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Topological metal and a nonlinear Dirac point in the cubic Rashba model
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We investigate the properties of the two-dimensional model with Rashba-type spin-orbit coupling cubic in
electron momentum. In the normal phase, edge states emerge on open boundaries. In the superconducting
phase, edge states could evolve into gapped fermionic edge states. Such edge states can be differentiated by
the modulation of critical dc Josephson current of a tunnel junction under an out-of-plane magnetic field. Our
results may apply to oxide interface superconductors.
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I. INTRODUCTION

The Rashba effect is one of the well-known manifesta-
tions of spin-orbit couplings (SOCs) in solids where inversion
symmetry is broken by an electric field normal to the het-
erointerface [1,2]. Another well-known type of SOC due to
the inversion symmetry breaking is the so-called Dresselhaus
SOC [3]. In both cases, the SOC Hamiltonian is linear in
electron momentum k, and the electron spins exhibit one full
winding in moving around the closed Fermi contour. Usually
such k-linear SOCs are leading order effects in inversion sym-
metry breaking systems [4–6].

In certain systems the leading SOCs will not be k lin-
ear [7–11]. For example, in transition metal dichalcogenides
(TMDs) [12–14] or the Kane-Mele model [15,16], due to the
special point group symmetry, the leading order SOC near
the � point is k cubic, while the electron spin is pinned to
the out-of-plane direction.

Other examples of nonlinear SOCs can be found in inter-
faces such as (111) surface of GaAs quantum well [17,18],
(001) surface of oxide SrTiO3 (STO) [19–23], and Si-
terminated (001) surface of the rare-earth antiferromagnet
RRh2Si2 [24–26] (R denotes the rare-earth element such as
Yb, Tb, etc.), where the k-cubic Rashba SOC can well de-
scribe the dominant band structure, as verified by experiments
[8,24]. In the GaAs quantum well, fine tuning is needed to
cancel k-linear Rashba and Dresselhaus effects [27]. When
the dominant electrons are d (STO) or f orbitals (TbRh2Si2),
the leading order SOCs could become cubic [19,26].

Superconductivity has been found experimentally in some
of the above systems with k-cubic SOCs, including bulk
and two-dimensional (2D) TMDs [28–32], LaAlO3/SrTiO3

(LAO/STO) interfaces [33–35], and RRh2Si2 [36]. Corre-
spondingly, unconventional superconductivity such as Ising
superconductivity [37–39] and topological nodal supercon-
ductivity [12–14] has been found in 2D TMDs. It is therefore
interesting to investigate the properties of superconductors
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with k-cubic SOCs such as LAO/STO interfaces and
RRh2Si2.

In this work, we focus on the abstract two-dimensional
model equipped with the cubic Rashba SOC, and study both
the normal and superconducting phases. In this cubic Rashba
model, the SOC Hamiltonian is cubic in electron momentum
k, and the electron spins exhibit three full windings in moving
around the closed Fermi contour, in contrast to the one full
winding of the linear Rashba case. In the linear Rashba model,
the so-called topological metal has been proposed to describe
its normal phase [41–44], and the corresponding supercon-
ducting phase will also be affected to host finite-momentum
superconductivity. In the cubic Rashba model, the notion
of topological metal also applies to its normal phase, with
edge states emerging on open edges, which could evolve into
gapped fermionic edge states in the superconducting phase.
Such exotic behaviors may have potential impacts on super-
conductors such as LAO/STO interfaces and RRh2Si2, for
example on the Fraunhofer pattern of Josephson junctions as
shown in Fig. 1.

II. TOPOLOGICAL METAL AND EDGE STATES

It is theoretically proposed and experimentally verified that
the following cubic Rashba model could describe the low-
energy band structure of interface superconductor LAO/STO
[8]:

HcR(k) = η0k2 + η1k4 + 1
2 iα(k3

+σ− − k3
−σ+), (1)

with electron momentum k = (kx, ky), k = |k|, k± = kx ± iky,
σ± = σx ± iσy, and Pauli matrices σ denoting spin. Here η0,1

are coefficients for kinetic terms, and α is the cubic Rashba
SOC coefficient.

The unitary symmetries of the cubic Rashba model form
the point group D2d with three generators: twofold in-plane
rotation C2z, twofold rotation C2x′ along the diagonal direc-
tion x′ ≡ (x̂ + ŷ)/

√
2, and in-plane mirror reflection Mx :

(kx, ky) → (−kx, ky), (σx, σy, σz ) → (σx,−σy,−σz ). Though
the point group is anisotropic, the energy bands of the cubic
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FIG. 1. Schematic picture of a Josephson junction under an out-
of-plane magnetic field B in normal metal (a) or topological metal
(b) with helical edge states (↑,↓ denote spins). The spatial profile
of supercurrent density J (y) is shown correspondingly. The lower
panels depict the critical current Ic = max | ∫ Jdydz| versus B in two
cases, respectively.

Rashba model are isotropic

E±(k) = η0k2 + η1k4 ± αk3, (2)

and the two Fermi contours are hence circular and concentric.
The inner (+) and outer (−) Fermi contours correspond to the
upper (+) and lower (−) bands.

Due to the cubic Rashba SOC, electron spins have three
full windings in moving around the Fermi contours as shown
in Fig. 2(a), which can be characterized by the Berry phase π

of both Fermi contours as enforced by the parity symmetries
including time-reversal symmetry T , mirror symmetries Mx,
My, and combined symmetry C2zT . The metallic phase with
quantized nonzero Berry phase π of the Fermi contours is
known as the topological metal [40–44], which is consistent
with quantum oscillation data of LAO/STO interfaces [22].

In the topological metal, there are odd numbers of Dirac
points enclosed by the Fermi contours. However, the detailed
properties of the Dirac point are not captured by the Berry
phase, hence the properties of the topological metal is yet to
be revealed.

For this purpose, we introduce the spin winding number to
describe the topological property of the Dirac point

W = 1

2π
Im

∮
FS

dSx + idSy

Sx + iSy
, (3)

where FS denotes the Fermi surface (or Fermi contour in 2D)
and S = (Sx, Sy, Sz ) = 〈σ〉 is the spin expectation value of
the lower band E−. The spin winding number of the cubic
Dirac point in Eq. (1) can be worked out as W = 3. For
linear Dirac point H = ∑

i j kiAi jσ j , the spin winding number
is W = sgn(det A). Calculations of the spin winding number
can be found in the Appendix.

In the single-band metals, van Hove singularities in general
exist and can be classified as ordinary and high-order ones
[45,46]. In two-band metals, such as the cubic Rashba model
in this work, band crossing points such as Dirac points gener-
ally exist, and could also be linear or nonlinear Dirac points
(e.g., cubic Dirac point).
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FIG. 2. (a) Spin texture of the Fermi contours of the cubic model
Eq. (1). Electron spins have three full windings in moving around
the Fermi contours. (b) The distribution of spin field (Sx, Sy ) in the
Brillouin zone, where the spin winding number W = +3 at the � =
(0, 0) point (colored blue), while W = −1 at X = (π, 0), Y = (0, π )
and M = (π, π ) points (colored red). The spin winding number W
is defined in Eq. (3) and the spin field (Sx, Sy ) is defined underneath.
(c) Phase diagram of the cubic Rashba model Eq. (1), where edge
states can be found explicitly in the pink region, for example the
black (d) and green (e) dots, while edge states are mixed with bulk
states in the white region such as the red dot [Fig. 5(a)]. (d) and (e) are
corresponding energy spectra with open boundary conditions along
the y direction with 200 lattice sites. (f) is the wavefunction of the
edge states at momentum indicated by the black dagger in (e) with
50 lattice sites.

The cubic Rashba model Eq. (1) is defined near the � point.
When this model is extended to the entire Brillouin zone (BZ),
the Poincaré-Hopf index theorem dictates that the total spin
winding number is zero ∑

i

Wi = 0. (4)

The BZ compatible with point group D2d would be that of
a square lattice. Without loss of generality, we assume the
lattice constant of the square lattice to be one. When the
time-reversal-invariant points X = (π, 0), Y = (0, π ), and
M = (π, π ) are linear Dirac points |WX,Y,M | = 1 while � is
cubic W� = 3, the only choice of spin winding numbers is
WX,Y,M = −1 due to the Poincaré-Hopf index theorem, which
is shown in the distribution of spin field (Sx, Sy) in the BZ in
Fig. 2(b). There can be several ways to extend the continuous
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cubic Rashba model Eq. (1) to the square BZ, leading to
multiple tight-binding cubic Rashba models with the same
nonlinear Dirac point described by Eq. (1) at the � point. Nev-
ertheless, as we argued previously, the Poincaré-Hopf index
theorem constraints the spin winding numbers at TRI points to
be WX,Y,M = −1. As a result, the topological properties asso-
ciated with the spin winding number are not affected by details
of the tight-binding model as long as the long-wavelength
limit is the cubic Rashba model Eq. (1). Details of the tight-
binding cubic Rashba model we used in this manuscript can
be found in the Appendix.

The nontrivial spin winding number of the cubic Dirac
point indicates the nontrivial bulk topology and hence topo-
logical edge states in the tight-binding model. In the phase
diagram of Fig. 2(c), when the parameters η0,1/α fall in the
topological region (colored pink), the two energy bands are
separated by local gaps as shown in Figs. 2(d) and 2(e). Under
the open boundary condition of the x or y direction, edge states
emerge whose dispersions are within local gaps [red lines in
Figs. 2(d) and 2(e)], and whose wavefunctions are localized
on two edges with opposite spin polarization along the z axis
as shown in Fig. 2(f). Notice that the edge states are spin
degenerate.

To figure out the origin of such edge states, we can consider
the chiral limit η0 = η1 = 0 as shown in Fig. 2(d). In this
chiral limit, the cubic model Eq. (1) has the chiral symmetry
{HcR, σz} = 0 and hence hosts zero energy modes on its open
boundaries. Classified in the BDI class, nodal points of the
bulk energy spectrum are characterized by the spin winding
number W , and under open boundary condition, flat bands
will emerge between projected nodal points with opposite spin
winding numbers. In particular, when the y direction is open,
the nodal points are projected to kx = 0 with net spin winding
number W (kx = 0) = +3 − 1 = +2, and kx = ±π with net
spin winding number W (kx = ±π ) = −1 − 1 = −2. Thus, a
doubly degenerate flat band emerges connecting kx = 0 and
kx = π , and another doubly degenerate flat band emerges
connecting kx = 0 and kx = −π ≡ π (mod 2π ). Furthermore,
zero-energy edge states are eigenstates of chiral symmetry σz,
and are hence spin polarized along the z axis. As shown in
Fig. 2(f), we hence find spin-degenerate edge states.

Away from the chiral limit, one may treat η0,1 as pertur-
bations, under which the nodal points evolve into Dirac points
connecting upper and lower bands, and the edge states become
dispersive. As long as the local gaps are not closed, the cor-
responding edge states are protected by the bulk topology and
separated from bulk states. As a result, we obtain the phase
diagram of Fig. 2(c).

Topological metal under perturbations. We consider the
following perturbations in the metallic phase

Hper (k) = 1
2 iλ(k+σ+ − k−σ−) + B · σ, (5)

where λ is the linear Rashba coefficient and B is the Zeeman
field. These perturbations are allowed under point group D2d ,
under which the number and positions of Dirac points of the
band structure will change.

The spin-degenerate Dirac points can also be understood
as the intersecting points of contours Sx = 0 (blue) and Sy = 0
(red), as plotted in Fig. 3. The cubic Dirac point as shown in
Fig. 3(a) is the intersecting point of six contours, while linear
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FIG. 3. Zero contours Sx = 0 (blue) and Sy = 0 (red) of the spin
field (Sx, Sy ), and the intersecting points of blue and red lines are
Dirac points with corresponding spin winding numbers. (a) One
cubic Dirac point at zero field. (b) Three linear Dirac points under
in-plane Zeeman field Bx = 0.1α along the x axis. (c) Five linear
Dirac points under linear Rashba λ = 0.1α. (d) Nine linear Dirac
points under symmetry-breaking perturbations.

Dirac points as shown in Figs. 3(b)–3(d) are the intersecting
points of two contours. To see this, notice that the cubic
Dirac point has spin winding number W = 3, hence each spin
polarization will appear three times along the Fermi contour
enclosing cubic Dirac point. As a result, the polarized state
Sx = 0 or Sy = 0 will appear three times, leading to three
contours for Sx = 0 and three contours for Sy = 0 around the
cubic Dirac point. In fact, when the Dirac point has spin wind-
ing number W , then there will be |W | contours for S · n̂ = 0
with any given in-plane direction n̂, and the Dirac point as
a spin-degenerate point is the intersecting point of contours
S · n̂ = 0.

Under an in-plane Zeeman field, the single cubic Dirac
point in Fig. 3(a) is split into three linear Dirac points as
shown in Fig. 3(b), forming a threefold structure. Under the
linear Rashba effect, the cubic Dirac point is split into five
linear Dirac points as shown in Fig. 3(c), forming a fourfold
structure. During the Dirac point splitting process, the total
spin winding number in the neighborhood of the � point is
conserved due to topology [45,46], as shown in Figs. 3(b)
and (c). In fact, the two energy bands can be expressed in
terms of the polar coordinates of the electron momentum
k = k(cos θ, sin θ ) as

E±(k) = η0k2 + η1k4 ± D(k, θ ), (6)

where the energy bands are threefold symmetric under an
in-plane Zeeman field B = B(cos φ, sin φ), while fourfold
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FIG. 4. Energy spectra near the � point in the chiral limit under
external Zeeman fields (a), (b), (d) and linear Rashba effect (c),
where edge states are in red color. Parameters are the same as Fig. 3,
and Bz = 0.1α in (d).

symmetric under linear Rashba effect λ:

D(k, θ ) =
{√

B2 + α2k6 − 2Bαk3 sin(3θ − φ) λ = 0,

k
√

λ2 + α2k4 − 2λαk2 cos 4θ B = 0.

(7)

With both in-plane Zeeman field and linear Rashba effect,
the in-plane rotation symmetry of the energy bands is then
lost. Derivation of Eq. (7) can be found in the Appendix.
From Eq. (7), the Dirac point splitting under arbitrary in-plane
Zeeman field direction φ can hence be deduced, and in
Fig. 3(b) φ = 0.

We introduce the multiplicity (also known as the Milnor
number) μ of the Dirac point, which is defined as the max-
imal number of split Dirac points under perturbations [46].
Here perturbations are defined as the Hamiltonian terms with
lower orders in momentum than that of the Dirac point. The
cubic Dirac point can be split into at most five linear Dirac
points under the symmetry-allowed perturbations in Eq. (5),
hence the symmetry-constraint multiplicity of the cubic Dirac
point is μsym = 5. Without symmetry constraints, the cubic
Dirac point can be split into at most μ = W 2 = 9 linear
Dirac points, as shown in Fig. 3(d) where the time-reversal
symmetry T is broken and the point group is reduced to
C1v = {1, My}.

We have discussed the effects of perturbations on the bulk
spectrum, especially the Dirac points. Due to the bulk-edge
correspondence, the edge states will also be affected. The
general mechanism indicates that edge states will emerge
between projected nodal points with opposite spin winding
numbers. For simplicity we consider the chiral limit first. As
shown in Fig. 4, edge states are found under open boundary
conditions, which are flat bands in the chiral limit. Notice that
under in-plane Zeeman field (a) and (b) and linear Rashba
effect (c), the net spin winding numbers of the nodal points
near the projected � point can become zero, ±1 besides ±2.

(a) (b)

FIG. 5. (a) Superconducting spectrum under s-wave pairing

(k) = 
0 + 
1k2. The red lines denote the gapped fermionic edge
states. Parameters are (η0, η1) = (1, 1

2 )α [red dot in Fig. 2(c)] and
(
0, 
1) = (0, 1

4 )α. (b) Edge state wavefunctions at the black dag-
ger in (a), with electron/hole (e/h) and spin (↑ / ↓) components.
Inset: Logarithm of edge state wavefunctions, showing the exponen-
tial localization of edge states.

Notice that under an out-of-plane field Bz (d), the spin-
degenerate edge band will get split into two spin polarized
bands, whose wavefunctions are similar to those shown in
Fig. 2(f).

The introduction of kinetic terms η0,1 will gradually close
the local gaps, which disperse and eventually diminish edge
states. In the following, we would like to show that even when
kinetic terms close the local gaps and diminish edge states
in the normal phase, fermionic edge states will get revealed
under appropriate pairing potentials in the superconducting
phase.

III. TOPOLOGICAL METAL UNDER PAIRINGS

We use 
± to denote the pairing gaps of the inner (+)
and outer (−) Fermi contours, respectively, then as long as

+ < 
−, fermionic edge states will be found. For example,
one can consider the s-wave pairing with constant (
0) and
extended (
1) parts 
(k) = 
0 + 
1k2, then 
± = 
(kF±)
with Fermi momenta kF± of inner (+) and outer (−) Fermi
contours, respectively. As shown in Fig. 5(a), when 
1 > 0
and 
+ < 
−, the edge states (colored red) will emerge join-
ing the inner (+) and outer (−) Fermi contours with pairing
gaps 
+ and 
−, respectively, whose wavefunction is also
localized on two open edges with opposite spin polarization
along the z axis as shown in Fig. 5(b), where electron spin
σ is equivalent to hole spin −σ∗. Importantly, when 
+ <


−, fermionic edge states will be found in the supercon-
ducting phase, either the normal phase bulk and edge states
are separated or mixed [Fig. 2(c) pink versus white regions,
respectively], and whether the pairing is spin singlet, triplet,
or mixed.

As depicted in Fig. 1(a), in a superconductor-normal
metal-superconductor (SNS) Josephson junction, the su-
percurrent is in the bulk. In a superconductor-topological
metal-superconductor (STS) Josephson junction, however, the
supercurrent is both in the bulk and along the edge as depicted
in Fig. 1(b).

Suppose the Josephson current density of a 1D channel is
J = Jc sin ϕ with the Josephson phase difference ϕ and critical
current density Jc. For edge states, there are two 1D channels
along two opposite edges, respectively, as shown in Fig. 1(b).
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Under an out-of-plane magnetic field with magnetic flux �,
the edge Josephson current is

IE (ϕ) = 1

2
Jcdl sin

(
ϕ + π�

�0

)
+ 1

2
Jcdl sin

(
ϕ − π�

�0

)
,

(8)

where 1
2 l is the localization length of the edge states along

the y axis, d is the sample thickness along the z axis, and
�0 = h/(2e) is the flux quantum. For bulk states, there is a
continuum of 1D channels and the bulk current is

IB(ϕ) = Jcd
∫ L/2

−L/2
dy sin

(
ϕ + 2π�

�0

y

L

)
, (9)

where L is the sample size along the y axis.
The critical current of a Josephson junction under an out-

of-plane field including bulk and edge states is

Ic = max
ϕ

|IB(ϕ) + IE (ϕ)|

=
∣∣∣∣IB

sin(π�/�0)

π�/�0
+ IE cos

(
π�

�0

)∣∣∣∣, (10)

where IB = JcdL denote the Fraunhofer interference of the
bulk states and IE = Jcdl denotes superconducting quantum
interference of the edge states. For normal metal in Fig. 1(a),
only bulk states carry supercurrent and Ic exhibits the Fraun-
hofer pattern. For topological metal in Fig. 1(b), edge states
also carry supercurrent, and hence with increasing field, Ic can
decay slower than that of the Fraunhofer pattern. In experi-
ments, by appropriate transforms of the critical current Ic(�)
[47], the supercurrent density distribution can be obtained,
where the edge-localized supercurrent corresponds to edge
states [30].

IV. CONCLUSION

In this work, we study the cubic Rashba model arising from
LAO/STO interface superconductors. Topological edge states
associated with the cubic Dirac point are found in the normal
phase, which we call topological metal. Such edge states could
evolve into various forms under perturbations such as linear
Rashba SOC, Zeeman fields, and pairings, and can be revealed
via analysis of the dc critical current of a Josephson junction
under an out-of-plane magnetic field.
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APPENDIX A: CALCULATION OF SPIN
WINDING NUMBER

The spin vector component can be written in polar coor-
dinates as follows: Sx = S cos φ, Sy = S sin φ, then according
to

dSx = cos φdS − S sin φdφ,

dSy = sin φdS + S cos φdφ, (A1)

Eq. (3) becomes

W = 1

2π

∮
FS

dφ. (A2)

The polar angle φ of the spin can be obtained from the spin
vector field as plotted in Fig. 2(b). At the � point, using kx =
k cos θ, ky = k sin θ, we find the eigenstates

HcR(k)ψ± = E±(k)ψ±, ψ± = 1√
2

(
1

±ie3iθ

)
. (A3)

Then the spin vector is

S = ψ
†
−σψ− = {sin 3θ,− cos 3θ, 0} (A4)

and, hence, for the nonlinear Dirac point at the � point,

φ = 3θ − π

2
, (A5)

which leads to W = 3.
For linear Dirac point H = ∑

i j kiAi jσ j , one can work out
eigenstates Hψ± = ±Eψ± and the spin

S = ψ
†
−σψ− = p/|p|, p = −ATk, (A6)

where A = {Ai j} is the 2 × 2 matrix formed by four coeffi-
cients Ai j . Alternatively, we can write

S = Ã
k
|k| , Ã ≡ − AT

√
AAT

. (A7)

Since Ã is now an orthogonal matrix, the spin winding number
is W = sgn(det Ã) = sgn(det A).

APPENDIX B: TIGHT-BINDING CUBIC RASHBA MODEL

The continuum cubic Rashba model reads

HcR(k) = η0k2 + η1k4 + 1
2 iα(k3

+σ− − k3
−σ+), (B1)

where

k2 = k2
x + k2

y , k4 = (
k2

x + k2
y

)2
, (B2)

k3
+ = (kx + iky)3 = k3

x + 3ik2
x ky − 3kxk2

y − ik3
y , (B3)

k3
− = (kx − iky)3 = k3

x − 3ik2
x ky − 3kxk2

y + ik3
y . (B4)

Since the point group is D2d , the tight-binding model
should be built on a square lattice which contains linear
combinations of cos kx(y), sin kx(y), and their products. The
following substitution realizes power series of kx(y) in terms
of cos kx(y), sin kx(y) and their products:

kx(y) → sin kx(y),

k2
x(y) → 2(1 − cos kx(y) ),

k3
x(y) → 2 sin kx(y)(1 − cos kx(y) ). (B5)

The tight-binding Hamiltonian becomes

H = − 2η0(cos kx + cos ky − 2)

+ 4η1(cos kx + cos ky − 2)2

+ iα(−4 sin kx + 6 cos ky sin kx − sin 2kx )σy

+ iα(−4 sin ky + 6 cos kx sin ky − sin 2ky)σx. (B6)
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Near the � point, according to the Taylor expansion,
Eq. (B6) becomes

H = 2η0
(
k2

x + k2
y

) + 4η1
(
k2

x + k2
y

)2

+ α
(
k3

x − 3kxk2
y

)
σy + α

(
k3

y − 3k2
x ky

)
σx

= η0k2 + η1k4 + 1
2 iα(k3

+σ− − k3
−σ+) + O(k5). (B7)

APPENDIX C: CALCULATION DETAIL OF EQ. (7)

The whole Hamiltonian of the cubic Rashba model with
perturbations reads

H = η0k2 + η1k4 + 1
2 iα(k3

+σ− − k3
−σ+)

+ 1
2 iλ(k+σ+ − k−σ−) + Bxσx + Byσy, (C1)

where k2 = k2
x + k2

y , k± = kx ± iky, σ± = σx ± iσy. When
writing the momentum and magnetic field in terms
of polar coordinates (kx, ky) = k(cos θ, sin θ ), (Bx, By) =
B(cos φ, sin φ), the whole Hamiltonian becomes

H =
(

η0k2 + η1k4 D∗

D η0k2 + η1k4

)
(C2)

with D = iαk3e3iθ + iλke−iθ + Beiφ . The quantity D(k, θ ) in
Eq. (7) then reads D = |D|, and hence,

D2 = DD∗ = B2 + α2k6 + λ2k2 + 2αλk4 cos(4θ )

− 2αBk3 sin(3θ − φ) + 2Bλk sin(θ + φ).

APPENDIX D: SUPERCONDUCTING PHASE
OF TOPOLOGICAL METAL

To investigate the superconducting properties of the cu-
bic Rashba model, we consider the Bogouliubov-de Gennes

TABLE I. Possible pairings in the cubic Rashba model.

D2d ψ d

A1 1 kyx̂ + kx ŷ
k2 k2

x kyx̂ + k2
y kx ŷ

k4, Rek4
+ k3

y x̂ + k3
x ŷ

A2 Imk4
+ kx x̂ − kyŷ

kxk2
y x̂ − kyk2

x ŷ
k3

x x̂ − k3
y ŷ

B1 Imk2
+ k

kxk2
y x̂ + kyk2

x ŷ
k3

x x̂ + k3
y ŷ

B2 Rek2
+ ẑ × k

k2
x kyx̂ − k2

y kx ŷ
k3

y x̂ − k3
x ŷ

E 0 (
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(BdG) Hamiltonian as follows:

HBdG(k) =
(

HcR(k) − εF H
(k)

H†

(k) −H∗

cR(−k) + εF

)
, (D1)

where εF is the Fermi energy and the generic pairing is H
 =
(ψ + d · σ)iσy with the spin-singlet ψ (k) and spin-triplet
d(k) pairings. Due to the Pauli exclusion principle, the spin
singlet is even in momentum ψ (−k) = ψ (k) and spin triplet
is odd d(−k) = −d(k). According to the symmetry group
D2d of the cubic Rashba model, the possible spin-singlet and
spin-triplet pairings are calculated as shown in the Table I.
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