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Recently, it has been shown that transmon qubit architectures experience a transition between many-body
localized and quantum chaotic phases. While it is crucial for quantum computation that the system remains in
the localized regime, the most common way to achieve this has been relying on disorder in Josephson junction
parameters. Here, we propose a quasiperiodic patterning of parameters as a substitute for random disorder. We
demonstrate, using the Walsh-Hadamard diagnostic, that quasiperiodicity is more effective than disorder for
achieving localization. To study the localizing properties of our Hamiltonian for large, experimentally relevant
system sizes, we use two complementary perturbation theory schemes, one with respect to the many-body
interactions and one with respect to the hopping parameter of the free Hamiltonian.
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I. INTRODUCTION

Despite immense advances in quantum computing using
the superconducting qubit platform [1–3], two-qubit gate fi-
delity remains a thorn in the side of further progress with
these devices. One prominent source of these errors is quan-
tum crosstalk in the form of qubit ZZ couplings [4], with
Z denoting the Pauli z operator. This crosstalk is the result
of always-on coupling of qubits, even in idle mode. There
are two primary strategies for dealing with these residual
couplings: tunable coupling [5] and static coupling between
opposite anharmonicity qubits [6,7]. Each of these comes with
disadvantages: additional hardware overlay of couplers for
the former and lower coherence time of capacitively shunted
flux qubits for the latter. In real devices, the existence of
natural random disorder is unavoidable and most prominently
present in the critical current of Josephson junctions. Even
though in modern devices tuning of Josephson junctions is
possible, even postfabrication, with laser annealing techniques
[8], some degree of residual disorder remains.

The many-body system formed by a network of N Joseph-
son qubits, with random disorder and fixed coupling, is a
prime candidate for quantum chaos. Recently, it has been
established that there is in fact a phase transition between
quantum chaotic and many-body localization (MBL) for
transmon arrays [9] of this type. The phenomenology of this
transition can be summarized by considering the diagonalized
Hamiltonian of such a multiqubit system:

H =
∑
a∈BN

Ea|a〉〈a| =
∑
b∈BN

wbZb1
1 . . . ZbN

N , (1)

where BN is the set of all bit-strings of length N , wb is a
real coefficient corresponding to bit-string b, bi is the ith digit

*evangelos.varvelis@rwth-aachen.de

of bit-string b, and Zi is the Pauli z operator acting on the
subspace of qubit i. The coefficients wb with a bit-string b
consisting of only two 1’s in adjacent sites correspond, by
definition, to the ZZ couplings. Longer-range ZZ couplings
or higher-weight terms have generally been neglected (but see
Ref. [10]), a treatment that is consistent in the MBL phase,
where we have an exponential hierarchy of these terms with
respect to correlation range [11,12]. This is in stark contrast
with the chaotic regime, however, where all of these terms are
of the same order of magnitude.

These systems can only be deep in the MBL phase due
to the happenstance of disorder in the energies EJ of the
Josephson qubits. In this paper, we explore the stabilization
of the MBL phase with a quasiperiodic potential replacing the
randomly chosen disorder potential and determine that there
is in fact a robust localized regime. We demonstrate this for a
small system by obtaining the inverse participation ratio and
the Walsh-Hadamard coefficients wb of Eq. (1) using exact
diagonalization techniques. To obtain the latter, we apply the
Walsh-Hadamard transform on the spectrum of the system:

wb = 1

2N

∑
a∈BN

(−1)b·āEa, (2)

with ā denoting a bit-string resulting from flipping each digit
of bit-string a [13].

To extend our results to system sizes comparable with
currently available devices, we will use a two-track analytic
approach. On the one hand, we develop a bosonic variant
of Møller-Plesset (MP) perturbation theory [14], treating the
many-body interactions as the small parameter. On the other
hand, we also use standard Rayleigh-Schrödinger (RS) pertur-
bation theory in the hopping strength. For both schemes, we
obtain the energy levels of the qubit sector of the system and
consequently, from these, the Walsh-Hadamard coefficients
from a direct application of the definition in Eq. (2). The use
of both schemes is necessitated by the fact that, while the MP
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perturbation theory scheme allows us to obtain longer-range
correlations, it is only valid deep in the localized regime. On
the contrary, the RS perturbation theory scheme is more ac-
curate for a broader region of the MBL regime, but obtaining
longer-range correlations requires progressively higher orders
of perturbation theory, rendering their calculation within this
scheme impractical.

II. METALLIC AUBRY-ANDRÉ MODEL

Here, we focus on capacitively coupled transmon arrays.
The minimal model Hamiltonian for such an array [15,16] is

H = 4EC

N∑
i=1

n2
i −

N∑
i=1

EJi cos(φi ) + λ
∑
〈i, j〉

nin j, (3)

where ni is the Cooper-pair number of site i, and φi is the con-
jugate variable, corresponding to the superconducting phase.
Here, EC is the capacitive energy of each transmon, taken to
be equal for all sites of the array, EJi is the Josephson energy
of site i, and λ is the constant coupling strength between sites.
We also assumed only nearest-neighbor coupling.

After recasting the Hamiltonian of Eq. (3) in second quan-
tization form and expanding the cosine term up to fourth order
to include many-body interactions via the anharmonicity, we
obtain the Bose-Hubbard approximation of our Hamiltonian:

HBH =
N∑

i=1

ωia
†
i ai + J

∑
〈i, j〉

a†
i a j − EC

2

N∑
i=1

a†
i a†

i aiai. (4)

We have also used a rotating wave approximation. Note that
the ladder operators are bosonic—we are not restricted to the
single-excitation manifold of the Fock space. Strictly speak-
ing, the new coupling strength J would be bond dependent
and proportional to λ

√
ωiω j/EC, with ωi = √

8EJi EC − EC.
Here, we have omitted this bond dependence to simplify the
calculations. We find that including this dependence does not
substantially alter our results.

To design a frequency pattern ωi for our transmon arrays,
which should serve in place of a localizing disorder poten-
tial, the essential feature is to make it nonrepeating to avoid
resonances. A secondary objective is to avoid having near-
resonant sites in physical proximity for some specific lattice
geometry. Our reasons for this will become clear later. Here,
we focus on a quasi-one-dimensional (1D) square lattice with
dimensions 2 × L, such as the one depicted in Fig. 1. Such a
lattice geometry is already in use for actual quantum comput-
ing devices [17] and may also become even more relevant for
future designs. Using integer-valued real-space coordinates
(xi, yi ) for site i, where y is the short axis and x the long axis
of length L > 2, we introduce the disorder potential:

ωi = 〈ω〉 + �
√

2 sin

[
πxi

(
yi +

√
y2

i + 4

)]
. (5)

Here, 〈ω〉 is the central value around which the transmon
frequencies vary with a strength that is determined by the sine
function amplitude �. More precisely, the parameter defini-
tions have been chosen such that, in the thermodynamic limit

5 5.5 6
ωi (GHz)

FIG. 1. Metallic Aubry-André disorder potential: Transmon
frequency disorder potential ω(xi, yi ) [Eq. (5)] for a quasi-one-
dimensional (1D) lattice of dimensions 2 × 20. We use mean
frequency 〈ω〉 = 5.5 GHz and disorder strength � = 1 GHz. The
on-site frequencies are color coded according to the given color bar
and the values are given in GHz. The bottom row of the lattice
corresponds to y = 1 and the top to y = 2. The leftmost sites of the
lattice have x = 1 and the rightmost x = 20.

(N → ∞), we will have

1

N

N∑
i=1

ωi → 〈ω〉 and

√√√√ 1

N

N∑
i=1

(ωi − 〈ω〉)2 → �. (6)

In other words, 〈ω〉 is the average and � the standard
deviation.

The inspiration behind using this potential is the Aubry-
André model commonly used in the study of 1D quasicrystals,
where it exhibits a well-studied transition between Anderson
localized [18,19] and delocalized phases [20–24]. As a matter
of fact, treating the y coordinate as a fixed parameter, we
recover the exact form of the Aubry-André model. Simply put,
along the x direction, the disorder potential is Aubry-André,
while changing the y coordinate simply changes the period
of the sine function. For the potential to be nonperiodic, the
periodicity of the sine function must be chosen so that it is
incommensurate with the integer periodicity of the lattice.
This is done here by making the periodicity irrational, and
since we need the periodicity to be varying with y, we need a
family of irrational numbers, hence our choice of the metallic
ratios [25].

With the metallic Aubry-André (MAA) model as our
choice of the disorder potential, our first goal is to establish
how well it performs in localizing our system compared with
random disorder. We have first performed this comparison
for a small system of size 2 × 3, which is manageable with
exact diagonalization. The results are reported in Fig. 2 and
confirm that our model outperforms random disorder of the
same strength.

A. Perturbation in the anharmonicity

Using the Hamiltonian in Eq. (4) as an effective description
of our system, we will obtain the Walsh-Hadamard coeffi-
cients perturbatively in the anharmonicity. All the results that
will be presented in this section are derived in Appendix A.
The first two terms of the Hamiltonian in Eq. (4) describe
the noninteracting part of the Hamiltonian. We call it nonin-
teracting in the sense that, since it is quadratic in the ladder
operators, in the eigenbasis, it should obtain the form of
uncoupled harmonic oscillators. In the bare basis, the non-
interacting part of the Hamiltonian is, however, not diagonal,
and to use perturbation theory, we first need to transform the

144201-2



PERTURBATIVE ANALYSIS OF QUASIPERIODIC … PHYSICAL REVIEW B 109, 144201 (2024)

0.000 0.001 0.002 0.003 0.004

0.985

0.990

0.995

1.000

J/EC

〈IP
R
〉

Gaussian
Aubry-André
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FIG. 2. Random Gaussian disorder vs metallic Aubry-André (MAA): Exact diagonalization results for averaged (a) inverse participation
ratio (IPR) and (b) Walsh-Hadamard coefficients as a function of the hopping strength J in units of the anharmonicity EC for MAA and random
Gaussian disorder with matching standard deviation. The averaging is done over (a) all eigenstates and (b) Walsh-Hadamard coefficients of
weight 2 and correlation range � = 1 (nearest-neighbor ZZ coefficients). Particularly for the ZZ coefficients plot, the dashed lines indicate the
range of the ZZ coefficients of the solid line with the same color. For the case of the Gaussian random disorder, there is additional averaging
over 100 different realizations. The parameter values used here are EC = 0.33 GHz, 〈ω〉 = 5.5 GHz, and � = 1 GHz, and the coupling J is
varied over the range 0–1.5 MHz. The system size for both cases is 2 × 3.

Hamiltonian to the dressed basis defined by the relation:

c†
μ|0〉 !=

[
N∑

i=1

ψμ(xi, yi )a
†
i

]
|0〉, (7)

where c†
μ creates a single-excitation eigenstate |ψμ〉 of the

noninteracting Hamiltonian. For clarity, we reserve Latin in-
dices for the bare basis and Greek indices for the dressed
basis.

Since we are only interested in the localized regime of
the system, we could perform the transformation of Eq. (7)
perturbatively as well (in the coupling J). However, this adds
one additional layer of complexity to our final expressions,
without leading to any particular new insights. Therefore, we
choose to obtain the single-particle sector spectrum numer-
ically and use these results as input to our derived analytic
expressions from second-order perturbation theory in the an-
harmonicity EC.

In the dressed basis, our Hamiltonian is recast into the
form:

HDBH =
N∑

μ=1

εμc†
μcμ − EC

2

N∑
α,β,μ,ν=1

Vαβμνc†
αc†

βcμcν, (8)

where εμ is the energy of a single excitation on site μ of the
noninteracting Hamiltonian, and we have also defined the 4-
point correlation tensor:

Vαβμν =
N∑

i=1

ψα (xi, yi )ψβ (xi, yi )ψμ(xi, yi )ψν (xi, yi ), (9)

and we have made explicit use of the fact that our eigen-
states are real. For sufficiently weak transmon coupling
J , the single-excitation eigenstates should be exponentially

localized around lattice site μ with coordinates (xμ, yμ), and
the dressed basis should be nearly identical to the bare basis
c†
μ ≈ a†

μ and by extension for the energy levels as well: εμ ≈
ωμ. Therefore, even though the capacitive energy EC is not the
smallest energy scale in our system, the use of perturbation
theory is justified if we are in the transmon regime since
EC/εμ ≈ EC/ωμ ∼ √

EC/EJμ

 1.

For the Walsh-Hadamard coefficients of Eq. (2), we only
need to obtain the perturbed energy levels that correspond to
qubit states:

|b〉 =
N∏

μ=1

(c†
μ)bμ |0〉, (10)

where bμ is the μth binary digit of bit-string b. By allowing
the bit-string digits to be undetermined parameters of pos-
sible value 0 or 1, we can obtain the energy correction for
an arbitrary qubit state of any N-transmon array. The only
thing that we need to calculate the involved amplitudes in the
perturbation theory are the generalized Wick contraction rules
for operators with binary undetermined exponents given by

cbα
μ (c†ν)bβ = δμνδbα,bβ

, (11)

while all other possible contractions are vanishing. It is
straightforward to convince oneself of the validity of this
relation simply by considering all four possible combinations
of values for bα and bβ . With these rules in hand, the relevant
amplitudes can be calculated inductively using the method
described in Ref. [26]. See Appendixes A 1 and A 2 for an
analytic derivation of these results.

Due to the linearity of the Walsh-Hadamard transforma-
tion, we can apply it separately at each order of perturbation
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theory for the qubit-sector energy levels, yielding a series
expansion for the Walsh-Hadamard coefficients themselves:

wb = w
(0)
b + w

(1)
b + w

(2)
b + · · · . (12)

Furthermore, the analytical expressions for the energy levels
contain terms that are proportional to products of a few bit-
digits, particularly up to 3-digit products for the second order
in perturbation theory that we calculated here. Such m-digit
products transform like

μ1μ2...μm (b) = 1

2N

∑
a∈BN

(−1)b·āaμ1 aμ2 . . . aμm

= 1

2m

∏
i �=μ1,μ2,...,μm

b̄i. (13)

From Eq. (13), it becomes apparent that, if the Walsh-
Hadamard coefficient corresponds to a bit-string b of weight
more than m, then μ1...μm (b) = 0. As a direct consequence of
this, first-order perturbation theory can only yield corrections
for Walsh-Hadamard coefficients up to weight 2 and second-
order perturbation theory up to weight 3 (see Appendix A 3
for more details). The exact form of these coefficients is

w
(0)
b =

∑
μ

εμμ(b), (14a)

w
(1)
b =

∑
μ<ν

Eμνμν (b), (14b)

w
(2)
b =

∑
μ<ν

α,β

Dμναβμν (b) +
∑
μ<ν<α

β

Sμναβμνα (b), (14c)

where we have used the tensor definitions:

Eμν = 2ECVμμνν, (15a)

Dμναβ = E2
C

2

|Vμναβ |2
εμ + εν − εα − εβ

, (15b)

Jμναβ = E2
C

VμμαβVνναβ

εα − εβ

, (15c)

Sμναβ = 4![D(μνα)β + J(μνα)β ]. (15d)

The instances which are divergent according to these def-
initions, Dμνμν,Dμννμ, and Jμναα , do not appear in the
expressions for wb. We have also used the notation for
the fully symmetric component of a tensor T with respect to
the indices in parentheses, which for our case simplifies due to
the explicit symmetry of our tensors D and J with respect to
the first two indices to

T(μνα)β = 1
3 (Tμναβ + Tμανβ + Tναμβ ). (16)

By using the MAA scheme, we set up a quasirandom
disorder potential without resonances and with well-separated
near-resonant sites. While the four-term denominator of D
creates some dangers for perturbation theory, its numera-
tors have a counteracting effect. They are proportional to
the 4-point function Vμναβ of the single-particle eigenvectors
involving the same states as the ones in the denominator.
Anderson localization theory ensures that these correlations
decay exponentially with range.

With this perturbation theory, we can move on to obtain
Walsh-Hadamard coefficients for a much larger system of
dimensions 2 × 20. Before doing that, however, we exam-
ine the accuracy of our perturbation theory by comparing it
with exact diagonalization results. For this comparison, still
restricted to the 2 × 3 system size, see Fig. 3. It is evident
that the agreement of the two results is restricted to a rather
small parameter range. Even though the second-order pertur-
bation theory is very accurate for the energy levels, with an
error of ∼10−1 kHz for eigenenergies spanning a few tens
of GHz, the error is of the same order of magnitude as the
Walsh-Hadamard coefficients of weight 2 and is ∼2 orders of
magnitude larger than coefficients of weight 3. This is why we
only report the weight-2 coefficients here. Unfortunately, the
accuracy of the energy levels is not found to be improved by
introducing higher-order terms [27]; our perturbation theory
is equivalent to that of the ϕ4 theory, which is known to have
a vanishing radius of convergence. Already at third order of
perturbation theory, the disagreement with the exact diagonal-
ization results starts to increase.

Despite these difficulties, we obtain meaningful results for
the Walsh-Hadamard coefficients and the correct order of
magnitude within the parameter range � � 4EC, as can be
seen in Fig. 3. Therefore, we proceed to obtain the weight-2
coefficients using perturbation theory for the much larger 2 ×
20 system, beyond the size that is easily accessible to exact
diagonalization. The results for this calculation are reported
in Fig. 4. They confirm the expectation that these Walsh-
Hadamard coefficients exhibit a strong hierarchy of values,
decreasing exponentially with range; this is as expected within
MBL theory (see Ref. [9]).

B. Perturbation in the hopping strength

We have seen that treating the many-body interactions per-
turbatively yields information for the MBL of the system but
only for extremely weak anharmonicity or strong disorder. To
overcome this restricted radius of convergence, we need to
employ a different perturbative scheme without the patholo-
gies of the ϕ4 theory. Here, we will treat perturbatively instead
the hopping strength J of the system Hamiltonian in Eq. (4).

For this scheme, the unperturbed Hamiltonian is diagonal
in the bare basis with qubit states represented by

|b〉 =
N∏

μ=1

(a†
μ)bμ |0〉, (17)

and therefore, we can apply immediately RS perturbation
theory without going to the dressed basis. We again perform
a second-order perturbation theory calculation for the qubit-
sector energy levels (see Appendix B for derivation) and apply
the Walsh-Hadamard transformation on the analytic expres-
sions for the energy levels to derive the following results:

w
(0)
b =

∑
j

ω j j (b), (18a)

w
(1)
b = 0, (18b)

w
(2)
b = J2

∑
〈i< j〉

[
4EC

E2
C − δ2

i j

+ 2(bi − b j )

δi j

]
i j (b), (18c)
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FIG. 3. Exact diagonalization vs perturbation theory for the metallic Aubry-André model: Plots of all the nearest-neighbor ZZ coefficients
as a function of (a) the small parameter EC and (b) J , expressed in units of disorder strength �. Exact diagonalization results are represented
by solid lines and perturbation theory with dashed lines. The parameter values used for (a) are � = 1 GHz and J = 2.5 MHz, and the
anharmonicity EC is varied over the range 0.1� to �. In (b) are EC = 0.33 GHz and � = 2EC, and the hopping strength J is varied over the
range 1–10 MHz. For both cases, 〈ω〉 = 5.5 GHz, and the system size is 2 × 3. Coefficients are color coded with respect to the corresponding
site pair, see legend.

where we have defined the detuning between sites i and
j as δi j = ωi − ω j . With the bracketed summation indices
〈i < j〉, we denote summation with respect to the indices i
and j of nearest-neighbor sites only and with a fixed ordering
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FIG. 4. Exponential hierarchy of the Walsh-Hadamard coef-
ficients for the metallic Aubry-André model: Plot of averaged
Walsh-Hadamard coefficients of weight 2 as a function of the cor-
relation range � for a 2 × 20 quasi-one-dimensional (1D) lattice.
Averaging is done among Walsh-Hadamard coefficients of the same
correlation range. The parameter values used here are J = 1 MHz,
〈ω〉 = 5.5 GHz, EC = 0.33 GHz, and � = 3EC. The inset is a visual
representation of the relevant Walsh-Hadamard coefficient bit strings
for correlation ranges � = 1 and

√
2 on the lattice. Filled boxes

represent excited sites, while empty ones represent the ground state.

to avoid double counting pairs. The bit-digit products  j (b)
and i j (b) are the ones already defined in Eq. (13).

In Fig. 3(b), we present a comparison of the perturbation
theory results of Eqs. (18a)–(18c) with the numerical values
of the Walsh-Hadamard coefficients obtained with exact diag-
onalization for a small system of dimensions 2 × 3. The RS
perturbation scheme is strikingly accurate, especially when
compared with the accuracy of the MP result in Fig. 3(a).
Even more remarkably, the RS perturbation theory scheme
manages to capture the features of our model significantly
further away from the strongly localized regime. This is ev-
ident from the fact that, within the presented range of J
values, the ZZ coefficients have managed to climb to val-
ues an order of magnitude higher than the corresponding
case for MP perturbation theory, with virtually no drop in
accuracy.

This drastic improvement in accuracy with our perturba-
tion theory scheme, however, comes at the cost of a reduced
capability of probing the exponential hierarchy of the Walsh-
Hadamard coefficients. Note that, up to second order in
perturbation theory, we can only obtain corrections for bit-
strings of up to weight 2 using the same argument given right
after the definition of the bit-digit products in Eq. (13). Addi-
tionally, the summation in Eq. (18c) is over nearest-neighbour
pairs only. From the last two observations, we can infer
that only ZZ coefficients can be estimated with second-order
perturbation theory. Even for weight-2 bit-strings of longer
correlation range � > 1, we would need to go to higher orders
of perturbation theory.

However, another advantage of the RS perturbation scheme
is the significantly lower computational cost for obtaining
the ZZ coefficients. According to Eq. (18c), calculating a
particular ZZ coefficient to second order, one needs to only
calculate a single term for i, j, referring to the sites of the
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ZZ coefficient under consideration. In contrast, using the MP
perturbation scheme for the second-order ZZ coefficients,
one needs to invoke a summation of ∼N2 terms. As a re-
sult, we can calculate the second-order ZZ coefficients for
a system size of 2 × 2000 in a matter of seconds using the
RS scheme, while MP requires several minutes to yield the
same results for a 2 × 20 system like the one presented in
Fig. 4.

III. CONCLUSIONS

We have demonstrated that it is possible to localize a many-
body quantum computing system without the use of random
disorder but rather with a deterministically designed, non-
periodic potential. We believe that the disorder potential we
studied here is not yet optimal and that meticulous frequency
pattern engineering should play a crucial role in the design
of future quantum computing architectures. Our perturbation-
theory scheme can be used as a guide for the properties a
frequency pattern should possess or avoid. Despite the limited
accuracy of the MP perturbation scheme, we have demon-
strated that it is possible to obtain useful analytical results
for the Walsh-Hadamard coefficients of large many-body sys-
tems. We believe that accuracy can ultimately be improved
with a renormalized perturbation theory in the anharmonicity.
Finally, we need to stress that the results for the 2 × 20 lattice
are beyond the realm of what is attainable with exact diagonal-
ization techniques and of course the 2 × 2000 lattice even far
more so. The main impediment for increasing the size further
is the exponential scaling of the number of Walsh-Hadamard
coefficients themselves, which is 2N . However, if we instead
restrict the calculation to only low-weight coefficients with
small correlation range, then we can obtain reliable results
using the RS scheme for extremely large systems, without any
compromise in accuracy, if we remain in the desired localized
regime.
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APPENDIX A: MP PERTURBATION THEORY

We start with a Hamiltonian of the form given in Eq. (8)
but without making any assumption for the form of the tensor
Vαβμν , except that it is real. However, there are two symme-
tries that will simplify our calculation significantly without
loss of generality. The first one is the fact that∑

α,β,μ,ν

Vαβμνc†
αc†

βcμcν =
∑

α,β,μ,ν

Vαβμνc†
βc†

αcμcν

=
∑

α,β,μ,ν

Vβαμνc†
αc†

βcμcν, (A1)

where in the first step, we used the commutativity of the
bosonic operators, and in the second step, we performed a

summation index relabeling. Even though this property does
not guarantee that Vαβμν = Vβαμν , it does suggest that, if Vαβμν

has an antisymmetric component with respect to the first two
indices, then that component yields no contribution to the
sum. Since we can always decompose Vαβμν to symmetric and
antisymetric components, it means we can assume without
loss of generality that Vαβμν can always be symmetrized with
respect to the first two indices without changing the Hamilto-
nian of the system. The same argument can be made for the
last two indices. The second argument follows along similar
lines: ∑

α,β,μ,ν

Vαβμνc†
αc†

βcμcν =
∑

α,β,μ,ν

Vαβμνc†
νc†

μcβcα

=
∑

α,β,μ,ν

Vμναβc†
αc†

βcμcν, (A2)

where in the first step, we used the hermiticity of the sum, and
in the second step, we performed a summation index relabel-
ing. Once again, this does not imply Vαβμν = Vμναβ ; however,
any component antihermitian with respect to the index pair
exchange would have vanishing contribution to the sum, and
hence, Vαβμν can be thought as symmetric with respect to the
index pair exchange without loss of generality. In summary,
our symmetries for the tensor are

Vαβμν = Vβαμν = Vαβνμ = Vμναβ. (A3)

The tensor for the system we study in the main text has more
symmetries than these, and therefore, what we present here is
a more generic case.

Since the ladder operators are bosonic, the system has
an infinite number of eigenstates. However, for the Walsh-
Hadamard coefficients, we are only interested in the finite
subspace of qubit states of Eq. (10). For this family of states,
the unperturbed energy levels take the form:

E (0)
b = 〈b|H0|b〉 =

∑
μ

Eμbμ, (A4)

and starting with this, we can now obtain the energy levels of
the generalized Hamiltonian with the usual RS perturbation
theory.

1. First-order energy correction

At first order in perturbation theory, we will have

E (1)
b =

∑
α,β,μ,ν

Vαβμν〈b|c†
αc†

βcμcν |b〉. (A5)

If we substitute the state of Eq. (10) in this definition, the
calculation of the first-order correction boils down to a single
vacuum expectation value, which in turn can be evaluated by
means of Wick contractions according to the rules presented
in Eq. (11). To do this, we need to fully contract the operators.
We will do this using the permanent method described in
Ref. [26], which consists of calculating the permanent of the
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matrix whose elements corresponding to all possible Wick
contractions between an annihilation operator, correspond-
ing to a row, and a creation operator, corresponding to a
column. Using the basis {cμ, cν, cb1

1 , . . . , cbN
N } for the rows

and {c†
α, c†

β, (c†
1)b1 , . . . , (c†

N )bN } for the columns, we can write
Eq. (11) in matrix form:

Cαβμν (b) =

⎛
⎜⎜⎜⎜⎝

0 0 b1δμ,1 . . . bNδμ,N

0 0 b1δν,1 . . . bNδν,N

b1δα,1 b1δβ,1 1 . . . 0
...

...
...

. . .
...

bNδα,N bNδβ,N 0 . . . 1

⎞
⎟⎟⎟⎟⎠.

(A6)

For the first-order correction, we will have from Eq. (A5)

E (1)
b =

∑
α,β,μ,ν

Vαβμν perm[Cαβμν (b)]. (A7)

By definition, the permanent of a d × d matrix is the sum over
all possible products consisted of d elements of the matrix
with no two of them sharing a row or column. From the first
two rows, only elements past column 2 have a nonvanishing
contribution to the product; therefore, for example, if we se-
lect elements 2 + ρ and 2 + σ from the first and second rows,
respectively, we will have a factor of bρbσ δμρδνσ with the
restriction that ρ �= σ , which can be enforced by multiplying
this expression with |ερσ |, with ε denoting the fully antisymet-
ric tensor. Having selected an element from columns 2 + ρ

and 2 + σ means that we have effectively removed these
entire columns, and therefore, at the corresponding rows, the
only possible choices that lead to a nonvanishing contribu-
tion are from columns 1 and 2, yielding either bρbσ δαρδβσ

or bρbσ δασ δβρ . With the first two rows and columns of the
matrix removed, we can only choose elements from the iden-
tity matrix at the bottom right of the contraction matrix. The
permanent for our two-body interaction case yields

E (1)
b =

∑
α,β,μ,ν
ρ,σ

Vαβμνbρbσ |ερσ |δμρδνσ (δαρδβσ + δασ δβρ ). (A8)

Performing the summation with respect to ρ, σ, α, and β and
using the symmetries of the interaction potential Eq. (A3), we
obtain

E (1)
b =

∑
μ<ν

Eμνbμbν, (A9)

where we used the tensor definition:

Eμν = 4Vμνμν. (A10)

Note that, according to the symmetries of Vαβμν given in
Eq. (A3), the tensor E should be symmetric:

Eμν = Eνμ. (A11)

Finally, performing the Walsh-Hadamard transformation on
Eq. (A9), we obtain the result presented in the main text in
Eq. (14b). For more details on this, see Appendix A 3.

2. Second-order energy correction

We now proceed with the second-order correction given by

E (2)
b =Vα1β1μ1ν1Vα2β2μ2ν2

×
∑
m �=b

〈b|c†
α1

c†
β1

cμ1 cν1 |m〉〈m|c†
α2

c†
β2

cμ2 cν2 |b〉
E (0)

b − E (0)
m

, (A12)

where we have used the Einstein summation convention here
to lighten the notation. We have a new complication here
since the eigenstates |m〉 of the free Hamiltonian are not
necessarily qubit states anymore, and as a result, Wick con-
traction rules for arbitrary exponents become significantly
more complicated. However, we can circumvent this using the
following argument. The state resulting from the application
of c†

α2
c†
β2

cμ2 cν2 on the qubit state |b〉 is still an eigenstate |n2〉
of the free Hamiltonian, although it might not be normalized
anymore:

c†
α2

c†
β2

cμ2 cν2 |b〉 = λ2|n2〉. (A13)

A similar argument follows for the bracket:

〈b|c†
α1

c†
β1

cμ1 cν1 = λ1〈n1|, (A14)

and therefore, we can write using Eq. (A12)

E (2)
b = λ1λ2Vα1β1μ1ν1Vα2β2μ2ν2

∑
m �=b

〈n1|m〉〈m|n2〉
E (0)

b − E (0)
m

= λ1λ2Vα1β1μ1ν1Vα2β2μ2ν2

∑
m �=b

δn1,mδn2,m

E (0)
b − E (0)

m

= λ1λ2Vα1β1μ1ν1Vα2β2μ2ν2

δn1,n2

E (0)
b − E (0)

n2

∣∣∣∣∣
n2 �=b

= Vα1β1μ1ν1Vα2β2μ2ν2

λ1λ2〈n1|n2〉
E (0)

b − E (0)
n2

∣∣∣∣∣
n2 �=b

. (A15)

Finally, since by definition the state |n2〉 is obtained from |b〉
by extracting two excitations from sites μ2 and ν2 and adding
two at sites α2 and β2, we will have

En2 = Eb − εμ2 − εν2 + εα2 + εβ2 , (A16)

and in total:

E (2)
b = Vα1β1μ1ν1Vα2β2μ2ν2

× 〈b|c†
α1

c†
β1

cμ1 cν1 c†
α2

c†
β2

cμ2 cν2 |b〉
εμ2 + εν2 − εα2 − εβ2

∣∣∣∣∣
{α2,β2}�={μ2,ν2}

,

(A17)

where {α2, β2} �= {μ2, ν2} is meant in the sense of set in-
equality. Once again, we have an amplitude involving only
a single qubit state, and therefore, we can use the Wick
rules from the first-order calculation, leading directly to the
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contraction matrix: ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 δμ1α2 δμ1β2 b1δμ1,1 . . . bNδμ1,N

0 0 δν1α2 δν1β2 b1δν1,1 . . . bNδν1,N

0 0 0 0 b1δμ2,1 . . . bNδμ2,N

0 0 0 0 b1δν2,1 . . . bNδν2,N

b1δα1,1 b1δβ1,1 b1δα2,1 b1δβ2,1 1 . . . 0
...

...
...

...
...

. . .
...

bNδα1,N bNδβ1,N bNδα2,N bNδβ2,N 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A18)

For this case, since the effective four-body interaction is not
normally ordered already, we have additional contractions.
There are multiple ways to deal with this, namely, normally
ordering the interaction term using the bosonic algebra, the
method of reduced permanents, or considering cases as we
did before for the first-order correction. The results are sum-
marized in the following expression:

E (2)
b =

∑
α<β
μ,ν

Dαβμνbαbβ +
∑
α<β<μ

ν

Sαβμνbαbβbμ, (A19)

where we have also introduced the tensor definitions:

Dαβμν =
⎧⎨
⎩

2|Vαβμν |2
εα + εβ − εμ − εν

, {α, β} �= {μ, ν},
0, {α, β} = {μ, ν},

(A20a)

Jαβμν =
⎧⎨
⎩

4VαμανVβμβν

εμ − εν

, μ �= ν,

0, μ = ν,

(A20b)

Sαβμν = 4![D(αβμ)ν + J(αβμ)ν], (A20c)

with the indices in parentheses denoting the symmetriza-
tion of Eq. (16) in the main text. In conjunction with Eq. (A3),
we can conclude the following symmetries:

Dαβμν = Dβαμν = Dαβνμ = −Dμναβ, (A21)

Jαβμν = Jβαμν = −Jαβνμ, (A22)

and Sμναβ is symmetric under any permutation of the first
three indices.

The antisymmetric property of the ten-
sors D and J is the reason why, in
the second-order correction of Eq. (A19), we have no
four-bit terms. Indeed, Eq. (A19) is the result of the
summation over all possible full contractions of the amplitude
in Eq. (A17). For the final step, we once again apply
the Walsh-Hadamard transformation on Eq. (A19) to obtain
the result of the main text presented in Eq. (14c). We will give
more details on this in the following section.

3. Second-order Walsh-Hadamard coefficients

With the RS perturbation theory results of Eqs. (A9) and
(A19) for the qubit state energy levels, we can now derive
the Walsh-Hadamard coefficients via direct application of the
definition in Eq. (2). Furthermore, since the transformation is

linear, we can perform it term by term:

w
(n)
b = 1

2N

∑
q∈BN

(−1)b·qE (n)
q . (A23)

We start with the zeroth-order term of Eq. (A4):

w
(0)
b = 1

2N

N∑
μ=1

∑
q∈BN

(−1)b·qEμqμ. (A24)

To carry out the Boolean summation, we split the bit-string
summation over a product of bit-digit summations and use the
following property of functions of binary variables:

f (b) = b f (0) + b f (1), (A25)

from which it follows that
1∑

q=0

(−1)bq = 2b,
1∑

q=0

(−1)bqq = 1, (A26)

and
1∑

q=0

(−1)bqq = 1 − 2b. (A27)

As an example, we present the summation explicitly for the
zeroth-order case:

w
(0)
b =

N∑
μ=1

Eμ

2N

∑
q∈BN

(−1)b·qqμ

=
N∑

μ=1

Eμ

2N

⎡
⎢⎢⎣

N∏
ρ=1

ρ �=μ

1∑
qρ=0

(−1)bρ ·qρ

⎤
⎥⎥⎦
⎡
⎣ 1∑

qμ=0

(−1)bμ·qμqμ

⎤
⎦

=
N∑

μ=1

Eμ

2

N∏
ρ=1

ρ �=μ

bρ =
N∑

μ=1

Eμμ(b), (A28)

where in the last step, we used the definition of Eq. (13). For
the first- and second-order terms, using the same procedure,
we can derive the results presented in Eqs. (14b) and (14c).

The products of the flipped bit-digits pose a sharp cutoff
for the weight of Walsh-Hadamard coefficients we can esti-
mate at a finite order of perturbation theory. Namely, for a
bit-string b(m) of weight m, the product of all flipped bit-digits
excluding k, with m > k, will be vanishing for any set of
excluded flipped digits since at least one of them will be
zero. Therefore, to second order in perturbation theory, we can
only obtain corrections for the Walsh-Hadamard coefficients
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of weight up to 3. For the nonvanishing cases with m � k,
assuming that the nonzero digits of the bit-string are located
at positions �1 through �m in ascending order, the product will
yield one if {�1, . . . , �m} is a subset of the excluded digits. The
above can be summarized in the following expression:

μ1...μk [b(m)] = θ (k − m)

2k

∑
s∈[μ1,...,μk ]m

m∏
j=1

δ� j ,s( j), (A29)

with θ denoting the Heaviside step function with the con-
vention θ (0) = 1, and [μ1, . . . , μk]m denotes the set of all
oriented subsets of length m of the set {μ1, . . . , μn}. As an
example, the flipped digit product for a bit-string of weight
m = 2 with k = 3 excluded digits yields

μ1μ2μ3 [b(2)] = 1
8

(
δ

μ1
�1

δ
μ2
�2

+ δ
μ2
�1

δ
μ1
�2

+ δ
μ1
�1

δ
μ3
�2

+ δ
μ3
�1

δ
μ1
�2

+ δ
μ2
�1

δ
μ3
�2

+ δ
μ3
�1

δ
μ2
�2

)
. (A30)

We used upper indices here only for presentation purposes and
no additional context.

APPENDIX B: DERIVATION OF RS PERTURBATION
THEORY RESULTS IN THE HOPPING STRENGTH

Starting from the Hamiltonian in Eq. (4) and working in
the bare basis, the qubit energy levels to zeroth order in the
hopping strength J will be

E (0)
b =

N∑
i=1

ωi〈b|a†
i ai|b〉 =

N∑
i=1

ωibi. (B1)

Note that contributions from the anharmonicity term are triv-
ially vanishing for qubit states. First-order corrections are also
trivially vanishing:

E (1)
b = J

∑
〈i j〉

〈b|a†
i a j |b〉 = 0. (B2)

At second order in perturbation theory, we will have the
correction:

E (2)
b = J2

∑
m �=b

∑
〈i j〉
〈k�〉

〈b|a†
ka�|m〉〈m|a†

i a j |b〉
E (0)

b − E (0)
m

. (B3)

We note here that the |m〉 states are generic bosonic Fock
states, and therefore, their unperturbed energy is going to
include anharmonic effects:

E (0)
m =

N∑
i=1

ωi〈m|a†
i ai|m〉 − EC

2

N∑
i=1

〈m|a†
i a†

i aiai|m〉

=
N∑

i=1

ωimi − EC

2

N∑
i=1

mi(mi − 1). (B4)

The numerator of the second-order correction in Eq. (B3)
can be calculated using a similar argument as the one we used
for the second-order correction of the MP perturbation scheme
in Appendix A 2. However, it is more instructive and useful
for calculating higher-order corrections to give a diagram-
matic interpretation for them as quasiparticles hopping on the
lattice.

More precisely, one can interpret the product
〈b|a†

ka�|m〉〈m|a†
i a j |b〉 as the situation where we start with a

configuration of quasiparticles corresponding to the state |b〉.
Since |b〉 is a qubit state, there is at most one quasiparticle at
each side. The first hop occurs by annihilating a quasiparticle
at site j and creating it again at an adjacent site i. This first
hop brings us to the intermediate state |m〉 which may or may
not be a qubit state. Next, we finish our walk by hopping one
quasiparticle from site � to site k which should bring us back
to the configuration of state |b〉. Therefore, the only possible
paths are quasiparticles hopping to adjacent sites and then
returning to the initial positions:

E (2)
b = J2

∑
m �=b

∑
〈i j〉

〈b|a†
j ai|m〉〈m|a†

i a j |b〉∑N
k=1 ωk (bk − mk ) + EC

2 mk (mk − 1)
,

(B5)

where we have also substituted the unperturbed energy levels.
To calculate the weight of each step in this 2-step path, we

consider all cases. For the first step, we initially annihilate a
quasiparticle at site j, and since the starting state is a qubit
state, we will get a factor of

√
b j = b j . This last equality

is derived from the property of Eq. (A25). We will use this
property repeatedly throughout this derivation. Next, we need
to create a quasiparticle at the adjacent site i. Since |b〉 is a
qubit state, it is initially at most singly occupied, in which
case, we get a factor of

√
2; otherwise, we get a factor of 1.

We can summarize this in the factor 2bi/2. Note that, with the
arrival of the quasiparticle at site j, the state |m〉 is restricted to
have mk = bk for all k except from mj = 0 and mi = bi + 1.
For the second step, we start from site i which is now either
singly or doubly occupied. With a similar argument as the one
we used for the arrival of the quasiparticle at site i, we obtain
a factor of 2bi/2 for its departure, and since its initial position
is certainly empty, the last factor is 1. In total:

E (2)
b = J2

∑
〈i j〉

b j2bi

ω jb j − ωi + EC
2 bi(bi + 1)

. (B6)

Using the property in Eq. (A25), we can simplify this into

E (2)
b = J2

∑
〈i j〉

(
bib j

ω j − ωi
+ 2bib j

ω j − ωi + EC

)
. (B7)

As a final step, since every pair of sites i, j appears twice in
the sum, we fix an arbitrary order for the summation indices
and have

E (2)
b = J2

∑
〈i< j〉

[
b jbi − bib j

ωi − ω j
+ 4bib jEC

E2
C − (ωi − ω j )2

]
. (B8)

Applying the Walsh-Hadamard transformation in Eq. (2) to
the expressions that we derived here for the energy corrections
and using the properties in Eqs. (A26) and (A27), we can
obtain Eqs. (18a)–(18c) of the main text.

The next nonvanishing contribution is at fourth order
of perturbation theory. However, in the quasiparticle walks
picture that we presented for the second-order calculation,
there are now much more ways for the particle to move
around, which means we need to consider many different
cases, each one contributing a rather complicated summation.
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Therefore, presenting this result here does not offer any partic-
ular new insights, and for computational purposes, we deem

the numerical calculation of the higher-order corrections ad-
vantageous, although analytical results are obtainable.
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