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Exceptional points in single open acoustic resonator due to symmetry breaking
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Exceptional points (EPs) have been widely studied in quantum mechanics, condensed-matter physics, optics,
and photonics. However, their potential in acoustics has only recently been recognized due to the rapid develop-
ment of acoustic metamaterials. This paper proposes a method for achieving EP conditions in acoustic resonators
by lowering their symmetry and enabling resonant-mode interaction. The formation of EPs is predicted through
direct numerical simulation supported by coupled-mode theory and resonant state expansion. These findings
have significant implications for the design and optimization of acoustic metamaterials for applications such as
acoustic sensing and noise reduction.
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I. INTRODUCTION

Acoustic metamaterials are a promising class of materials
that offer unique capabilities for tailoring properties of sound
waves [1–3] as well as for mechanical manipulation [4–6].
While resonances play a central role in acoustic metama-
terials, there are still many unexplored physical effects and
mechanisms. Exceptional points (EPs) are the points in the
parameter space where the eigenvalues of the system become
degenerate and the eigenvectors coalesce, leading to a nondi-
agonalizable Jordan block formation [7–10]. The EP systems’
states are excellent candidates for sensing applications since
their spectral singularities are highly responsive to external
parameter changes or any perturbations [11,12]. Despite the
progress in this area, the problem of EP appearance in single
acoustic resonators still requires thorough study, and it is
addressed in this paper.

EPs occur only in non-Hermitian systems [10], and they
are often mentioned in the context of PT -symmetric systems
[8,13–17] observed in electronics [18], optics, and photonics
[11,13,15], and recently in acoustics [19,20]. However, reach-
ing PT -symmetry requires particular engineering of gain and
loss in acoustical systems. Alternatively, EPs can be observed
in open resonators as a special class of non-Hermitian sys-
tems which was extensively studied in optics and photonics
[15,21,22]. One of the possible mechanisms of EP formation
is based on breaking the symmetry of the resonator [23,24].
While this is not a unique approach, we leave the other meth-
ods beyond the scope of the current work and refer the readers
to Refs. [8,25]. However, despite extensive research on
EPs in optics, there has been little work on EPs in the acoustics
domain.

In this work, we show that by engineering the shape of
resonators and due to related symmetry breaking, one can
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enable mode-coupling mechanisms leading to the formation
of the EP condition as schematically shown in Fig. 1: in a
system with perturbed symmetry, two initially noninteracting
modes transform into two different modes via a degenerate
state. This transitional state appears to be an EP state.

We improve and adapt the powerful method of multipolar
analysis [26–28] to (i) predict the occurrence of EPs as a result
of a particular symmetry breaking and (ii) to understand the
mode interaction deeper within a coupled-mode theory and
resonant state expansion (RSE) method.

Exploring the physics behind the EPs’ formation in acous-
tic resonators may unlock novel methods for the design and
optimization of acoustic metamaterials for a wide range of ap-
plications, such as sound focusing [29], optomechanics [30],
sensing [31–34], noise insulation [35], and seismic cloaking
[36,37]. By addressing the important questions surrounding
the physics of acoustic metamaterials, we may open the door
to new and exciting opportunities in acoustics and materials
science.

This work is organized as follows. In Sec. II we build a
simple model based on the linear acoustic equations and dis-
cuss the simple mechanism of the EP appearance. In Sec. III
we extend the approach to more complex symmetries and
generalize the method. Finally, in Sec. IV we conclude the
obtained results.

II. COUPLING OF MODES IN ACOUSTIC RESONATORS

A. Model physics and parameters

We focus on the studies of resonators in the framework
of linear acoustics in the frequency domain. The resonator
is made of homogeneous acoustic materials and placed in
a homogeneous environment (fluid or gas), which supports
only longitudinal waves (Fig. 1). The media and the resonator
are both characterized by their compressibility β and their
mass density ρ. The speed of sound is given by c = 1/

√
βρ.

The complex velocity v(r) and pressure p(r) fields satisfy
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FIG. 1. The main idea and setup of this work. Symmetry-
breaking perturbation merges two groups of resonator’s modes
induced by symmetry considerations into a single group. This is
shown at the bottom of the figure. By changing the amplitude of the
symmetry-breaking perturbation, we can tune the coupling strength.
As shown in the middle of the figure, this allows us to observe the
transition from the crossing of energy terms to avoided crossing. This
transition can be followed by an EP, characterized by the coalescence
of eigenspaces.

the wave equations; if the harmonic convention exp(−iωt ) is
assumed [38],

iωβp = ∇·v, iωρv = ∇p. (1)

This can be written in a matrix form as(
0 −∇·
∇ 0

)
︸ ︷︷ ︸

D̂

(
p
iv

)
︸ ︷︷ ︸

�F

= ω

(
β(r) 0

0 ρ(r)

)
︸ ︷︷ ︸

P̂

(
p
iv

)
︸ ︷︷ ︸

�F

, (2)

which describes the eigenmodes �F (r) of an open acoustic
resonator, where the operators D̂(r) and P̂ (r) are introduced
for future convenience.

The boundary conditions play a crucial role in determining
the symmetry of the system. The system’s symmetry is de-
termined not only by the shape of the resonator boundary but
also by the conditions imposed on these boundaries. In this
work, the symmetry of the boundary conditions is identical
to the symmetry of the resonator. The boundary conditions
at the particle-host interface require continuity of pressure
p(r) and the normal component of velocity v(r) [38]. At
|r| → +∞, the Sommerfeld radiation condition applies, en-
suring the existence of only physically meaningful radiating
eigenmodes [39,40]. This condition exhibits spherical sym-
metry because it only depends on |r|. As any point group
and limiting point group represent subgroups of the symmetry
group of the sphere [41,42], this condition does not affect the
system’s symmetry group defined by the resonator’s shape and
boundary conditions at the particle-host interface. Also, intro-
duction of dissipation via, for example, viscosity will keep the

symmetry of the problem, and all the main conclusions of our
work will remain valid.

The formulated eigenvalue problem is in a full analogy
to the one appearing in optics [43,44]. Eigenmodes of this
system can be classified by irreducible representations (irreps)
of a symmetry group of a resonator [26,45,46] similarly to
the case of optical resonators [27]. Some particular material
parameters have been chosen to illustrate the general conclu-
sions of this paper which, in general, do not depend on this
choice. Although resonators made of high-contrast materials
are much easier to observe resonances in, the resonant states
can be studied in various systems [47,48]. For most acoustic
experiments performed in air, the wavelength in the resonator
is longer than that in the host medium. However, we have
chosen our parameters in favor of numerical stability since all
conclusions do not depend on whether the acoustic refractive
index c0/c1 is greater or less than 1. To be specific, we use
the density ρ0 = 1 kg/m3 and the speed of sound c0 = 1 m/s
for the media and ρ1 = ρ0/2 and c1 = c0/2 for the resonator;
therefore, the refractive index is greater than 1.

It is also worth noting that a similar scenario is also pos-
sible in practice: Mie-resonant acoustic meta-atoms can be
used to create metamaterials with a high effective refractive
index [5,49–51]. Nevertheless, we stress again that the theory
presented below does not depend on the material parameters
of the media and the resonator as soon as the system supports
resonant modes.

The computations of eigenmodes were performed with
help of numerical simulations in COMSOL MULTIPHYSICS and
the method is described in Appendix D.

B. EP appearance

To clarify the connection between symmetry and EP
formation, we first elaborate on the resonator spectrum modi-
fication with the change of the resonator shape. Starting with
highly symmetric structures like cylinders [26], we move to
more complex shapes later. We fix the initial geometry of
the cylinder such that the height-to-radius ratio is h0/R0 = 2
[see Fig. 3 (inset)].

The cylinder corresponds to the D∞h symmetry group;
thus, it has a countably infinite set of finite-dimensional irre-
ducible representations [52–54]. In Fig. 2 each representation
is shown alongside corresponding examples of numerically
calculated pressure fields. Each of those irreducible represen-
tations of a symmetry group of a cylinder corresponds to a
single value of the azimuthal number m. In the following, we
narrow the consideration to m = 0 only, or, in more specific
terms, eigenmodes that transformed under irreducible repre-
sentations A1u and A1g. These eigenmodes exhibit rotational
symmetry but have different parity under horizontal reflection
(σh transformation). The obtained results can be straightfor-
wardly extended to other azimuthal numbers m. We exclude
the monopole mode which transforms under the irreducible
representation A1g in favor of another more illustrative ex-
ample. However, we emphasize that during the symmetry
breaking D∞h → C∞v (e.g., cylinder to cone), monopole and
dipole modes start to transform under the same irreducible
representation A1 in the cone symmetry group and hence in-
teract with each other. The scatterers which exhibit interaction
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FIG. 2. Tables of irreducible representations of symmetry groups
D∞h and C∞v and examples of the eigenmodes which transform
under these irreps. Only the first few irreps are shown. Examples of
modes that transform under the particular irreducible representations
are given. The monopole mode transforms under the irreducible
representation A1g but is omitted in the figure in favor of a more illus-
trative mode. The arrows show how the irreducible representations of
the two groups are related to each other.

between the monopole and dipole moments are convention-
ally characterized by Willis coupling [6,55–57]. This requires
the absence of the inversion symmetry and that the monopole
and the dipole are transformed by the same irreducible repre-
sentation.

The dependence of the real part of the eigenfrequency
of the m = 0 modes on the resonator’s height is shown in
Fig. 3(b). The wave vector k is related to the eigenfrequency
ω as follows: k = ω/c1. Each color of the line represents a
different irreducible representation, either A1u or A1g. Here-
after, we denote eigenmodes transformed under irreducible
representations A1u and A1g as mode A1u and mode A1g, re-
spectively. At this point, it should be mentioned that modes
transforming under different irreps are orthogonal; therefore,
coupling between them does not occur [45,46]. In Fig. 3(b),
this statement can be interpreted visually, where the crossing

(a)

(b)

(c)

FIG. 3. (a) Geometry of the system and shape perturbation. Real
parts of eigenvalues k scaled to h0 of a cylinder with α = 1 (b) and a
conical frustum with α = 0.89 (c) versus h0/h. The branches of the
cylinder’s modes have different colors according to their irreps. In-
tersections of modes that transform under different irreps are circled.
Corresponding avoided crossings and crossing with weak coupling
are marked with a square. The crossing and the avoided crossing
shown in Fig. 4 are dashed. Geometry parameters used are h0 = 1 m
and R0 = 0.5 m.

between two orthogonal modes of a cylinder, A1u and A1g,
occurs. Indeed, explicit analysis of the eigenmodes’ fields
shows that these modes have different parities, “odd” and
“even” correspondingly, with respect to σh (reflection in the
horizontal plane) transformation. In contrast, Fig. 3(b) shows
the avoided crossing behavior of the eigenfrequency lines of
the modes related to the same irrep.

Next, one can alter the symmetry of the resonator by per-
turbing its shape from cylinder to cone, breaking the mirror
symmetry in the horizontal plane. In order to carefully trace
out changes in the mode structure, those changes should be
made gradually. We define the parameter of “cylindricity” of
the resonator’s shape α [Fig. 3(c)], which denotes the ampli-
tude of the shape perturbation. In terms of α, the resonator’s
upper base radius R1 and lower base radius R2 [Fig. 3(a)] can
be expressed as follows:

R1 = αR0 = R0 + (α − 1)R0, (3)

R2 = R0 + (1 − α)R0. (4)

Varying α from 1 to 0 reduces the upper base radius of
the cylinder, while simultaneously increasing the lower base
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(a) (c) (e)

(b) (d) (f)

FIG. 4. Maps of real and imaginary parts of eigenvalues k of the acoustic resonator (scaled to h0). Examples of fields in resonators are
given. (a) The crossing of real parts of two noninteracting modes that transform under different irreps A1u and A1g is observed at “cylindricity”
parameter α = 1.000. (e) At α = 0.890 there is an anticrossing of real parts of modes that transform under the same irrep A1 (strong coupling).
At α = 0.902 an EP is achieved in which both real (c) and imaginary (d) parts of eigenvalues are crossed, and therefore modes degenerate. A
toy model fitting is discussed in Appendix C.

radius. Thus, decreasing the parameter α breaks the symmetry
with respect to σh and changes the symmetry group of the
system from D∞h to C∞v . As shown in Fig. 2, the previously
considered A1u and A1g modes lose their specific σh parity
property and now transform under the same irrep A1. There-
fore, a coupling between those modes should now appear in
conical symmetry which manifests itself in the appearance
of avoided crossings between the frequency lines shown in
Fig. 3(c). The transition from crossing to avoided crossing
induced by symmetry breaking is shown with arrows.

To this point, almost exclusively the real part of the
eigenfrequency was discussed. Imaginary parts of the eigen-
frequencies are shown in Fig. 4(b). While a crossing behavior
in real parts [Fig. 4(a)] can be observed, imaginary parts
are not equal, and the modes are not degenerate. However,
by varying the height of the resonator h and the cylindricity
parameter α, at a certain coupling strength, the simultaneous
degeneracy of real and imaginary parts of two modes is ob-
served [see Figs. 4(c) and 4(d)].

Now the series of Figs. 4(a), 4(c), and 4(e) can be regarded
as follows: from left to right three different stages of the
resonator’s deformation from a cylinder to a cone are shown.
At the most left [Figs. 4(a) and 4(b)], a D∞h symmetry of the
resonator ensures a complete absence of any interaction be-
tween the two considered modes; at the most right [Figs. 4(e)
and 4(f)] the interaction is great enough to keep those modes
entirely apart from each other; evidently, based on the smooth-
ness of this particular symmetry breaking, at the intermediate
parameters shown in Figs. 4(c) and 4(d), a point correspond-
ing to full degeneracy of two modes can be found. In Figs. 4(c)
and 4(d) two lines merge into a single point, both for the real

and imaginary parts of the frequency, which corresponds to
the formation of the EP. Note, that the usual degeneracy of
two modes happens in so-called diabolic points [10], which
correspond to the two- or more-dimensional irreps. However,
in this case, the fact that the A1 irrep is one-dimensional makes
this not even possible. In simple words, we cannot obtain two
A1 modes with the same frequency whose fields are linearly
independent [11,13,25,58].

One should also note that the crossing-to-avoided-crossing
mechanism is precisely inverted for real and imaginary parts,
as shown in Figs. 4(b), 4(d), and 4(f), where the system
goes from an anticrossing, through a degeneracy, to a cross-
ing. The observed modes’ interaction via symmetry breaking
can be extended to other resonator shapes as discussed in
Appendix B.

The symmetry of a system can be changed not only by
perturbing its shape but also by perturbing its boundary con-
ditions. In this work, we use shape perturbation as the simple
and most demonstrative approach.

C. Coupled-mode theory and perturbation
of the material parameters

The appearance of EP in quantum mechanics and op-
tics can often be interpreted within the scope of a standard
coupled-mode theory, described by a 2×2 Hamiltonian of
a two-level system [8,11,13,25,58]. While the coupling of
several acoustic resonators has already been analyzed within
standard coupled-mode theory [59,60], the mode coupling
in a single acoustic resonator upon its shape perturbation
has not yet been discussed. In this section, we introduce the
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phenomenological model of interaction of two eigenmodes
based on RSE or quasinormal mode expansion [43,61–63].
RSE has already proved its efficiency for determining the
eigenmodes of a perturbed optical system, the appearance of a
strong-coupling regime [64], and multipole coupling [27]. We
aim to provide such analysis for the linear acoustics described
by Eq. (2). These equations can be rewritten in a compact form
similar to that of Ref. [43]:

D̂(r)�Fn(r) = ωnP̂ (r)�Fn(r), (5)

where �Fn(r) = (pn, ivn)ᵀ is an eigenmode and ωn is an
eigenvalue. For the perturbed resonator there is a new set of
eigenmodes �F (r) and eigenvalues �:

D̂(r)�F (r) = �(P̂ (r) + �P̂ (r))�F (r), (6)

where �P̂ (r) = diag[�β(r),�ρ(r)] represents the pertur-
bation of density ρ(r) and compressibility β(r) spatial
distributions, caused, for example, by changing the resonator’s
shape. The concept of �P̂ (r) as a shape perturbation for
cylinder to cone transition is illustrated in Fig. 3(a).

It is assumed that all eigenmodes are a linear combination
of eigenmodes of the unperturbed system �F (r) = ∑

n cn �Fn(r).
Within this approach, the perturbation theory formalism [43]
immediately provides us with the coupled-equations system∑

n

[(� − ωn)δmn + �Vmn]cn = 0, (7)

where Vmn ∝ ∫ �Fᵀ
m�P̂ �Fnd3r is the matrix element. The inte-

gral is taken over the region where the perturbation is nonzero.
In the case of the cylinder perturbation to a cut cone, the
integration space can be achieved by subtracting the cylinder
from a cut cone [Fig. 3(a)]. In the two-mode approximation of
Eq. (7), we obtain the eigenvalue problem(

ω1 0
0 ω2

)(
c1

c2

)
= �

(
1 + V11 V12

V12 1 + V22

)(
c1

c2

)
. (8)

The eigenvalues of this equation are

�± = ξω2 + γω1 ±
√

(ξω2 − γω1)2 + 4κ2ω1ω2

2(ξγ − κ2)
, (9)

where κ = V12 = V21, ξ = 1 + V11, and γ = 1 + V22. It can
be seen that the nondiagonal element κ is responsible for the
coupling between the modes.

The main condition for observing EPs can be summarized
as �− = �+. Or, in a more extended form, (ξω2 − γω1)2 +
4κ2ω1ω2 = 0. It can be seen that if this condition is satisfied
and κ �= 0, the eigenspaces collapse.

Here, we show that this system can be applied to describing
the EP formation in acoustic resonators with symmetry break-
ing. Determining the exact values of governing parameters κ ,
ξ , and γ requires introducing the proper scalar product and
normalization and remains beyond the scope of the current
work. Still, we find these parameters numerically by fitting the
real and imaginary frequency curves in Fig. 4 within Eq. (9)
(see Appendix C for the details). The obtained results, shown
as dots in Fig. 4, demonstrate excellent correspondence to the
numerical results.

Within the coupled-mode approach it becomes evident that
two modes that transform under the same irrep may couple

to each other since the coupling constant provided by the inte-
gral κ ∝ ∫ �Fᵀ

1 �P̂ �F2d3r �= 0 in full accordance with Wigner’s
theorem [65]. It can also be derived from the selection rules
presented in Refs. [45,46].

III. GENERALIZATION OF THE APPROACH
TO OTHER SYMMETRIES

The illustrated mechanism of EP formation can be ex-
tended to resonators of arbitrary shapes. The general recipe
for that is as follows.

(i) Two noninteracting eigenmodes, which transform un-
der different irreps, have to be chosen.

(ii) Next, by particular symmetry breaking one needs to
ensure that these modes will appear in the same irrep. This
step is essential, as the chosen symmetry will trigger the
formation of EP states.

(iii) Now the original symmetry has to be broken smoothly
for transition from an object of the original symmetry to one
of the chosen new symmetry; in other words, we have a homo-
topy (see Appendix A). Thus, the shape change is moderated
by one parameter. This way, an appearance of EP can be traced
easily.

Following this algorithm, one can observe EP formation
in more complex shapes and symmetries of the resonator.
As an example, besides the already considered D∞h to C∞v

symmetry breaking, one can observe EP formation in C4v to
C2v symmetry breaking as discussed in detail in Appendix B
and supported by numerical simulations. Formation of the EP
is provided, for example, by the merging of B1 and A1 irreps
into A1.

In strong contrast to PT -symmetric systems, which are
often used for achieving the EP condition, breaking point
symmetry discussed in this work does not require balancing
of loss and gain and, thus, is easier to achieve. At the same
time, the PT -symmetric structures offer unique effects [66]
provided by their higher symmetry.

IV. CONCLUSION

In this work, a general mechanism for retrieving excep-
tional points in complex acoustic systems is proposed. We
identify an approach to achieving the exceptional point con-
dition by breaking a particular symmetry of the resonator,
leading to the coupling of initially orthogonal eigenmodes.
Smooth variation of the asymmetry parameter allows for
finding the exact conditions for mode coalescence. This
mechanism was illustrated in single homogeneous acoustic
resonators by breaking their symmetry from D∞h to C∞v and
from C4v to C2v . The results were supported by direct numer-
ical simulations. Moreover, we proposed a phenomenological
model of the interaction of two eigenmodes based on the
resonant state expansion method and perturbation theory. We
have verified that the proposed description in the two-mode
approximation can be used for qualitative analysis of eigen-
frequencies. The proposed mechanism of EP formation can be
potentially realized experimentally in open resonators in the
acoustic scattering regime. One of the main conditions is the
existence of high-quality resonances allowing for resolving
the corresponding resonant peaks’ emergence and separation.
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APPENDIX A: PARAMETER α

Generally, there are many ways of how the parameter α

can be defined, and often, no formal definition is required
for particular geometries. At the same time, we need to note
that utilizing the concept of homotopy is a useful approach
that requires only a single parameter α to describe any sym-
metry breaking, even though the explicit description of the
map might be nontrivial in particular cases [67,68]. Below we
introduce the description of the parameter α in these terms.

Assume that we have two maps of a topological space
X into R3, f , g : X → R3 (e.g., g and f represent cone and
cylinder as maps of a 3-ball, torus and mug as maps of a solid
torus, etc.).

Two maps f and g are homotopic [69] if there exists a
continuous map H : X × [0, 1] → R3 from the product of the
space X with the unit interval [0,1] to R3, (x, α) → hα (x)
for x ∈ X , α ∈ [0, 1] such that h0(x) = f (x) and h1(x) =
g(x). Thus, we have a homotopy between the maps f and g,
parametrized by α.

APPENDIX B: EXAMPLE OF C4v → C2v TRANSITION

The mechanism of EP formation described above is very
general and is based on symmetry requirements.

Having two modes which show a crossing behavior in the
unperturbed system, we break the symmetry in a way that
makes these modes interact (i.e., merges two irreps into a sin-
gle one, so two modes, which transform by the different irreps,
will be transformed by the same irrep after the perturbation).
The EP state occurrence for D∞h → C∞v symmetry breaking,
which has already been considered above, can be generalized
to more complex cases such as the transition C4v → C2v .

The merging A1 and B1 modes of the regular square pyra-
mid C4v to A1 modes of the rectangular right pyramid C2v

are shown in Fig. 5. Note that this is closely related to the
correlation tables, which are widely used in solid-state physics
[70–72]. Figure 6 illustrates crossing between the two orthog-
onal modes A1 and B1 of the regular square pyramid and
avoided crossing between the two modes of the rectangular
right pyramid that transform under same irreducible represen-
tation A1. In this case avoided crossing and exceptional points
can be easily achieved due to the symmetry breaking and the
proper selection of parameters.

APPENDIX C: TOY MODEL FITTING

In order to test the ability of the model (Sec. II C) to
describe the effects presented in Fig. 4, we fit its parameters
ξ , γ , and κ . A range of heights h0/h from 1.52 to 1.55 is

FIG. 5. Tables of irreducible representations of symmetry groups
C4v and C2v. Examples of modes transformed under particular
irreducible representations are given. The arrows show how the ir-
reducible representations of the two groups are related to each other.

used to illustrate the square root behavior in the vicinity of
EP, model parameters are assumed to be constant over the
chosen range. Eigenfrequencies for the unperturbed system

(a)

(b)

FIG. 6. Real parts of scaled with h0 eigenvalues k of a square
right pyramid (α = 1) and a rectangular right pyramid (α = 0.92)
versus h0/h. The branches of the square pyramid modes have
different colors according to their irreps. Intersections of modes
that transform under different irreps are circled. The corresponding
avoided crossings are marked by a square. Geometry parameters used
are h0 = 1 m are a = 1 m.
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TABLE I. Model parameters for different α values and their corresponding fitting relative errors.

α ξ γ κ Max rel. error, %

1.000 1 1 0 0.0044
0.902 0.993783 + i0.000728 1.000755 − i0.001037 0.017148 − i0.001479 0.0534
0.890 0.992245 + i0.000903 1.000909 − i0.001272 0.019272 − i0.001574 0.0113

are approximated as

ω1(h0/h) = (2.224 724 − i0.023 396) · h0/h

+ 6.846 411 − i0.242 355

and

ω2(h0/h) = (6.302 923 − i0.221 363) · h0/h

+ 0.606 508 − i0.311 79.

The results of fitting for each α value are presented in
Table I. We choose model parameters for which there is a
sufficiently accurate match with the numerical experiment.
The validity of the obtained parameters extends to a wider
range of heights h0/h as long as the two-mode approximation,

linear dependence of ω1,2, and constancy of model parameters
are valid.

APPENDIX D: NUMERICAL MODELING

All simulations were performed using the Pressure Acous-
tics branch of the Acoustics module of the COMSOL MULTI-
PHYSICS software. The simulation domain was a sphere made
of media material with the resonator inside. When calculating
eigenmodes for Fig. 4, the perfectly matched layer (PML) was
used to simulate open boundary conditions (the Sommerfeld
radiation condition) on the surface of the spherical domain. To
calculate eigenmodes for Figs. 3 and 6 the radiation boundary
condition for a spherical wave was used instead of the PML
in order to speed up calculations. All numerical modes (also
termed as PML modes) were removed during postprocessing
[62,63].
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