-Hermitian skin
effects, their proper measure under the OBC has not been clarified yet. This paper reveals that topological
enhancement of nonnormality under the OBC accurately quantifies the non-Hermitian skin effects. Correspond-
ing to spectrum and state changes of the skin effects, we introduce two scalar measures of nonnormality and
argue that the non-Hermitian skin effects enhance both macroscopically under the OBC. We also show that
the enhanced nonnormality correctly describes phase transitions causing the non-Hermitian skin effects and
reveals the absence of non-Hermitian skin effects protected by average symmetry. The topological enhancement
of nonnormality governs the perturbation sensitivity of the OBC spectra and the anomalous time-evolution
dynamics through the Bauer-Fike theorem.

DOI: 10.1103/PhysRevB.109.144203

I. INTRODUCTION

Non-Hermitian systems, whose dynamics are effectively
described by non-Hermitian Hamiltonians, have been exten-
sively studied recently [1–3]. In condensed-matter physics,
non-Hermiticity emerges in various situations. For example,
gain or loss of particles or energy causes non-Hermiticity
in open quantum or classical systems [4–19]. One can also
obtain non-Hermitian systems in terms of the one-particle
Green’s functions, where the non-Hermiticity originates in the
self-energy from the correlations or disorders [20–33].

Unlike Hermitian Hamiltonians, the eigenvalues of non-
Hermitian Hamiltonians can be complex. In addition, the
conjugate of a ket (right) eigenvector is not always a bra (left)
eigenvector. Such mathematical properties lead to unique phe-
nomena in non-Hermitian systems [34,35]. In particular, the
non-Hermitian skin effects occur, which are extreme sen-
sitivities of the complex spectra to the boundary condition
[4,5,7,8,20,36–54].

Recent progress on non-Hermitian topological phases
[55–57] has revealed that a nontrivial topology under the
periodic boundary condition (PBC) is the origin of the
non-Hermitian skin effects [41,42]. By mapping the non-
Hermitian system to a Hermitian one, we can show that
the non-Hermitian skin modes coincide with the topological
boundary modes of the Hermitian system. However, their
proper characterization under the open boundary condition
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(OBC) has not been clarified yet. Whereas the boundary
modes in the Hermitian system have their own topological
structure, the consequence of the topology on the skin modes
has rarely been discussed. In this paper, we introduce scalar
measures κR and depD characterizing the non-Hermitian skin
effects under the OBC. In particular, we show that the
Hermitian topology leads to macroscopic enhancement of
nonnormality under the OBC, and the non-Hermitian skin ef-
fect occurs when κR = O(ecL ) and depD = O(L1/2), where L
is the system size and c is a positive constant. Furthermore, the
enhanced nonnormality under the OBC well describes phase
transitions of the non-Hermitian skin effects and governs the
perturbation sensitivity of the OBC spectra and the anomalous
time-evolution dynamics.

To examine the usefulness of the new scalar measures, we
consider two different non-Hermitian systems. The first one
is the Hatano-Nelson model, a disordered one-dimensional
non-Hermitian tight-binding model [58]. Our analytical and
numerical results confirm that the non-Hermitian skin effect
in the Hatano-Nelson model exhibits a macroscopically en-
hanced nonnormality under the OBC. Moreover, we show
that this characterization captures the disorder-induced phase
transition where the non-Hermitian skin effect vanishes.

Second, we consider a one-dimensional model with the
symmetry-protected skin effect [41]. This model has the non-
Hermitian version of time-reversal symmetry, T HTT −1 = H,

where H is the Hamiltonian and T is a unitary matrix that
satisfies T T ∗ = −1 [35]. Whereas the topological number
characterizing the conventional skin effect becomes trivial
owing to the symmetry, one can instead introduce a Z2

topological number that ensures the symmetry-protected skin
effect [41]. Our numerical and analytical results confirm again
that the symmetry-protected skin effect exhibits an enhanced
nonnormality under the OBC. The enhanced nonnormality
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FIG. 1. Skin effect. (a) The blue and yellow dots represent the PBC and the OBC spectra of Eq. (2) with t = 1.5, g = 0.5, L = 100. (b) Site
dependence of the weight function for a right eigenstate of Eq. (2) under the OBC with E = −2.664. (c) Site dependence of the weight function
for the left eigenstate corresponding to the right eigenstate in (b). The left and right eigenstates are localized at opposite boundaries.

also describes the disorder-induced phase transition for the
symmetry-protected skin effect.

The rest of this paper is organized as follows. In Sec. II,
we summarize the basic properties of non-Hermitian skin
effects. In particular, we explain how nontrivial topology
under the PBC leads to the non-Hermitian skin effects. In
Sec. III, we introduce scalar measures of nonnormality and
show that the non-Hermitian skin effects macroscopically en-
hance them under the OBC. We also demonstrate that the
enhanced nonnormality correctly describes topological phase
transitions for the non-Hermitian skin effects analytically in
Sec. IV and numerically in Sec. V. In Sec. V, we also clar-
ify that average time-reversal symmetry fails to protect the
symmetry-protected skin effect. We discuss the implications
of our results in Sec. VI and give conclusions in Sec. VII

II. NON-HERMITIAN SKIN EFFECT

We first summarize the basic properties of the non-
Hermitian skin effects.

A. Hatano-Nelson model without disorder

The non-Hermitian skin effect is a phenomenon in which
the bulk eigenspectrum strongly depends on the boundary
conditions. The simplest model showing the non-Hermitian
skin effect is the Hatano-Nelson model without the disorder
[58–60]

Ĥ =
L∑

j=1

[(t + g)ĉ†
j+1ĉ j + (t − g)ĉ†

j ĉ j+1], (1)

where (ĉ j , ĉ†
j ) are annihilation and creation operators at site

j, L is the number of sites, t ∈ R is a Hermitian symmetric
hopping, and g ∈ R is a non-Hermitian asymmetric hopping.
Below we assume t > g � 0 for simplicity.

The one-particle spectrum of the above model is given
by the eigenvalues of the matrix Hamiltonian H whose (i j)
component Hi j is given by Ĥ = ∑

i j ĉ†
i Hi j ĉ j ,

H =

⎛
⎜⎜⎝

0 t − g 0 · · ·
t + g 0 t − g · · ·

0 t + g 0 · · ·
...

...
...

. . .

⎞
⎟⎟⎠. (2)

Under the PBC, the plane waves

|n〉PBC = 1√
L

⎛
⎜⎜⎜⎜⎜⎝

eikn

eikn2

...

eikn (L−1)

eiknL

⎞
⎟⎟⎟⎟⎟⎠, (3)

with the crystal momentum kn,

kn = 2π

L
n (n = 0, 1, · · · , L − 1) (4)

give the eigenstates. The corresponding PBC spectrum is

En = (t + g)e−ikn + (t − g)eikn , (5)

which forms an ellipse in the complex energy plane if g �=
0, as illustrated in Fig. 1(a). In contrast, under the OBC, the
eigenspectrum becomes real [Fig. 1(a)],

En = 2
√

t2 − g2 cos

(
π

L + 1
n

)
(n = 1, 2, · · · , L), (6)

which is drastically different from the PBC one. The corre-
sponding OBC eigenstates are not plane waves but localized
when g �= 0. The explicit form of the right eigenstate is

|n〉OBC =
√

2

L + 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1 sin
(

nπ
L+1

)
r2 sin

(
nπ

L+1 × 2
)

...

rL−1 sin
(

nπ
L+1 × (L − 1)

)
rL sin

(
nπ

L+1 × L
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

and that of the left eigenstate is

|n〉〉OBC =
√

2

L + 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r−1 sin
(

nπ
L+1

)
r−2 sin

(
nπ

L+1 × 2
)

...

r−L+1 sin
(

nπ
L+1 × (L − 1)

)
r−L sin

(
nπ

L+1 × L
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

with r = √
(t + g)/(t − g). Thus, for g �= 0, O(L) bulk modes

are localized at the boundary under the OBC. Such a macro-
scopic change of the bulk spectrum and bulk states is called
the non-Hermitian skin effect.
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We should note here that the localization in the non-
Hermitian skin effect is very unique: The right eigenstate
|n〉OBC and the left one OBC〈〈n| are localized at opposite ends,
as seen in Eqs. (7) and (8). [See also Figs. 1(b) and 1(c).] This
type of localization never happens in Hermitian systems since
their right eigenstates are identical to the left ones. In the next
subsection, we see that this exceptional localization comes
from the topological nature of the non-Hermitian skin effect.

B. Non-Hermitian topology and skin effect

It has been known that the non-Hermitian skin effect origi-
nates from a topological number of the non-Hermitian system
under the PBC [41,42]. As shown below, the topological
origin also ensures the particular localization of skin modes
mentioned above.

Let us consider a one-dimensional non-Hermitian system
under the PBC. The topological number relevant to the skin
effect is the energy winding number [41,42]: If the system
has the lattice translation symmetry with the corresponding
crystal momentum k, and the system size L is large enough
to regard k as a continuous number with k ∈ [−π, π ], the
winding number around a reference energy E ∈ C is given
by [34]

W (E ) =
∫ π

−π

dk

2π i

∂

∂k
log det (H (k) − E ), (9)

where H (k) is the matrix representation of the Hamiltonian in
the momentum space.

To see the relation between this topological number and
the skin effect, we introduce the following Hermitian Hamil-
tonian:

H̃ (k) =
(

0 H (k) − E

H†(k) − E∗ 0

)
, (10)

which has chiral symmetry,

{H̃ (k), �} = 0, � = σz =
(

1 0

0 −1

)
. (11)

First, we consider the semi-infinite boundary condition where
the system has only one boundary. Because W (E ) in Eq. (9)
is also a topological number of the Hermitian system H̃ (k),
we can apply the conventional bulk-boundary correspondence
to the Hermitian system. For a nonzero W (E ), the Hermitian
system H̃ support exact zero-energy boundary modes with
definite eigenvalues of �. Importantly, each of the exact zero
modes gives a boundary mode with energy E of the original
non-Hermitian Hamiltonian: If the zero mode has positive
chirality � = 1, it obeys

H̃

(
|E〉
0

)
= 0, �

(
|E〉
0

)
=
(

|E〉
0

)
, (12)

which implies that H |E〉 = E |E〉. Also, for the exact zero
mode with negative chirality � = −1, we have

H̃

(
0

|E〉〉

)
= 0, �

(
0

|E〉〉

)
= −

(
0

|E〉〉

)
, (13)

which gives H†|E〉〉 = E∗|E〉〉, namely 〈〈E |H = 〈〈E |E .

Now we consider the OBC, where the system has two
boundaries. Whereas any E with a nonzero W (E ) provides
boundary modes of the non-Hermitian system under the semi-
infinite boundary condition, the situation becomes slightly
different under the OBC. Under the OBC, most of E with
a nonzero W (E ) only provides approximately zero modes
of the Hermitian system H̃ , not exact ones, so can not give
energy eigenstates of the non-Hermitian system. Therefore,
we have boundary modes only for a particular subset of E with
W (E ) �= 0 where the Hermitian Hamiltonian has exact zero
modes [41]. Moreover, since the zero modes in the Hermitian
system always appear in a pair with opposite chiralities at
opposite boundaries, they give a pair of right and left eigen-
states of H localized at opposite boundaries. In other words,
we have skin modes with the nonconjugate nature of the right
and left eigenstates. Since the chirality of the zero modes in
the Hermitian system is a topological number, this particular
localization of the skin modes is topologically protected.

As an example, let us consider the Hatano-Nelson model
without disorder in Eq. (2). In the momentum space, the
Hamiltonian is given by H (k) = (t + g)e−ik + (t − g)eik , and
thus if g �= 0 the winding number is W (E ) = −1 for E inside
the region enclosed by the PBC spectrum in Fig. 1(a). This
nontrivial topological number explains why this model sup-
ports the skin modes in Eqs. (7) and (8).

C. Symmetry-protected skin effect

So far, we do not assume any symmetry. Here, we consider
a one-dimensional non-Hermitian system with the transpose
version of time-reversal symmetry,

T HT (k)T −1 = H (−k), T T ∗ = −1, (14)

where T is a unitary matrix. {In the classification scheme in
Ref. [35], the transpose version of time-reversal symmetry
is dubbed as TRS† and a system with Eq. (14) is called
class AII†.}This symmetry makes W (E ) identically zero but
enables a different type of non-Hermitian skin effect, which
we call symmetry-protected skin effect [41]. The symmetry-
protected skin effect originates from the one-dimensional Z2

topological invariant ν(E ) ∈ {0, 1},

(−1)ν(E ) = sgn

[
Pf[(H (π ) − E )T ]

Pf[(H (0) − E )T ]

× exp

[
−1

2

∫ k=π

k=0
dk

∂

∂k
log det[(H (k) − E )T ]

]]
,

(15)

where E is a reference energy [35]. Note that the symmetry
in Eq. (14) is necessary to have the Z2 topological invariant:
For the Pfaffian in Eq. (15) to be well defined, (H (k0) − E )T
with k0 = 0, π must be antisymmetric, which is derived from
Eq. (14).

In a manner similar to the ordinary skin effect, to see
the relation between the Z2 invariant and the symmetry-
protected skin effect, we introduce the Hermitian Hamiltonian
in Eq. (10). In the present case, the Hermitian Hamiltonian has
time-reversal symmetry,

T̃ H̃∗(k)T̃ −1 = H̃ (−k), T̃ =
(

0 T
T 0

)
, (16)
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FIG. 2. Symmetry-protected skin effect. (a) The blue and yellow dots represent the PBC and the OBC spectra of Eq. (18) with t = 1, g =
0.3, � = 0.2, L = 100. (b) Site dependence of the weight function for a right eigenstate of Eq. (18) under the OBC with E = −9.091 × 10−2.
(c) Site dependence of the weight function for the left eigenstate corresponding to the right eigenstate in (b). The left and right eigenstates are
localized at different ends. (d) A right eigenstate corresponding to the Kramers partner of the right eigenstate in (b).

in addition to chiral symmetry in Eq. (11). Therefore, the
Hermitian Hamiltonian belongs to class DIII in terms of
the Altland-Zirnbauder classification [61], which describes a
one-dimensional time-reversal superconductor. As (−1)ν(E )

in Eq. (15) coincides with the Z2 invariant of the Hermitian
system, the one-dimensional superconductor hosts a Kramers
pair of Majorana zero-energy boundary modes if the Z2 in-
variant is nontrivial. When the Kramers pair are exact zero
modes, it provides skin modes of the original non-Hermitian
system. However, different from conventional ones, the re-
sultant skin modes are localized at both boundaries of the
OBC. To see this property, let us consider a skin mode of
which right (left) eigenstate |E〉 (|E〉〉) is localized at, say,
the right (left) end of the system. Then, using time-reversal
symmetry in Eq. (14), we have a skin mode localized at the left
(right) end, of which right (left) eigenstate is given by T |E〉〉∗
(T |E〉∗). These two skin modes |E〉 and T |E〉〉∗ (or their left
eigenstates |E〉〉 and T |E〉∗) form a (biorthogonal) Kramers
pair [35] because we have 〈〈E |(T |E〉〉∗) = 〈E |(T |E〉∗) = 0.

To illustrate the symmetry-protected skin effect, we con-
sider a time-reversal invariant version of the Hatano-Nelson
model without disorder [41],

Ĥ =
L∑

j=1

((t + g)ĉ†
j+1,↑ĉ j,↑ + (t − g)ĉ†

j,↑ĉ j+1,↑)

+
L∑

j=1

((t + g)ĉ†
j,↓ĉ j+1,↓ + (t − g)ĉ†

j+1,↓ĉ j,↓)

− i�
L∑

j=1

(ĉ†
j+1,↑ĉ j,↓ − ĉ†

j,↑ĉ j+1,↓)

− i�
L∑

j=1

(ĉ†
j+1,↓ĉ j,↑ − ĉ†

j,↓ĉ j+1,↑) (17)

where j is the site index, L is the number of sites, ↑ and
↓ represent the spin degrees of freedom. The first and the
second lines of the above Hamiltonian describe the Hatano-
Nelson model without disorder, and its time-reversal partner,
respectively, and � ∈ R is a time-reversal invariant coupling
between them.

In the momentum space, the matrix representation of the
Hamiltonian reads

H (k) = 2t cos k + 2�(sin k)σx + 2ig(sin k)σz, (18)

where σis’ are the Pauli matrices in spin space. The transpose
version of time-reversal symmetry is given by

T HT (k)T −1 = H (−k), T = iσy. (19)

The energy eigenvalues of Eq. (18) give the PBC spectrum,

E±(k) = 2t cos k ± 2i
√

g2 − �2 sin k. (20)

For |g| > |�|, the PBC spectrum forms an ellipse on the
complex energy plane. Under the same condition, the model
has a nontrivial Z2 number for E inside the ellipse. Therefore,
we can expect the symmetry-protected skin effect. Actually, as
shown in Fig. 2(a), the OBC spectrum forms a line on the real
axis of the complex plane, being completely different from the
PBC spectrum. Moreover, for each E of the OBC spectrum,
we have a pair of the right eigenstates, one is localized at
the right end [Fig. 2(b)], and the other is localized at the left
end [Fig. 2(d)]. As expected from the argument above, the
corresponding left eigenstates are localized at opposite ends
[Fig. 2(c)].

D. Anderson localization versus skin effects

Disorders induce another localization, i.e., the Anderson
localization [62–64]. Here we compare the non-Hermitian
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FIG. 3. (a) The blue and yellow dots represent the PBC and the OBC spectra of Eq. (I1) with t = 1.5, g = 0.5, L = 100, γ = 0.5.
Eigenstates with the OBC energy inside the PBC spectrum are skin modes, and eigenstates with the OBC energy outside the PBC spectrum
are Anderson modes. (b) Site dependence of weight function for a right eigenstate of Eq. (I1) under the OBC with eigenenergy at the black
cross in (a). (c) Site dependence of weight function for the left eigenstate corresponding to the right eigenstate in (c). The right eigenstate is
localized on one side while the left counterpart is localized on the other side. (d) Site dependence of weight function for a right eigenstate of
Eq. (I1) under the OBC with eigenenergy at the red cross in (a). (e) Site dependence of weight function for the left eigenstate corresponding to
the right eigenstate in (d). The right and left eigenstates are localized at the same position.

skin effects with the Anderson localization and show that the
former keeps the nonconjugation nature of the left and right
eigenstates even in the presence of disorder, whereas the latter
does not.

We first consider the Hatano-Nelson model [58–60],

Ĥ =
L∑

j=1

[(t + g)ĉ†
j+1ĉ j + (t − g)ĉ†

j ĉ j+1 + w j ĉ j
†ĉ j], (21)

where w j ∈ R ( j = 1, 2, · · · , L) is the strength of the on-site
disorder. For later convenience, we choose the random po-
tential with the Cauchy distribution, of which the probability
density function is given by

P(w j ) = γ

π

1

w2
j + γ 2

. (22)

We numerically investigate the model (I1) with t = 1.5, g =
0.5, L = 100, and γ = 0.5. The obtained PBC and OBC en-
ergy spectra are shown in Fig. 3(a). We observe two different
behaviors in the spectra: In the central region of the com-
plex energy plane, the PBC spectrum and the OBC one are
completely different, and thus the non-Hermitian skin effect
occurs. As is illustrated in Figs. 3(b) and 3(c), the right and
left eigenstates of the corresponding skin modes are localized

at different ends, so they are nonconjugate. In contrast, in the
outer region of the complex energy plane, the PBC spectrum
collapses and does not show a clear distinction from the OBC
spectrum. This collapse originates from the Anderson local-
ization [58–60]. As shown in Figs. 3(d) and 3(e), the right and
left eigenstates under the OBC are almost the same.

We also consider the model in Eq. (17) with disorder,

Ĥ =
L∑

j=1

[(t + g)ĉ†
j+1,↑ĉ j,↑ + (t − g)ĉ†

j,↑ĉ j+1,↑ + w j ĉ
†
j,↑ĉ j,↑]

+
L∑

j=1

[(t + g)ĉ†
j,↓ĉ j+1,↓ + (t − g)ĉ†

j+1,↓ĉ j,↓ + w j ĉ
†
j,↓ĉ j,↓]

− i�
L∑

j=1

(ĉ†
j+1,↑ĉ j,↓ − ĉ†

j↑ĉ j+1↓)

− i�
L∑

j=1

(ĉ†
j+1,↓ĉ j,↑ − ĉ†

j,↓ĉ j+1,↑), (23)

where w j is the on-site disorder with the Cauchy distribution
in Eq. (22). The corresponding matrix Hamiltonian reads

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1 0 t − g i� · · · 0 0 0 0
0 w1 i� t + g · · · 0 0 0 0

t + g −i� w2 0 · · · 0 0 0 0
−i� t − g 0 w2 · · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · wL−1 0 t − g i�
0 0 0 0 · · · 0 wL−1 i� t + g
0 0 0 0 · · · t + g −i� wL 0
0 0 0 0 · · · −i� t − g 0 wL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (24)
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FIG. 4. (a) The blue and yellow dots represent the PBC and the OBC spectra of Eq. (24) with t = 1, g = 0.3, � = 0.2, N = 100, γ = 0.2.
Eigenstates with the OBC energy inside the PBC spectrum are skin modes, and eigenstates with the OBC energy outside the PBC spectrum are
Anderson modes. (b) Site dependence of weight function for a right eigenstate of Eq. (24) under the OBC with eigenenergy at the black cross
in (a). (c) Site dependence of weight function for the left eigenstate corresponding to the right eigenstate shown in (b). (d) Site dependence of
weight function for the Kramers partner corresponding to the right eigenstate shown in (b). The right eigenstate is localized at one end while
the left counterpart and the Kramers partner are localized at the other end. (e) Site dependence of weight function for a right eigenstate of
Eq. (24) under the OBC with eigenenergy at the red cross in (a). (f) Site dependence of weight function for the left eigenstate corresponding to
the right eigenstate shown in (e). (g) Site dependence of weight function for the Kramers partner corresponding to the right eigenstate shown
in (e). The right, left eigenstates and the Kramers partner are localized at the same position.

under the OBC. The matrix Hamiltonian has additional entries
in the upper right and lower left corners under the PBC. The
disordered matrix Hamiltonian preserves the transpose-type
time-reversal symmetry,

T HT T −1 = H, (25)

where T = iσy ⊗ 1L×L satisfies T T ∗ = −1. We show the en-
ergy spectrum of the system with t = 1, g = 0.3, � = 0.2,
L = 100, and γ = 0.2 in Fig. 4(a). We find again that the PBC
spectrum and the OBC one are completely different in the
central region of the complex energy plane, whereas they are
almost identical in the outer region. In the former region, the
right and left eigenstates under the OBC are localized at oppo-
site ends, as shown in Figs. 4(b) and 4(c). It also has a Kramers
partner localized at the opposite end [Fig. 4(d)] because of the
transpose-type time-reversal symmetry in Eq. (25). Therefore,
they are symmetry-protected skin modes. In contrast, the right
and left eigenstates in the outer region are localized at almost
the same position, as shown in Figs. 4(e) and 4(f). Moreover,
the Kramers partner occupies the same position as shown in
Fig. 4(g). This result indicates that they are not skin modes but
modes with Anderson localization.

III. TOPOLOGICAL ENHANCEMENT
OF NONNORMALITY

As was seen in previous sections, the non-Hermitian skin
effects exhibit the following characteristic features: (i) The
OBC spectrum is completely different from the PBC spec-
trum: When the PBC spectrum forms a loop in the complex

energy plane, the OBC spectrum becomes a line (or an arc),
which is inside the PBC spectrum. (ii) The skin modes show
a peculiar localization specific to non-Hermitian systems. In
particular, the right and left eigenstates of each skin mode are
localized at opposite boundaries.

Remarkably, these features originate from the topological
nature of the skin effects. The OBC spectrum of skin modes
must be inside the PBC spectrum since the topological num-
bers for the skin effects are nonzero only inside the PBC
spectrum. Moreover, the chirality of topological boundary
modes results in the peculiar localization of the skin modes.

In this section, we discuss the relation between these topo-
logical properties of the skin effects and the nonnormality of
the system. A non-Hermitian Hamiltonian H is said to be
nonnormal (normal) if it obeys [H, H†] �= 0 ([H, H†] = 0).
Below, we introduce scalar measures of nonnormality and
clarify that the topological properties of the non-Hermitian
skin effects macroscopically enhance the nonnormality of the
system under the OBC.

A. Condition number

First, we introduce the condition number as a useful scalar
measure of nonnormality [65,66]. For a diagonalizable ma-
trix Hamiltonian H , the condition number κ (V ) is defined as
follows: Let Eα (α = 1, . . . , p) be distinct eigenvalues of H ,
and |Ea

α〉 (a = 1, . . . , dα) be corresponding right eigenstates
for Eα ,

H
∣∣Ea

α

〉 = Eα

∣∣Ea
α

〉
, (26)
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where a labels independent eigenstates with the same eigen-
value Eα , and dα is the number of the independent eigenstates.
We can diagonalize H as

V −1HV =

⎛
⎜⎝E11d1×d1

E21d2×d2

. . .

⎞
⎟⎠ ≡ � (27)

by the regular matrix

V = (∣∣E1
1

〉
, . . . ,

∣∣Ed1
1

〉
,
∣∣E1

2

〉
, . . . ,

∣∣Ed2
2

〉
, . . .

)
. (28)

Then, the condition number is defined as

κ (V ) = ‖V ‖2‖V −1‖2, (29)

where ‖ · ‖2 is the 2-norm of a matrix

‖ · ‖2 = maxx[
√

| · x|2/
√

|x|2]. (30)

Because the 2-norm of a matrix coincides with the largest
singular value of the matrix, we can evaluate κ (V ) as

1 � κ (V ) = smax(V )/smin(V ) < ∞, (31)

where smax(V ) and smin(V ) are the largest and smallest singu-
lar values of V . For a nondiagonalizable matrix Hamiltonian
H , we formally define κ (V ) = ∞.

In general, κ (V ) is not unique for a given H since we have
a different V by the linear transformation |Ea

α〉 → ∑
b |Eb

α〉Gα
ba

with detGα �= 0. Thus, we need to impose an additional con-
straint on V to obtain a unique κ (V ). For a special case when
the eigenvalues are distinct, Ref. [65] proposed a constraint to
obtain a unique κ (V ). Here, generalizing this constraint, we
adapt the normalization condition〈

Ea
α

∣∣Eb
α

〉 = δab. (32)

Still, we can obtain a different V by a unitary transformation
|Ea

α〉 → ∑
b |Eb

α〉W α
ba with a unitary matrix W α , but the unitary

transformation does not change the 2-norm of V . Hence, we
have a unique κ (V ).

This choice of κ (V ) has nice properties. First, κ (V ) = 1
is possible if and only if H is normal. Actually, if κ (V ) =
1, we have smax(V ) = smin(V ), so all the eigenvalues of the
Hermitian matrix V †V are equal. Therefore, we can diago-
nalize V †V as V †V = √

smax(V )1, which implies that V −1 =
V †/

√
smax(V ), and H is normal. The inverse is also true be-

cause if H is normal, we can diagonalize H by a unitary matrix
V , which satisfies the above constraint and κ (V ) = 1. Second,
as we prove in Appendix D, the resultant κ (V ) exceeds the
minimal value of κ (V ) by at most a factor of

√
L, where L is

the size of H [see Eq. (D5)]. Thus, it does not overestimate
the nonnormality of H more than necessary.

Now we relate κ (V ) with the non-Hermitian skin effect. By
introducing left eigenstates of H ,

H†
∣∣Ea

α

〉〉 = E∗
α

∣∣Ea
α

〉〉
, (33)

with the biorthogonal normalization〈〈
Ea

α

∣∣Eb
β

〉 = δαβδab, (34)

V −1 is explicitly written as

V −1 = (|E1
1

〉〉
, . . . ,

∣∣Ed1
1

〉〉
,
∣∣E1

2

〉〉
, . . . ,

∣∣Ed2
2

〉〉
, . . .

)†
. (35)

Then, from the inequality√
trA†A/L � ‖A‖2 �

√
trA†A (36)

for a L × L square matrix, κ (V ) satisfies

ξ (V ) � κ (V ) � ξ (V )L, (37)

where L is the size of H and ξ (V ) is given by

ξ (V ) =
√∑

α,a

〈
Ea

α

∣∣Ea
α

〉∑
β,b

〈〈
Eb

β

∣∣Eb
β

〉〉
L

=
√∑

β,b

〈〈
Eb

β

∣∣Eb
β

〉〉
L

. (38)

Here we have used the normalization condition 〈Ea
α |Ea

α〉 = δab

in the last equality. The lower bound ξ (V ) of κ (V ) describes
how the right and left eigenstates of H differ from each other:
When they rarely overlap with each other, ξ (V ) becomes huge
because 〈〈Eb

β |Eb
β〉〉 must be extremely large to satisfy Eqs. (32)

and (34).
As mentioned in Sec. II B, for topological reasons, the right

and left eigenstates of skin modes are spatially well separated
from each other. Thus, under the conditions of Eqs. (32) and
(34), 〈〈Ea

α |Ea
α〉〉 becomes exponentially large with respect to

the system size L, which gives ξ (V ) ∼ ecL/
√

L with a positive
constant c. As a result, κ (V ) is also exponentially large in
the presence of the non-Hermitian skin effects. In general, we
may have contributions for κ (V ) other than the skin modes,
but they are insensitive to the boundary conditions. There-
fore, we can extract the contribution from the skin effects by
considering the ratio κR = κOBC(V )/κPBC(V ) between κ (V )s’
under the OBC and the PBC. This ratio is exponentially en-
hanced with the system size L in the presence of the skin
effects,

κR ∼ ecL (39)

while κR = O(1) in the absence of the skin effects. Thus, we
can use κR as an order parameter for the non-Hermitian skin
effects [67].

B. Departure from normality

Another useful quantity is Henrici’s departure from nor-
mality [65]. As shown below, for relatively simple models like
the Hatano-Nelson model, this quantity also relates the non-
Hermitian skin effects to the nonnormality of the Hamiltonian.

The central idea of Henrici’s departure from normality is
to use the Schur decomposition to characterize nonnormality.
For any given Hamiltonian H , we can perform the Schur
decomposition

H = U (� + R)U †, (40)

where U is a unitary matrix, � is a diagonal matrix of eigen-
values, and R is a strictly upper triangular matrix. When R
is zero, this is a unitary diagonalization; hence, H must be
normal. Thus the norm of R measures the nonnormality of
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H . Since the Shur decomposition is not unique in general,
Henrici introduced the departure from normality as the mini-
mum value of ‖R‖ over all possible decompositions,

dep(H ) = min
H=U (�+R)U †

‖R‖. (41)

Note that dep(H ) is insensitive to the origin of energy, and
thus we can shift the reference energy E arbitrarily,

dep(H ) = dep(H − E ). (42)

We obtain a direct relation between the departure from
normality and the spectrum of the system by considering the
Frobenius norm ‖R‖F =

√
tr(R†R). From the equation

‖H‖F = ‖� + R‖2
F

= ‖�‖2
F + ‖R‖2

F, (43)

the Frobebnius norm version of the departure from normality
depF(A) does not depend on a particular Schur decomposition
and is given by

depF(H ) =
√

‖H‖2
F − ‖�‖2

F

=
√∑

i

s2
i −

∑
i

|Ei|2, (44)

where si and Ei are the singular values of H and the en-
ergy eigenvalues of H , respectively. While si rarely depends
on the boundary condition as it is given by an eigenvalue
of the Hermitian matrix HH†, Ei crucially depends on the
boundary condition in the presence of non-Hermitian skin
effects. Therefore, we can expect that depF(H ) measures the
nonnormality caused by the non-Hermitian skin effects.

Actually, we find that the non-Hermitian skin effects also
enhance depF(H ) under the OBC if the PBC spectrum forms
a single loop in the complex energy plane. To see this prop-
erty, we first note that the average of the energy eigenvalues
coincides between the PBC and the OBC since the total of
the energy eigenvalues is given by tr(H ), which is insensitive
to the boundary conditions. Thus, without changing depF(H ),
we can simultaneously set the average energies both under the
PBC and the OBC to zero by shifting the origin of the energy.
Now

∑
i |E |2i /L becomes the variance of the complex energy

eigenvalues, which measures the deviation of the eigenvalues
from the average. Then, we can show that the non-Hermitian
skin effects make the variance under the OBC smaller than
that under the PBC: As the average energy is set to zero, the
PBC spectrum is a loop whose center coincides with the origin
in the complex energy plane. Then, because the OBC spec-
trum with a skin effect is obtained by an adiabatic shrinking
of the PBC spectrum, keeping the same average value [41],
the variance of the OBC spectrum becomes smaller than that

of the PBC one. As a result, the skin effect enhances depF(H )
under the OBC.

For the characterization of the non-Hermitian skin effects,
it is convenient to consider the difference between depF(H )s
under the OBC and the PBC. Since the non-Hermitian skin
effects affect O(L) modes, the difference behaves as

depD = depOBC(H ) − depPBC(H ) ∼ c′√L (45)

with a positive constant c′ in the presence of the skin effects,
while we have depD ∼ O(1) in the absence of the skin effects.
Thus, we can also use depD as another order parameter for the
skin effects.

C. Nonquantization property

Whereas the non-Hermitian skin effect originates from the
nontrivial bulk topology, the enhanced nonnormality in the
above does not show the quantization. We would like to point
out that this nonquantization property is intrinsic to the non-
Hermitian skin effects. For conventional topological boundary
states, their number is determined by the bulk topological
number. For example, the Chern number in a quantum Hall
state determines the number of chiral edge modes. Because
of this correspondence, the quantized quantity characterizes
topological boundary states. In contrast, this correspondence
does not hold in the non-Hermitian skin effects. Whereas the
non-Hermitian skin effects occur when the bulk topological
number becomes nonzero, the total number of skin modes is
insensitive to the nonzero value of the topological number, and
is determined by the number of bulk degrees of freedom, such
as the system size. In other words, different values of the bulk
topological number may give the same number of skin modes.
Therefore, their topological characterization is not necessarily
quantized.

IV. EXAMPLES

In this section, we analytically confirm the enhanced
nonnormality of the non-Hermitian skin effects in concrete
models without the disorder.

A. Hatano-Nelson model without disorder

Here we consider the Hatano-Nelson model in Eq. (1). We
assume that t > g � 0 for simplicity. As shown in Sec. II A,
this model shows the non-Hermitian skin effect if g �= 0.

1. Condition number

First, we calculate the condition number under the PBC.
Under the PBC, the matrix V diagonalizing the Hamiltonian
in Eq. (2) is given by

VPBC = 1√
L

⎛
⎜⎜⎜⎜⎝

exp
(
i 2π

L × 0 × 1
)

exp
(
i 2π

L × 1 × 1
) · · · exp

(
i 2π

L × (L − 1) × 1
)

exp
(
i 2π

L × 0 × 2
)

exp
(
i 2π

L × 1 × 2
) · · · exp

(
i 2π

L × (L − 1) × 2
)

...
...

. . .
...

exp
(
i 2π

L × 0 × L
)

exp
(
i 2π

L × 1 × L
) · · · exp

(
i 2π

L × (L − 1) × L
)

⎞
⎟⎟⎟⎟⎠, (46)
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which satisfies the normalization condition in Eq. (32).
Since this matrix is unitary, the condition number of VPBC

becomes 1,

κ (VPBC) = 1. (47)

This result is consistent with the fact that the Hamiltonian in
Eq. (2) is normal under the PBC.

Now we evaluate the condition number under the OBC.
Under the OBC, we can diagonalize the Hamiltonian in
Eq. (2) by using the right eigenstates |n〉OBC in Eq. (7); the
matrix V diagonalizing the Hamiltonian is given by

VOBC =
( |1〉OBC

‖|1〉OBC‖2
,

|2〉OBC

‖|2〉OBC‖2
, . . . ,

|L〉OBC

‖|L〉OBC‖2

)
, (48)

where we have imposed the normalization condition in
Eq. (32) on VOBC. To evaluate κ (VOBC), we decompose VOBC

into three matrices R, U , and N ,

VOBC = RUN. (49)

Here R and U are the diagonal and unitary matrices, respec-
tively, of which (m, n) components are given by

(R)m,n = rmδm,n,

(U )m,n =
√

2

L + 1
sin

(
πmn

L + 1

)
, (50)

with r = √
(t + g)/(t − g). Note that RU gives the right

eigenstate |n〉OBC in Eq. (7),

RU = (|1〉OBC, |2〉OBC, . . . , |L〉OBC). (51)

Then, the matrix N is the diagonal matrix,

(N )m,n = ‖|n〉OBC‖−1
2 δm,n, (52)

which forces VOBC to obey the normalization condition in
Eq. (32). As shown in Appendix E, using this decomposition,
we have the inequality(

2

L + 1

)3/2

rL−1 < κ (VOBC) �
√

LrL−1, (53)

which implies that κ (VOBC) behaves as κ (VOBC) ∼ eL ln r .
By combining the above result with Eq. (47), the ratio κR

becomes

κR ∼ eL ln r . (54)

Thus, κR grows exponentially with the system size L when
g �= 0 since r > 1 in this case. On the other hand, if g = 0,
κR ∼ O(1) since r = 1. This behavior agrees with the fact that
the non-Hermitian skin effect occurs (does not occur) when
g �= 0 (g = 0).

2. Departure from normality

Now we evaluate the departure from normality. The energy
spectrum of the model in Eq. (1) under the PBC in the infinite-
volume limit is given as

E (k) = 2t cos k − 2ig sin k, (55)

where k is the corresponding crystal momentum. Thus, the
second term of Eq. (44) is given by

∑
j

|Ej |2 → L

2π

∫ 2π

0
dk|2t cos k − 2ig sin k|2

= 2L(t2 + g2). (56)

On the other hand, the square of the singular value of the
model is given as

(s(k))2 = (2t cos k − 2ig sin k)(2t cos k + 2ig sin k)

= 4t2 cos2 k + 4g2 sin2 k. (57)

Note that singular values of normal matrices are the absolute
values of the eigenvalues. Thus, under the PBC, we have

∑
j

(s j )
2 → L

2π

∫ 2π

0
dk(4t2 cos2 k + 4g2 sin2 k)

= 2L(t2 + g2). (58)

From Eq. (56) and Eq. (58), we find that depF(H ) of the model
(1) vanishes under the PBC,

depPBC(H ) = 0. (59)

Under the OBC, the eigenvalues of the model (1) are given
as

En = 2
√

t2 − g2 cos

(
π

L + 1
n

)
(n = 1, 2, · · · , L), (60)

which leads to∑
j

|Ej |2 =
∑

n

(
4(t2 − g2) cos2

(
π

L + 1
n

))
. (61)

Thus, in the infinite-volume limit (L → ∞), we have

∑
j

|Ej |2 → L

π

∫ π

0
dk(4(t2 − g2) cos2 k)

= 2L(t2 − g2). (62)

Since the square of the singular value of H is independent of
the boundary conditions in the infinite-volume limit, Eq. (58)
also gives the first term of Eq. (44) under the OBC,∑

j

(s j )
2 → 2L(t2 + g2). (63)

Therefore, from Eqs. (62) and (63), depF(H ) under the OBC
is given by

depOBC(H ) =
√

2L(t2 + g2) − 2L(t2 − g2)

= 2g
√

L. (64)

Combing Eq. (59) with Eq. (64), we have

depD = 2g
√

L. (65)

Thus, the enhancement of nonnormality occurs only when the
non-Hermitian skin effect presents (g �= 0).
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B. Time-reversal invariant Hatano-Nelson model
without disorder

In this subsection, we consider the model in Eq. (18). We
assume that t > g � 0 and t > � � 0 for simplicity. As dis-
cussed in Sec. II C, this model shows the symmetry-protected
skin effect when g > �.

1. Condition number

We assume that g �= �, because the Bloch Hamiltonian
(18) is not diagonalizable when g = �.

We introduce an explicit expression of the one-particle
Hamiltonian under the OBC or the PBC using the correspond-
ing Bloch Hamiltonian in a generic way. For j = −L,−L +
1, . . . , 0, . . . , L − 1, L, let E ( j)

OBC be an L × L singular matrix
whose elements are

(
E ( j)

OBC

)
m,n

= δm,n+ j . (66)

For a given Bloch Hamiltonian H (k), the corresponding one-
particle Hamiltonian under the OBC is of the form

HOBC =
L∑

j=−L

1

2π

∫ π

−π

e−ik jH (k) ⊗ E ( j)
OBCdk. (67)

Note that

E (− j)
OBC = (

E ( j)
OBC

)T = (
E ( j)

OBC

)†
(68)

for −L � j � L, and

E (± j)
OBC = (

E (±1)
OBC

) j
(69)

for j > 0. Introducing an L × L unitary matrix

EPBC :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 1
1 0 0 · · · 0 0

0 1 0 . . . 0 0
...

...
...

. . .
. . .

...

0 0 0 · · · 0 0
0 0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (70)

on the other hand, the one-particle Hamiltonian corresponding
to H (k) under the PBC is of the form

HPBC =
L∑

j=−L

1

2π

∫ π

−π

e−ik jH (k) ⊗ (EPBC) jdk. (71)

Note that if H (k) is Hermitian then HOBC and HPBC are also
Hermitian, because of Eq. (68) and the unitarity of EPBC,
respectively.

Here we take Eq. (18) as H (k), and let HAII†

OBC and HAII†

PBC be
the corresponding one-particle Hamiltonian under the OBC
and the PBC, respectively, both of which are 2L × 2L ma-
trices. Since H (k) has the transpose version of time-reversal
symmetry (19), HAII†

OBC and HAII†

PBC also respect the same type of
time symmetry,

T ′(HAII†

OBC

)T
T ′−1 = HAII†

OBC, (72)

T ′(HAII†

PBC

)T
T ′−1 = HAII†

PBC , (73)

with T ′ := iσy ⊗ 1L×L, which lead to the presence of the
biorthogonal Kramers pairs. We have to orthogonalize the
Kramers pairs in terms of the right eigenstates when we calcu-
late the condition number with respecting the constraint (32).

In preparation for the estimation of the condition num-
bers associated by HAII†

OBC and HAII†

PBC , we diagonalize the Bloch
Hamiltonian (18),

S−1H (k)S =
(

2t cos k + 2i
√

g2 − �2 sin k 0

0 2t cos k − 2i
√

g2 − �2 sin k

)
, (74)

where S is a 2 × 2 regular matrix such that

S = � + (
√

g2 − �2 − g)σy. (75)

Note that S is generally not unitary. We extend S onto C2L by
S̃ := S ⊗ 1L×L to investigate

S̃−1HAII†

OBCS̃ =
L∑

j=−L

1

2π

∫ π

−π

e−ik j (S−1H (k)S) ⊗ E ( j)
OBCdk

(76)

and

S̃−1HAII†

PBC S̃ =
L∑

j=−L

1

2π

∫ π

−π

e−ik j (S−1H (k)S) ⊗ (EPBC) jdk.

(77)

Using the following L × L diagonalizable matrices

H±
OBC := (t ±

√
g2 − �2)E (1)

OBC + (t ∓
√

g2 − �2)E (−1)
OBC ,

(78)

and

H±
PBC := (t ±

√
g2 − �2)EPBC + (t ∓

√
g2 − �2)(EPBC)−1,

(79)

we can express S̃−1HAII†

OBC/PBCS̃ as

S̃−1HAII†

OBCS̃ =
(

1 0
0 0

)
⊗ H+

OBC +
(

0 0
0 1

)
⊗ H−

OBC, (80)

S̃−1HAII†

PBC S̃ =
(

1 0
0 0

)
⊗ H+

PBC +
(

0 0
0 1

)
⊗ H−

PBC. (81)

Note that H±
OBC and H±

PBC have no degenerate eigen-
value. When g > �, H+

OBC and H+
PBC are nothing but the
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Hatano-Nelson model with the non-Hermitian asymmetric
hopping

√
g2 − �2 ∈ R. When g < �, on the other hand,

H±
OBC and H±

PBC are Hermitian.
Let |k〉±OBC (resp. |k〉±PBC) (k = 1, 2, . . . , L) be the lin-

early independent right eigenstates of H±
OBC (resp. H±

PBC), and
|k〉〉±OBC (resp. |k〉〉±PBC) be the left eigenstates corresponding to
|k〉±OBC (resp. |k〉±PBC). In the following, we omit OBC or PBC
in equations when not necessary, such as HAII†

, H±, |k〉±, and
|k〉〉±. We impose the biorthogonal condition

±〈k|k′〉〉± = δk,k′ (82)

for the right and left eigenstates |k〉±, |k〉〉±. It is clear that

(H±)T = H∓, (83)

which follows that

S̃−1HAII†
S̃ =

(
1 0
0 0

)
⊗ (H−)T +

(
0 0
0 1

)
⊗ H− (84)

from Eqs. (80) and (81).
Let P be an L × L regular matrix representing the parity

transformation,

P :=

⎛
⎜⎜⎜⎜⎝

0 0 · · · 0 1
0 0 · · · 1 0
...

... . .
. 0 0

0 1 · · · 0 0
1 0 · · · 0 0

⎞
⎟⎟⎟⎟⎠. (85)

Note that P satisfies that

P† = P = P−1. (86)

The transpose of H± is connected to H± by P as follows:

(H±)T = PH±P, (87)

because it holds that

E (∓1)
OBC = PE (±1)

OBCP, (EPBC)∓1 = P (EPBC)±1P . (88)

Then the relation between the right eigenstate |k〉− of H− and
the eigenstate (|k〉〉−)∗ of (H−)T , which are associated by a
common eigenvalue, is given by( |k〉〉−

‖|k〉〉−‖2

)∗
= P |k〉−

‖|k〉−‖2
. (89)

Thus HAII†
has two right eigenstates

˜|k〉+ := S̃

((
1
0

)
⊗ P |k〉−

‖|k〉−‖2

)
(90)

=
(

�

i(
√

g2 − �2 − g)

)
⊗ P |k〉−

‖|k〉−‖2
(91)

and

˜|k〉− := S̃

((
0
1

)
⊗ |k〉−

‖|k〉−‖2

)
(92)

=
(

−i(
√

g2 − �2 − g)
�

)
⊗ |k〉−

‖|k〉−‖2
(93)

associated with a same eigenvalue.

In order to orthogonalize the right eigenstates, we calculate
a 2 × 2 Gram matrix

�k :=
(+ ˜〈k|

− ˜〈k|

)
( ˜|k〉+ ˜|k〉−). (94)

Note that the Gram matrix �k , which consists of the linearly
independent eigenstates ˜|k〉±, is positive-definite and Hermi-
tian. Let ηk be a 2 × 2 unitary matrix which diagonalizes �k ,

η
†
k�kηk =

(
γ

(1)
k 0

0 γ
(2)

k

)
, (95)

where γ
(1)

k , γ
(2)

k ∈ R are the eigenvalues of �k such that 0 <

γ
(1)

k � γ
(2)

k . Then ˜|k〉1
and ˜|k〉2

defined by

˜|k〉α := (ηk )1,α
˜|k〉+ + (ηk )2,α

˜|k〉−√
γ

(α)
k

(α = 1, 2) (96)

are the eigenstates of HAII†
associated with the same eigen-

value, and are orthonormal,(
1 ˜〈k|
2 ˜〈k|

)
( ˜|k〉1 ˜|k〉2

) =
(

1 0
0 1

)
. (97)

We arrange the eigenstates ˜|k〉1
and ˜|k〉2

to construct a 2L ×
2L regular matrix Ṽ , which diagonalizes HAII†

as follows:

Ṽ := ( ˜|1〉1 ˜|1〉2 ˜|2〉1 ˜|2〉2 · · · ˜|L〉1 ˜|L〉2). (98)

This choice of Ṽ obeys the normalization condition (32) due
to Eq. (97).

As proven in Appendix F, the condition number κ (Ṽ ) has
the following bound:√

g − �

g + �

(
2

L + 1

)3/2

(r−)L−1

< κ (Ṽ ) � g + �

g − �

√
L(r−)L−1

if g > � and OBC

√
g − �

g + �
� κ (Ṽ ) � g + �

g − �
otherwise

(99)

with r− =
√

t+
√

g2−�2

t−
√

g2−�2
, which indicates that if g > � then the

ratio κR = κOBC/κPBC is of the order O(eL ln r−
), and that if

g < � then κR is the order O(1), with respect to L. Such an
enhancement transition of κR at g = � is compatible with the
presence/absence-transition of the symmetry-protected skin
effect in the model (18); the skin effect occurs and κR ∼
O(eL ln r−

) when g > �, while it does not occur and κR ∼ O(1)
when g < �.

2. Departure from normality

The energy eigenvalues of H (k) in Eq. (18) are given by

E±(k) = 2t cos k ± 2i
√

g2 − �2 sin k, (100)

where k is the corresponding crystal momentum. Thus,
under the PBC, we can evaluate the second term of
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Eq. (44) as∑
j

|Ej |2 → L

2π

∫ 2π

0
dk[|2t cos k + 2i

√
g2 − �2 sin k|2

+ |2t cos k − 2i
√

g2 − �2 sin k|2]

=
{

4L(t2 + g2 − �2) for g > �

4L(t2 + �2 − g2) for g � �
. (101)

We also have the square of the singular value s(k) of H (k) as
the eigenvalues of H (k)H (k)†,

H (k)H (k)† = 4t2 cos2 k + 4�2 sin2 k + 4g2 sin2 k

+ 8�t cos k sin kσx − 8g� sin2 kσy, (102)

which leads to

(s(k))2 = 4t2 cos2 k + 4�2 sin2 k + 4g2 sin2 k

±
√

64�2t2 cos2 k sin2 k + 64g2�2 sin4 k. (103)

Therefore, we can evaluate the first term of Eq. (44) under the
PBC as∑

j

(s j )
2 → L

2π

∫ 2π

0
dk(8t2 cos2 k + 8�2 sin2 k + 8g2 sin2 k)

= 4L(t2 + �2 + g2). (104)

From Eqs. (101) and (104), we obtain the departure from
normality (44) of the model (18) under the PBC,

depPBC(H ) =
{

2
√

2�
√

L for g > �

2
√

2g
√

L for g � �
. (105)

Now consider the OBC. To calculate the departure from
normality, we use the result of the non-Bloch band theory
for symplectic class [68]. As shown in Ref. [68], the energy
spectrum of the model in Eq. (18) under the OBC is doubly
degenerate and given by

E (β ) = t (β + β−1) +
√

g2 − �2(β − β−1), (106)

where β is

β =
√√√√∣∣∣∣∣ t −

√
g2 − �2

t +
√

g2 − �2

∣∣∣∣∣eiθ , θ ∈ [0, 2π ]. (107)

Therefore, the second term of Eq. (44) is evaluated as∑
j

|Ej |2 → L

2π

∫ 2π

0
dθ [2|t (β + β−1)

+
√

g2 − �2(β − β−1)|2]

= 4L(t2 + �2 − g2), (108)

where we have used the fact that the integrations of β(β−1)∗
and β∗β−1 over θ become zero since they are periodic in θ .
As the singular value of the Hamiltonian is independent of
the boundary conditions in the infinite-volume limit, Eq. (104)
also gives the first term of Eq. (44) under the OBC,∑

j

(s j )
2 → L(4t2 + 4�2 + 4g2). (109)

Therefore, the departure from normality (44) of the model
(18) under the OBC is given by

depOBC(H ) = 2
√

2g
√

L. (110)

From Eqs. (105) and (110), we have

depD =
{

2
√

2(g − �)
√

L for g > �

0 for g � �
. (111)

Thus, the enhancement of nonnormality under OBC occurs
only in the presence of the skin effect.

V. DISORDER-INDUCED TOPOLOGICAL
PHASE TRANSITION

As shown in Sec. II D, disorders induce the Anderson lo-
calization that shrinks the loop part of the complex spectrum
and makes wings outside of the loop under the PBC. When
the strength of the disorder exceeds the critical value, the loop
under the PBC completely collapses, and skin modes disap-
pear under the OBC. In this section, we show that vanishing
enhanced nonnormality correctly characterizes the disorder-
induced topological phase transition.

A. Exact result

Before examining the disorder-induced topological phase
transition in terms of enhanced nonnormality, we derive here
the exact result of the critical disorder strength for the tran-
sition. We use the exact result to check the validity of the
description for the transition by nonnormality.

The matrix Hamiltonians we consider in this paper have
the following common form:

H = H0 + W, (112)

where H0 is a disorder-independent part and W is a disorder
potential. We also assume that the disorder potential W is
on-site, Wi j = wiδi j , where wi follows the Cauchy distribution
in Eq. (22). As shown in Appendix G, for the Cauchy distribu-
tion, we can take the disorder average exactly and obtain the
exact effective Hamiltonian [69–72],

Heff = H0 − iγ sgn[ImE ], (113)

which gives a pole of the Green’s function in the complex
energy plane E . The effective Hamiltonian provides a loop
shape spectrum in the complex energy plane under the PBC,
thus responsible for the non-Hermitian skin effect. Hence, we
can determine the critical strength of the disorder at which the
loop spectrum shrinks to a point.

In the case of the Hatano-Nelson model in Eq. (I1), H0

gives the PBC spectrum in Eq. (5), which is an ellipse in the
complex plane,

(ReE )2

4t2
+ (ImE )2

4g2
= 1. (114)

Therefore, Heff gives

(ReE )2

4t2
+ (ImE − γ )2

4g2
= 1, for ImE > 0

(ReE )2

4t2
+ (ImE + γ )2

4g2
= 1, for ImE < 0. (115)
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FIG. 5. The blue dots represent the numerical PBC spectrum of
Eq. (I1) with t = 1.5, g = 0.5, L = 1000, and γ = 0.5. The black
curve represents the analytical form of the loop structure.

Actually, the above analytical expression for the loop spec-
trum well reproduces the numerically obtained spectrum in
Fig. 5. Then, when increasing the disorder strength γ , the
loop of the PBC spectrum shrinks and eventually disappears
if the two ellipses (115) pass through the origin, namely if
γ = 2g > 0. Therefore, the critical disorder strength γc for the
disorder-induced phase transition is

γc = 2g. (116)

We also obtain the same result from consideration of the
winding number in Eq. (9). To evaluate this number in the
present case, we first note that Eq. (9) can be rewritten as

W (E ) =
∫ π

−π

dk

2π i

∂

∂k
log det[(Gk (E ))−1], (117)

where Gk (E ) is the Green’s function in the momentum space,

Gk (E ) = 1

E − H (k)
. (118)

Then, in the presence of disorder, we define the winding
number as

W (E ) =
∫ π

−π

dk

2π i

∂

∂k
log det (〈Gk (E )〉−1), (119)

where 〈Gk (E )〉 is the disorder averaged Green’s function. As
shown in Appendix G, for the Cauchy distribution, we have

〈G(E )〉 = 1

E + iγ sgn[ImE ] − H0
, (120)

and thus, for the Hatano-Nelson model, we have

〈Gk (E )〉 = 1

E + iγ sgn[ImE ] − H0(k)
, (121)

where H0(k) = (t + g)e−ik + (t − g)eik . Then, it is easy to
see that W (E ) = 1 for E inside the loop spectrum in the
complex energy plane if γ < 2g, while W (E ) = 0 for any E
if γ > 2g.

We summarize the phase diagram of the Hatano-Nelson
model with the Cauchy distribution disorder in Fig. 6: All
modes show the Anderson localization in the region γ > 2g,
while the non-Hermitian skin effect occurs in the region γ <

2g. In addition, if γ = g = 0, both Anderson localization and
skin effect do not occur.

In a manner similar to the above, we can also derive the
critical strength of disorder in the time-reversal invariant

FIG. 6. The phase diagram of the OBC Hatano-Nelson model.
The blue and yellow regions correspond to the phase where all eigen-
states are Anderson modes (W = 0) and the phase where skin modes
exist (W = 1), respectively. In addition, the red point represents only
the origin. At this point, both Anderson localization and skin effect
do not occur.

Hatano-Nelson model in Eq. (24). Generalizing the Z2

number in Eq. (15) as

(−1)ν(E ) = sgn

[
Pf[〈Gk=π (E )〉−1T ]

Pf[〈Gk=0(E )〉−1T ]

× exp

[
−1

2

∫ k=π

k=0
dk

∂

∂k
log det[〈Gk (E )〉−1T ]

]]
,

(122)

we find that the critical strength γc of this model is

γc = 2
√

g2 − �2. (123)

Actually, if γ < 2
√

g2 − �2, we have (−1)ν(E ) = −1 for
E inside the loop spectrum and the symmetry-protected
non-Hermitian skin effect occurs, while for γ > 2

√
g2 − �2,

(−1)ν(E ) = 1 for any E and the skin effect does not occur.

B. Enhanced nonnormality

Here we numerically examine the disorder-induced phase
transitions of the Hatano-Neloson model (I1) and its time-
reversal invariant variant (24) in terms of enhanced nonnor-
mality.

Since the disorder-induced phase transitions are topologi-
cal, they should be examined by the relevant bulk topological
numbers. However, the topological numbers are not suitable
to numerically examine the phase transition, whereas one can
define the bulk topological numbers even in the presence
of disorder, as shown in Appendix H. This is because the
topological numbers depend on the reference energy E , and
the phase transition requires the vanishing of the topological
numbers for any E . In contrast, the scalar measures of nonnor-
mality introduced in Sec. III are independent of the reference
energy E , and thus no such problem exists.

1. Hatano-Nelson model

First, we show how the ratio κR of the condition numbers
under the OBC and the PBC behaves when changing the disor-
der strength γ of the Hatano-Nelson model. We use the model
in Eq. (I1) with t = 1.75 g = 0.25, and L = 250, and adapt
the disorder following the Cauchy distribution. The obtained
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FIG. 7. [(a),(c)] Disorder dependence of κR = κOBC(V )/κPBC(V ). We numerically calculate κOBC(V ), κPBC(V ), and their ratio
κOBC(V )/κPBC(V ). We perform these calculations using one hundred different configurations of random potential and calculate the geometric

mean of these one hundred obtained ratios. We plot these geometric means in these figures. [(b),(d)] Disorder dependence of (depD/
√∑

j s2
j )

−1.

We numerically calculate (depD/
√∑

j s2
j )

−1. We perform this calculation using five different configurations of random potential and calculate

the arithmetic mean of these five obtained differences. We plot these arithmetic means in these figures. (a), (b) Hatano-Nelson model (I1)
with t = 1.75 g = 0.25. (a) L = 250. (b) L = 1000. (c), (d) Time-reversal invariant Hatano-Nelson model (24) with t = 1, g = 0.3, � = 0.2.
(c) L = 140. (d) L = 1000.

γ dependence of the condition number is shown in Fig. 7(a),
where the ratio κR is exponentially enhanced when γ < 0.6
while it becomes O(1) for γ � 0.6. As shown in Fig. 9(a), for
γ < 0.6, we also confirm the exponential growth against the
system size L. This behavior is consistent with Eq. (39) and
the fact that the skin effect occurs in the smaller value region
of γ . The numerically obtained critical strength γc ∼ 0.6 is
close to the exact value γc = 2g = 0.5. We also confirmed
that the numerically obtained critical value approaches to the
exact value when increasing the system size L, and thus the
deviation comes from the finite-size effect.

In Fig. 7(b), we also illustrate how the departure from
normality behaves when changing the disorder strength. The
data shows that depD goes to zero when γ goes to the critical
value γc = 2g = 0.5. Moreover, the departure from normality
behaves as the square root of the system size if γc > γ , while
it goes to O(1) if γc < γ , as shown in Fig. 9(d). This behavior
is also consistent with Eq. (45). Therefore, the enhanced non-
normality correctly describes the disorder-induced topological
phase transition.

2. Time-reversal invariant Hatano-Nelson model

We also numerically examine the time-reversal invariant
Hatano-Nelson model in Eq. (24). As shown in Sec. V A,
the exact result tells us that the system exhibits the disorder-
induced topological phase transition at γc = 2

√
g2 − �2.

Then, for γ < 2
√

g2 − �2 (γ > 2
√

g2 − �2), the system is
topologically nontrivial (trivial) and the symmetry-protected
non-Hermitian skin effect occurs (does not occur).

In Fig. 7(c), we illustrate the disorder dependence of
κR, where we take the model parameter in Eq. (24) as t =
1, g = 0.3, � = 0.2, and L = 140 and consider the disor-
der with the Cauchy distribution. Our numerical calculation
shows that κR is enhanced for γ < 0.55 while it remains
O(1) for γ > 0.55. The obtained critical strength γc ∼ 0.55
is consistent with the exact value γc = 2

√
g2 − �2 = 0.44

derived in Sec. V A, where the deviation originates from
the finite-size effect. In Fig. 9(b), we also show the size
dependence of κR, which is consistent with our prediction
in Eq. (39).

Figure 7(d) shows disorder dependence of the departure
from normality. We find that the inverse of depD is very tiny
when γ < 0.44, which implies the enhancement of nonnor-
mality under OBC in the presence of the symmetry-protected
non-Hermitian skin effect. Then, it diverges as γ goes to
the critical value γc = 0.44, meaning that the enhancement
of nonnormality disappears at the phase transition, where
the system becomes topologically trivial. In accordance with
our general result in Eq. (45), the departure from normality
behaves as the square root of the system size for γ < 0.44,
while it goes to O(1) for γ > 0.44, as shown in Fig. 9(c).

3. Absence of average symmetry-protected skin effect

It has been known that symmetry-protected topological
modes may survive even when the relevant symmetry is lo-
cally broken as long as the breaking vanishes globally on
average [73–76]. As an application of enhanced nonnormality,
we also examine this problem for the symmetry-protected
non-Hermitian skin effect. Interestingly, contrary to the
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FIG. 8. The blue and yellow dots represent the PBC and the OBC
spectra of the model (I4) with time-reversal symmetry broken disor-
der, respectively (t = 1, g = 0.3, � = 0.2, γ = 0.1, and L = 100).
The disorder follows the Cauchy distribution.

above wisdom, our numerical calculations reveal that average
symmetry protection does not work at all for the symmetry-
protected non-Hermitian skin effects.

For this purpose, we consider the model in Eq. (17) with
the following disorders:

Ĥ =
L∑

j=1

[(t + g)ĉ†
j+1,↑ĉ j,↑ + (t − g)ĉ†

j,↑ĉ j+1,↑ + w
↑
j ĉ†

j,↑ĉ j,↑]

+
L∑

j=1

[(t + g)ĉ†
j,↓ĉ j+1,↓ + (t − g)ĉ†

j+1,↓ĉ j,↓

+ w
↓
j ĉ†

j,↓ĉ j,↓] − i�
L∑

j=1

(ĉ†
j+1,↑ĉ j,↓ − ĉ†

j↑ĉ j+1↓)

− i�
L∑

j=1

(ĉ†
j+1,↓ĉ j,↑ − ĉ†

j,↓ĉ j+1,↑), (124)

where w
↑
j and w

↓
j are the on-site disorder with the Cauchy

distribution,

P(w↑
j ) = γ

π

1

(w↑
j )2 + γ 2

, (125)

and

P(w↓
j ) = γ

π

1

(w↓
j )2 + γ 2

. (126)

Since the disorder potentials w
↑
j and w

↓
j are independent, they

locally break time-reversal symmetry in Eq. (25). However,
their average values vanish, and thus they keep time-reversal
symmetry on average.

In Fig. 8, we show typical complex spectra of the above
system under the PBC and the OBC. Whereas this result
suggests that the symmetry-protected skin effect immediately
disappears in the presence of such disorders, we need a more
qualitative characterization to establish the disappearance.

Using the enhanced nonnormality, we can establish the
absence of average symmetry protection of the non-Hermitian
skin effect. In Figs. 9(c) and 9(f), we show the size de-
pendence of the enhanced nonnormality for the system with
average time-reversal symmetry. In contrast to Figs. 9(b)
and 9(e), the enhancement of nonnormality quickly disap-
pears when increasing the system size L. Therefore, we
conclude that average time-reversal symmetry is not suffi-
cient, and exact time-reversal symmetry is indispensable for
the symmetry-protected skin effect.

Now let us discuss why the average symmetry fails to pro-
tect the non-Hermitian skin modes. As discussed in Sec. II C,
using the doubled Hamiltonian in Eq. (10), we can map the
skin modes to topological Majorana end states of a Hermi-
tian system. For the topological end states of the Hermitian
system, the average symmetry protection works as expected:
Because the disorder term fluctuates along the system so

FIG. 9. System size dependence of nonnormality. [(a),(d)] Nonnormality of the Hatano-Nelson model (I1) with t = 1.75 and g = 0.25.
[(b),(e)] Nonnormality of the time-reversal invariant Hatano-Nelson model (24) with t = 1, g = 0.3, and � = 0.2. [(c),(f)] Nonnormality of
the time-reversal symmetry broken Hatano-Nelson model (I4) with t = 1, g = 0.3, and � = 0.2.
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that the average value becomes zero, the topological end
states forming a Kramers pair rarely mix with each other.
Therefore, the topological end states remain to be at least
approximately zero-energy states. However, the correspon-
dence between the topological end states and the skin modes
requires exactly zero energy on the Hermitian side, and thus
the skin modes are not protected by the average symmetry.
We also know that the time-reversal invariant superconductor
described by the doubled Hamiltonian may have additional
symmetry, from which they can keep exact zero-energy Ma-
jorana end states under particular time-reversal breaking terms
[77]. However, the time-reversal breaking terms in supercon-
ductors are essentially different from those in non-Hermitian
systems: The former keep particle-hole symmetry, while the
latter respect chiral symmetry in Eq. (11). Thus, the response
to time-reversal breaking terms can be different between them.
Therefore, any time-reversal breaking terms may destabilize
the symmetry-protected skin modes in Eq. (17).

VI. IMPLICATIONS

Finally, we would like to discuss the physical meaning of
enhanced nonnormality. Remarkably, the enhanced nonnor-
mality directly affects the so-called pseudospectrum of the
system, governing the dynamical properties of the system.

Let σ (H ) be the spectrum of H . Then, the pseudospectrum
σε (H ) is defined as the set of the complex energy E ∈ C in
the spectrum σ (H + �H ) for some �H with ‖�H‖2 < ε.
In other words, it describes the change of the spectrum of H
under a perturbation �H with ‖�H‖2 < ε. Notably, the pseu-
dospectrum is equivalently defined as the set of approximate
energy eigenvalues E of H with the accuracy

‖(H − E )|u〉‖2 < ε, ‖|u〉‖2 = 1. (127)

Therefore, at the same time, it provides approximate energy
eigenstates of H , and governs the dynamics of the system with
accuracy ε.

For a normal H , the pseudo-spectrum is just the ε neigh-
borhood of the original spectrum [65],

σε (H ) = σ (H ) + �ε, (128)

where �ε is the complex energy region E ∈ C with the radius
less than ε,

�ε = {E ∈ C : |E | < ε}. (129)

This means that a small perturbation only has a small effect
on the normal system. However, for a nonnormal H , very
different behavior may appear: The pseudospectrum can go
beyond the ε neighborhood of the unperturbed spectrum,

σε (H ) ⊇ σ (H ) + �ε (130)

(see Appendix J). Therefore, a small perturbation may change
the spectrum drastically, and the dynamical properties may
differ extensively from those expected from the original
spectrum.

A crucial question here is how the pseudospectrum can
deviate from the conventional one. The answer is given by
the Bauer-Fike theorem. As shown in Appendix J, the upper
bound for the deviation is given by the scalar measures of

nonnormality,

σε (H ) ⊆ σ (H ) + �εκ (V ), (131)

or

σε (H ) ⊆ σ (H ) + �ε+depF (H ). (132)

Hence, the enhanced nonnormality due to the non-Hermitian
skin effects allows much more deviation of the pseudospec-
trum from the original.

For ε � 1, Eq. (131) gives a more severe upper bound than
Eq. (132). Since the skin effects exhibits κ (V ) ∼ ecL with a
positive constant c, a very tiny perturbation �H with

‖�H‖2 ∼ 1/κ (V ) ∼ e−cL (133)

may give an O(1) correction of the spectrum. Such an ex-
traordinary sensitivity against a perturbation applies to highly
sensitive sensors, as discussed in Ref. [78].

The enhanced nonnormality also affects the time-
dependent dynamics of the system. For the diagonalizable H
in Eq. (27), the time-evolution operator e−iHt obeys

‖e−iHt‖2 = ‖Ve−i�tV −1‖2

� ‖V ‖2‖e−i�t‖2‖V −1‖2

= κ (V )e−�(H )t , (134)

where � is the diagonal matrix in the right-hand side of
Eq. (27), and �(H ) = −maxn[ImEa

n ]. Thus, if �(H ) > 0,
the enhanced nonnormality κ (V ) ∼ ecL implies that the upper
bound in Eq. (134) goes to O(e−1) at the relaxation time τ ,

τ ∼ 1

�(H )
+ cL

�(H )
. (135)

Thus, the relaxation time τ becomes much longer than the
usually expected value 1/�(H ) from the spectrum because of
the enhanced nonnormality. Such a length-dependent relax-
ation time caused by the skin effect was discussed in Ref. [7].

Whereas Eq. (134) gives a good reference for the dynamics
as discussed above, it has been known that the pseudospec-
trum provides a much sharper bound [65],

‖e−iHt‖2 � Lεeαε (H )t

2πε
, (136)

for any t � 0 and any ε > 0, where Lε is the arc length
of the boundary of σε (H ) and αε (H ) = sup[Imσε (H )]. See
Appendix J for the derivation. Thus, the enhanced nonnor-
mality also affects the system’s dynamics via the enlarged
pseudo-spectrum.

VII. CONCLUSIONS

In this paper, we reveal that the non-Hermitian skin effects
enhance the nonnormality under the OBC for a topological
reason. Corresponding to state and spectrum changes of the
non-Hermitian skin effects, we introduce two different scalar
measures and prove that the non-Hermitian skin effects en-
hance the former for any case and the latter for relatively
simple cases. Using concrete models, we also confirm both
analytically and numerically the validity of the topologi-
cally enhanced nonnormality as an order parameter of the
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topological phase transition for the non-Hermitian skin ef-
fects. Furthermore, no average symmetry protection for the
symmetry-protected skin effect is established in terms of
enhanced nonnormality. The enhanced nonnormality results
in extraordinary spectrum sensitivity against perturbations
and anomalous time-dependent evolution through the pseu-
dospectrum and the Bauer-Fike theorem, and thus provides
fundamentals in non-Hermitian physics.
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APPENDIX A: ENHANCED NONNORMALITY
AS AN ORDER PARAMETER OF NON-HERMITIAN

SKIN EFFECTS

In this section, we present an argument establishing the
relationship between the scalars κR and depD for enhanced
nonnormality and the non-Hermitian skin effects. Below, we
assume that the Hamiltonian has the translation invariance
under the periodic boundary condition and the range of the
hopping terms is finite, and thus, we can use the non-Bloch
theory developed in Refs. [36,39].

First, we show that if no non-Hermitian skin effect occurs,
κR behaves as

κR = o(ecL ) (A1)

with a positive constant c and a sufficiently large system
size L. It should be noted that we use the small o on the
right-hand side.

To show this relation, we first notice that in the absence of
a non-Hermitian skin effect, the non-Bloch theory tells us that
the bulk energy eigenstates under the open boundary condition
are identical to those under the periodic boundary condition
in the large L limit [39]. Thus, the bulk states give κR = O(1),
and only the finite number of boundary states could provide a
more significant contribution to κR. Note that this conclusion
is generally true even when the bulk spectrum contains excep-
tional points in the Brillouin zone. The Hamiltonian becomes
nondiagonalizable when the bulk spectrum contains excep-
tional points in the Brillouin zone, so κ (V ) = ∞. However,
for the finite-size lattice representation of the Hamiltonian,
the momentum is discretized and can avoid the exceptional
points by introducing a small perturbation of the Hamiltonian
if necessary. Under this regularization, κ (V ) becomes finite
under both periodic and open boundary conditions, and thus,
the bulk contribution to κR becomes O(1).

Now evaluate the contribution from the boundary states.
From Eqs. (37) and (38) in the main text, to have a significant
contribution to κR, the norm of the left eigenstate |E〉〉 of
a boundary state must be large under the normalizations in
Eqs. (32) and (34). This happens if the left eigenstate |E〉〉

rarely overlaps with the right eigenstate |E〉. In this situation,
〈〈E |E〉〉 must be large to satisfy the normalizations 〈〈E |E〉 =
1 and 〈E |E〉 = 1.

There are two possibilities where the left and right eigen-
states of a boundary state rarely overlap. The first possibility
comes when the left and right eigenstates |E〉 and |E〉〉 of
a boundary mode are spatially separated. In this case, they
are localized at opposite boundaries. However, as we see
immediately, this situation contradicts our assumption that no
non-Hermitian skin effect occurs: If the left and right eigen-
states |E〉 and |E〉〉 are localized at opposite boundaries, so are
the following states, (

0
|E〉

)
,

(|E〉〉
0

)
. (A2)

Therefore, they give boundary zero modes of the Hermitian
Hamiltonian

H̃ =
(

0 H − E
H† − E∗ 0

)
, (A3)

where H is the non-Hermitian Hamiltonian considered and E
is the complex energy of the boundary mode. Since each of the
zero modes in Eq. (A2) has a definite chirality for the chiral
operator � = σz, it gives a nonzero chiral topological number
for each boundary. Then, from the bulk-boundary correspon-
dence for the Hermitian Hamiltonian H̃ , the nonzero chiral
topological number leads to a nonzero winding number of H̃
under the periodic boundary condition. This result contradicts
our assumption since the nonzero winding number implies the
non-Hermitian skin effect, as shown in Ref. [41].

One might think that another boundary state can cancel the
chiral topological number so that no contradiction appears.
However, this is unlikely to occur. First, we note that the
other state should have exactly the same energy as the original
boundary state in the large L limit. Otherwise, the second
boundary state is not a zero mode of H̃ in Eq. (A3), and
thus it can not have a chiral topological number required for
the cancellation. Therefore, we assume an exact degeneracy.
Then, let |Ea〉 and |Ea〉〉 (a = 1, 2) denote the right and left
eigenstates of these boundary states. They satisfy the normal-
ization conditions,

〈Ea|Eb〉 = δab, 〈〈Ea|Eb〉 = δab. (A4)

The cancellation of the chiral topological number also re-
quires that |E1〉 and |E2〉〉 must be localized at the same
boundary since |Ea〉 and |Ea〉〉 have the definite chiral
topological number � = 1 and � = −1, respectively. [See
Eq. (A2).] Therefore, |E1〉 and |E2〉〉 must be orthogonal
〈〈E2|E1〉 = 0, while they substantially overlap in space. A
physically reasonable reason for such orthogonality is symme-
try: If these states have distinct values of a quantum number
of a unitary symmetry or form a Kramers pair, they cannot
mix. However, both cases result in a symmetry-protected skin
effect, which contradicts our assumption: In the former case,
using the unitary symmetry, we can block diagonalize H ,
where each block has a definite quantum number of the sym-
metry. Since |E1〉 and |E2〉〉 have different quantum numbers,
they belong to different blocks, so they give nonzero chiral
topological numbers to each of the blocks they belong. There-
fore, from the bulk-boundary correspondence, these blocks
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FIG. 10. Three eigenstates (|E 1〉, |E 1〉〉, |E 2〉) under the normal-
ization conditions (〈E 1|E 1〉 = 1, 〈E 2|E 2〉 = 1) and the biorthogonal
condition (〈〈E 1|E 2〉 = 0, 〈E 1|E 1〉〉 = 1). For almost parallel |E 1〉
and |E 2〉, the angle α is close to π/2, resulting in significantly large
〈〈E 1|E 1〉〉.

have nonzero winding numbers for non-Hermitian skin ef-
fects, contradicting our assumption. In the latter case, |E2〉〉
and |E1〉 form a generalized Kramers pair in the form of

|E2〉〉 = λUT (|E1〉)∗, (A5)

where UT is an antisymmetric unitary operator and λ is
a constant. (Here λ is necessary since we do not require
〈〈E2|E2〉〉 = 1.) Whereas the transpose version of time-
reversal symmetry UT HT U −1

T = H with UT U ∗
T = −1 ensures

the generalized Kramers degeneracy, it also enables to
relate the boundary states with the symmetry-protected non-
Hermitian skin effects in class AII† in Ref. [41]. Therefore,
the latter case also contradicts our assumption.

Having established that the first possibility contradicts our
assumption, we now discuss the situation where the left and
right eigenstates of any boundary state are localized at the
same boundary. A possible large contribution to κR in this
situation comes when two boundary states |E1〉 and |E2〉 are
(almost) parallel because 〈〈E1|E1〉〉 and 〈〈E2|E2〉〉 in Eq. (38)
must diverge to satisfy the biorthogonality

〈〈E1|E2〉 = 0, 〈〈E2|E1〉 = 0. (A6)

See Fig. 10 whereas this situation typically occurs when
boundary states are about to form an exceptional point, the
divergence should rarely depend on L because |E1〉 and |E2〉
are localized on the same boundary so they do not have the
information of the system size L. Therefore, for a sufficiently
large L, the contribution is bounded by o(ecL ) unless they
exactly form an exceptional point. When the boundary states
exactly form an exceptional point, it gives an infinite contri-
bution to κR. However, this situation needs a fine-tuning of

FIG. 11. The energy spectrum of Eq. (B1) with t = 1.5, g = 0.5.
The PBC spectrum (blue line) encloses the origin of the complex
energy plane twice, W (E ) = 2 around E = 0. The yellow dots rep-
resent skin modes under OBC with the system size L = 21. Since the
number of skin modes coincides with the system size, skin modes do
not have degeneracy even in the region of W (E ) = 2.

Hamiltonian parameters and thus can be avoided by a small
perturbation.

In summary, if no non-Hermitian skin effect occurs, κR

behave like o(ecL ), not like O(ecL ). Therefore, we conclude
that κR = O(ecL ) gives an order parameter of a non-Hermitian
skin effect.

For the departure from nonnormality depD, the relation to
the non-Hermitian skin effect is much more straightforward:
From the definition of the departure from nonnormality in the
main text, we find immediately that when depD behaves as
O(L1/2), O(L) modes must change their energies under the
open boundary condition in comparison to those under the
periodic boundary condition, and the converse is also true.
Therefore, depD = O(L1/2) is an order parameter of a non-
Hermitian skin effect.

APPENDIX B: RELATION BETWEEN THE WINDING
NUMBER AND SKIN MODES

Here, we examine the relation between the winding num-
ber W (E ) in Eq. (9) and the number of skin modes. For
a conventional topological insulator, the number of topo-
logical boundary modes coincides with the bulk topological
number because of the bulk-boundary correspondence. Thus,
one might expect that the winding number also determines
the number of skin modes; however, this is not the case.
Whereas a nonzero winding number implies the presence of
non-Hermitian skin modes, its value is not directly related to
the number of skin modes. To illustrate this, let us consider
the Hatano-Nelson model without disorder

Ĥ =
∑

j

[(t − g)ĉ†
j+1ĉ j + (t + g)ĉ†

j−1ĉ j+1]. (B1)

By choosing the model parameters as t = 1.5 and g = 0.5, the
model shows the PBC and OBC spectra in Fig. 11. The PBC
spectrum separates the complex energy plane into five regions:
a central W (E ) = 2 region, three W (E ) = 1 regions, and an
outer W (E ) = 0 region. Then, under OBC, we find no par-
ticular difference between skin modes inside the W (E ) = 2
region and those inside the W (E ) = 1 regions; the number
of the skin modes under OBC coincides with the system size
L = 21, and thus, they do not have any degeneracy even inside
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FIG. 12. (a) The blue and yellow dots represent the energy spectra of Eq. (C1) and Eq. (C3), respectively with t = 1.5, g = 0.5, and
L = 101. (b) System size L dependence of the condition number in Eq. (C1) and Eq. (C3) with t = 1.5, and g = 0.5. Here VI/F and VSD are
matrices diagonalizing the matrix representation of ĤI/F and ĤDS, respectively. (c) System size L dependence of the departure from normality
in Eq. (C1) and Eq. (C3) with t = 1.5, and g = 0.5.

the W (E ) = 2 region. We note that this result is general:
The level repulsion prohibits the degeneracy of eigenstates
without symmetry, independently of the winding number and
the system size L.

The above property is consistent with our characterization
of skin effects: Topologically enhanced nonnormality does
not show quantization despite the quantization of the winding
number.

APPENDIX C: SKIN EFFECT AT INTERFACE BETWEEN
W = 1 AND W = 2

As discussed in the previous section, the winding number
is not directly related to the number of skin modes: Different
winding numbers may result in the same number of skin
modes. However, this does not mean that the difference in
the winding number is meaningless. Skin modes appear at
an interface between systems with different winding numbers
[79].

To see this phenomenon, consider the interface Hamilto-
nian ĤI/F formed by joining the W (E ) = 2 and W (E ) = 1
Hatano-Nelson models without disorder at i = 1 and i = L,

ĤI/F = ĤW =2 + ĤW =1, (C1)

where

ĤW =2 =
L−2∑
j=1

[(t + g)ĉ†
j+2ĉ j + (t − g)ĉ†

j ĉ j+2],

(C2)

ĤW =1 =
2L∑
j=L

[(t + g)ĉ†
j+1ĉ j + (t − g)ĉ†

j ĉ j+1],

with ĉ2L+1 = ĉ1 and ĉ†
2L+1 = ĉ†

1. For comparison, we also
consider a model without the interface, which is given by
the direct sum of those Hatano-Nelson models with size L
under PBC,

ĤDS = ĤPBC
W =2 + ĤPBC

W =1, (C3)

where

ĤPBC
W =2 =

L∑
j=1

[(t + g)ĉ†
j+2ĉ j + (t − g)ĉ†

j ĉ j+2],

(C4)

ĤPBC
W =1 =

2L+2∑
j=L+3

[(t + g)ĉ†
j+1ĉ j + (t − g)ĉ†

j ĉ j+1],

with ĉ†
L+1 = ĉ†

1, ĉL+1 = ĉ1, ĉ†
L+2 = ĉ†

2, ĉL+2 = ĉ2, ĉ†
2L+3 =

ĉ†
L+3, and ĉ2L+3 = ĉL+3. Below, we choose the model parame-

ters as t = 1.5, g = 0.5, and L = 101. Figure 12(a) shows the
spectrum difference between these systems, which indicates
the non-Hermitian skin effect for the interface system.

Similar to the conventional non-Hermitian skin effects, the
interface skin effect enhances the nonnormality. Figure 12(b)
shows the ratio of the condition numbers between ĤI/F and
ĤDS. The condition number enhances exponentially with re-
spect to the system size. The departure from normality also
exhibits the enhancement, as shown in Fig. 12(c). These re-
sults support the validity of the enhanced nonnormality as an
order parameter of non-Hermitian skin effects.

APPENDIX D: THE GENERAL ESTIMATION
OF THE CONDITION NUMBERS

In this Appendix, we show that the choice of the condition
number in the main text has an upper bound of the possible
values suppressed by the minimum value.

As mentioned in Sec. III A, the condition number κ (V ) is
not unique for a given diagonalizable Hamiltonian H due to
the redundancy of how the eigenstates are taken. In order to
avoid such an ambiguity, we have imposed the normalization
condition (32) on the right eigenstates |Ea

α〉 (a = 1, 2, . . . , dα)
corresponding to the eigenvalues Eα (α = 1, 2, . . . , p) of H ,
which allows the value of the condition number to be de-
termined uniquely. This method is useful for estimating the
condition number for a given concrete Hamiltonian analyti-
cally or numerically.

We can also employ another choice of the condition
number to fix the value, i.e., the minimization. Recall that
the eigenstates |Ea

α〉 corresponding to Eα have the degree of
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freedom of a gauge transformation,

∣∣Ea
α

〉 → dα∑
b=1

∣∣Eb
α

〉
Gα

ba (D1)

with Gα ∈ GL(dα ), where dα is the degree of degeneracy of
Eα . The whole eigenstates of H have the degree of freedom
of GL(d1) × · · · × GL(dp),

V = (
. . . ,

∣∣E1
α

〉
, . . . ,

∣∣Edα

α

〉
, . . .

)
→ V G =

(
. . . ,

∑
a

∣∣Ea
α

〉
Gα

a1, . . . ,
∑

a

∣∣Ed1
1

〉
Gα

adα
, . . .

)
,

(D2)

where G is an N × N regular matrix such that

G = G1 ⊕ · · · ⊕ Gp ∈ GL(d1) × · · · × GL(dp). (D3)

Then we can introduce the minimized condition number

κ� := min
G∈GL(d1 )×···×GL(dp)

κ (V G) (D4)

without any ambiguity of definition. This method is suitable
for the analysis of perturbation sensitivity by the Bauer-Fike
theorem referred to in Sec. VI, because κ� provides the
strictest bound for the extent of pseudospectra in Eq. (131).

In the following in this Appendix, let us suppose that the
right eigenstates |Ea

α〉 corresponding to the same eigenvalue
Eα of H are orthonormalized as in (32), and that the regular
matrix V is fixed to the form (28) with such eigenstates. Such
a choice of the condition number κ (V ) is the method used in
the main text. We shall prove an inequality,

κ� � κ (V ) � √
pκ� �

√
Lκ�, (D5)

which indicates that κ (V ) is of the same order of L with the
minimum value κ� if κ (V ) ∼ eαL for a constant α > 0.

κ� � κ (V ) follows from the definition of κ�, and
√

pκ� �√
Lκ� is also trivial.
In order to prove that κ (V ) � √

pκ�, we introduce the
function ψ such that

ψ (M ) := max
α=1,2,...,p

∥∥(∣∣M1
α

〉
,
∣∣M2

α

〉
, . . . ,

∣∣Mdα

α

〉)∥∥
2 (D6)

for any N × N matrices M = (|M1
1 〉, . . . , |Md1

1 〉, |M1
2 〉, . . . ,

|Md2
2 〉, . . . , |M1

p〉, . . . , |Mdp
p 〉) with any N vectors |Ma

α〉 ∈
CN . For any G = G1 ⊕ · · · ⊕ Gp ∈ GL(d1) × · · · × GL(dp),
it holds that

ψ (V G) = max
α

∥∥(∣∣E1
α

〉
, . . . ,

∣∣Edα

α

〉)
Gα
∥∥

2

= max
α

‖Gα‖ = ψ (G), (D7)

because (|E1
α〉, . . . , |Edα

α 〉) is an N × dα unitary matrix thanks
to the normalization condition (32).

For any N × N matrix M, the function ψ is related to the
2-norm of matrices by the inequality

‖M‖2 � ψ (M ). (D8)

In order to check Eq. (D8), we prepare orthogonal projectors
Qα on CN such that

Qα =
p⊕

β=1

δα,β1dβ×dβ
. (D9)

Since MQ = (. . . , 0, |M1
α〉, . . . , |Mdα

α 〉, 0, . . .), we have

‖MQα‖2 = ∥∥(∣∣M1
α

〉
, . . . ,

∣∣Mdα

α

〉)∥∥
2. (D10)

Since Qα is an orthogonal projection and thus ‖Qα‖2 = 1, it
holds that

‖M‖2 �
∥∥(∣∣M1

α

〉
, . . . ,

∣∣Mdα

α

〉)∥∥
2 (D11)

for any α = 1, 2, . . . , p, which becomes (D8) by maximizing
the right-hand side with respect to α.

Particularly if M = G then the reverse inequality also
holds,

‖G‖2 � ψ (G). (D12)

We can straightforwardly verify (D12) by using the following
inequality for any vector c = c1 ⊕ c2 ⊕ · · · ⊕ cp ∈ CN with
cα ∈ Cdα ,

‖Gc‖2
2 =

∑
α

‖Gαcα‖2
2 (D13)

�
∑

α

‖Gα‖2
2‖cα‖2

2 (D14)

� (max
α

‖Gα‖2)2
∑

α

‖cα‖2
2 (D15)

= ψ (G)2‖c‖2
2. (D16)

Using (D7), (D8), and (D12), we obtain

κ (V G) = ‖V G‖2‖(V G)−1‖2 (D17)

� ψ (V G)‖(V G)−1‖2 = ψ (G)‖G−1V −1‖ (D18)

� ‖G‖2‖G−1V −1‖ � ‖V −1‖, (D19)

which follows that

κ (V ) = ‖V ‖2‖V −1‖2 � ‖V ‖2κ (V G). (D20)

Minimizing (D20) with respect to G ∈ GL(d1) × · · · ×
GL(dp), we have

κ (V ) � ‖V ‖2κ
�. (D21)

At last we prove that ‖V ‖2
2 � p to conclude that κ (V ) �√

pκ�. For any c = c1 ⊕ · · · ⊕ cp ∈ CN , we can derive

‖V c‖2 =
∥∥∥∥∥
∑

α

(∣∣E1
α

〉
, . . . ,

∣∣Edα

α

〉)
cα

∥∥∥∥∥ (D22)

�
∑

α

∥∥(∣∣E1
α

〉
, . . . ,

∣∣Edα

α

〉)
cα

∥∥
2 =

∑
α

‖cα‖2, (D23)

and applying the Cauchy-Schwarz inequality we have

‖V c‖2
2 �

(
p∑

α=1

‖cα‖2

)2

� p
∑

α

‖cα‖2 = p‖c‖2
2. (D24)

Therefore ‖V ‖2 � √
p holds.
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Note that one can see the proof of (D5) for the case of d1 =
d2 = · · · = dp = 1, i.e., no degeneracy for any eigenvalues in
Ref. [80]. The above proof includes and extends the proof in
Ref. [80].

APPENDIX E: PROOF OF EQ. (53)

In this Appendix, we prove the inequality (53).

1. Preparation

In this subsection, we calculate the norm of the diagonal
matrix R in Eq. (50) and the vector |n〉OBC in Eq. (7). Since
r � 1, we have

‖R‖2 = max
j=1,2,··· ,L

r j = rL, (E1)

‖R−1‖2 = max
k=1,2,··· ,L

r−k = r−1. (E2)

Therefore we obtain the condition number of the matrix R,

κ (R) = rL−1. (E3)

In the following, we calculate the crucial inequality for the
norm of |n〉OBC (n = 1, 2, · · · , L),

‖|n〉OBC‖2
2 =

L∑
m=1

(√
2

L + 1
rm sin

πmn

L + 1

)2

= r2

L + 1

(r2L+2 − 1)(r2 + 1)
(
1 − cos 2πn

L+1

)
(r2 − 1)

(
r4 − 2r2 cos 2πn

L+1 + 1
)

>
r2

L + 1

(r2L+2 − 1)(r2 + 1)
(
1 − cos 2πn

L+1

)
(r2 − 1)(r4 + 2r2 + 1)

= 2r2

L + 1

(r2L+2 − 1)

(r4 − 1)
sin2 πn

L + 1

� 2r2

L + 1

(r2L+2 − 1)

(r4 − 1)
sin2 π

L + 1

(∵ n = 1, 2, · · · , L)

� 2r2

L + 1

(r2L+2 − 1)

(r4 − 1)

(
2

π

π

L + 1

)2

=
(

2

L + 1

)3 1 − r−2(L+1)

1 − r−4
r2L

�
(

2

L + 1

)3 1 − r−4

1 − r−4
r2L

=
(

2

L + 1

)3

r2L. (E4)

Thus we obtain the inequality for the 2-norm of |n〉,

‖|n〉OBC‖2 >

(
2

L + 1

)3/2

rL. (E5)

2. The upper bound in Eq. (53)

Using Eq. (D5), we obtain the inequality for the condition
number of the matrix VOBC:,

κOBC(V ) �
√

Lκ� :=
√

Lκ (VOBCG), (E6)

where G denotes the regular diagonal matrix, which min-
imizes the condition number about the matrix VOBC as
mentioned in Appendix D. Since κ� denotes the minimum
value of the condition number of the matrix, which diag-
onalizes Eq. (2) under the OBC, we obtain the following
inequality:

κ� � κ (RU ) = κ (R) (∵ UU † = 1). (E7)

Thus we obtain the inequality for the upper bound in Eq. (53),

κOBC(V ) �
√

Lκ (R) =
√

LrL−1 (∵ (E3)). (E8)

3. The lower bound in Eq. (53)

The Frobenius norm of the matrix VOBC is
√

L,

‖VOBC‖2
F = tr(V †

OBCVOBC)

=
L∑

n=1

( |n〉OBC

‖|n〉OBC‖2

)† |n〉OBC

‖|n〉OBC‖2

= L. (E9)

Substituting Eq. (E9) to the inequality between the 2-norm
and Frobenius norm [i.e., (1/

√
L)‖VOBC‖F � ‖VOBC‖2 �

‖VOBC‖F], we obtain the following inequality for the 2-norm
of the matrix VOBC:

1 � ‖VOBC‖2 �
√

L. (E10)

Next, we derive the inequality for the 2-norm of the matrix
V −1

OBC. Using the Cauchy–Schwarz inequality, we obtain the
following inequality:

‖NN−1U †R−1‖2 � ‖N‖2‖N−1U †R−1‖2

∴ ‖N−1U †R−1‖2 � ‖N‖−1
2 ‖U †R−1‖2. (E11)

From Eq. (E11), we obtain the inequality for 2-norm of the
matrix V −1

OBC,∥∥V −1
OBC

∥∥ = ‖N−1U †R−1‖2

� ‖N‖−1
2 ‖U †R−1‖2

= ‖N‖−1
2 ‖R−1‖2

=
(

max
n=1,2,··· ,L

‖|n〉OBC‖−1
2

)−1
‖R−1‖2

=
(

min
n=1,2,··· ,L

‖|n〉OBC‖2

)
‖R−1‖2

>

(
2

L + 1

)3/2

rLr−1 ( ∵ (E2), (E5))

=
(

2

L + 1

)3/2

rL−1. (E12)

Therefore we obtain the inequality for the lower bound in
Eq. (53),

κOBC(V ) = ‖VOBC‖2

∥∥V −1
OBC

∥∥
2

>

(
2

L + 1

)3/2

rL−1. (E13)
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4. Result

In conclusion, from Eqs. (E8) and (E13), we obtain the
inequality (53),

(
2

L + 1

)3/2

rL−1 < κOBC(V ) �
√

LrL−1. (E14)

APPENDIX F: PROOF OF EQ. (99)

In this Appendix, we prove the inequality (99) about the
condition number κ (Ṽ ) corresponding to the Hamiltonian
(18). Suppose that 0 < g < t , 0 < � < t , and g �= � hold.

1. Rewriting of Eq. (98)

We shall rewrite the matrix Ṽ defined in (98) into an ex-
plicit form using S, |k〉−, ηk , and γ

(α)
k .

From the definition (96) of ˜|k〉α , we obtain the relation

( ˜|k〉1 ˜|k〉2
) = ( ˜|k〉+ ˜|k〉−)ηk

⎛
⎝ 1√

γ
(1)
k

0

0 1√
γ

(2)
k

⎞
⎠ (F1)

between ˜|k〉α and ˜|k〉±, which provides an expression of Ṽ
with ˜|k〉±,

Ṽ := ( ˜|1〉1 ˜|1〉2 · · · ˜|L〉1 ˜|L〉2
) (F2)

= ( ˜|1〉+ ˜|1〉− · · · ˜|L〉+ ˜|L〉−)
L⊕

k=1

ηk

×
⎛
⎝ 1√

γ
(1)
k

0

0 1√
γ

(2)
k

⎞
⎠. (F3)

From the definition (90) and (92) of ˜|k〉±, we have

( ˜|1〉+ ˜|1〉− · · · ˜|L〉+ ˜|L〉−) = ( ˜|1〉+ · · · ˜|L〉+)((1 0) ⊗ 1L×L ) + ( ˜|1〉− · · · ˜|L〉−)((0 1) ⊗ 1L×L ) (F4)

= S̃

((
1
0

)
⊗
(
P |1〉−

‖|1〉−‖2
· · · P |L〉−

‖|L〉−‖2

))
((1 0) ⊗ 1L×L )

+ S̃

((
0
1

)
⊗
(

|1〉−
‖|1〉−‖2

· · · |L〉−
‖|L〉−‖2

))
((0 1) ⊗ 1L×L ) (F5)

= S̃

((
1 0
0 0

)
⊗ P

(
|1〉−

‖|1〉−‖2
· · · |L〉−

‖|L〉−‖2

))
+ S̃

((
0 0
0 1

)
⊗
(

|1〉−
‖|1〉−‖2

· · · |L〉−
‖|L〉−‖2

))
. (F6)

Therefore we obtain

Ṽ = S̃

[(
1 0
0 0

)
⊗ P

(
|1〉−

‖|1〉−‖2
· · · |L〉−

‖|L〉−‖2

)
+
(

0 0
0 1

)
⊗
(

|1〉−
‖|1〉−‖2

· · · |L〉−
‖|L〉−‖2

)]
×

L⊕
k=1

ηk

⎛
⎝ 1√

γ
(1)
k

0

0 1√
γ

(2)
k

⎞
⎠, (F7)

whose condition number κ (Ṽ ) is to be evaluated. The inverse
of Eq. (F7) is

Ṽ −1 =

⎛
⎜⎝ L⊕

k=1

⎛
⎜⎝
√

γ
(1)

k 0

0
√

γ
(2)

k

⎞
⎟⎠η

†
k

⎞
⎟⎠

×
[(

1 0
0 0

)
⊗
(
P
(

|1〉−
‖|1〉−‖2

· · · |L〉−
‖|L〉−‖2

))−1

+
(

0 0
0 1

)
⊗
(

|1〉−
‖|1〉−‖2

· · · |L〉−
‖|L〉−‖2

)−1
]

S̃−1.

(F8)

2. The common estimate of the condition number

In this subsection, we employ the submultiplicativity of
the 2-norm to find a bound of ‖Ṽ ‖2 and ‖Ṽ −1‖2 without
considering a certain boundary condition (i.e., the OBC or
the PBC) or a certain relation between g and �. As a result,
we shall obtain an upper and lower estimate of the condition
number

κ (Ṽ ) := ‖Ṽ ‖2‖Ṽ −1‖2. (F9)

a. The upper estimate

From the explicit form (F7) of Ṽ , we have

‖Ṽ ‖2 � ‖S̃‖2

∥∥∥∥∥
(

1 0

0 0

)
⊗ P

(
|1〉−

‖|1〉−‖2
· · · |L〉−

‖|L〉−‖2

)

+
(

0 0

0 1

)
⊗
(

|1〉−
‖|1〉−‖2

· · · |L〉−
‖|L〉−‖2

)∥∥∥∥∥
2

×
∥∥∥∥∥∥

L⊕
k=1

ηk

⎛
⎝ 1√

γ
(1)
k

0

0 1√
γ

(2)
k

⎞
⎠
∥∥∥∥∥∥

2

(F10)

= ‖S‖2 max
k=1,2,...,L

∥∥∥∥∥∥ηk

⎛
⎝ 1√

γ
(1)
k

0

0 1√
γ

(2)
k

⎞
⎠
∥∥∥∥∥∥

2

× max
{∥∥∥P( |1〉−

‖|1〉−‖2
· · · |L〉−

‖|L〉−‖2

)∥∥∥
2
,

×
∥∥∥( |1〉−

‖|1〉−‖2
· · · |L〉−

‖|L〉−‖2

)∥∥∥
2

}
. (F11)
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Recalling that ηk and P are unitary, and that γ
(1)

k � γ
(2)

k holds
for each k, we can rearrange Eq. (F11) as follows:

‖Ṽ ‖2 � ‖S‖2

⎛
⎜⎝ max

k=1,2,...,L
max
α=1,2

1√
γ

(α)
k

⎞
⎟⎠

×
∥∥∥( |1〉−

‖|1〉−‖2
· · · |L〉−

‖|L〉−‖2

)∥∥∥
2

(F12)

= ‖S‖2

⎛
⎜⎝ max

k=1,2,...,L

1√
γ

(1)
k

⎞
⎟⎠

×
∥∥∥( |1〉−

‖|1〉−‖2
· · · |L〉−

‖|L〉−‖2

)∥∥∥
2
. (F13)

In the same way as Ṽ , the norm of (F8) is bounded from the
above by

‖Ṽ −1‖2 � ‖S−1‖2

(
max

k=1,2,...,L
max
α=1,2

√
γ

(α)
k

)

× max

{∥∥∥∥( |1〉−
‖|1〉−‖2

· · · |L〉−
‖|L〉−‖2

)−1
P
∥∥∥∥

2

,

∥∥∥∥( |1〉−
‖|1〉−‖2

· · · |L〉−
‖|L〉−‖2

)−1
∥∥∥∥

2

}

(F14)

= ∥∥S−1
∥∥

2

(
max

k=1,2,...,L

√
γ

(2)
k

)

×
∥∥∥∥( |1〉−

‖|1〉−‖2
· · · |L〉−

‖|L〉−‖2

)−1
∥∥∥∥

2

. (F15)

Then we have

κ (Ṽ ) � κ (S)κ
((

|1〉−
‖|1〉−‖2

· · · |L〉−
‖|L〉−‖2

))

×

⎛
⎜⎝ max

k=1,2,...,L

1√
γ

(1)
k

⎞
⎟⎠( max

k=1,2,...,L

√
γ

(2)
k

)
. (F16)

b. The lower estimate

The orthonormality (97) of ˜|k〉1
and ˜|k〉2

leads to a lower
bound of ‖Ṽ ‖2,

‖Ṽ ‖2
2 � 1

2L
‖Ṽ ‖2

F = 1

2L
tr(Ṽ †Ṽ ) (F17)

= 1

2L

L∑
k=1

∑
α=1,2

α 〈̃k ˜|k〉α = 1. (F18)

On the other hand, the submultiplicativity of the 2-norm pro-
vides a lower bound of ‖Ṽ −1‖2,

‖Ṽ −1‖2 �

∥∥∥∥∥∥
L⊕

k=1

ηk

⎛
⎝ 1√

γ
(1)
k

0

0 1√
γ

(2)
k

⎞
⎠
∥∥∥∥∥∥

−1

2

×
∥∥∥∥∥
(

1 0
0 0

)
⊗
(
P
(

|1〉−
‖|1〉−‖2

· · · |L〉−
‖|L〉−‖2

))−1

+
(

0 0
0 1

)
⊗
(

|1〉−
‖|1〉−‖2

· · · |L〉−
‖|L〉−‖2

)−1
∥∥∥∥∥

2

×‖S̃‖−1
2 (F19)

= ‖S‖−1
2

⎛
⎜⎝ max

k=1,2,...,L
max
α=1,2

1√
γ

(α)
k

⎞
⎟⎠

−1

× max

{∥∥∥∥( |1〉−
‖|1〉−‖2

· · · |L〉−
‖|L〉−‖2

)−1
P
∥∥∥∥

2

,

×
∥∥∥∥( |1〉−

‖|1〉−‖2
· · · |L〉−

‖|L〉−‖2

)−1
∥∥∥∥

2

}
(F20)

= ‖S‖−1
2

(
min

k=1,2,...,L

√
γ

(1)
k

)

×
∥∥∥∥( |1〉−

‖|1〉−‖2
· · · |L〉−

‖|L〉−‖2

)−1
∥∥∥∥

2

. (F21)

The product of Eqs. (F18) and (F21) is just a lower estimate
of the condition number,

κ (Ṽ ) � ‖S‖−1
2

(
min

k=1,2,...,L

√
γ

(1)
k

)

×
∥∥∥∥( |1〉−

‖|1〉−‖2
· · · |L〉−

‖|L〉−‖2

)−1
∥∥∥∥

2

. (F22)

3. Case analysis

In the previous subsection, we had the upper and lower
bound

‖S‖−1
2

(
min

k=1,2,...,L

√
γ

(1)
k

)∥∥∥∥( |1〉−
‖|1〉−‖2

· · · |L〉−
‖|L〉−‖2

)−1
∥∥∥∥

2

� κ (Ṽ )

� κ (S)κ
((

|1〉−
‖|1〉−‖2

· · · |L〉−
‖|L〉−‖2

))

×

⎛
⎜⎝ max

k=1,2,...,L

1√
γ

(1)
k

⎞
⎟⎠( max

k=1,2,...,L

√
γ

(2)
k

)
(F23)

for the condition number κ (Ṽ ). Toward the further estimate to
derive Eq. (99), it is necessary to consider separately the cases
of (a) g < � or (b) g > �, and (i) the PBC or (ii) the OBC.
In this subsection, we calculate or estimate some quantities in
Eq. (F23) for each of the above cases.

a. The case of g < �

In this case, H− in Eqs. (78) and (79) is Hermitian, and
thus is diagonalized by the unitary matrix(

|1〉−
‖|1〉−‖2

· · · |L〉−
‖|L〉−‖2

)
. (F24)

Then we have∥∥∥∥( |1〉−
‖|1〉−‖2

· · · |L〉−
‖|L〉−‖2

)−1
∥∥∥∥

2

= 1 (F25)
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and

κ
((

|1〉−
‖|1〉−‖2

· · · |L〉−
‖|L〉−‖2

))
= 1. (F26)

In addition, the right eigenstate |k〉− of H− agrees with the
left one |k〉〉−, by which the biorthogonality (82) results in the
normalization condition

‖|k〉−‖2 = 1 = ‖|k〉〉−‖2. (F27)

Recalling Eqs. (91) and (93), i.e.,

˜|k〉+ =
(

�

−
√

�2 − g2 − ig

)
⊗ P|k〉− (F28)

and

˜|k〉− =
(√

�2 − g2 + ig
�

)
⊗ |k〉−, (F29)

we obtain a concrete form of the Gram matrix �k in Eq. (94),

�k :=
(

+〈̃k ˜|k〉+ +〈̃k ˜|k〉−
−〈̃k ˜|k〉+ −〈̃k ˜|k〉−

)
(F30)

=
(

2�2 2i�g−〈k|P|k〉−
−2i�g−〈k|P|k〉− 2�2

)
(F31)

= 2�(� − g−〈k|P|k〉−σy). (F32)

Note that − ˜〈k|P ˜|k〉− is real due to the Hermiticity of P . Since
the eigenvalues of σy are ±1, we have

γ
(1)

k = 2�(� − g|−〈k|P|k〉−|) (F33)

and

γ
(2)

k = 2�(� + g|−〈k|P|k〉−|), (F34)

which are bounded uniformly with respect to k as

γ
(1)

k � 2�(� − g) (F35)

and

γ
(2)

k � 2�(� + g) (F36)

by the Cauchy-Schwarz inequality.
In order to calculate ‖S‖2 and κ (S), we find the singular

values of S in Eq. (75). Since

SS† = (� + (i
√

�2 − g2 − g)σy)

× (� + (−i
√

�2 − g2 − g)σy) (F37)

= 2�(� − gσy), (F38)

the singular values of S are
√

2�(� ± g). Thus

‖S‖2 =
√

2�(� + g) (F39)

and

κ (S) =
√

2�(� + g)

2�(� − g)
=
√

� + g

� − g
(F40)

hold.
Therefore the upper and lower estimate (F23) is reduced to√

� − g

� + g
� κ (Ṽ ) � � + g

� − g
. (F41)

Note that the estimate (F41) is valid whether we consider the
OBC or the PBC.

b. The case of g > �

In this case, since

SS† = (� + (
√

g2 − �2 − g)σy)2 (F42)

= 2(g −
√

g2 − �2)(g − �σy), (F43)

the singular values of S are√
2(g −

√
g2 − �2)(g ± �), (F44)

which lead to

‖S‖2 =
√

2(g −
√

g2 − �2)(g + �) (F45)

and

κ (S) =
√

g + �

g − �
. (F46)

Recalling Eqs. (91) and (93), i.e.,

˜|k〉+ =
(

�

i(
√

g2 − �2 − g)

)
⊗ P |k〉−

‖|k〉−‖2
(F47)

and

˜|k〉− =
(

−i(
√

g2 − �2 − g)
�

)
⊗ |k〉−

‖|k〉−‖2
, (F48)

we obtain a concrete form of the Gram matrix �k in Eq. (94),

�k = 2(g −
√

g2 − �2)

(
g − �

−〈k|P|k〉−
‖|k〉−‖2

2

σy

)
. (F49)

Note that − ˜〈k|P ˜|k〉− is real due to the Hermiticity of P . Since
the eigenvalues of σy are ±1, we have

γ
(1)

k = 2(g −
√

g2 − �2)

(
g − �

∣∣∣∣−〈k|P|k〉−
‖|k〉−‖2

2

∣∣∣∣
)

(F50)

and

γ
(2)

k = 2(g −
√

g2 − �2)

(
g + �

∣∣∣∣−〈k|P|k〉−
‖|k〉−‖2

2

∣∣∣∣
)

, (F51)

which are bounded uniformly with respect to k as

γ
(1)

k � 2(g −
√

g2 − �2)(g − �) (F52)

and

γ
(2)

k � 2(g −
√

g2 − �2)(g + �) (F53)

by the Cauchy-Schwarz inequality.
In order to calculate or estimate the norm or the condition

number of ( |1〉−
‖|1〉−‖2

· · · |L〉−
‖|L〉−‖2

), it is necessary to examine
the properties of H−, which depend on the boundary condi-
tions. In the following, we consider the cases of the PBC and
the OBC, separately.

(i) The case of the PBC. In this case, H− in Eq. (79) is
normal, and thus is diagonalized by the unitary matrix( |1〉−PBC

‖|1〉−PBC‖2
· · · |L〉−PBC

‖|L〉−PBC‖2

)
. (F54)
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Then, in the same way as the case of g < � in Appendix F 3 a,
we have ∥∥∥∥( |1〉−PBC

‖|1〉−PBC‖2
· · · |L〉−PBC

‖|L〉−PBC‖2

)−1
∥∥∥∥

2

= 1 (F55)

and

κ
(( |1〉−PBC

‖|1〉−PBC‖2
· · · |L〉−PBC

‖|L〉−PBC‖2

))
= 1. (F56)

From Eq. (F23), therefore, we have√
g − �

g + �
� κ (ṼPBC) � g + �

g − �
. (F57)

(ii) The case of the OBC. In this case, H+ in Eq. (78)
is nothing but the Hatano-Nelson model under the OBC with
the non-Hermitian asymmetric hopping

√
g2 − �2; replacing

g with
√

g2 − �2 in Eq. (2) gives H+
OBC in Eq. (78). Note that

the matrix

P
( |1〉−OBC

‖|1〉−OBC‖2
· · · |L〉−OBC

‖|L〉−OBC‖2

)
(F58)

diagonalizes H+
OBC because it holds that

H+
OBC = PH−

OBCP . (F59)

Then introducing a parameter

r− :=
√√√√ t +

√
g2 − �2

t −
√

g2 − �2
(> 1), (F60)

the matrix (F58) corresponds to the value at r = r− of VOBC in
Eq. (48) in Sec. IV A 1 up to the order of columns. Using the
inequalities (E8) and (E12), and recalling that P is unitary, we
have

κ
(( |1〉−OBC

‖|1〉−OBC‖2
· · · |L〉−OBC

‖|L〉−OBC‖2

))
�

√
L(r−)L−1 (F61)

and∥∥∥∥( |1〉−OBC

‖|1〉−OBC‖2
· · · |L〉−OBC

‖|L〉−OBC‖2

)−1
∥∥∥∥

2

>

(
2

L + 1

)3/2

(r−)L−1.

(F62)

From Eq. (F23), therefore, we obtain√
g − �

g + �

(
2

L + 1

)3/2

(r−)L−1

< κ (ṼOBC) � g + �

g − �

√
L(r−)L−1. (F63)

4. Conclusion

From the above, it holds that√
g − �

g + �

(
2

L + 1

)3/2

(r−)L−1

< κ (Ṽ ) � g + �

g − �

√
L(r−)L−1 (F64)

for g > � and under the OBC, otherwise√
g − �

g + �
� κ (Ṽ ) � g + �

g − �
, (F65)

which are simply Eq. (99). It is clear that the former is of the
order O(eL ln r−

), while the latter is of the order O(1).

APPENDIX G: DISORDER-AVERAGED EFFECTIVE
HAMILTONIAN FOR CAUCHY DISTRIBUTION

DISORDER

Let us consider the (matrix) Hamiltonian H consisting of a
term H0 without disorder and a term W with on-site disorder,

H = H0 + W. (G1)

Assuming that the on-site disorder potential w j , which is
given by Wi j = wiδi j , follows the Cauchy distribution,

P(w j ) = γ

π

1

w2
j + γ 2

, (G2)

we derive here the disorder-averaged effective Hamiltonian
[81].

To derive the effective Hamiltonian, we consider the
Green’s function G(z) of H

G(z) = 1

z − H
, (G3)

where z is a complex parameter. A remarkable property of the
Cauchy distribution is that the disorder average of the Green’s
function can be done exactly: Following Ref. [82], we first
expand the Green’s function as

G(z) = 1

z − H0 − W

= 1

(z − W )(1 − (z − W )−1H0)

= 1

z − W
+ 1

z − W
H0

1

z − W
+ · · · , (G4)

then perform the disorder-average. We typically have the con-
tribution in the form of〈(

1

z − wi

)ni
(

1

z − w j

)n j

· · ·
〉
, (G5)

and from the residue theorem, w js’ in Eq. (G5) are replaced
by −iγ (iγ ) after the disorder average if Imz > 0 (Imz < 0).
As a result, the disorder-averaged Green’s function is given by

〈G(z)〉 = 1

z + iγ sgn[Imz]

+ 1

z + iγ sgn[Imz]
H0

1

z + iγ sgn[Imz]
+ · · ·

= 1

z + iγ sgn[Imz] − H0
. (G6)
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Then, defining the effective Hamiltonian Heff such that it gives
a pole of 〈G(z)〉 in the complex plane of z, we have

Heff = H0 − iγ sgn[Imz]. (G7)

From the disorder-averaged Green’s function, we can also
calculate the density of state [70]. The density of states at the
complex energy z = x + iy is defined as

ρ(x, y) =
〈

1

L

L∑
i=1

δ(x − ReEi )δ(y − ImEi )

〉
, (G8)

where Ei are eigenvalues of the matrix Hamiltonian H and L
is the number of eigenvalues. Then, we have

ρ(x, y) = 1

π

∂

∂z∗ G(z), (G9)

where G(z) is defined as

G(z) =
〈

1

L
trG(z)

〉
. (G10)

To show this, using the Jordan decomposition of H , we first
rewrite the Green’s function in terms of the eigenvalues of H ,

G(z) =
〈

1

L

L∑
i=1

1

z − Ei

〉
,

=
〈

1

L

L∑
i=1

1

(x − ReEi ) + i(y − ImEi )

〉
, (G11)

where z = x + iy. Then, differentiating Eq. (G11) with respect
to z∗, we have

1

π

∂

∂z∗ G(z) = 1

π

∂

∂z∗

〈
1

L

L∑
i=1

1

(x − ReEi ) + i(y − ImEi )

〉

=
〈

1

L

L∑
i=1

δ(x − ReEi )δ(y − ImEi )

〉

= ρ(x, y), (G12)

where we have used the identity

∂

∂z∗

(
1

z

)
= πδ(Rez)δ(Imz), (G13)

in the second equality. The Green’s function in Eq. (G6) is
rewritten as

G(z) = G0(z + iγ )θ (Imz) + G0(z − iγ )θ (−Imz), (G14)

where θ (x) is the Heaviside step function and G0(z) is the
trace of the Green’s function without disorder

G0(z) = 1

L
tr

1

z − H0
. (G15)

FIG. 13. The blue line represents the spectrum of H = H0 + W ,
where W follows the Cauchy distribution. The black line represents
the energy spectrum that shifts the energy spectrum of H0 parallel to
the imaginary axis by ±γ .

Thus, differentiating Eq. (G14) with respect to z∗, we obtain

ρ(x, y) = ρ0(x, y + γ )θ (y) + ρ0(x, y − γ )θ (−y)

+ i

2π
δ(y)[G0(x + iγ ) − G0(x − iγ )], (G16)

where ρ0(x, y) is the density of states without disorder,

ρ0(x, y) = 1

π

∂

∂z∗ G0(z). (G17)

Note that we can apply this exact result to the PBC and the
OBC.

Equation (G16) nicely explains the disorder-average spec-
trum of the Hatano-Nelson model. The first and second terms
give the spectrum in the lower (Imz < 0) and the upper
(Imz > 0) half parts of the complex energy plane, respec-
tively. In the case of the Hatano-Nelson model, ρ0(x, y) forms
a loop in the complex energy plane, and thus the first and
second terms give a blue curve in Fig. 13. Furthermore, the
third term in Eq. (G16) provides the energy spectrum on
the real axis of the complex energy plane. This part explains
the spectrum of modes with Anderson localization.

APPENDIX H: TOPOLOGICAL INVARIANTS IN THE
PRESENCE OF DISORDERS

In the main text, we introduce the topological numbers for
the non-Hermitian skin effects in Eqs. (9) and (15). However,
when disorders exist, one cannot employ them because the
crystal momentum k is no longer a good quantum number. In
disordered Hermitian systems, we can avoid this difficulty by
using topological invariants in the phase space of the twisted
boundary condition [83–86]. Here we generalize this method
to non-Hermitian systems.

Following Ref. [34], we first define the phase space version
of Eq. (9). For this purpose, we introduce the twisted boundary
condition by attaching a phase eiθ to bonds at the boundary.
For the model in Eq. (I1), the twisted boundary condition is
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FIG. 14. The flow of arg( det H (θ )) with respect to θ for the Hatano-Nelson model (I1) with t = 1.5, g = 0.5, L = 100, γ = 0.5. (a) The
reference energy is inside the PBC spectrum (E = 0). (b) The reference energy is outside the PBC spectrum (E = 10 + 10i).

given by the following form:

H (θ ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

w1 t − g 0 · · · 0 (t + g)e−iθ

t + g w2 t − g · · · 0 0
0 t + g w3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · wL−1 t − g
(t − g)eiθ 0 0 · · · t + g wL

⎞
⎟⎟⎟⎟⎟⎟⎠

. (H1)

Then, the phase space version of Eq. (9) is given by

W (E ) :=
∫ 2π

0

dθ

2π i

∂

∂θ
log det (H (θ ) − E ), (H2)

which coincides with Eq. (9) in the absence of disorders [34]).
The quantization of W (E ) follows from

W (E ) =
∫ 2π

0

dθ

2π i

∂

∂θ
[log |det (H (θ ) − E )|

+ iarg(det (H (θ ) − E ))]

=
∫ 2π

0

dθ

2π

∂

∂θ
arg(det (H (θ ) − E )). (H3)

Therefore, if the reference energy E is inside [outside]
the PBC spectrum, we have W (E ) �= 0 [W (E ) = 0]. In
Figs. 14(a) and 14(b), we illustrate how the argument of
det H (θ ) behaves inside and outside the PBC spectrum, re-
spectively, for the model in Eq. (I1) with t = 1.5, g = 0.5,
L = 100 and γ = 0.5, where the corresponding winding num-
bers are −1 and 0.

In a similar manner, we can define the phase space version
of Eq. (15). We introduce the twisted boundary condition by
attaching a phase eiθ to bonds at the boundary so that the
resultant Hamiltonian H (θ ) keeps the transpose version of
time-reversal symmetry, T HT (θ )T −1 = H (−θ ) with T T ∗ =
−1. Then, the following equation defines the Z2 invariant in
the phase space,

(−1)ν(E ) = Pf[(H (π ) − E )T ]

Pf[(H (0) − E )T ]

× exp

[
−1

2

∫ θ=π

θ=0
d log det[(H (θ ) − E )T ]

]
,

(H4)

since the square of the right-hand side becomes an identity.

We calculate the Z2 topological number in Eq. (H4) for
the model (24) with t = 1, g = 0.3, � = 0.2, L = 100, and
γ = 0.2. For this purpose, we rewrite Eq. (H4) as

(−1)ν(E ) = Pf[(H (π ) − E )T ]

Pf[(H (0) − E )T ]
×
[ | det (H (π ) − E )T |

| det (H (0) − E )T |
]− 1

2

× exp

[
− i

2

∫ π

0
dθ

∂

∂θ
arg det[(H (θ ) − E )T ]

]
,

(H5)

When E is inside the PBC spectrum, we have[ | det[(H (π ) − E )T ]|
| det[(H (0) − E )T ]|

]− 1
2

= 1, (H6)

and

Pf[(H (π ) − E )T ]

Pf[(H (0) − E )T ]
= −1. (H7)

Our numerical calculation also finds that arg(det[(H (θ ) −
E )T ]) is independent of θ , as illustrated in Fig. 15(a). Thus,
we have the nontrivial Z2 invariant (−1)ν(E ) = −1. On the
other hand, if E is outside the PBC spectrum, we have[ | det[(H (π ) − E )T ]|

| det[(H (0) − E )T ]|
]− 1

2

= 1, (H8)

and

Pf[(H (π ) − E )T ]

Pf[(H (0) − E )T ]
= 1, (H9)

and the θ dependence of arg ( det[(H (θ ) − E )T ]) in
Fig. 15(b). Thus, the Z2 invariant is trivial, (−1)ν(E ) = 1.

Whereas these topological numbers in the phase space
characterize the non-Hermitian skin effects in the presence
of disorders, they are unsuitable for numerical detection of
the disorder-induced topological phase transition discussed in
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FIG. 15. The flow of arg ( det[(H (θ ) − E ])T ) with respect to θ for the model (24) with t = 1, g = 0.3, � = 0.2, L = 100, and γ = 0.2.
(a) The reference energy is inside the PBC spectrum (E = 0). (b) The reference energy is outside the PBC spectrum (E = 10 + 10i).

Sec. V B. This is because they depend on the reference energy
E , and the phase transition requires the vanishing of the topo-
logical numbers for any E . In contrast, the scalar measures
of nonnormality introduced in Sec. III are independent of the
reference energy E , and thus no such problem exists.

APPENDIX I: NUMERICAL ALGORITHM FOR
EVALUATION OF CONDITION NUMBER

We outline here the algorithm for numerical evaluation of
the condition number κ (V ). First, note that only the right
eigenstates of H are necessary to evaluate the condition num-
ber: Once one constructs V consisting of the right eigenstates
subject to the normalization condition in Eq. (32), then one
obtains the condition number κ (V ) as the ratio of the max-
imum and the minimal singular values of V . See Eq. (31).
Therefore, the evaluation process of the condition number is
straightforward for most non-Hermitian systems.

For non-Hermitian systems with disorders such as the
Hatano-Nelson model; however, we need a large number of
samples to perform the disorder average of the condition
number. In particular, under the open boundary condition,
the non-Hermitian skin effect fairly enhances the perturbation
sensitivity, as indicated in Eq. (131), and thus, the variance
of the numerically obtained condition number becomes large,
and the convergence of the calculation requires a large number
of samples. To save the computer resources required by this
property, we have used the imaginary gauge transformation
that maps a non-Hermitian system to a Hermitian one [58–60],
as explained below.

For concreteness, let us first consider the Hatano-Nelson
model,

Ĥ =
L∑

j=1

[(t + g)ĉ†
j+1ĉ j + (t − g)ĉ†

j ĉ j+1 + w j ĉ j
†ĉ j], (I1)

with t > g. The imaginary gauge transformation is given by

ĉ j → eα j ĉ j ĉ†
j → e−α j ĉ†

j ,

(
eα =

√
|t2 − g2|
t − g

)
, (I2)

which maps the non-Hermitian Hamiltonian into the follow-
ing Hermitian one under the OBC,

ˆ̃H =
L∑

j=1

[
√

|t2 − g2|ĉ†
j+1ĉ j +

√
|t2 − g2|ĉ†

j ĉ j+1 + w j ĉ j
†ĉ j].

(I3)
Since Eq. (I3) is Hermitian, the disorder term does not give
the problem caused by the enhanced perturbation sensitivity.
After numerically diagonalizing Eq. (I3), we perform the in-
verse of the imaginary gauge transformation, then we obtain
the matrix diagonalizing Eq. (I1). Finally, by normalizing each
column of the diagonalization matrix to satisfy Eq. (32), we
obtain the matrix V required for calculating the condition
number.

We also use a similar technique to evaluate the condition
number in the time-reversal invariant Hatano-Nelson model,

Ĥ =
L∑

j=1

[(t + g)ĉ†
j+1,↑ĉ j,↑ + (t − g)ĉ†

j,↑ĉ j+1,↑ + w j ĉ
†
j,↑ĉ j,↑]

+
L∑

j=1

[(t + g)ĉ†
j,↓ĉ j+1,↓+ (t − g)ĉ†

j+1,↓ĉ j,↓ + w j ĉ
†
j,↓ĉ j,↓]

− i�
L∑

j=1

(ĉ†
j+1,↑ĉ j,↓ − ĉ†

j↑ĉ j+1↓)

− i�
L∑

j=1

(ĉ†
j+1,↓ĉ j,↑ − ĉ†

j,↓ĉ j+1,↑). (I4)

First, performing the imaginary spin rotation diagonalizing
the spin-dependent part of the Hamiltonian,

(
ci,↑
ci,↓

)
→

(
ci,+
ci,−

)
= R

(
ci,↑
ci,↓

)
,

(
c†

i,↑ c†
i,↓
) → (

c†
i,+ c†

i,−
) = (

c†
i,↑ c†

i,↓
)
R−1 (I5)

with

R =
⎛
⎝ ig√

�2−g2
− �√

�2−g2

�√
�2−g2

ig√
�2−g2

⎞
⎠, (I6)
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we have

ˆ̃H =
L∑

j=1

[(t ±
√

g2 − �2)ĉ†
j+1,±ĉ j,±

+ (t ∓
√

g2 − �2)ĉ†
j,±ĉ j+1,± + w j ĉ

†
j,±ĉ j,±], (I7)

where the double sign corresponds and takes the summation.
Then, the imaginary gauge transformation

ĉ j,± → eα± j ĉ j,± ĉ†
j,± → e−α± j ĉ†

j,±, (I8)

with

eα
± =

√
|t2 − g2 + �2|

t ∓
√

g2 − �2
(I9)

maps Eq. (I7) into the Hermitian one under the OBC,

ˆ̃̃
H =

L∑
j=1

[
√

|t2 − g2 + �2|ĉ†
j+1,±ĉ j,±

+
√

|t2 − g2 + �2|ĉ†
j,±ĉ j+1,± + w j ˆc j,±† ˆc j,±]. (I10)

In a manner similar to the Hatano-Nelson model, we numeri-
cally diagonalize Eq. (I10), and then perform the inverse of the
imaginary gauge transformation and the imaginary spin rota-
tion. The obtained matrix diagonalizes Eq. (I4), from which
we evaluate the condition number.

APPENDIX J: BASIC PROPERTIES
OF PSEUDOSPECTRUM

Here we summarize the basic properties of the pseudospec-
trum σε (H ) of a matrix Hamiltonian H used in this paper [65].

Let σ (H ) be the spectrum of a matrix Hamiltonian H ,

σ (H ) = {E ∈ C|det(H − E ) = 0}, (J1)

then, the pseudospectrum σε (H ) is defined by

σε (H ) = {E ∈ C|∃�H : E ∈ σ (H + �H ), ‖�H‖2 < ε},
(J2)

where the size of �H is the same as that of H . First, we show
that the pseudospectrum is equivalently defined as

σε (H ) = {E ∈ C|∃|u〉 : ‖(H − E )|u〉‖2 < ε, ‖|u〉‖2 = 1}.
(J3)

Actually, if E ∈ σε (H ) in Eq. (J2), then there exist an eigen-
state |u〉 of (H + �H − E )|u〉 = 0 with ‖|u〉‖2 = 1, so we
have ‖(H − E )|u〉‖2 = ‖�H |u〉‖2 < ‖�H‖2 < ε, which im-
plies E ∈ σε (H ) in Eq. (J3). Conversely, if E ∈ σε (H ) in
Eq. (J3), we can introduce s|v〉 ≡ (E − H )|u〉 with s < ε

and ‖|v〉‖2 = 1. Then, by defining �H ≡ s|v〉〈u|, we have
(H + �H − E )|u〉 = 0 with ‖�H‖2 = s < ε, so E ∈ σε (H )
in Eq. (J2).

The pseudospectrum can go beyond the ε-neighborhood of
the unperturbed spectrum,

σε (H ) ⊇ σ (H ) + �ε, (J4)

where �ε = {E ∈ C||E | < ε}. The proof of this relation is
straightforward: If E ∈ σ (H ) + �ε , it holds that E = E ′ + δ

with E ′ ∈ σ (H ), |δ| < ε, which means that E ∈ σ (H + δ1)
with ‖δ1‖2 = |δ| < ε, so E ∈ σε (H ).

An important inclusion relation for the pseudo-spectrum is
the Bauer-Fike theorem. The theorem is given by

σε (H ) ⊆ σ (H ) + �εκ (V ), (J5)

for a diagonal matrix Hamiltonian H , and

σε (H ) ⊆ σ (H ) + �ε+depF (H ), (J6)

for a general matrix Hamiltonian H .
To prove Eq. (J5), let us suppose E ∈ σε (H ). If E ∈ σ (H )

at the same time, we trivially have E ∈ σ (H ) + �εκ (V ), so we
only consider the case with E /∈ σ (H ), where (E − H )−1 is
well defined. Then, for the diagonal matrix Hamiltonian H =
V �V −1 in Eq. (27), we have

‖(E − H )−1‖2 = ‖(E − V �V −1)−1‖2

= ‖V (E − �)−1V −1‖2

� ‖V ‖2‖(E − �)−1‖2‖V −1‖2

= κ (V )/minEα∈σ (H )(E − Eα ). (J7)

From Eq. (J3), we can also show that ‖(E − H )−1‖2 >

ε−1: For |u〉 in Eq. (J3), if we write (E − H )|u〉 ≡ s|v〉
with ‖|v〉‖2 = 1, we have s < ε and (E − H )−1|v〉 = s−1|u〉,
which leads to

‖(E − H )−1‖2 � ‖(E − H )−1|v〉‖2 = s−1 > ε−1. (J8)

Combining Eqs. (J7) and (J8), we have minEα∈σ (H )|E −
Eα| < εκ (V ), which implies E ∈ σ (H ) + �εκ (V ). Therefore,
Eq. (J5) holds.

Equation (J6) is also proved from Eq. (J3). For E ∈ σε (H ),
there exists |u〉 with ‖(H − E )|u〉‖2 < ε and ‖|u〉‖2 = 1.
Then, from the Schur decomposition minimizing the 2-norm
departure from normality, H = U (� + R)U †, we have

ε > ‖(H − E )|u〉‖2 = ‖U (� + R)U †|u〉 − EUU †|u〉‖2

= ‖(� + R)U †|u〉 − EU †|u〉‖2, (J9)

which leads to

minEα∈σ (H )|E − Eα|
� ‖�U †|u〉 − EU †|u〉‖2

= ‖(� + R)U †|u〉 − EU †|u〉 − RU †|u〉‖2

� ‖(� + R)U †|u〉 − EU †|u〉‖2 + ‖RU †|u〉‖2

< ε + ‖R‖2

< ε + ‖R‖F = ε + depF(H ). (J10)

Therefore, it holds that E ∈ σ (H ) + �ε+depF (H ), implying
Eq. (J6).

The pseudospectrum also governs the dynamics of the sys-
tem. First, using the residue theorem, we have

e−iHt = 1

2π i

∮
�

e−iEt (E − H )−1dE , (J11)

where � is any contour closing σ (H ) in its interior. This
equation leads to

‖e−iHt‖2 � 1

2π

∮
�

|e−iEt |‖(E − H )−1‖2|dE |. (J12)
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FIG. 16. Schematic illustration of energy spectrum for H̃ under the PBC and the OBC. smin(H − z) and smax(H − z) represent the smallest
and largest singular value of H − z, respectively. (a) Trivial case of the Hamiltonian (K4). (b) Nontrivial case of the Hamiltonian (K4).

To evaluate the right-hand side of the above inequality,
we show that if ‖(E − H )−1‖2 > ε−1, then E ∈ σε (H ): Un-
der this assumption, there exists |v〉 satisfying ‖|v〉‖2 =
1 and ‖(E − H )−1|v〉‖2 > ε−1. Then, introducing s−1|u〉 ≡
(E − H )−1|v〉 with ‖|u〉‖2 = 1, we have (E − H )|u〉 = s|v〉
with s < ε, implying ‖(H − E )|u〉‖2 < ε, and E ∈ σε (H ) in
Eq. (J3). Because of this property, if we choose � in Eq. (J12)
so as to enclose σε (H ), ‖(E − H )−1‖2 in Eq. (J12) satisfies
‖(E − H )−1‖2 < ε−1. Thus, we have

‖e−iHt‖2 � 1

2πε

∮
�

max|e−iEt ||dE | = Lεeαε (H )t

2πε
, (J13)

where Lε is the arc length of the boundary of σε (H ) and
αε (H ) = max[Imσε (H )].

APPENDIX K: CHARACTERIZATION OF SKIN EFFECTS
BY CONDITION NUMBER OF HAMILTONIAN

In this section, we show that the condition number of the
Hamiltonian itself also detects the disorder-induced topologi-
cal phase transition of non-Hermitian skin effects.

1. Condition number and topology

We define the condition number of the Hamiltonian H itself
as

κ (H ) = ‖H‖2‖H−1‖2 = smax(H )

smin(H )
� 1, (K1)

where ‖ · ‖2 is the 2-norm of a matrix

‖ · ‖2 = maxx[
√

| · x|2/
√

|x|2]. (K2)

Here, smax(H ) and smin(H ) are the largest singular value and
the smallest singular value of H , respectively.

Let us consider a non-Hermitian Hamiltonian H . If the
reference energy z of H is in the energy region where the
topological number calculated from HPBC is nontrivial, then
the condition number of H − z1 (1 represents the identity
matrix; in the following, we omit it) generally satisfies

κ (HPBC − z) �= κ (HOBC − z). (K3)

We check this property in the following. We introduce the
following Hermitian Hamiltonian [87]

H̃ =
(

0 H − z
H† − z∗ 0

)
. (K4)

In this parameter region, since non-Hermitian skin effects
occur, H̃OBC has zero-energy boundary mode as discussed
in Sec. II B. Because the energy eigenvalue of H̃ equals the
singular value of H − z as we check it later, we derive the
following relation in this parameter region [Fig. 16(a)]:

smin(HPBC − z) �= smin(HOBC − z). (K5)

Noting that smax(H − z) does not depend on the boundary
conditions [Fig. 16(a)], we can show that it holds that Eq. (K3)
in this parameter region.

We check the equivalence between the eigenvalue of H̃
and the singular value of H − z. Considering the eigenvalue
equation of H̃ ,(

0 H − z
H† − z∗ 0

)(
v
u

)
= E

(
v
u

)
⇔

{
(H − z)u = Ev

(H† − z∗)v = Eu
,

(K6)

we can derive this equivalence,

(H† − z∗)(H − z)u = E (H† − z∗)v = E2u. (K7)

When the reference energy z is in the energy region where
the topological number is trivial, the condition number of
HPBC − z equals that of HPBC − z because H̃OBC has no zero-
energy boundary mode,

κ (HPBC − z) = κ (HOBC − z). (K8)

These above discussions indicate that one can detect the
existence of skin modes by calculating the condition numbers
of HPBC − z and HOBC − z, respectively, under the proper
reference energy z without directly computing the topological
numbers. In addition, since these arguments do not need to as-
sume translational symmetry, we can apply them to disordered
systems. In the following, we show that the equality of the
condition number for H correctly characterizes the disordered
phase transition of skin effects.
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FIG. 17. The blue (yellow) dot represents the disorder dependence of κ (H ) under the PBC (OBC). We numerically calculate κ (H ) under
the PBC and the OBC under one hundred different configurations of random potential, and calculate the geometric mean of these one hundred
obtained ratios. We plot these geometric means in these figures. (a) The condition number of the Hatano-Nelson model (I1) with t = 1.5,
g = 0.5, and L = 3000. The black line denotes γ = 1. (b) The condition number of the time-reversal invariant Hatano-Nelson model (23) with
t = 1, g = 0.3, � = 0.2, and L = 2500. The black line denotes γ = 0.44. (c) The condition number of the time-reversal symmetry broken
Hatano-Nelson model (I4) with t = 1, g = 0.3, � = 0.2, and L = 1500.

2. Application to Hatano-Nelson model

We numerically examine disorder dependence of κ (H )
in the Hatano-Nelson model (I1) with t = 1.5, g = 0.5, and
L = 3000 [Fig. 17(a)]. We adopt the disorder following the
Cauchy distribution (22). The reference energy z is set to 0.
Our numerical calculation shows that the condition number of
H under the PBC is not equal to that under the OBC when
γ < 1 while this equality is not satisfied when γ > 1,

κ (HPBC) �= κ (HOBC) for γ < 1, (K9)

κ (HPBC) = κ (HOBC) for γ > 1. (K10)

This behavior is consistent with the fact that the skin effect
occurs in γ < 1. The numerically obtained critical strength
γc ∼ 1 is close to the exact value γc = 2g = 1 derived in
Sec. V A.

3. Application to time-reversal invariant Hatano-Nelson model

We also analyze the behavior of κ (H ) under the time-
reversal invariant Hatano-Nelson model (24) when changing
the disorder strength γ . In Fig. 17(b), we illustrate the disorder
dependence of κ (H ), where we take the model parameter
in Eq. (24) as t = 1, g = 0.3, � = 0.2, and L = 2500 and

consider the disorder with the Cauchy distribution. The ref-
erence energy z is set to 0. Figure 17(b) shows that κ (H )
under the PBC and the OBC, respectively, are not equal for
γ < 1, whereas they are not for γ > 1. The obtained critical
strength γc ∼ 0.45 is consistent with the exact value γc =√

g2 − �2 = 0.44 derived in Sec. V A, where the deviation
originates from the finite-size effect.

4. Application to time-reversal broken Hatano-Nelson model

So far, we have considered the time-reversal symmetry-
protected non-Hermitian skin effect, where the disorder
locally preserves that symmetry. In this subsection, we nu-
merically investigate the disorder dependence of κ (H ) in
the time-reversal broken Hatano-Nelson model (I4) with t =
1, g = 0.3,� = 0.2, and L = 1500. The reference energy z
is set to 0, and the disorder follows the Cauchy distribution,
whose probability density function is given by Eqs. (125) and
(126). In Fig. 17(c), we exhibit the behavior of κ (H ) when
changing the disorder strength γ . This calculation implies that
κ (H ) under the PBC is not equal to that under the OBC for
γ > 0.02. This behavior is consistent with the fact that the
symmetry-protected skin effect immediately disappears in the
presence of time-reversal broken disorders.
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