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In this paper, we theoretically investigate quantum phase transitions (QPTs) in a modified Kane-Mele (MKM)
model with C2z and mirror symmetries. The phase diagram of the MKM model uncovers, in addition to the
Z2 topological insulator phase, a second-order topological insulator (SOTI) phase and three distinct inversion-
symmetry-breaking two-dimensional Weyl metal (P-breaking 2D WM) phases in response to the interplay of
the anisotropic nearest-neighbor hopping and Rashba spin-orbit coupling. During the QPTs among these phases,
the edges states evolve topologically and manifest as helical edge states, quasiflat localized edge states, and
Fermi arc edge states, respectively, in association with the merging and splitting of band-touching points. To
achieve second-order topological corner states, we design a rhombus-shaped nanodisk, where two corner states
emerge due to a filling anomaly resulting from the fixed Wannier configuration and C2z symmetry. In this paper,
we not only propose an approach to realize the SOTI phase in the MKM model but also establish a platform for
investigating the topological properties of the P-breaking 2D WM.
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I. INTRODUCTION

The Kane-Mele (KM) model, initially developed for
graphene, has been instrumental in revealing a category of
Z2 topological insulators (TIs) [1–5]. These Z2 TIs feature
robust spin-resolved helical edge states, resistant to non-
magnetic perturbations due to time-reversal (TR) invariance
[6,7]. In essence, Z2 topological invariants demarcate a phase
boundary between the TI and a trivial band insulator [2].
For instance, in an anisotropic KM model, Mondal and Basu
[8] illustrated that the interplay between the intrinsic spin-
orbit coupling (SOC) and anisotropic nearest-neighbor (NN)
hopping effects can result in the annihilation of topology,
signifying a topological quantum phase transition (QPT) from
the Z2 TI into a trivial band insulator. However, Z2 topolog-
ical invariants prove inadequate in capturing the topology of
higher-order TIs (HOTIs). Such HOTIs exhibit a distinctive
set of highly localized corner or hinge states that exist in
dimensions two or more lower than the bulk, despite the Z2

values appearing trivial in the bulk-surface correspondence
[9]. Essentially, the presence of in-gapped corner or hinge
states in HOTIs is attributed to the quantization of polarization
due to symmetries, adhering to higher-order bulk-boundary
correspondences [9–14]. Consequently, it suggests the poten-
tial for a topological QPT from Z2 TI to HOTI.

Significant research has focused on manipulating the KM
model to explore the second-order TI (SOTI) phase [15–19].
An in-plane [15–18] or out-plane [19] Zeeman field is in-
troduced to gap out the helical edge states and creates
the so-called boundary-localized mass domains with op-
posite signs at the adjacent edges. When specific crystal

*chenqj@hnu.edu.cn

symmetries are preserved, these manipulations enable the
realization of quantized, termination-dependent second-order
topological corner states. However, another mechanism to
realize the SOTIs involves a strategically designed Wannier
configuration protected by Cnz symmetries. In this scenario,
a mismatch between the Wannier centers and the bulk atoms
induces a filling anomaly along the edges to simultaneously
satisfy charge neutrality and the crystal symmetry and con-
sequently giving rise to a quantized fractional charge at the
corners [20–22]. Due to the crystal symmetry protection, the
quantization of corner states is robust against weak disorder
that preserves crystal symmetry globally [20,23–25]. How-
ever, when the disorder strength is strong enough to close the
bulk band gap, all states become localized, and the HOTI turns
into an Anderson insulator according to the delocalization-
localization transition [23,26,27].

In this paper, we present an alternative approach to real-
ize a SOTI in the modified KM (MKM) model, adhering to
the second mechanism. Whereas the anisotropic NN hopping
effect removes the last element of Cnz symmetry—the C3z

symmetry—the band-touching points are no longer confined
to the high-symmetry points in the Brillouin zone (BZ), i.e.,
K and K ′ in the honeycomb lattice. To induce the filling
anomaly, one straightforward method is to restore the C2z

symmetry by completely removing the staggered on-site po-
tential, while the anisotropy NN hopping effect is maintained
as a residual effect of the broken C3z symmetry. Equivalent
to the manipulation on the differential hopping between the
interunit and intraunit cells, adjusting the anisotropic NN
hopping strength forces the Wannier centers to occupy the
atomic-unoccupied Wyckoff positions, resulting in the for-
mation of obstructed atomic insulators [28]. Following this
consideration, we demonstrate that the SOTI can be achieved
in a rhombus-shaped nanodisk. The filling anomaly, induced
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FIG. 1. The modified Kane-Mele (MKM) model with A (red)
and B (light blue) sublattices. Anisotropic nearest-neighbor (NN)
couplings for interunit and intraunit cells are represented by black
and green solid lines, respectively. The signs of next-NN (NNN) cou-
plings vi j are indicated by dark blue and purple arrows, respectively.
(b) The Brillouin zone (BZ) of the MKM model.

by the C2z symmetry, plays a critical role in the formation of
corner-localized states. Moreover, the distinctive topological
characteristic of the SOTI is identified through a quantized
anisotropic polarization.

On the other hand, as the strength of Rashba SOC (RSOC)
increases, the breaking of inversion symmetry removes the
fourfold degeneracy at the TR invariant points, transform-
ing the system into a metal phase [29], characterized by
double degenerate Weyl points (WPs) with definite chirality,
akin to three-dimensional (3D) topological Weyl semimet-
als [30–33]. Therefore, we identify this metallic phase as
an inversion-symmetry-breaking two-dimensional Weyl metal
(P-breaking 2D WM). Beyond the role played in the KM
model, the interplay between anisotropic NN hopping and
RSOC can lead to QPTs between topological insulating
phases and the 2D WM phases, which topologically link to
the evolution of boundary states. Notably, the P-breaking
2D WM phase can only transit into a TI phase that preserves
TR symmetry, in contrast with the TR-symmetry-breaking 2D
WM phase found in ferromagnetic materials, which is known
to be the parent of the quantum anomalous Hall insulator
phase [34–37].

The rest of the paper is organized as follows. In Sec. II, we
first establish a phase diagram for the MKM model with C2z

and mirror symmetries in the parameter space of (η, λR/λSO),
with η, λR, and λSO being the anisotropic parameter, the
strength of RSOC, and the strength of intrinsic SOC, re-
spectively. Subsequently, in Sec. III, we illustrate topological
boundary states in the semi-infinite honeycomb configura-
tions, delving into the characteristics of edge states and their
evolutions during the topological QPTs. The realization of the
corner states of the SOTI phase in a rhombus-shaped nanodisk
is illustrated in Sec. IV. Finally, we conclude this paper in
Sec. V.

II. MODEL AND PHASE DIAGRAM

To preserve the C2z and mirror symmetries, we consider an
MKM model on a honeycomb lattice depicted in Fig. 1(a).
The tight-binding MKM Hamiltonian in the absence of the

staggered on-site potential is given by [2]

H =
∑
〈i, j〉

ti jc
†
i c j + iλSO

∑
〈〈i, j〉〉

vi jc
†
i szc j

+ iλR

∑
〈i, j〉

c†
i (s × di j )zc j . (1)

The first term on the right-hand side represents the anisotropic
NN coupling. The hopping strength ti j takes ti j = t along the
armchair (AM) direction (within intraunit cells) and ti j = ηt
along the zigzag (ZZ) direction (connecting interunit cells),
represented by the green and black solid lines in Fig. 1(a),
respectively. The strength t is material dependent, e.g., t ≈
2.8eV in graphene [38], and η �= 1 is the anisotropic param-
eter introduced to break the C3z symmetry. Note that, when
η = 1, the model reduces to the general KM model [2]. The
second term describes the intrinsic next NN (NNN) SOC with
strength λSO. The NNN SOC is crucial in establishing the
topological insulating phase, as it opens a bulk gap in the KM
model [1]. Here, vi j = ±1 corresponds to the clockwise and
counterclockwise orientations of the NNN sites, depicted by
dark blue and purple arrows in Fig. 1(a), respectively. The last
term on the right signifies the NN RSOC with strength λR,
where di j is the unit vector along the bond where the electron
traverses going from site j to NN site i. This term breaks the
inversion symmetry and can modify the bulk gap by inducing
band inversion. The vector s = (s0, sx, sy, sz ) consists of the
Pauli matrices, representing the electron spin.

After applying the Fourier transformation to Eq. (1), we
obtain the Hamiltonian in k space [2]:

H (k) =
5∑

a=1

da(k)�a +
5∑

a<b=1

dab(k)�ab, (2)

with �a = (σx ⊗ s0, σz ⊗ s0, σy ⊗ sx, σy ⊗ sy, σy ⊗ sz ),
�ab = [�a, �b]/(2i), and σ j ( j = 0, x, y, z) being the Pauli
matrices that act on the sublattice. The nonzero coefficients
da(k) and dab(k) are

d1(k) =
(

t + 2ηt cos
1

2
kx cos

√
3

2
ky

)
,

d3(k) = λR

(
1 − cos

1

2
kx cos

√
3

2
ky

)
,

d4(k) = −
√

3λR sin
1

2
kx sin

√
3

2
ky,

d12(k) = −2ηt cos
1

2
kx sin

√
3

2
ky,

d15(k) = λSO

(
2 sin kx − 4 sin

1

2
kx cos

√
3

2
ky

)
,

d23(k) = −λR cos
1

2
kx sin

√
3

2
ky,

d24(k) =
√

3λR sin
1

2
kx cos

√
3

2
ky,

respectively.
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The energy band dispersion of the Hamiltonian in Eq. (2)
significantly depends on the parameters η, λSO, and λR. By
varying these parameters, the model can undergo (topological)
QPTs among different phases. These QPTs are characterized
by the closing or opening of the bulk band gap along certain
symmetry-invariant lines. In the current MKM model, mirror
symmetries require that, at the phase boundaries where QPTs
occur, the bulk band gap must close precisely at the mirror-
invariant lines [39], namely, the Mx-invariant lines �-K and
M-K ′, as well as the My-invariant line �-M. Therefore, our
analysis will focus on exploring how the energy bands along
these mirror-invariant lines are affected by the parameters.

Along the Mx-invariant lines �-K and M-K ′, the energy
band dispersion relations, can be expressed in a compact form:

Eγ1,γ2 (kx, ky j )

= γ2d24(k) + γ1

√
d2

1 (k) + [d15(k) − γ2d3(k)]2, (3)

where γ1 = +1(−1) denotes the conduction (valence) band,
γ2 = ±1 is the subband index, and j = 1, 2 correspond to the
symmetry-invariant lines �-K and M-K ′, respectively. When
the valence and the conduction bands touch at a critical point
(kxC, ky j ), the following condition must be fulfilled:

E−,+(kxC, 0) = E+,−(kxC, 0), (4)

for j = 1, and

E+,+

(
kxC,

2
√

3π

3

)
= E−,+

(
kxC,

2
√

3π

3

)
, (5)

for j = 2, respectively. By solving Eqs. (4) and (5), we can
determine two phase boundaries, which are expressed as func-
tions of λR in terms of η and λSO:

λ2
R =

[
12λ2

SO(1 + 2η)2

(2 + η)2 − 4t2(1 + 2η)(η3 + 3η2 − 4)

9(2 + η)2

]

×�

(
η + 1

2

)
�(1 − η), (6)

for j = 1, and

λR = 4λSO

√
1 − 1

4η2
�(1 − η)�

(
η − 1

2

)
, (7)

for j = 2, respectively. The solutions also yield information
about the locations of the band-touching points: cos 1

2 kxC =
1−4η

2(2+η) for j = 1, and cos 1
2 kxC = 1

2η
for j = 2. Notably, the

locations of these band-touching points depend solely on η, a
characteristic like that found in the modified Haldane model
[40].

On the other hand, the energy dispersion taken along the
My-invariant line �-M can be expressed in the following form:

Eγ1,γ2 (0, ky)

= γ1

√
[d1(k) + γ2d23(k)]2 + [d12(k) + γ2d3(k)]2. (8)

At the critical band-touching points (0, kyC ), Eq. (8) implies
the condition: E−,+(0, kyC ) = E+,+(0, kyC ). Solving this con-
dition yields another phase boundary:

η = 0.5, (9)

and the information of the location of band-touching point:

cos
√

3
2 kyC = λ2

R−1
λ2

R+1
. The location of the band-touching point

moves from M(λR = 0) to �(λR = ∞) with increasing λR

along the phase boundary of Eq. (9), implying that the gap-
closing bulk state remains robust against RSOC if η = 0.5.

The RSOC, typically introduced by applying a perpendic-
ular external field [41] or induced by substrate effects [42],
leads to the breaking of inversion symmetry. As a result, the
energy bands are no longer Kramers degenerate except at
the TR-invariant momenta [39]. Interestingly, computing the
winding number along a closed orbit encircling each band-
touching point yields zero, indicating nonchirality. This type
of neutral degeneracy arises from the merging of two WPs
with opposite charges [43] and has been predicted in 3D opti-
cal crystals [44,45] and on a 2D square lattice [46]. Therefore,
when the inversion symmetry is broken, the phase boundaries
with nonvanishing λR as defined by Eqs. (6), (7), and (9)
indicate the emergence of twofold-degenerate neutral band-
touching points. However, when λR vanishes, the inversion
symmetry is retained, and both the conduction and valence
bands are twofold degenerate, leading to fourfold degenerate
neutral band-touching points at phase boundaries.

Plotting the boundaries with Eqs. (6), (7), and (9), we
can construct a 2D phase diagram in the parameter space
of (η, λR/λSO), as shown in Fig. 2(a). For the illustrative
case, we set λSO = 0.06t [2,8]. We focus on the upper half
plane (λR � 0) since the phase diagram is symmetric about
λR = 0. The boundaries delineated by Eqs. (6), (7), and (9) are
represented by blue, red, and gray solid lines, respectively. As
a result, the phase diagram is divided into five distinct phase
zones, colored in light yellow, light magenta, light blue, light
green, and light orange. Notably, there are two triple points
located at T1(1, 2

√
3) and T2(0.5, 0) and a quadruple point

at Q(0.5, 11.45) on the upper half plane. In Figs. 2(c)–2(g),
the maps of the bulk energy gap are plotted with param-
eters selected from each phase zone. Correspondingly, one
can distinguish that the light yellow and light magenta zones
represent insulating phases, while the light blue, light green,
and light orange zones are in metallic phase.

To further distinguish the phases associated with the topo-
logical features, we start with the triple point T1(1, 2

√
3),

which hosts neutral degeneracies at the corners of the first BZ
[as shown in Fig. 2(b)]. This point is generally regarded as the
critical condition for the QPT between the Z2 TI phase and
the metal phase in the KM model. Following Kane and Mele’s
argument [1], we identify the light magenta zone, enclosed by
the blue boundary [Eq. (7)] and η = 1, as the Z2 TI phase.
This phase is characterized by a nontrivial topological invari-
ant Z2 = 1 [2]. In the Z2 TI phase zone, the interplay between
η and λR/λSO does not destroy the bulk-edge topology until
the two parameters reach the blue boundary, where λR/λSO

becomes a function of η, as shown in Eq. (7). In other words,
unless the RSOC is sufficiently strong to close the band gap
induced by intrinsic SOC, the band topology remains un-
changed. This is consistent with the realization of the TI phase
in the KM model by employing a small λR/λSO [1]. However,
when RSOC is turned off, the Z2 TI is allowed to transition
to another insulating phase (for η < 0.5) by crossing the other
triple point T2(0.5, 0). Although the Z2 analysis suggests a
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FIG. 2. (a) Phase diagram of the modified Kane-Mele (MKM)
model in the parameter space (η, λR/λSO). The phase boundaries
determined by Eqs. (6), (7), and (9) are marked with red, blue,
and gray solid lines, respectively. Light yellow and light magenta
zones indicate the second-order topological insulator (SOTI) and
Z2 TI phases, respectively. Three distinct Weyl metal (WM) phases
are represented in light blue, light green, and light orange. (b) and
(c)–(g) represent energy gap map for points T1 and C–G, marked by
black solid circles in the phase diagram. Black solid circles, white
solid circles, and half white and half black circles denote WPs with
negative chirality, positive chirality, and neutrality, respectively.

trivial phase, we will show in Sec. IV that this insulating phase
can be manipulated into a SOTI phase that is characterized
by the nonzero anisotropic polarization and the emergence of
corner states.

In the KM model with λR/λSO > 2
√

3, corresponding to
the parameter path above the triple point T1 along η = 1, Du
et al. [29] demonstrated the emergence of additional band-
touching points around K and K ′. In our MKM model, RSOC

FIG. 3. (a) Variation of the distance between two W1’s as a
function of η for different λR values. (b) Trajectory of W2 within
the first Brillouin zone (BZ) as η varies, depicted for cases where
λR < 2

√
3λSO (red) and λR > 2

√
3λSO (blue and purple). The black

arrow represents the direction of decreasing η.

influences these band-touching points in a manner akin to
the KM model. Moreover, the introduction of anisotropic
NN hopping causes the band-touching points to deviate the
C3z-invariant points/lines, owing to the breaking of C3z sym-
metry. Furthermore, as a result of the constraint of mirror
symmetry, two kinds of band-touching points are found in the
MKM model: one type (referred to as W1) of band-touching
points locates at the mirror-symmetry line K1-�-K ; while
the other type (referred to as W2) is fully unpinned. At the
phase boundaries separating insulating and metallic phases,
the band-touching points are nonchiral and share the same
Fermi energy, implying a semimetal phase. As parameters
continue to evolve, each neutral band-touching point splits
into two copies with opposite chirality. Moreover, the stronger
RSOC further distorts the particle-hole symmetry, leading to
a misalignment of the band-touching points at the Fermi en-
ergy. Therefore, the system undergoes a QPT into a nontrivial
metallic phase. In Figs. 2(d)–2(f), we highlight the signs of
the winding numbers of the band-touching points by black
and white solid circles. These points exhibit characteristics
like 3D WPs, often described as monopoles characterized by
a chirality that signifies the topological charge [30–33]. Due
to TR symmetry, each crossing point at k is associated with
a TR partner at −k with the same chirality [47]. According
to the no-go theorem, which claims that the total topological
charge within the first BZ must be zero [48], the emergence
of band-touching points must be even-numbered pairs. As
illustrated in Figs. 2(d)–2(f), the number of band-touching
points is either two pairs [in the cases of Figs. 2(d) and 2(f)] or
four pairs [in the case of Fig. 2(e)]. These results suggest that
the twofold-degenerate band-touching points from the split of
neutral degeneracy in the MKM model can be considered 2D
analogs of P-breaking WPs. Consequently, we attribute these
metallic phases as the P-breaking 2D WM phases.

The 2D WMs can be classified into three distinct types:
WM1, WM2, and WM3. This classification is based on the
number and distribution of resident WPs, as indicated in
the corresponding phase zones in Fig. 2(a). As shown in
Figs. 2(d)–2(e), WM1 and WM2 each contain two pairs of
WPs, whereas WM3 hosts four pairs. In WM1, two sets of
W1’s are located along the invariant line K1-�-K due to the
mirror and C2z symmetries. Figure 3(a) illustrates the variation
of the relative distance 	kx between two W1’s of opposite
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chirality within each pair, as a function of the parameter
η for various fixed values of λR. It is important to note
that, when 	kx drops to zero, each pair of W1’s with oppo-
site chirality annihilates, resulting in a neutral degeneracy.
This occurs when the parameter coordinates intersect the red
boundary in the phase diagram. Interestingly, the pairwise
W1’s demonstrate considerable robustness against variations
in η at sufficiently large RSOC and are topologically invariant
even when η crosses the phase boundary (η = 0.5) between
WM1 and WM3. This implies that there must be two pairs of
W1’s constituting two of the four pairs of WPs in WM3.

In the WM2 phase, the set of W2’s diverges from the mirror-
invariant lines and is located at generic k points in the interior
of the BZ. Figure 3(b) illustrates the trajectories of a typical
W2 in the first quadrant of the BZ, depicted as a function of
the parameter η for various fixed λR’s. The positions of the re-
maining three WPs can be inferred by applying the mirror and
C2z symmetries. Unlike the W1’s, the W2’s are fully unpinned,
leading to two possible scenarios for the merging of two W2’s
with opposite chirality. The merging can occur either on the
Mx-invariant line (M-K ′) or on the My-invariant line (�-M),
depending on whether the parameters align with the blue or
gray phase boundary, respectively. In contrast to the W1’s, the
two pairs of W2’s exhibit robustness against variations in λR,
even when crossing the phase boundary between WM2 and
WM3. Hence, the W2’s contribute to the other two of the four
pairs of WPs in the WM3.

Typically, the WM3 phase can be considered the combi-
nation of the WM1 and WM2. Excepting for the quadruple
point Q—where the red and gray boundaries intersect—the
processes of annihilation and creation of W1 and W2 are mu-
tually independent during the QPT between WM3 and either
WM1 or WM2. This independence implies that they cannot
be simultaneously annihilated by solely breaking either the
inversion symmetry or the C3z symmetry. According to the
bulk-boundary correspondence, these WPs can give rise to
Fermi arc edge states in the nanoribbon configurations. As
will be demonstrated in the subsequent section, these edge
states evolve topologically in association with the merging
and splitting of WPs.

III. EDGE STATES IN THE MKM MODEL

Since edges states are highly sensitive to the details of the
Hamiltonian near the edge, we consider two fundamentally
different bond-cutting operations within a 2D honeycomb
lattice: strong-bond-cutting (SBC) and weak-bond-cutting
(WBC). These operations are analogous to the manipulation
of endpoints in the Su-Schrieffer-Heeger (SSH) model [49].
Geometrically, each bond-cutting operation can result in ei-
ther a ZZ or an AM shaped edge. Consequently, there are four
distinct types of nanoribbon configurations, as illustrated in
Fig. 4, denoted as the SBC-ZZ edge, SBC-AM edge, WBC-
ZZ edge, and WBC-AM edge, respectively.

To demonstrate the evolution of topological edge states
across different phases in the present MKM model, we be-
gin with an overview of topological edge states in the Z2

TI zone. Figure 5 presents the full band structures of four
types of nanoribbons with varying η and a fixed λR = 0.
Focusing on the edge states, we make three key observations:

FIG. 4. Illustrations of zigzag (ZZ) and armchair (AM) edges.
(a) Strong-bond-cutting (SBC)-ZZ (purple dashed line) and weak-
bond-cutting (WBC)-AM (dark-red dotted line) edges. (b) WBC-ZZ
(purple dashed line) and SBC-AM (dark-red dotted line) edges. Here,
the green and black solid lines denote ηt and t nearest-neighbor (NN)
hoppings, respectively.

(i) In the Z2 TI zone [Figs. 5(a1)–5(d1)], topological helical
edge states are consistently observed. Specifically, at η = 1,
the band structures replicate those of the Z2 TI phase in
the KM model [1]. According to Kane and Mele’s argument
[1], the crossings of two edge states at k = π for ZZ edges
[Figs. 5(a1) and 5(b1)] or at k = 0 for AM edges [Figs. 5(c1)
and 5(d1)] form a Kramers doublet, which is robust against
any TR-symmetric perturbations. (ii) In the SBC nanoribbons,
edge states always emergence, as confirmed by Figs. 5(b1)–
5(b4) for the SBC-ZZ edge and Figs. 5(d1)–5(d4) for the
SBC-AM edge. This is due to the anisotropic NN hopping
effect, which causes the Wannier centers to relocate at the
strong bonds (green bars in Fig. 4), leading to the mismatches
between lattice sites and Wannier centers [50]. This resembles
the SSH model [49], in which the edge states emerge at
cleavage terminations intersecting the Wannier centers. (iii)
In the SOTI phase zone, as shown in Figs. 5(b3) and 5(d3),
edge states are completely separated from the bulk bands.
At −0.5 < η < 0.5, the edge states compress into a quasi-
flat band in the middle of the bulk band gap, akin to the

FIG. 5. Band structures of nanoribbons with (a) weak-bond-
cutting (WBC)-zigzag (ZZ) edge, (b) strong-bond-cutting (SBC)-ZZ
edge, (c) WBC-armchair (AM) edge and (d) SBC-AM edge. The
Rashba spin-orbit coupling (RSOC) strengths are set to λR = 0. The
in-gapped edge states are marked by red lines.
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behaviors found in phosphorene [50,51] and the modified
Haldane model [40].

A. Edge states in SOTI phase

It should be emphasized that, in the SOTI phase, the edge
states cross the Fermi energy an even number of times within
the intervals k ∈ [0, π ) or k ∈ [π, 2π ). As a result, these
states contribute neither charge nor spin currents and do not
support nonzero spin Hall conductivity [8]. Notably, these
gapless edge states in the SOTI phase have been suggested
to be Z2 trivial, as they can be eliminated by pushing all the
bound states out of the gap [3]. Even at the critical triple point
T2, the edge states that coexist with bulk states, as shown in
Figs. 5(b2) and 5(d2), remain Z2 trivial. In the weak bond-
ing limit (i.e., small η), these detached edge states resemble
localized trap states that might be induced by the impurities
deposited on the edge of the nanoribbon. Therefore, in both
SBC or WBC nanoribbons, when the system transitions from
the SOTI phase to the Z2 TI phases at the critical point
(η = 0.5), the (topological) QPTs characterized by an even or
odd number of Kramers pairs at the Fermi surface are still well
defined by the Z2 topological invariant. However, although
these detached edge states are Z2 trivial, their localized na-
ture suggests a potential avenue for manipulating higher-order
topological states that are more strongly localized in the finite-
size systems [52]. We suggest that these localized edge states
are a significant signature of the SOTI phase.

B. Edge states in WM phases

In the WM phases, Fermi arc edge states are a universal
feature across all types of nanoribbons. For example, in Fig. 6,
the existence of these edge states is evident in the edge energy
spectra of the nanoribbons across three WM phases. Like
Fermi arc surface states in 3D WMs [30–33], the edge states
in 2D WM phases bridge the projections of two WPs, thereby
named Fermi arc edge states. Furthermore, these Fermi arc
edge states exhibit double degeneracy that is protected by
mirror symmetry and hence form closed loops, as depicted
in Fig. 7.

In Fig. 7, we schematically illustrate the evolution of Fermi
arc edge states through various phase transitions: Z2 TI-
WM2-WM3-WM1-SOTI-WM2, following the path indicated
by the black dashed line in Fig. 2(a). The Fermi arc edge
states are shown as arcs that connect the WPs. It is worth
noting that, in each BZ, the red and blue arcs independently
represent two distinct types of nanoribbons: SBC and WBC
nanoribbons, respectively. The Fermi arc edge states evolved
from the helical edge states of Z2 TI phase first appear when
the path C-D intersects the blue phase boundary, as shown
in Fig. 7(a). At this critical phase transition condition, two
pairs of Fermi arc edge states form a closed loop connecting
two neutral WPs, distinguishing them topologically from the
helical edge states in the Z2 TI. As the system transforms into
the WM2 phase, each neutral degeneracy splits into two WPs
of opposite chirality. As a result, the endpoints of the Fermi
arc edge states must exhibit opposite chirality, maintaining a
neutral total charge within each loop.

FIG. 6. Energy spectra of (1) strong-bond-cutting (SBC)-zigzag
(ZZ) and (2) weak-bond-cutting (WBC)-ZZ nanoribbons in (a)
WM1, (b) WM2, and (c) WM3. The corresponding parameters
(η, λR/λSO) in Weyl metal (WM) phase zones are marked as D–F
in Fig. 2(a).

With the gap closing along the symmetry line K1-�-K and
the emergence of additional neutral degeneracies at the red
phase boundary between WM2 and WM3, a Fermi arc edge
state arises in the SBC nanoribbon. As shown in Fig. 7(c),
each new neutral degeneracy acts as an intermediate node,
connecting the (red) Fermi arc edge states to a pair of
WPs with opposite chirality. This results in the Fermi arc
edge states forming two interconnected loops to ensure neu-
trality. In contrast, the (blue) Fermi arc edge states in the
WBC nanoribbon maintain a single-loop structure, leaving
the neutral degeneracies isolated. Upon crossing the red phase
boundary, the neutral degeneracies further split, creating two
extra pairs of WPs. In the WM3 phase, as shown in Fig. 7(d),
abundant Fermi arc edge states appear in both SBC and WBC
nanoribbons, forming multiple independent loops connected
to the WPs of opposite chirality. We suggest that the topolog-
ical structure of the loops can be applied to characterize the
topological QPTs among the WMs.

Similar patterns can be observed for the remaining path.
For example, the role of neutral degeneracies as intermediate
nodes is evident in Fig. 7(e), corresponding to the scenario
at the gray boundary (η = 0.5) in Fig. 2(a), where WM3

transitions to the WM1. In WM1, the Fermi arc edge states,
as shown in Fig. 7(f), replicate the behavior observed in WM2

shown in Fig. 7(b). It is crucial to emphasize that the Fermi arc
edge states solely connected to the neutral degeneracies shown
in Figs. 7(a), 7(g), and 7(h) are fundamentally the same as the
Z2 trivial states that coexist with bulk states. As the system
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FIG. 7. Schematics depicting the evolution of Fermi arc edge states during quantum phase transitions (QPTs): Z2 topological insulator
(TI)-WM2-WM3-WM1-second-order TI (SOTI)-WM2 following the path C → (b) D → (d) E → (f) F → G → C in Fig. 2(a). Panels (a), (c),
(e), (g), and (h) correspond to the critical phase boundaries between the QPTs. Weyl points (WPs) with chirality − and + are represented by
the black and white solid circles, respectively, while neutral degeneracies are marked by half white and half black circles. Red and blue arcs
depict the Fermi arc edge states for strong-bond-cutting (SBC) and weak-bond-cutting (WBC) nanoribbons, respectively.

transitions to the SOTI phase, the neutral degeneracies are
gapped out, and Fermi arc edge states detach from the bulk,
finally forming localized edge states with in-gapped quasiflat
band structures, as depicted in Figs. 5(b3) and 5(d3).

It is also important to emphasize that, in the 2D WM
phases, the Fermi arc edge states are very fragile. For exam-
ple, in contrast with the 3D Weyl nodes whose low-energy
effective Hamiltonian contains all four Pauli matrices, the
description of 2D WPs employs only two Pauli matrices,
i.e., σx and σy [34]. Consequently, additional perturbations
or disorders proportional to σz will gap out the 2D WPs,
leading to the breakdown of Fermi arc edge states. On the
other hand, the introduction of magnetic impurities also leads
to backscattering at the edge states [53], resulting in the de-
struction of the edge ballistic transportation. Nevertheless, due
to the spin-momentum locking enforced by TR symmetry, the
Fermi arc edge states in the 2D WM phases can resist weak
nonmagnetic disorders [53].

IV. CORNER STATES IN THE MKM MODEL

In this section, we demonstrate the realization of corner
states in the SOTI phase using a rhombus-shaped nanodisk.
The rhombus-shaped nanodisk tailed off a honeycomb lattice
is depicted in Fig. 8(a). The size of the nanodisk, denoted
as L, is determined by the number of benzene rings along
its edge. Figure 8(b) displays the energy spectrum for a
rhombus-shaped nanodisk of size L = 15, under the phase
parameters (0.1, 0). Here, four zero-energy in-gapped states
are highlighted with blue and red solid circles, signifying
the emergence of quantized charge states. The inset of this
figure further corroborates the localizations of the filled corner

FIG. 8. Corner states in the modified Kane-Mele (MKM) model.
(a) Illustration of a rhombus-shaped nanodisk of size L = 6, with
green and black solid lines indicating ηt and t nearest-neighbor (NN)
hoppings, respectively. (b) Energy spectrum for η = 0.1 and λR = 0,
highlighting corner states in red and blue circles. The inset displays
the probability distribution of the states labeled by blue circles.
(c) Energy spectrum variation with the anisotropic parameter η at
λR = 0. (d) Energy spectrum response to varying Rashba spin-orbit
coupling (RSOC) strength at η = 0.1. In panels (b)–(d), the size of
the nanodisk is chosen as L = 15. Corner states are marked in red in
(b) and (d).
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FIG. 9. Wannier bands along (a) kx and (b) ky for s = +1 (red
empty circle) and s = −1 (blue empty circle). The anisotropic pa-
rameter is chosen as η = 0.1.

states (marked in blue) at the top and bottom lattice sites. To
further validate the second-order topology in the SOTI phase,
we plot the energy spectrum as a function of the anisotropic
parameters η, while sweeping across the λR/λSO axis. As an
example, Fig. 8(c) demonstrates the persistence of in-gapped
corner states, represented by the red lines, within the range of
−0.5 < η < 0.5 at λR = 0.

To capture the characters of the localized states, the Bloch
wave functions are projected onto the Wannier representa-
tion. Consequently, the nontrivial topology of a SOTI can
be captured by the polarization of occupied bands, which is
formulated as [10,11]

pα = 1

Nβ

∑
kβ

Nocc∑
j=1

ν j
α (kβ ), (10)

where α, β = x, y, with α �= β, Nβ , is the number of lattice
sites along β, and ν

j
α (kβ ) refers to the jth Wannier band.

For the sake of simplicity but without loss of generality,
we initially set λR = 0. It will be discussed later that the
higher-order bulk-boundary correspondence is maintained up
to a critical λR. In the presence of inversion symmetry, the
Hamiltonian in Eq. (2) can be decoupled into two independent
parts [54]:

Hs(k) = d1(k)σx − d12(k)σy + sd15(k)σz, (11)

with s = ±1 representing the spin index. The mirror symme-
try along α imposes a restriction on the allowable Wannier

bands [10,11]: ν
j
α (kβ )

Mα= −ν
j
α (kβ ). Due to the gauge invari-

ance, pα is defined modulo 1. Therefore, pα is quantized and
takes values of either 0 or 1

2 . Figure 9 illustrates the Wannier
bands for (a) νs

y (kx ) and (b) νs
x (ky), respectively. It is readily

apparent that the Wannier band νs
y (kx ) localizes ∼ 1

2 , as shown
in Fig. 9(a), while νs

x (ky) is essentially zero, as depicted in
Fig. 9(b). Consequently, these unique Wannier bands give
rise to an anisotropic polarization, (ps

x, ps
y) = (0, 1

2 ), which
indicates that the electrons are localized at the center of the
strong bond. This observation is consistent with those in the
modified honeycomb lattice [50] and the modified Haldane
model [40].

In the nanodisk configuration, a total of 2L(L + 2) bands
is occupied by electrons at half-filling. However, due to
the anisotropic polarization in the Wannier configuration,
2L(L + 2) − 2 bulk electrons are moved to the center of
the strong bond. This movement aligns them with the

positive ionic centers, manifesting as the dipoles or mul-
tipoles in the bulk. Consequently, there are two lonely
electrons that must be positioned at the corners to maintain
the charge neutrality of the system. Owing to the C2z sym-
metry in the absence of staggered on-site potential, these
two electrons are localized at the corners where two ZZ
edges intersect. Indeed, in the limit of λR = 0, the charge-
localized density can also be deduced by superimposing
two modified Haldane models, where each contributes 1

2
electron at two corners [40]. This observation aligns with
the spirit of Eq. (11) and the fact that the KM model
can be decoupled into two Haldane models with opposite
flux.

Finally, we briefly discuss the impact of RSOC (λR �=
0) on the corner states. As depicted in the energy spec-
trum in Fig. 9(d), an increase in RSOC eventually leads
to elimination of corner states, accompanied with a QPT
to the WM1 phase. The introduction of RSOC breaks both
particle-hole symmetry and inversion symmetry, destabi-
lizing the in-gapped corner states from their zero-energy
positions as the bulk gap narrows. In simpler terms, NN
RSOC imposes a strong connection between the two corner-
localized electrons and their nearest bulk electrons. At a
critical RSOC strength where the bulk gap closes, the
corner states are absorbed into the bulk, as shown in
Fig. 9(d).

V. CONCLUSIONS

In summary, we have established a generalized phase dia-
gram in the parameter space (η, λR/λSO) to demonstrate QPTs
in the MKM model with C3z symmetry broken by anisotropic
NN hopping but C2z symmetry retained by removing the stag-
gered on-site potential. The presence of C2z symmetry can
induce a filling anomaly in a strategically designed Wannier
configuration within a certain parameter scale, which opens
an active avenue to realize second-order topological corner
states. The incorporated anisotropic NN hopping and RSOC
break the C3z and inversion symmetries, and thereby, tuning
the parameters leads to QPTs among Z2 TI, P-breaking 2D
WM, and SOTI phases. Notably, the SOTI and Z2 TI phases
persist even when the inversion symmetry is broken. The P-
breaking 2D WM phases occur at the critical RSOC, where
the bulk band gap closes as the insulating phases undergo
the QPTs at the phase boundaries delineated by Eqs. (6) and
(7).

We also demonstrated that the interplay between
anisotropy and RSOC gives rise to three distinct types of
P-breaking 2D WM phases, each featured by 2D WPs
with ±1 topological charge and Fermi arc edge states. The
creation and annihilation of neutral degeneracies play a
crucial role in affecting the topological nature of the edge
states during QPTs between insulating phases and WM
phases. As the QPTs occur among the topological phases,
we identified helical edge states, localized edge states with
a quasiflat band structure, and Fermi arc edge states in the
nanoribbon geometry. Finally, we theoretically demonstrated
the realization of a SOTI phase in a rhombus-shaped nanodisk.
Two corner states, each with an integer charge, emerge
as the consequence of the filling anomaly between the
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Wannier centers and the bulk atoms. These higher-order
topological states, adhering to higher-order bulk-boundary
correspondences, are characterized by a quantized anisotropic
polarization which is protected by mirror symmetry.
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and line nodes in gyroid photonic crystals, Nat. Photon. 7, 294
(2013).

[45] J.-M. Hou and W. Chen, Weyl semimetals in optical lattices:
Moving and merging of Weyl points, and hidden symmetry at
Weyl points, Sci. Rep. 6, 33512 (2016).

[46] Y. Guo, Z. Lin, J.-Q. Zhao, J. Lou, and Y. Chen, Two-
dimensional tunable Dirac/Weyl semimetal in non-Abelian
gauge field, Sci. Rep. 9, 18516 (2019).

[47] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele,
and A. M. Rappe, Dirac semimetal in three dimensions, Phys.
Rev. Lett. 108, 140405 (2012).

[48] H. B. Nielsen and M. Ninomiya, The Adler-Bell-Jackiw
anomaly and Weyl fermions in a crystal, Phys. Lett. B 130, 389
(1983).

[49] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in poly-
acetylene, Phys. Rev. Lett. 42, 1698 (1979).

[50] M. Ezawa, Minimal models for Wannier-type higher-order
topological insulators and phosphorene, Phys. Rev. B 98,
045125 (2018).
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