
PHYSICAL REVIEW B 109, 144105 (2024)

Sound velocity of α-quartz under pressure: First-principles calculations
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As the most abundant substance on the earth’s crust, the behavior of α-quartz under pressure has always
been a research hotspot, which has inherent crystallographic significance and is of significance to understanding
the rocky parts of the earth. This paper provides the discussion about the stability of α-quartz under pressure
by analyzing its sound velocity based on first-principles calculation. It is discovered that under pressure, the
mechanical instability (24.5 GPa) of α-quartz precedes the dynamic instability (40 GPa). The results show that
the trend of increasing and then decreasing for compressed sound velocity in different directions occurs before
the structural change, and the pressure point that starts to decrease is about 20 GPa. The mechanical instability at
24.5 GPa is caused by amorphization of α-quartz. The propagation velocities of the plastic wave in crystal after
structural change under pressure are discussed. It is considered that the plastic wave first propagates along the
direction K to G in the a axis, and the velocity is about 429 m/s.
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I. INTRODUCTION

Silica, exhibiting a very rich diversity of polymorphisms,
with more than 30 stable or metastable forms, is a very abun-
dant component in the earth [1]. Because of its abundance in
nature, high-pressure phase transitions in silica have long been
of great interest in the fields of geophysics, materials science,
and condensed matter physics [2–10]. At lower pressures, Si
forms tetrahedral coordination with O in silicon polymorphs,
such as quartz [11], cristobalite [12], tridymite [13], and
coesite [14]. When the pressure is approximately above 10
GPa, the coordination number of Si increases from 4 to 6,
such as rutile type (stishovite) [15], CaCl2 type [16], α-PbO2

type (seifertite) [17], FeS2 (pyrite) type [18], Fe2P type [18],
etc. Furthermore, metastable high-pressure structures of sil-
ica have also attracted extensive attention due to their exotic
properties [19–25]. α-quartz, the most common and stable
quartz crystal at ambient temperature and pressure, is not only
an important part of quartz and silicate, but also the most
abundant material on the earth. Studying its high-pressure
behavior is not only because of its inherent crystallographic
significance, but also because it has important implications
for understanding the rocky portion of the earth. Hence, the
behavior of α-quartz under pressure has been intensively stud-
ied up to now.

In 1988, Hemley et al. [26] made a meaningful experiment
of pressure-induced amorphous phenomena in α-quartz at
25–30 GPa and 300 K. Thereafter, this discovery of pressure-
induced amorphous phenomena in α-quartz has aroused great
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interest. Tse and Klug [27] concluded that the mechanical
instability at 22.3 GPa results in amorphous phenomena in
α-quartz based on the constant-pressure molecular dynam-
ics calculations. Binggeli and Chelikowsky [28], using a
classical interatomic potential and a first-principles pseudopo-
tential method, reported a mechanical instability in α-quartz
at approximately 30 GPa, and believed that pressure-induced
amorphization is due to shear instability. Kingma et al. [29]
observed microscopically that the amorphization in α-quartz
began with defect formation, followed by the growth of amor-
phous silicon dioxide in these defect sites.

Instead, in 1993, it was found experimentally by Kingma
et al. [30] that the α-quartz undergoes a different crystalline-
crystalline phase transition at 21 GPa and room temperature,
followed by the amorphization of different crystal phases un-
der pressure. Similarly, Binggeli et al. [31] found that α-quartz
undergoes a phase transition (at 21.5 GPa) within the pressure
range of amorphization using extensive molecular-dynamics
simulations. Remarkably, in 1996, Kingma et al. [32] revealed
experimentally the coexistence of at least one amorphiza-
tion and two crystalline phases (quartz-II and a high-pressure
phase) from 21 to 43 GPa. Moreover, a triclinic crystalline
structure (at 22 GPa) had been found between α-quartz
and the amorphous phase based on the classical molecular-
dynamics calculations by Tse et al. [33]. It has also been
shown experimentally by Haines et al. [1] that pressurizing
α-quartz to 45 GPa produces a different monoclinic crystalline
phase.

Based on the above research results, it can be found that
although considerable work has been carried out to elucidate
the structural evolution of α-quartz under pressure, further
research in both experimental and theoretical aspects is still
necessary to clarify the stability of α-quartz under pressure.
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This therefore motivated us to further explore its stability
under pressure. The solid material has the characteristic of
force deformation, including elastic deformation and plastic
deformation. Under the action of pressure, the propagation be-
havior of the elastic wave of lattice vibration before structural
changes is generally characterized by the sound velocity. The
average sound velocity (vm) refers to the propagation speed
of the elastic wave in the whole crystal, and the longitudinal
and transverse wave sound velocities (vl and vt ) represent the
propagation speed of the elastic wave in the longitudinal and
transverse directions of the crystal, respectively. They can be
simply obtained from the bulk modulus (B), shear modulus
(G), and lattice density (ρ). The compressed sound velocity
(vp) can describe the propagation direction of the elastic wave
more specifically than vm, which is related to phonon energy
and momentum space. When the stress in the material exceeds
the elastic limit, the plastic deformation will occur, that is, the
change in the crystal structure. The effect of the generation of
plastic deformation and its propagation in the crystal on the
structural phase transition of materials is of vital importance.
In summary, the propagation of sound velocity in the lattice
plays an important role in the study of material stability.

Therefore, this paper aims to describe the stability of
α-quartz under pressure by analyzing the change of sound
velocity. Moreover, it is generally believed that phonon cal-
culations can provide a standard for dynamic stability and
indicate structural stability by the absence of virtual phonon
frequencies [34,35]. In this paper, we draw lessons from the
formula for calculating the compressional sound velocity (vp),
assuming that the velocity derived from the energy of the
acoustic phonon imaginary frequency can be used to describe
propagation velocity of plastic wave and denoted as vq.

II. COMPUTATIONAL METHODS AND DETAILS

A. Computational methods

1. Sound velocity

The average sound velocity (vm) can be obtained from bulk
modulus (B), shear modulus (G), and density (ρ), expressed
as follows [36]:

vm =
[
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3

(
2

v3
t

+ 1

v3
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)]−1/3
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where vl is the longitudinal wave velocity, and vt is the trans-
verse wave velocity. The computational details of B and G are
described in Supplemental Material (SM) Sec. I [37].

The compressional sound velocity (vp) is determined by
fitting the phonon dispersion with a sinusoidal function, and
the calculated formula is as follows [47]:

E = 4.192 × 10−4vp × Qmax sin

(
π

2

Q

Qmax

)
, (4)

where, E (meV) and Q (nm−1) are the energy and the momen-
tum of the acoustic phonon, and Qmax (nm−1) is the length of

FIG. 1. (a),(b) The view of Brillouin zone of α-quartz unit cell
from different perspectives, the −→g1 , −→g2 , and −→g3 are reciprocal lattice
vector; (c) the geometric diagram of K-point G (0 0 0), K (−0.333
0.667 0) and M (0, 0.5 0), �MGK = 30◦, �GMK = 90◦.

the first Brillouin zone edge, the calculation of which will be
discussed later. In this paper, to further simplify the calcula-
tion of Eq. (4), we take the mean of the sine function and use
the following formula to calculate vp [48]:

E = 4.192 × 10−4vp × Qmax ×
√

2

2
. (5)

2. Length of first Brillouin zone edge

The basis vector of hexagonal lattice (−→a1 , −→a2 , and −→a3 ) can
be expressed as

−→a1 =
√
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2
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in which, a, b, and c are lattice parameters, and a is equal to b.
According to the relation between real lattice and reciprocal
lattice,

−→g1 = 2π
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−→a3 × −→a1

�
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−→g3 = 2π
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The basis vector of the reciprocal lattice (−→g1 , −→g2 , and −→g3 )
can be obtained:

−→g1 =
√

3h

2
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i + h

2
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j ,

−→g2 = −
√

3l

2
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2
−→
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where h, l , and m are reciprocal lattice parameters, in which h
is equal to l . It can be seen from Fig. 1(b) that k point G to M is
in the direction of reciprocal lattice vector −→g2 , and combined
with the geometric relationship in Fig. 1(c), the Qmax can be
obtained according to the equations as follows:

QGM = l QKG = 2√
3

l. (9)

Based on the above calculation, the length of the Brillouin
region boundary QGM and QKG can be obtained under pres-
sure.
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FIG. 2. The elastic properties of α-quartz: (a) the elastic constants under pressure, (b)–(f) the mechanical stability criterion of trigonal
α-quartz under pressure.

B. Computational details

All calculations in this paper are adopted within CASTEP

package based on the density functional theory (DFT) and
the density functional perturbation theory (DFPT) [49]. The
generalized gradient approximation (GGA) with Perdew-
Burke-Ernzerhof (PBE) is performed to deal with exchange
correlation effects [50,51]. The nonconserving pseudopoten-
tial is chosen to describe the interaction between electrons
and ions, and [Si] 3s2 3p2 and [O] 2s2 2p4 electrons are
constructed as valence electrons [52]. We use 5.0 × 10−6

eV/atom of energy, 0.01 eV/Å of maximum force, 0.02 GPa of
maximum stress, and 5.0 × 10−4Å of maximum displacement
as the convergence tolerance to optimize the crystal structure.
Moreover, the energy cutoff with 830 eV is selected to control
the number of plane wave basis functions [53]. The Brillouin
zones are carried over the 3 × 3 × 4 grid sizes according to
the strength of the Monkhorst-Pack scheme in the reciprocal
space [54]. The linear response method is used to calculate the
phonon dispersion [55].

III. RESULTS AND DISCUSSION

A. Mechanical stability and dynamics stability

The elastic constants under pressure are shown in Fig. 2(a),
and it can be found that C11, C33, C12, C13, and C14 in-
crease under pressure, while C44 increases within 0–10
GPa, and then decreases under pressure. Moreover, C66 de-
creases within a pressure range approximately 0–10 GPa,

and then increases under pressure, and this trend had been
reported previously [28]. Figures 2(b)–2(f) intuitively show
the mechanical stability criterion of trigonal α-quartz un-
der pressure (see SM Sec. I [37]), indicating that structural
mechanics instability occurs at around 24.5 GPa, that is,
(C44 − P)(C11 − C12 − 2P) − 2C2

14 < 0 at 24.5 GPa. This is
basically consistent with the pressure point (22.3 GPa) of
mechanical instability in α-quartz obtained by the constant-
pressure molecular dynamics calculations [27]. Nevertheless,
the phonon dispersion curves under pressure indicates that
the structure becomes dynamically unstable until about
40 GPa, as shown in Fig. 3. It can be drawn from Fig. 3 that
the acoustic phonons in the b and c axes do not appear as
imaginary frequency under pressure, while acoustic phonons
in the a axis appear as imaginary frequency at 40 GPa, and
the imaginary frequency phenomenon becomes increasingly
severe under pressure. This reveals that the lattice vibration
in the b- and c-axis direction is dynamically stable, while the
lattice vibration in the a-axis direction is dynamically unstable
after 40 GPa, which mainly occurs at the edge of the Brillouin
zone K and M.

B. Sound velocities

Based on previous studies described in the Introduction,
we speculate that the main reason why the mechanically in-
stability of α-quartz precedes the dynamic instability under
pressure is that the amorphization of α-quartz under pressure.
In order to understand the changes in structure under pressure
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FIG. 3. The acoustic phonon dispersion curves of α-quartz in a, b, c axis under pressure.

after 24.5 GPa, we calculated the sound velocity.vm, vl , and
vt under pressure are displayed in Fig. 4, which signal that vl

increases under pressure, while vt decreases under pressure.
The former (vl ) is larger than the latter (vt ), and the difference
between the two becomes larger under pressure. The decrease
for vt under pressure corresponds to an overall softening of
acoustic phonon in the a and b axes, and the increase for vl

under pressure corresponds to an overall increase for acoustic
phonon energy in the c axis. In addition, vm decreases under
pressure.

Further, the vp and vq along the directions of K to G and
G to M in the a, b, and c axes can be obtained, as shown in
Fig. 5. In the a axis [Fig. 5(a)], along the direction of K to G,
vp increases in the range 0–20 GPa, and then decreases in the
range 20–40 GPa. Along the direction of G to M, vp increases
in the range 0–30 GPa, and then decreases in the range 30–48
GPa. Due to the appearance of an acoustic phonon with imag-
inary frequencies at the k points K at 40 GPa in the a axis, we
deduce that beginning from 40 GPa the lattice vibration along

FIG. 4. The average sound velocity (vm), the longitudinal (vl )
and transverse (vt ) wave sound velocity of α-quartz under pressure.

K to G in the a axis become propagated as plastic waves. For
the same reason, starting from 48 GPa, lattice vibrations along
the a axis from G to M become propagated as plastic waves.
In this paper, vq is used to describe the propagation speed of
this plastic wave, and the results are plotted in Fig. 5(d). It can
be seen that vq increases under pressure, where vq along the
K to G direction is greater than vq along the G to M direction,
and the values of the two become closer under pressure. As
can be seen from Fig. 5(b), in the b axis, along the K to G
direction, vp decreases from 0 to 5 GPa, increases from 5
to 20 GPa, and then decreases basically linearly from 20 to
60 GPa. Moreover, along the G to M direction, vp increases
from 0 to 5 GPa, decreases from 0 to 10 GPa, increases
from 10 to 25 GPa, and then remains essentially constant,
and decreases from 40 GPa. From Fig. 5(c), it can be seen
that in the c axis, along the K to G direction, vp decreases
in the range 0–5 GPa, increases in the range 5–20 GPa, and
gradually decreases in the range 20–60 GPa. Furthermore,
along the G to M direction, vp decreases in the range 0–10
GPa, remains basically unchanged in the range 10–20 GPa,
increases in the range 20–30 GPa, and decreases in the range
30–60 GPa.

A comparative analysis of Figs. 5(a)–5(c) shows that vp

along the G to M direction is greater than vp along the K
to G direction regardless of the a, b, or c axis. Besides, it
is found that vp decreases after 20 GPa along the K to G
direction and the decrease rate is faster, while along the G
to M direction, vp decreases after 30 GPa and the decrease
rate is lower with the exception for the a axis. Moreover, we
find a very interesting rule that the pressure point at which the
vp in any direction begins to decrease under pressure is be-
tween 20 and 25 GPa, which coincides with the pressure point
(24.5 GPa) of the mechanical instability. Based on this, we
suspect that the mechanical instability of 24.5 GPa is due to
the amorphous nature of α-quartz, which is exactly consistent
with the structure obtained by Tse et al. [27]. The dynamic in-
stability of 40 GPa is due to structural changes under pressure,
which is basically consistent with the conclusion drawn by
Haines [1].
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FIG. 5. The vp along the direction of K to G and G to M in (a) a axis, (b) b axis, (c) c axis, and (d) the vq along K to G and G to M in a axis.

IV. CONCLUSION

In conclusion, this paper mainly discusses the stability
of α-quartz by analyzing the sound velocity under pressure.
The calculation results show that the α-quartz structure is
mechanically and dynamically unstable near the pressure of
24.5 and 40 GPa, which is close to the pressure range 21–43
GPa for the amorphization and phase transition mentioned in
the experiment [32]. In the a, b, and c axes, the compressional
sound velocity along the direction of K to G decreases linearly
after 20 GPa, and along the direction of G to M it decreases
after 30 GPa with relatively slower speed. Consequently, we
deduce that the structural change occurs first along the direc-
tion of K to G no matter whether in the a axis, b axis, or c
axis, and it is shown that the K to G direction in the a axis is
the first to undergo structural changes.

In addition, the propagation velocities of plastic waves are
described after lattice vibrational dynamic instability along
the directions of K to G and G to M in the a axis. However,
due to the essential differences between the plastic wave and

the elastic wave, this paper directly uses the solution of com-
pressional sound velocity to describe the propagation velocity
of the plastic wave with a lack of theoretical basis. In addition,
whether the specific value of imaginary frequency of a phonon
has a theoretical reference value is also worth discussing. We
will further discuss this in our subsequent research. Never-
theless, it is worth affirming that there is a certain reference
value for the direction of structural change of α-quartz under
pressure.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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