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Quantum Monte Carlo algorithm for Bose-Hubbard models on arbitrary graphs
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We propose a quantum Monte Carlo algorithm capable of simulating the Bose-Hubbard model on arbitrary
graphs, obviating the need for devising lattice-specific updates for different input graphs. We show that with
our method, which is based on the recently introduced permutation matrix representation quantum Monte Carlo
[Gupta, Albash, and Hen, J. Stat. Mech. (2020) 073105], the problem of adapting the simulation to a given
geometry amounts to generating a cycle basis for the graph on which the model is defined, a procedure that can
be carried out efficiently and in an automated manner. To showcase the versatility of our approach, we provide
simulation results for Bose-Hubbard models defined on two-dimensional lattices as well as on a number of
random graphs.
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I. INTRODUCTION

The Bose-Hubbard (BH) model, one of the pillars of
condensed matter physics, is the go-to model for a large vari-
ety of physical phenomena, from Mott-insulator-to-superfluid
transitions to bosonic atoms in optical lattices. Similar to
many other fundamental quantum systems of importance in
condensed matter physics, the BH model does not admit an-
alytical solutions in the general case and studying it usually
requires resorting to approximation techniques, as even exact-
numerical methods become unfeasible with increasing system
size.

The most common approach for studying the BH model
is statistical quantum Monte Carlo (QMC) techniques [1–4].
QMC has been used to study the BH model throughout the
years in a variety of contexts. Among these are supersolid
phases [5–12], superfluid to Mott insulator transition [13–17],
and superfluid to Bose glass transitions [13,15,18,19]. Other
studies focus on the BH model manifested on optical lat-
tices with confining potentials [20–23] and extensions thereof
[7,11,12,24,25].

Different setups of the BH model varying in both dimen-
sion and geometry have been explored, most notably with
the stochastic series expansion technique [26–29], employing
different types of updates including dual vortex theory [30],
multisite generalization [31] or directed loops [11]. Other
examples include studying the model on one-dimensional
lattices [18,19,22,23,25,32,33], triangular [8–11,16] or rect-
angular lattices in two dimensions [5–7,12–15,17,34–38], and
cubic lattices in three dimensions [20,39,40]. Other lattice
types include a cubic lattice with a harmonic confining po-
tential [41], the kagome lattice [30], the star lattice [31], the
honeycomb lattice [24], and more [42].
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One notable observation from the above survey is that
simulating the BH model on different lattice structures and in
different dimensions with QMC often requires one to concoct
specially tailored QMC updates for each such setup. In this
study, we present a resolution to this obstacle by proposing a
quantum Monte Carlo simulation technique that is applicable
to Bose-Hubbard models defined on arbitrary input graphs,
obviating the need for implementing lattice-specific update
rules for each setup separately. The proposed technique may
be used to simulate the BH model on any graph and in any
dimension.

Our approach builds on the parameter-free Trotter error-
free permutation matrix representation (PMR) quantum
Monte Carlo technique introduced in Ref. [43] for spin sys-
tems, wherein the quantum partition function is expanded in
a power series of the off-diagonal strength of the Hamilto-
nian, augmented with the necessary modifications that allow
simulations of the Bose-Hubbard model on arbitrary graphs.
Specifically, we show that QMC updates guaranteeing ergod-
icity and which also maintain detailed balance can be achieved
by generating what is known as a minimal cycle basis on the
BH graph [44]—the set of cycles that form a basis for all
cycles on the graph [45].

We validate our proposed algorithm by simulating the
Bose-Hubbard model on regular lattices as well as on a num-
ber of irregular graphs with up to 64 sites and with varying
numbers of particles and Hamiltonian parameters to showcase
the capabilities of our technique.

The paper is structured as follows. In Sec. II, we provide
an overview of the PMR quantum Monte Carlo technique,
followed by the specifics of our proposed QMC algorithm
adapted to simulating BH models on arbitrary graphs. Sec-
tion III is devoted to illustrating how a very wide variety of
measurements may be carried out, including quantities such as
superfluid density and the one-body density matrix. We then
move on to explain the concept of minimal cycle basis and its
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usage in the generation of the QMC updates for the algorithm
in Sec. IV. In Sec. V, we present some simulation results for
a number of Bose-Hubbard models defined on a variety of
graphs. We summarize our work in Sec. VI along with some
conclusions and a discussion of future work.

II. QMC ALGORITHM

Our proposed QMC algorithm builds on the recently intro-
duced permutation matrix representation QMC (PMR-QMC)
method [43]. Below we provide a brief overview of the gen-
eral methodology, which we then discuss in more detail in the
context of the Bose-Hubbard model.

A. Permutation matrix representation

The basis for the PMR-QMC method begins with casting
the to-be-simulated Hamiltonian H in PMR form, namely, as

H =
M∑

j=0

P̃j =
M∑

j=0

DjPj = D0 +
M∑

j=1

DjPj, (1)

where {P̃j}M
j=0 is a set of M + 1 distinct generalized permu-

tation matrices [46]—matrices that have at most one nonzero
element in each row and each column. One can write each
P̃j as P̃j = DjPj , where Dj is a diagonal matrix and Pj is a
bonafide permutation matrix. One of the permutations, which
we denote by P0, can always be chosen to be P0 = 1 (the
identity operation), such that the other permutation matrices
have no fixed points, i.e., no nonzero diagonal elements. We
refer to the basis in which the {Dj} matrices are diagonal as
the computational basis and denote its states by {|z〉}. The
operators DjPj for j > 0 represent the “quantum dimension”
of the Hamiltonian. Acting with a DjPj matrix on a basis state
|z〉 gives DjPj |z〉 = d j (z′)|z′〉, where d j (z′) is a (generally
complex) coefficient and |z′〉 is a basis state |z〉 �= |z′〉. We
will refer to D0 (the matrix multiplying P0) as the “classical
Hamiltonian.” The permutation matrices derived from H are
a subset of the permutation group wherein P0 is the identity
element [43]. One can show that any finite-dimensional (or
countable infinite-dimensional) matrix can be written in PMR
form [43].

B. Off-diagonal partition function expansion

Having cast the Hamiltonian in PMR form, one proceeds
with expanding the canonical partition function Z = Tr[e−βH ]
about its diagonal part in powers of its off-diagonal strength
[43]. The expansion results in the following expression for the
partition function (a detailed derivation can be found in the
Appendix and in Ref. [43]):

Z =
∑

z

∑
Siq =1

D(z,Siq )e
−β[Ez0 ,...,Ezq ]. (2)

The double sum above runs over all computational basis states
|z〉 and all products Siq = Piq . . . Pi2 Pi1 of permutation opera-
tors that evaluate to the identity. Here q = 0, . . . ,∞ denotes
the number of elements in each product. Specifically, iq =
(i1, i2, . . . , iq ) is a q-element multi-index where each index
i j ( j = 1 . . . q) runs from 1 to M.

In the above sum, each summand is a product of two terms.
The first is D(z,Siq ) ≡ ∏q

j=1 d
(i j )
z j consisting of a product of the

matrix elements

d
(i j )
z j = 〈z j |Dij |z j〉. (3)

The various {|z j〉} states are the states obtained from the action
of the ordered Pj operators in the product Siq on |z0〉, then
on |z1〉, and so forth. For example, for Siq = Piq . . . Pi2 Pi1 , we
obtain |z0〉 = |z〉, Pi1 |z0〉 = |z1〉, Pi2 |z1〉 = |z2〉, etc. The proper
indexing of the states |z j〉 along the path is |z(i1,i2,...,i j )〉 to
indicate that the state in the jth step depends on all Pi1 . . . Pij .
For conciseness, we will use the shorthand |z j〉. The sequence
of basis states {|z j〉} may be viewed as a closed “walk” on the
Hamiltonian graph—the graph defined by H such that the Hi j

matrix element corresponds to an edge between the two basis
states i and j, which serve as nodes on the graph.

The second term in each summand, e−β[Ez0 ,...,Ezq ], is called
the divided differences of the function F (·) = e−β(·) with
respect to the inputs [Ez0 , . . . , Ezq ]. The divided differences
[47,48] of a function F [·] is defined as

F [Ez0 , . . . , Ezq ] ≡
q∑

j=0

F (Ezj )∏
k �= j (Ezj − Ezk )

. (4)

In our case, the inputs Ezj are defined as Ezj = 〈z j |D0|z j〉. The
reader is referred to the Appendix for additional details.

C. PMR of the Bose-Hubbard model

The Bose-Hubbard Hamiltonian, which is the focus of this
study, is given by

H = −t
M∑

m=1

b̂†
jm

b̂km + U

2

L∑
i=1

n̂i(n̂i − 1) − μ

L∑
i=1

n̂i, (5)

where in the above expression i = 1, . . . , L labels the sites,
which we will treat as graph nodes for reasons that will
become clear later, and m = 1, . . . , M labels the (directed)
“edges” of the model, i.e., the ordered pairs of sites ( jm, km)
between which hopping terms b̂†

jm
b̂km exist. In addition, her-

miticity of the Hamiltonian dictates that for every pair of
indices ( jm, km) there exists another pair ( jm′ , km′ ) such as
( jm′ , km′ ) = (km, jm), corresponding to a hopping term in the
opposite direction.

As the computational basis for the PMR expansion, we use
the second quantized occupation number basis for bosons,
where a basis state is given as |n〉 = |n1, n2, . . . , nL〉, with
L being the number of sites and n1, . . . , nL are non-negative
integers representing the number of bosons in each site. We
denote the total number of bosons,

∑L
i=1 ni, by N . The opera-

tors b̂†
i , b̂i are creation and annihilation operators, respectively,

obeying

b̂†
i b̂ j |n〉 = √

(ni + 1)n j |n(i, j)〉, (6)

where |n(i, j)〉 stands for the state |n〉 with one additional boson
at site i and one fewer at site j. The operator n̂i = b̂†

i b̂i is the
number operator. The coefficients t, U , and μ are real-valued
parameters.

Casting H in PMR form with respect to the second quan-
tized basis dictates that the diagonal term D0 consists of the

134519-2



QUANTUM MONTE CARLO ALGORITHM FOR … PHYSICAL REVIEW B 109, 134519 (2024)

on-site terms, namely,

D0 = U

2

∑
i

n̂i(n̂i − 1) − μ
∑

i

n̂i. (7)

Likewise, the generalized permutation operators of the BH
model are P̃m = −t b̂†

jm
b̂km . These can be written as products

of bonafide permutation operators which obey

Pm|n〉 = |n( jm,km )〉 (8)

and accompanying diagonal operators

Dm = −t
∑

n

√
n jm (nkm + 1)|n〉〈n|, (9)

which together give P̃m = DmPm. Here, the summation index
n runs over all basis states (though in the case where the
number of particles is conserved, the sum over states n can
be restricted to those states that obey

∑L
i=1 ni = N). The total

Hamiltonian can now be recast as

H = D0 +
M∑

m=1

DmPm. (10)

Using the above notation, the partition function can be written
as

Z =
∑

n

∑
iq

W(n,Siq ) =
∑

n

∑
iq

D(n,Siq )e
−β[En0 ,...,Enq ]. (11)

As already discussed, the operator sequences are of the form
Siq = Piq . . . Pi2 Pi1 and must evaluate to the identity operation.
Each Siq generates a sequence of states |n0〉 = |n〉, Pi1 |n0〉 =
|n1〉, Pi2 |n1〉 = |n2〉 and so on where the last state is |nq〉 =
|n0〉. Moreover, D(n,Siq ) = ∏q

r=1 d (ir )
nr

, where

d (m)
nr

= 〈nr |Dm|nr〉 = −t
√

n(r)
jm

(
n(r)

km
+ 1

)
. (12)

Here, n(r)
i refers to the ith element of the state |nr〉.

D. Algorithm

1. Preliminaries

Having presented the partition function as a sum of effi-
ciently computable terms [Eq. (11)], we can now devise a
QMC algorithm, i.e., a Markov chain Monte Carlo process,
based on this decomposition. The partition function has the
form of a sum of configuration weights

Z =
∑
C

WC, (13)

where the weights are given by

WC = D(n,Siq )e
−β[En0 ,...,Enq ] (14)

and each configuration C is the pair C = {|n〉, Siq}. Here, |n〉
is the basis state of the configuration and Siq is a product
of operators that evaluates to 1. As already discussed, each
configuration C induces a closed walk on the Hamiltonian
graph, a sequence of states |n〉 = |n0〉, |n1〉, . . . , |nq〉 = |n〉
which is acquired by acting with the permutation operators
in Siq , in sequence, on |n〉.

2. Initial configuration

The initial configuration of our QMC algorithm is set to be
C0 = {|n〉, S0 = 1}, where |n〉 is a randomly chosen basis state
acquired by acting with a predetermined number of randomly
picked operators Pi on a predetermined basis state |n〉, which
we choose to be |n〉 = |N, 0, 0, . . . , 0〉, where N is the total
number of particles chosen for the initial state. The sequence
of permutation operators is simply the empty sequence, for
which q = 0. The weight of the initial state is therefore given
by WC0 = e−β[En] = e−βEn .

3. QMC updates

To ensure that every configuration in configuration space
is reachable from any other, i.e., that the Markov chain is
ergodic, we utilize five different types of moves. These are (i)
“classical” moves, (ii) local swap moves, (iii) cyclic rotation
moves, (iv) block swaps, and (v) insertion-deletion moves. We
discuss these in detail below. We then show that this set of
moves together is sufficient to guarantee ergodicity.

Classical moves. Classical moves ensure that all basis
states |n〉 can be reached. During this move, a new basis
state |n′〉 is proposed to replace the current one |n〉 in the
configuration C. The sequence of operators Siq is not altered.
Our algorithm may work both in the canonical ensemble and
in the grand-canonical ensemble. In a canonical ensemble
treatment, updates may be easily adjusted so as to conserve
the number of bosons in the system. Otherwise, classical
updates may change the total number of particles. If working
within a specific particle number sector (i.e., in the canonical
ensemble), the new proposed basis state may be chosen such
the total number of bosons is conserved. This can be achieved
by acting with a randomly selected permutation operator Pm

on the current basis state. A non-particle-number-conserving
move may consist of adding or removing a boson from a
randomly chosen lattice site. In the case where the proposed
new state |n′〉 is not a valid state, i.e., whenever Pm|n〉 = 0, the
procedure is repeated until a valid state is produced. The new
configuration is accepted with probability min(1,WC′/WC ),
where WC′ is the weight of the proposed configuration C ′ and
WC is the weight of the current one C.

Local swap moves. A local swap move consists of
randomly picking two adjacent operators in Siq and then swap-
ping them to create a new sequence S′

iq . Here, too, the new
configuration is accepted with probability min(1,WC′/WC ),
where WC′ is the weight of the proposed configuration C ′ and
WC is the weight of the current one C.

Cyclic rotation moves. The cyclic rotation move consists of
rotating (typically small length) subsequences within Siq that
evaluate to 1—we shall refer to these as cycles—utilizing the
fact that a rotated subsequence that evaluates to 1 also evalu-
ates to 1. The chosen subsequence S is virtually “cut” to two
so that it can be written as S = S1S2. Then, S is replaced with
the modified subsequence S′ = S2S1 in Siq . Here, too, the new
configuration is accepted with probability min(1,WC′/WC ),
where WC′ is the weight of the proposed configuration C ′ and
WC is the weight of the current one C.

Block swap moves. The block swap move modifies both
the basis state and the sequence of operators. Here, a random
position k in the product Siq is picked such that the product
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is split into two (nonempty) subsequences, Siq = S2S1, with
S1 = Pik · · · Pi1 and S2 = Piq · · · Pik+1 . Denoting the classical
state at position k in the product as |n′〉, namely,

|n′〉 = S1|z〉 = Pik · · · Pi1 |n〉, (15)

where |n〉 is the classical state of the current configuration, the
new block-swapped configuration is C ′ = {|n′〉, S1S2}.

Insertion-deletion moves. The insertion-deletion move is
the only type of move considered here that changes the length
q of the sequence of operators. An insertion-deletion move
either removes cycles (sequences of operators that evaluate to
the 1) from Siq or inserts a randomly picked cycle from a pool
of “fundamental cycles” (which we discuss in detail in the
next section).

The insertion-deletion move consists of first randomly se-
lecting a length ml for the cycle that is to be inserted or
removed among all possible cycle lengths. As the next step,
a random choice is made as to whether to insert a cycle or
remove one from Siq .

If deletion is selected, and ml = 2, a uniformly random
deletion point k is selected. If Pik−1 Pik is a cycle, i.e., evaluates
to the identity operation, then a configuration with the two op-
erators removed is proposed. Otherwise, the move is rejected.
For ml > 2, a deletion point k is selected in a similar manner.
If {Pik−2 , Pik−1 , . . . , Pik+ml −3} is equivalent to 1 and the sequence
is in the list of fundamental cycles, the subsequence is re-
moved and the resultant configuration is proposed. Otherwise,
no new configuration is proposed and the move is rejected.

If insertion is selected, a random insertion point k is se-
lected. A random cycle of length ml is picked from the pool
of cycles, which is then inserted into the full sequence Siq at
position k. The proposed new configuration is then accepted
or rejected based on its relative weight (and other selection
factors) maintaining detailed balance.

Cycle completion. Although not strictly necessary for er-
godicity, one may augment the aforementioned QMC updates
with another type of move, which we refer to here as “cycle
completion moves.” Here, one chooses a subsequence S1 from
Siq and subsequently checks whether S1 is a subcycle of one
of the aforementioned fundamental cycles, namely if a fun-
damental cycle of the form S1S2 = 1 exists. If it does, then
S1 is replaced (with the appropriate acceptance probability)
with S−1

2 as both S1 and its replacement evaluate to the same
permutation.

At this point, it would be worthwhile to contrast the up-
dates of the present algorithm against those usually used in
existing techniques. It is interesting to note that, while ex-
isting approaches such as stochastic series expansion (SSE)
[22,25] or continuous-time path integral Monte Carlo–based
methods [49] require world line–type or worm-type updates
where “disturbances” along the imaginary time dimension
are created and then healed in order to create new config-
urations, PMR-QMC does not require such updates. This
is for two main reasons. The first of which is that unlike
existing schemes the PMR-QMC quantum imaginary-time
dimension consists only of off-diagonal operators (permuta-
tion operators) as the diagonal component of the Hamiltonian
is explicitly integrated out (diagonal matrix elements appear
only as divided-difference coefficients). Second, the insertion-
deletion of either pairs of operators or fundamental cycles

along the sequence of operators, i.e., along the imaginary
time dimension, function as a short-distance worm thereby
minimizing the risk of percolation.

Nonetheless, worm-type moves in the framework of PMR-
QMC may also be implemented although, as mentioned, they
are not strictly necessary. A worm update would introduce
a “disturbance” (or a “worm head”) into the sequence of
operators Siq by either inserting into Siq a single permutation
operator or removing one from it (we will call this addition
or removal of an operator a “single operator move”). An in-
sertion or removal of a single permutation operator causes the
disturbed sequence to evaluate to a nonidentity permutation
and hence corresponds to a zero-weight configuration. As
a result, the disturbed sequence must be “healed” in order
to form a sequence that evaluates to the identity. The heal-
ing process proceeds by introducing additional moves: either
employing standard local updates such as the ones already
discussed (namely, local swap, cycle completion, and cycle
rotation) or additional single operator moves. These single
operator moves have the power to heal the sequence. After
every such move, the instantaneous sequence can be checked
to determine whether it evaluates to the identity operator. If
it does, the worm update can be terminated. If it does not,
additional moves are required. To make sure that detailed
balance is conserved and that eventual acceptance rates of
the intermediate worm moves are high, we assign nonidentity
intermediate configurations their “natural” weight WC .

III. MEASUREMENTS

Deriving expressions for measurements of expectation val-
ues of essentially any physical observable is straightforward
with PMR [50]. Below we provide a number of useful ex-
amples, including various energy measurements, arbitrary
functions of the Hamiltonian, and local observables. In ad-
dition, we discuss the measurement of quantities that are of
particular importance to the Bose-Hubbard model, such as
superfluid density and the one-body density matrix.

For all of the above, the basic idea would be to write the
thermal average of any given operator A as

〈A〉 = tr[A e−βH ]

tr e−βH ]
=

∑
C ACWC∑
C WC

. (16)

The quantity AC is therefore the instantaneous quantity as-
sociated with the configuration C that should be calculated
and stored during the simulation. Since the configurations are
visited in proportion to their weights, a simple average of the
above quantities will yield the correct expectation values for
the diagonal, off-diagonal, and total energies, respectively.

A. Energies

The average energy 〈H〉 may be calculated using the
expression

〈H〉 = tr[H e−βH ]

tr[e−βH ]
=

∑
C W(n,Siq )

(
En + e−β[En1 ,...,Enq ]

e−β[En ,...,Enq ]

)
∑

C W(n,Siq )
. (17)

In the above expression we identify En as the instanta-
neous quantity that needs to be calculated for the diagonal
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component of the Hamiltonian throughout the simulation,
namely,

〈Hdiag〉 = tr[Hdiage−βH ]

tr[e−βH ]
=

∑
C W(n,Siq ) En∑
C W(n,Siq )

(18)

and e−β[En1 ,...,Enq ]

e−β[En ,...,Enq ] as the quantity corresponding to the off-
diagonal component of the Hamiltonian, that is,

〈Hoff-diag〉 = tr[Hoff-diage−βH ]

tr[e−βH ]
=

∑
C W(n,Siq )

e−β[En1 ,...,Enq ]

e−β[En ,...,Enq ]∑
C W(n,Siq )

.

(19)

The sum of these two instantaneous quantities yields the
instantaneous total energy.

B. General functions of the Hamiltonian

Expectation values for more general functions of the
Hamiltonian, namely,

〈g(H )〉 = tr[g(H )e−βH ]

tr[e−βH ]
, (20)

may be obtained by applying the off-diagonal series expansion
to tr[g(H )e−βH ], which yields [50]

〈g(H )〉 =
∑

C W(n,Siq )

(∑q
j=0 g[En0 , . . . , En j ]

e
−β[En j ,...,Enq ]

e−β[En0 ,...,Enq ]

)
∑

C W(n,Siq )
,

(21)

where g[En0 , . . . , En j ] is the divided difference with respect to
the function g(·). Given the above expression, we may identify∑q

j=0 g[En0 , . . . , En j ]
e
−β[En j ,...,Enq ]

e−β[En0 ,...,Enq ] as the quantity that is to be
evaluated and collected during the QMC simulation.

In the special case where powers of the Hamiltonian, Hk ,
are considered, we get

〈Hk〉 =
∑

C W(n,Siq )

(∑max{k,q}
j=0 [En0 , . . . , En j ]

k e
−β[En j ,...,Enq ]

e−β[En0 ,...,Enq ]

)
∑

C W(n,Siq )
,

(22)

which follows from the fact that [En0 , . . . , En j ]
k evaluates to 0

for j > k, for j = k it evaluates to 1, and in general for k � j
and for arbitrary inputs x0, . . . , x j :

[x0, . . . , x j]
k =

∑
a∈{0,...,n}k− j with a1�a2�···�ak− j

∏
m∈a

xm. (23)

C. Measurements of arbitrary static operators

We next consider the measurement of a general static op-
erator A. We proceed by casting it in PMR form, i.e., as
A = ∑

i ÃiP̃i, where each Ãi is diagonal and the P̃i’s are ei-
ther permutation operators that appear in the Hamiltonian or
products thereof. In this case, we can write

〈A〉 = tr[A e−βH ]

tr[e−βH ]
=

∑
i

tr[ÃiP̃ie−βH ]

tr[e−βH ]
(24)

and we may therefore focus on a single ÃP̃ term at a time.
Carrying out the off-diagonal expansion, we end up with

tr[ÃP̃ e−βH ] =
∑

n

Ã(n)
∞∑

q=0

∑
Siq

D(n,Siq )

× e−β[En0 ,...,Enq ]〈n|P̃Siq |n〉, (25)

where D(n,Siq )e−β[En0 ,...,Enq ] is the weight of the configuration
{n, Siq}.

The operator to be measured has the form A = ÃP̃, where
Ã is diagonal and P̃ = Pi1 Pi2 · · · Pik . We modify Eq. (25) so
that (n, S̃iq ) with S̃iq = P̃Siq is seen as a configuration instead
of (n, Siq ). Thus we arrive at

〈A〉 =
∑

(n,S̃iq ) w(n,S̃iq )MÃP̃(n, S̃iq )∑
(n,S̃iq ) w(n,S̃iq )

, (26)

where

MÃP̃(n, S̃iq ) = δP̃Ã(n)
1

D(n,P̃)

e−β[En0 ,...,Enq−k ]

e−β[En0 ,...,Enq ] . (27)

In the above, δP̃ = 1 if the leftmost operators of S̃iq are
Pi1 Pi2 · · · Pik and is zero otherwise, and

D(n,P̃) =
D(n,S̃iq )

D(n,Siq )
=

k∏
m=1

〈nq−m+1|Dim |nq−m+1〉. (28)

One important example of operators of the above form
are the matrix elements of the so-called one-body density
matrix, which establishes a condensation criterion in terms of
the properties of the matrix whose elements are ρi j = 〈b†

i b j〉
[51–53]. Operators of the form b†

i b j can be written as products
of the form (b†

i bk )(b†
kbm) · · · (b†

l b j ) or permutations thereof,
where each of the operators b†

i bk, b†
kbm, . . . , b†

l b j corresponds
to a permutation operator appearing in the Hamiltonian and
can therefore be readily measured using PMR-QMC. We note
that for any given matrix element ρi j there will be multiple
distinct “paths,” or products of operators, that evaluate to the
target operator b†

i b j all of which can be taken to contribute to
the statistics of ρi j . In cases where the graph distance between
site i and site j is long, any particular product may have low
likelihood to be encountered; however, in this case there will
be in general factorially many paths between the two sites, all
of which can be taken into account.

D. Calculating the superfluid density

The concept of superfluid density [54] in the Bose-
Hubbard model is particularly important when studying phase
transitions in ultracold atomic systems. It provides insight
into the coherent motion of particles and is a key quantity in
characterizing the different quantum phases of the system. In
cases where the number of particles is conserved, in which
case the winding number is well defined, measurement of the
superfluid density can be directly connected to fluctuations
of the winding number [55]. In the most general case, the
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superfluid density is proportional to

ρs ∝
〈⎛
⎝∑

j

L jWj r̂ j

⎞
⎠

2〉
, (29)

where Lj is the linear size of the system in the r̂ j direction
and the quantity Wj counts the number of particles that cross
the boundaries of the system in direction r̂ j . For instance, in
the special case of a d-dimensional hypercubic lattice, with
Ld sites, one obtains

ρs = L2−d

2βtd

〈
d∑

j=1

W 2
j

〉
, (30)

and where more complex geometries require the calculation
of other bilinear combinations of Wj . Collecting statistics for
Wj , the number of particles that cross the boundaries of the
system in the jth direction, in PMR-QMC, is simple. Since
every operator in the sequence of operators Siq corresponds
to a directed edge, Wj is given by Wj = N+

j − N−
j where N+

j
counts the number of edges that cross the boundary in the
positive j direction and N−

j counts the number of edges that
cross the boundary in the negative j direction.

IV. ERGODICITY AND MINIMAL CYCLE BASES

The QMC update moves used throughout the simulation
must be able to generate an ergodic Markov chain for any
input graph and dimensionality of the BH model. That is,
any valid configuration (|n〉, Siq ) has to be reachable from
any other. While the various (second-quantized) basis states
|n〉 are trivially reachable from one another by the so-called
“classical moves” discussed in the previous section, which
randomly alter the basis states (augmented by block swap
moves, which also change the basis state), less obvious is
the guarantee that all operator sequences Siq evaluating to the
identity are reachable from one another.

To show that the moves discussed in the previous sec-
tion do indeed generate an ergodic Markov chain, we
begin by making a few observations. The first is that lo-
cal swap and cyclic rotation moves shuffle, or permute, the
operators in the sequence of operators. Thus, to demon-
strate ergodicity, one only needs to show that all valid
multisets of operators (irrespective of their ordering) are
producible.

The second observation we make is that every permutation
operator Pm in the BH model, which as already mentioned
can be associated with a directed edge on the BH graph,
has an inverse permutation Pm′ such that Pm′ = P−1

m —the per-
mutation operator associated with the same edge but which
points in the opposite direction. The insertion-deletion move
consisting of the insertion or deletion of pairs of operators
PmP−1

m therefore corresponds to the insertion and deletion of
operators corresponding to the same edge (but with opposite
directions) twice. The insertion-deletion of pairs can therefore
be used to remove edge pairs down to a core collection of
operators that multiply to the identity and in which operators
do not appear with their inverses. We conclude then that, to
guarantee ergodicity, the only remaining requirement is that
there is an update move capable of generating all multisets of

FIG. 1. Example of a random graph on which the BH model can
be defined. Nodes correspond to sites that the bosons can occupy
and every edge is associated with two permutation operators or
hopping terms—one in each direction. In red is an example of a
set of (directed) edges whose corresponding sequence of operators
multiply to the identity operation.

operators (whose product evaluates to the identity) which con-
tain edges pointing only in one direction but never both (that
is, sequences that never contain both Pm and P−1

m ). We shall
call such multisets of operators “multicycles.” We shall call a
multicycle that does not contain repeated edges a “cycle” and
note that any multicycle is a concentration of bonafide cycles.

In terms of edges on the BH graph, the ability to produce
all multicycles reduces to the requirement that all cycles on
the underlying BH graph can be produced or inserted. An
illustrative example of a single cycle on a BH graph is given
in Fig. 1.

In what follows, we show that any cycle on a given BH
graph can be produced via combinations of insertions and
deletions of cycles taken from a finite set of cycles, commonly
referred to as a cycle basis—a set of cycles within which
combinations thereof are capable of producing all possible
cycles [44]. Setting up a QMC update rule within which these
“fundamental” cycles are inserted or deleted (see Sec. II D 3)
will ensure then that all cycles are producible, guaranteeing
ergodicity as desired. We next discuss the process of generat-
ing a cycle basis for any given input graph.

Let us consider a K-edge BH graph with n sites labeled
1, . . . , n. The M = 2K permutation operators of the BH graph
correspond to the directed edges, equivalently ordered pairs of
nodes of the form ( jm, km), corresponding to the existence of
a permutation operator Pm in the Hamiltonian which creates a
boson at site jm and annihilates one at site km. A cycle c (of
length |c|) is a set of edges that can be ordered as a sequence
{(i1, i2), (i2, i3), . . . , (i|c|, i1)}, where |c| denotes the number
of edges in c, with the restriction that if an edge is in c then its
inverse cannot be in c. Succinctly, a cycle may be written as a
sequence of nodes i1 → i2 → · · · → i|c| → i1.

With the above definitions, one can assign every permu-
tation operator Pm corresponding to a directed edge ( jm, km)
a ternary vector bm = (b1, b2, . . . , bn) such that b jm = 1 (a
boson is created at site jm), bkm = −1 (a boson is annihilated
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FIG. 2. Cycle basis for the graph depicted in Fig. 1. Every cycle on the BH graph can be represented as a combination (or a concatenation)
of these basis cycles.

at site km), and all other entries are set to zero. The product of
two permutation operators would correspond to the addition
of two such vectors. A cycle c would be a linear combina-
tion of ternary vectors adding up to the zero vector, namely,∑M

i=1 cibi = 0, where ci ∈ {−1, 0, 1}.
Finding a basis of cycles with which one could produce any

possible cycle corresponds to finding a set of ternary vectors
of the form c = {c1, . . . , cM} that solve the homogenous set
of equations Bc = 0, where B is the M × n matrix consisting
of the M column vectors bi (i = 1, . . . , M). Expressed differ-
ently, finding a cycle basis can be accomplished via finding
the null space of the above linear system, which can be done
efficiently using Gaussian elimination. In Fig. 2, we provide
an example of a cycle basis found for the graph depicted
in Fig. 1. In the figure, a nondirected cycle is depicted as a
collection of red-colored edges.

Denoting by T the dimension of the cycle null space, we
note that the set of null space cycles is not unique, as any
T linearly independent vectors may serve as a basis. For the
QMC algorithm, however, we find that in order to maximize
the acceptance ratios of insertion and removal of cycles the
length of cycles should preferably be as short as possible.
We therefore devise a protocol for producing a minimal cycle
basis [44,56,57]—the set of shortest possible cycles that form
a basis. We find the minimal cycle basis using an algorithm
proposed by Kavitha et al. [57].

We note that even though QMC updates based on the
generation of a minimal cycle basis are sufficient to ensure
an ergodic Markov chain, one may introduce additional cy-
cles into the pool of “fundamental” cycles to improve the
convergence rate of the simulation. Having more cycles in
the pool of cycles available to choose from will increase
the acceptance rates of both the insertion-deletion and cycle

completion updates. On the other hand, searching a long list
of fundamental cycles stands to inevitably slow down the
algorithm. We find that these two opposing considerations are
appropriately balanced if one includes all the chordless cycles
of the BH graph that have a length smaller than or equal to
the longest basis cycle found (a chordless cycle is defined as
a cycle that does not have a “chord,” i.e., a cycle for which
there are no edges not belonging to the cycle that connect two
vertices that do belong to it [45]).

V. ALGORITHM TESTING

To test the power and flexibility of our method, we have
carried out QMC simulations for a variety of BH models,
implementing the algorithm introduced above and allowing
it to find within each setup a minimal cycle basis and in turn
provably ergodic QMC updates. We next present the results of
our simulations for several BH graph configurations including
rectangular lattices with varying Hamiltonian parameters as
well as irregular graphs. For what follows, we have chosen to
present the performance of the algorithm in the canonical en-
semble. We have set the chemical potential μ to zero and have
employed classical update moves that conserve the number of
particles.

A. Verification against exact diagonalization

To verify the correctness of our algorithm, we first carry
out simulations of the BH model on small two-dimensional
rectangular lattices so that the QMC results can be compared
against those obtained from exact diagonalization.

For concreteness, we choose to monitor and measure the
total energy, given in Eq. (17). It should be noted that our
algorithm is readily capable of measuring many other physical
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FIG. 3. Comparison of QMC results with exact diagonalization. Left: average energy E = 〈H〉 as a function of total number of particles N
for a 2 × 2 rectangular lattice with open boundary conditions and parameters t = 1, μ = 0, U = 0.5, β = 1. Middle: average energy 〈H〉 for
a 2 × 2 rectangular lattice with N = 8 particles (open boundary conditions) and parameters t = 1, μ = 0, β = 1 as a function of U . Right:
average energy for a 2 × 2 rectangular lattice with N = 8 particles (open boundary conditions) and parameters t = 1, μ = 0, U = 1 as a
function of inverse temperature β.

observables as well [50]. All data points presented in this
section were obtained via the execution of multiple inde-
pendent simulations, each of which yields a single value for
the total energy. Data points were obtained by averaging the
values from each run, whereas error bars were obtained by
the evaluation of the sample error of the mean over said data
points.

In Fig. 3 (left), we plot the average thermal energy as a
function of the number of bosons N for a BH model on a 2 × 2
rectangular lattice (with open boundary conditions). The pa-
rameters for which results are shown are t = 1, μ = 0, U =
0.5, and β = 1. Figure 3 (middle) shows the average energy
as a function of the on-site repulsion U for N = 8 bosons.
Here, t = 1, μ = 0, and β = 1. Another set of results for
simulations of a 2 × 2 rectangular lattice with open boundary
conditions is presented in Fig. 3 (right). Here, too, N = 8
and the average thermal energy is plotted as a function of
inverse-temperature β (with t = 1, μ = 0, and U = 1). As
can be seen from the three panels of the figure, the QMC
results are in excellent agreement with those obtained from
exact diagonalization.

B. Larger two-dimensional lattices

Having verified the validity of our approach, we next pro-
vide simulation results for larger rectangular systems. Figure 4
(top) depicts the average thermal energy as a function of the
on-site repulsion U for a BH model defined on an 8 × 8
rectangular lattice with open boundary conditions containing
N = 64 particles. The average thermal energy is plotted as a
function of on-site potential U for a 6 × 6 rectangular lattice
with periodic boundary conditions in Fig. 4 (bottom). Here,
t = 1, μ = 0, and β = 1.

C. Simulations of the BH model on random graphs

To showcase the versatility of our approach we have also
carried out QMC simulations of BH models defined on ran-
domly generated graphs. For the results below, we present the
graphs themselves and their fundamental basis cycles along-
side the simulation results.

Starting with the six-node random graph depicted in Fig. 5
(left) alongside its minimal cycle basis, we present the average

energy of an N = 6 boson system in Fig. 5 (right) as a function
of the on-site repulsion U .

In Fig. 6 (right), we show results of simulations conducted
on the 17-site graph shown in Fig. 6 (left). Here, we measure
the total energy of the system as a function of U for an N = 17
boson system.

D. Convergence properties of the algorithm

We further tested the convergence properties of our al-
gorithm by monitoring the error of the mean on an 8 × 8
lattice with open boundary conditions containing 64 bosons
(t = 1, μ = 0, U = 0.001) across different inverse temper-
atures. We plot the error against the number of sweeps in
Fig. 7 on a log-log scale. As expected, the figure indicates
a power-law dependence of the error with simulation time.
For each temperature, the error was calculated based on the
standard deviation across 10 independent simulation runs.

VI. SUMMARY AND CONCLUSIONS

We presented a quantum Monte Carlo algorithm designed
to reliably simulate the Bose-Hubbard model on arbitrary
graphs. We showed that a provably ergodic QMC algorithm
can be devised by adapting the permutation matrix represen-
tation QMC [43] and augmenting it with update moves based
on the minimal cycle basis of the BH graph, which can be
produced in an automated way.

To demonstrate the versatility and generality of our ap-
proach, we presented simulation results for the Bose-Hubbard
model defined on regular lattices with open and periodic
boundary conditions as well as on a number of irregular
graphs.

We believe that the algorithm presented in this study may
become a very useful tool in the study of the equilibrium prop-
erties of Bose-Hubbard models in different dimensions and
setups, which have so far not been amenable to simulations.

Moreover, the methods presented in this paper are readily
generalizable to other types of systems, e.g., fermionic or spin
systems. We aim to explore such extended techniques in future
work.
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FIG. 4. Top: average energy E = 〈H〉 for a BH model defined on an 8 × 8 rectangular lattice with open boundary conditions and N = 64
particles as a function of on-site potential U . Here, t = 1, μ = 0, and β = 1. Bottom: average energy E = 〈H〉 as a function of U for a 6 × 6
rectangular lattice with periodic boundary conditions and 36 particles. Here, too, t = 1, μ = 0, and β = 1.
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APPENDIX: OFF-DIAGONAL PARTITION
FUNCTION EXPANSION

Here, we describe the expansion of the partition function
in terms of the off-diagonal operators of the Hamiltonian. The
partition function is given as

Z = Tr[e−βH ]. (A1)

We replace trace by explicit sum
∑〈z| · |z〉, then expand the

exponent in Taylor series in β:

Z =
∑

z

∞∑
n=0

βn

n!
〈z|(−H )n|z〉

=
∑

z

∞∑
n=0

βn

n!
〈z|

(
1 − D0 −

∑
j=1

DjPj

)n

|z〉

=
∑

z

∞∑
n=0

∑
{Sin }

βn

n!
〈z|Sin |z〉. (A2)

In the last step, (−H )n is expressed in all sequences of length
n composed of products of D0 and DjPj , which is denoted as
{Sin}, in = (i1, i2, . . . , in), i j ∈ {0, . . . , M} j ∈ {1, . . . , n},

Z =
∑

z

∞∑
q=0

∑
{Sq}

(
q∏

j=1

d
(i j )
z j

)
〈z|Sin |z〉

×
( ∞∑

n=q

βn(−1)n

n!

∑
∑

ki=n−q

(Ez0 )k0 · . . . · (Ezq )kq

)
, (A3)

where Ezi = 〈zi|D0|zi〉,

d
(i j )
z j = 〈z j |Dij |z j〉, (A4)

FIG. 5. Left: minimal cycle basis (in red) for a six-node graph containing eight edges. Right: average energy E = 〈H〉 as a function of U
for the graph depicted in the left panel. Here, the number of particles is N = 6. The remaining parameters are fixed and have the following
values: t = 1, μ = 0, and β = 1.
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FIG. 6. Left: minimal cycle basis (in red) for a 17-node random graph. Right: average energy E = 〈H〉 as a function of U for the graph
depicted in the left panel. Here, the number of particles is N = 17. The remaining parameters are fixed and have the following values: t =
1, μ = 0, and β = 1.

Siq = Piq . . . Pi2 Pi1 , |z0〉 = |z〉, and Pij |z j〉 = |z j+1〉. |z j〉 =
|z(i1,i2,...,i j )〉n → n + q gives

Z =
∑

z

∞∑
q=0

∑
{Sq}

〈z|Siq |z〉
[

(−β )q

(
q∏

j=1

d
(i j )
z j

)

×
∞∑

n=0

−βn

(n + q)!

∑
∑

ki=n

(Ez0 )k0 · . . . · (Ezq )kq

]
. (A5)

{Ezi} are classical energies of |zi〉, which are created by the
application of Siq :

Z =
∑

z

∞∑
q=0

(
q∏

j=1

d
(i j )
z j

)∑
{Sq}

〈z|Siq |z〉

×
(

(∞,...,∞)∑
{ki}=(0,...,0)

−βq

(q + ∑
ki )!

q∏
j=0

(−βEzz j
)k j

)
, (A6)

∑
{ki}

−βq

(q + ∑
ki )!

q∏
j=0

(−βEzz j
)k j = e−β[Ez0 ,...,Ezq ]. (A7)

[Ez0 , . . . , Ezq ] is a multiset of energies:

F [Ez0 , . . . , Ezq ] ≡
q∑

j=0

F (Ezj )∏
k �= j (Ezj − Ezk )

. (A8)

F is called divided differences, defined for real valued
variables [Ez0 , . . . , Ezq ]:

Z =
∑

z

∞∑
q=0

∑
{Sq}

〈z|Siq |z〉D(z,Siq )e
−β[Ez0 ,...,Ezq ], (A9)

where

D(z,Siq ) =
q∏

j=1

d
(i j )
z j . (A10)

Note that expansion of Z is not an expansion in β. It begins
with a Taylor series expansion in β but regrouping of terms
into the exponent of divided differences means it is no longer
a high temperature expansion.

FIG. 7. Left: scaling of the error with number of QMC sweeps M for different inverse temperatures (log-log scale). Error is calculated
based on the standard deviation of 10 independent runs. We observe a power-law dependence with an average power of roughly −2. Right:
scaling of the error with run time for different choices for number of particles N (log-log scale). Results shown for a 64-boson system on an
8 × 8 lattice with open boundary conditions (t = 1, μ = 0, U = 0.001).
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One can interpret Z expansion as a sum of weights. Z =∑
{C} WC , where {C} is all distinct pairs {|z〉, Siq},

WC = D(z,Siq )e
−β[Ez0 ,...,Ezq ]. (A11)

WC is the configuration weight. 〈z|Siq |z〉 evaluates to either 1 or
0. Since Pj, j �= 0 has no fixed points, Siq = 1 implies Siq = 1.
Then,

Z =
∑

z

∑
Siq =1

D(z,Siq )e
−β[Ez0 ,...,Ezq ]. (A12)
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