
PHYSICAL REVIEW B 109, 134518 (2024)

Topological superconductivity induced by spin-orbit coupling,
perpendicular magnetic field, and superlattice potential
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Topological superconductors support Majorana modes, which are quasiparticles that are their own antiparticles
and obey non-Abelian statistics in which successive exchanges of particles do not always commute. Here we
investigate whether a two-dimensional superconductor with ordinary s-wave pairing can be rendered topological
by the application of a strong magnetic field. To address this, we obtain the self-consistent solutions to the mean-
field Bogoliubov–de Gennes equations, which are a large set of nonlinearly coupled equations, for electrons
moving on a lattice. We find that the topological “quantum Hall superconductivity” is facilitated by a combination
of spin-orbit coupling, which locks an electron’s spin to its momentum as it moves through a material, and
a coupling to an external periodic potential which gives a dispersion to the Landau levels and also distorts
the Abrikosov lattice. We find that, for a range of parameters, the Landau levels broadened by the external
periodic potential support topological superconductivity, which is typically accompanied by a lattice of “giant”
h/e vortices as opposed to the familiar lattice of h/2e Abrikosov vortices. In the presence of a periodic potential,
we find it necessary to use an ansatz for the pairing potential of the form �(r)ei2Q·r where �(r) has a periodicity
commensurate with the periodic potential. However, despite this form of the pairing potential, the current in the
ground state is zero. In the region of ordinary superconductivity, we typically find a lattice of dimers of h/2e
vortices. Our work suggests a realistic proposal for achieving topological superconductivity, as well as a helical
order parameter and unusual Abrikosov lattices.
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I. INTRODUCTION

Majorana modes, which are quasiparticles that are their
own antiparticles, are perhaps the most readily realizable
non-Abelian anyons. In topological superconductors, they ap-
pear as zero-energy quasiparticles which reside in the cores
of Abrikosov vortices, or appear as chiral boundary modes.
Their non-Abelian braid statistics, although not yielding all
unitary gates, are a step toward the goal of topological quan-
tum computation with anyons [1–14]. Besides their potential
application for quantum computation and being of funda-
mental scientific interest, achieving Majorana modes in the
laboratory could lead to a physical realization of interest-
ing theoretical models, such as the Sachdev-Ye-Kitaev model
[15]. There are several candidate condensed matter systems
which are thought to host Majorana modes, including the
ν = 5/2 fractional quantum Hall effect, two-dimensional p-
wave superconductors, and two-dimensional films of 3He-A
superfluid [16]. In addition, there have been proposals to engi-
neer topologically interesting structures which host Majorana
modes. In particular, topological p-wave superconductivity
(SC) is thought to arise when a spin-orbit-coupled electron
gas is proximity coupled to an s-wave superconductor, owing
to the appearance of a single Fermi surface in certain pa-
rameter regimes [4,17–29]. Particularly notable are proposals
for quasi-one-dimensional systems, e.g., semiconductor wires
[19,21,25,30–33], magnetic atom chains [34–38], and planar
Josephson junctions [39,40], for realizing topological super-
conductivity (TSC). Some exciting progress has been made
on these fronts [41].

In earlier work, Sau et al. proposed a heterostructure con-
sisting of a spin-orbit-coupled two-dimensional electron gas
(2DEG) coupled to a ferromagnetic insulator and an s-wave
superconductor [4,21]. The ferromagnetic insulator causes
a gap in the single-particle spectrum of the 2DEG at zero
momentum. This gap, along with spin-orbit coupling (SOC),
leads to the appearance of a single Fermi surface for certain
values of the chemical potential. When the system is coupled
to an s-wave superconductor, effective chiral p-wave TSC is
realized in a single band. They studied the properties of the
Bogoliubov–de Gennes (BdG) spectrum in the regime where
vortices are well separated. Crucially for these works, it is the
SOC, together with the Zeeman-like effect from the magnetic
insulator, which gives rise to the topological phase.

A related idea is to apply a magnetic field to a two-
dimensional system, utilizing the orbital effect to realize TSC.
Indeed the topological nature of the underlying Landau levels
(LLs) sets the stage nicely for TSC when a pairing gap is
opened [20,23]. The combination of SC and quantum Hall
(QH) systems, both integer (IQHE) and fractional (FQHE),
has been thought to be fertile ground for the realization not
only of TSC with the concomitant Majorana particles, but
also more exotic topological phases that are predicted to
harbor parafermions and Fibonacci anyons [42–50]. In order
to integrate the orbital effect of the magnetic field and SC,
there are, broadly speaking, two approaches. The first, like
the above proposal, involves proximity coupling a QH sys-
tem to a superconductor. It is necessary to take into account
the vortices in superconductors exposed to a magnetic field
[51–55]. Zocher and Rosenow [51], Mishmash et al. [52],
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and Chaudhary and MacDonald [54] showed that there is no
TSC for particles in the lowest LL (or the lowest few LLs)
if the unit cell of the Abrikosov lattice has only one (or in
general an odd number of) superconducting flux quanta (that
is, the unit cell violates magnetic translation symmetry), as is
the case for the usual triangular Abrikosov lattice or even a
square Abrikosov lattice. It was shown that the spectrum of
the BdG equations, which is completely determined by the
s-wave pairing potential when the normal state bands are flat,
has an even degeneracy in the case of a square or triangu-
lar Abrikosov vortex lattice, and therefore any quasiparticle
spectral gap closing across a topological phase transition must
lead to a Chern number change by an even integer, thereby
precluding the appearance of TSC that requires odd-integer
Chern number. All of these works considered LLs with SOC.
Also, because they considered proximity-induced SC, they
did not need to find a self-consistent mean-field state within
the 2DEG, since the pairing and, consequently, the Abrikosov
lattice are inherited from a nearby bulk superconductor, and
hence are a part of the Hamiltonian defining the problem, not
of its solution.

The second approach is to apply a strong magnetic field to
an intrinsic two-dimensional superconductor, driving it into
the Landau level limit. It has been known for some time that
BCS mean-field theory predicts that superconductivity can be
enhanced due to the Landau level structure of systems in a
strong magnetic field [56–74]. Because of the enlargement
of the density of states in Landau levels, it has been pre-
dicted that the critical temperature in this limit approaches
that of the zero-field value [57,58]. This has been referred
to as quantum Hall superconductivity [74]. In contrast to
the case of proximity-coupled SC in LLs, the vortex lattice
structure is determined by electrons pairing in LLs within
the same sample, and consequently a vortex lattice structure
cannot be assumed but must be solved for self-consistently
[60,64,68]. In spite of extensive theoretical efforts, convincing
experimental demonstrations of these remarkable predictions
have been lacking. In addition, to our knowledge, there has
not been any study of the possibility of topological super-
conductivity in such systems. That is the focus of the present
study.

In this work, we explore if TSC can arise from pairing
between electrons occupying LLs, which may be referred to
as “quantum Hall topological superconductivity.” For this pur-
pose, we consider a fully self-consistent mean-field theory of
a lattice model under a magnetic field with a phenomenolog-
ical attractive on-site Hubbard interaction. We also consider
Rashba SOC and a periodic superlattice potential. We numer-
ically determine phase diagrams without SOC or superlattice
potential, with SOC and without superlattice potential, with-
out SOC and with superlattice potential, and with both SOC
and superlattice potential. We find that while SOC is necessary
for TSC, the application of a superlattice potential markedly
enlarges the regions hosting TSC in the phase diagram. The
reason is because the Abrikosov lattice distorted by the su-
perlattice potential has more than one superconducting flux
quantum in a unit cell. (As shown below, the TSC often occurs
in regions where two Abrikosov vortices merge into a “giant”
vortex.) A schematic phase diagram is shown in Fig. 1.

FIG. 1. A schematic of the numerically determined phase dia-
gram in the presence of both spin-orbit coupling and a superlattice
potential as a function of the strength of the on-site attractive interac-
tion −U and the chemical potential μ. The regions of topological
superconductivity (TSC), depicted in red, roughly coincide with
Landau levels broadened by the superlattice potential. The vortices
here typically tend to form a lattice of “giant” vortices (as shown in
the bottom left of the figure), where a giant vortex consists of two
superconducting vortices merged into one. In the regions of ordi-
nary superconductivity (shaded yellow), the vortices typically form a
lattice of dimers as depicted on the right of the figure. The vortex
lattices are square because of our choice of a square superlattice
potential.

More detailed phase diagrams are given below. In order
to properly treat systems with a superlattice potential, we
find it necessary to consider helical pairing functions, which
describe Cooper pairs with nonzero center-of-mass momen-
tum. This ansatz is the same as the one employed by Fulde
and Ferrell [75]. We also describe vortex lattice structures
arising in our model, some of which are quite unexpected. We
finally discuss some prospective experimental realizations of
this model.

II. MODEL

A. Hamiltonian

We consider spin- 1
2 fermions on a square lattice in a mag-

netic field with Rashba SOC, a single-particle potential, and
on-site attractive interaction. The interacting Hamiltonian is

H = H0 + HSO + HI, (1)

where

H0 = −
∑
j,δ,σ

(eiAδ (r j )c†
j+δ,σ c j,σ + e−iAδ (r j )c†

j,σ c j+δ,σ )

−
∑
j,σ

(μ − V (r j ))c
†
j,σ c j,σ ,

HSO =VSO

∑
j

(eiAx̂x(r j )(c†
j+x̂x,↓c j,↑ − c†

j+x̂x,↑c j,↓)

+ ieiAŷy(r j )(c†
j+ŷy,↓c j,↑ + c†

j+ŷy,↑c j,↓)) + H.c.,

HI = − U
∑

j

c†
j,↑c†

j,↓c j,↓c j,↑, (2)
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where r j is the location of site j, VSO is the SOC strength, μ

is the chemical potential, U is the interaction strength, Aδ (r j )
are the hopping (Peierls) phases, δ = x̂, ŷ, and σ =↑, ↓. The
annihilation (creation) operators for fermions of spin σ at
site j are c j,σ (c†

j,σ ). We have set the hopping amplitude to
unity. Note that Aδ (r j ) appears both in the hopping term and
in the SOC term, which is necessary for gauge invariance. The
Rashba SOC takes the form of the lattice-discretized version
of HR = αẑ · (σ × π) where π is the kinematic momentum
(further discussion of this term can be found in the Supple-
mental Material (SM) [76]). Finally, we include a periodic
single-particle potential of the form

V (r) = −Vsp

2

∑
δ=x̂x,ŷy

cos(ηδ · r), (3)

where Vsp is the strength of the periodic superlattice potential
and ηx and ηy are the wave vectors of the periodic superlattice
potential in the x and y directions, respectively.

B. Magnetic unit cell

A discussion of the translation symmetries of the non-
interacting part of the Hamiltonian, i.e., H0 + HSO, is in
order—we will discuss the interacting part HI below. The
magnetic field in our model is chosen so that the magnetic
flux through each square plaquette of the lattice is the same
rational fraction α = 1/q of the flux quantum �0 = h/e.
This rational fraction, and in particular the denominator q,
determines the translation properties of the noninteracting
Hamiltonian by constraining the unit cell of the system—
called the magnetic unit cell (MUC)—to have a multiple of q
sites [77–82]. For our calculation, we choose q = 64 and take
the MUC to be a square consisting of 16 × 16 sites. The total
flux through this magnetic unit cell is four flux quanta. We will
take the pairing potential to have the same periodicity as the
MUC. This choice of MUC allows for triangular, square, and
dimerized lattice structures for the Abrikosov flux lattice. (We
note that the smallest choice would be an 8 × 8 MUC, which
encloses one flux quantum, but that does not allow a triangular
lattice of Abrikosov vortices. We have also examined several
cases for other MUC types at the same magnetic field, such as
4 × 64 with four flux quanta per MUC, and found that in all
these cases the energies were higher than those obtained with
the 16 × 16 MUC.)

The single-particle potential V (r) is chosen to be commen-
surate with the MUC, and in particular we take (ηx, ηy) =
( 2π

8 , 2π
8 ). Previous authors [51,52,54] have emphasized the

need to break the translation symmetry of the vortex lattice
in order to realize TSC in the presence of Abrikosov vor-
tices. Our choice of single-particle potential accomplishes
this, since the unit cell for the periodic potential contains
one flux quantum h/e. In experiments, we expect that the
magnetic length can be tuned to the wavelength of the periodic
single-particle superlattice potential by tuning the magnetic
field.

C. Mean-field theory

A mean-field factorization of the interacting part of the
Hamiltonian HI is performed in the pairing channel

HI = − U
∑

j

c†
j,↑c†

j,↓c j,↓c j,↑

→ − U
∑

j

(〈c j,↓c j,↑〉c†
j,↑c†

j,↓ + 〈c†
j,↑c†

j,↓〉c j,↓c j,↑

− 〈c†
j,↑c†

j,↓〉〈c j,↓c j,↑〉). (4)

In this work, we consider a mean-field ansatz of the form

HI → H� = −
∑

j

� je
i2Q·r j c†

j,↑c†
j,↓ + H.c. +

∑
j

|� j |2
U

,

(5)

where the field � j is assumed to be periodic with the same
periodicity as the MUC. The vector Q, which we will refer
to as a boost vector, is treated as a variational parameter; the
optimum Q is that which leads to a mean-field ground state
with the lowest energy. Note that, due to the phase factor
ei2Q·r j , the pairing potential in this model is not necessarily
periodic. The addition of this phase factor gives the supercon-
ducting condensate a finite momentum 2Q [83–87], although
the ground state with nonzero Q does not carry a finite net
current. This admits a short proof: since we are to minimize
the energy with respect to Q, we must have δEMF

δQ = 0, where

EMF is the energy. However δEMF
δQ is also the net current (see

Appendix A). Thus, it vanishes in the ground state.
The self-consistency equations are

� je
i2Q·r j = U 〈
|c j,↓c j,↑|
〉, (6)

where |
〉 is the mean-field ground state. In order to solve
this equation, we first make a boost transformation on the
mean-field Hamiltonian. A similar transformation has been
employed in studies of helical phases in noncentrosymmetric
superconductors [84–86]. We define boost operators UB(Q)
which act on the creation operators in position space as

c̄i,σ ≡ U †
B (Q)ci,σUB(Q) = ci,σ eiQ·ri , (7)

where the bar over the operators is meant to denote operators
in a boosted “frame.” The mean-field Hamiltonian, defined
as HMF = H0 + HSO + H�, is transformed using the boost
operators. The action of the boosts on the terms H0 and HSO

has the effect of shifting the hopping phases by A(r j ) →
A(r j ) − Q. The boost has the effect on H� of canceling the
phase factor ei2Q·r j . In other words,

H̄� = U †
B (Q)H�UB(Q)

= −
∑

j

� jc
†
j,↑c†

j,↓ + H.c. +
∑

j

|� j |2
U

. (8)

Thus, the pairing Hamiltonian in the barred frame has the
same periodicity as H̄0 and H̄SO, and we can make use of
the BdG formalism, using the magnetic Bloch basis, to solve
the mean-field problem. The self-consistency equations in the
barred frame are

� j = U 〈
̄|c j,↓c j,↑|
̄〉, (9)
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where |
̄〉 = U †
B (Q)|
〉 is the mean-field ground state in the

barred frame.

D. Bogoliubov–de Gennes formalism

The mean-field Hamiltonian in the boosted frame can be
expressed in terms of a BdG Hamiltonian by first transforming
it into (magnetic) momentum space using the formula c j,σ =
1
L

∑
k eik·R j c j̃,σ (k), where R j is the coordinate of the origin of

the MUC in which site j resides and j̃ denotes the site within
the MUC of site j. In other words, r j = R j + r̃ j , where r̃ j

is the coordinate of j̃ (relative to the origin of the MUC). L
is the number of MUCs in both the x and y directions; we
consider L large enough so that the results are converged to the
thermodynamic limit, where we define convergence according
to the following criterion: a solution �L

j to Eq. (9) with system
size L is said to be converged to the thermodynamic limit
if it is also a solution to Eq. (9) with system size L + 2 to
within the tolerance of the iterative algorithm used to solve
Eq. (9) (see Appendix C for more details on the algorithm).
Generally, we find that we need L � 32 for a 16 × 16 MUC
for the pairing potential to be well converged. We also note
that the Chern number (discussed below) is well converged
for much smaller system size: L ≈ 6 for a 16 × 16 MUC
using a 24 × 24 momentum space grid for the Chern number
calculation (see Sec. II G below).

The mean-field Hamiltonian may be written as

HMF = 1

2

∑
k

4Nsite∑
α,β=1

ψ†
α (k)(HBdG(k))αβψβ (k)

+ 1

2

∑
k

Tr[h(k)] +
∑

j

|� j |2
U

, (10)

where the ψα (	k) are defined by⎛
⎜⎜⎜⎜⎝

ψ j̃ (k)

ψ j̃+Nsite
(k)

ψ j̃+2Nsite
(k)

ψ j̃+3Nsite
(k)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

c j̃,↑(k)

c j̃,↓(k)

c†
j̃,↑(−k)

c†
j̃,↓(−k)

⎞
⎟⎟⎟⎟⎟⎠ (11)

for j̃ = 1, . . . , Nsite and

HBdG(k)

=

⎛
⎜⎜⎜⎜⎜⎝

h(k) (k) 0 �↑↓(k)

†(k) h(k) �↓↑(k) 0

0 −�∗
↑↓(−k) −h∗(−k) −∗(−k)

−�∗
↓↑(−k) 0 −T(−k) −h∗(−k)

⎞
⎟⎟⎟⎟⎟⎠

(12)

is the BdG Hamiltonian. Nsite is the number of sites in
the MUC. Each entry in Eq. (12) represents a matrix:
h(k) contains all the elements for hoppings (in the barred
frame), the chemical potential, and the single-particle po-
tential; (k) contains the SOC elements (in the barred
frame); and �↑↓(k) contains the pairing elements. Fermi
statistics and Hermiticity imply �T

↓↑(k) = −�↑↓(−k). In

our model, �↑↑(k) = �↓↓(k) = 0 and �↓↑(k) = −�↑↓(k) =
diag(� j̃ ). Note that HBdG(k) is particle-hole symmetric:
P−1HBdG(k)P = −HBdG(−k) with P = Kτx, where τx is a
Pauli matrix acting on the particle and hole subspaces and K
is complex conjugation. This symmetry and its implications
are further discussed in the SM [76].

We define the BdG quasiparticle creation operators as

γ
†
β (k) =

4Nsite∑
α=1

ψ†
α (k)Uαβ (k). (13)

By assumption, these are eigenoperators, so

[HMF, γ
†
β (k)] = Eβ (k)γ †

β (k), (14)

which implies that the columns of Uαβ must be eigenvectors
of the BdG Hamiltonian,

4Nsite∑
α=1

(HBdG(k))δαUαβ (k) = Eβ (k)Uδβ (k). (15)

We identify Eqs. (15) as the BdG equations. The ground state
|
̄〉 is obtained by filling the vacuum with the negative-energy
BdG quasiparticle states. The mean-field ground-state energy
is given by

EMF = 1

2

∑
Eβ (k)<0

Eβ (k) + 1

2

∑
k

Tr[h(k)] +
∑

j

|� j |2
U

. (16)

E. Self-consistency equations

To solve the self-consistency equations, we define the
Gor’kov Green’s function at momentum k as

Gαβ (k) = 〈ψ†
α (k)ψβ (k)〉

=
4Nsite∑

m,n=1

U†
mα (k)〈γ †

m(k)γn(k)〉Uβn(k)

=
4Nsite∑
m=1

U†
mα (k)Uβm(k) f (Em(k)), (17)

where f (E ) = 1
exp(E/kBT )+1 is the Fermi-Dirac distribution

function. We consider only T = 0 in this work. The self-
consistency equations can be expressed in terms of G as

� j = U 〈
̄|c j,↓c j,↑|
̄〉

= U

L2

∑
k,k′

ei(k+k′ )·R j 〈
̄|c j̃,↓(k′)c j̃,↑(k)|
̄〉

= U

L2

∑
k

G j̃+3Nsite, j̃ (k). (18)

This equation is solved iteratively to achieve self-consistency.

F. Rationale for boosts

We consider superconductivity arising from Landau levels
which are broadened by the presence of the single-particle
potential in Eq. (3). A portion of the normal-state spectrum
(i.e., the energies of H0 + HSO) is shown in Fig. 2. Each
band is spin split due to the presence of SOC and, in contrast
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FIG. 2. The energies of broadened Landau levels plotted in the
magnetic Brillouin zone. The single-particle potential strength is
Vsp = 0.2 (in units where the hopping amplitude is set to unity).
The flux per plaquette is α = 1/64. The Rashba SOC strength is
VSO = 0.1. Because of the presence of the single-particle potential,
the Landau levels become dispersive, and because of the SOC, the
spin degeneracy is lifted. The maximum and minimum of the top
band, which like the maxima and minima of other bands occur at
finite momentum, are marked with a red and blue X, respectively.

to a system without a single-particle potential, the Landau
levels are broadened and acquire a dispersion. The minima
and maxima of the bands occur at nonzero momenta and con-
sequently a pairing Hamiltonian describing pairs with finite
momentum—that is, one that pairs particles at Q − k and
Q + k—is required to open a superconducting gap at Fermi
surfaces which appear when the chemical potential μ is tuned
to within a band. Figure 3 shows the condensation energy as a
function of the boost momentum vector Q. The stars indicate
momenta corresponding to self-consistent mean-field states
with the lowest energy, and it is at these momenta where a
full pairing gap appears. An optimal boost moves the Fermi
surface so that it becomes centered at k = G/2, where G is
a reciprocal lattice vector (more information about the boost
transformation can be found in Appendix B).

FIG. 3. Condensation energy as a function of the boost vector Q
for Vsp = 0.1, VSO = 0.1, U = 3.2, and μ = −3.48 in the magnetic
Brillouin zone. The stars indicate the minimum energy states. Note
that states differing by a half reciprocal lattice vector have the same
energy.

G. Chern number

We compute the Chern number, an integer-valued bulk
topological invariant of the BdG Hamiltonian, to classify the
system’s topology. The non-Abelian formalism is used to
avoid having to keep track of topological transitions of bands
far below the Fermi level. We define the Berry connection in
terms of its eigenvectors |um(k)〉:

Amn
μ (k) = i〈um(k)|∂μ|un(k)〉, (19)

where ∂μ ≡ ∂/∂kμ, μ = x, y, and m, n are band indices. The
Berry curvature is defined in terms of Amn

μ (k),

F mn
μν (k) = ∂μAmn

ν − ∂νAmn
μ + i[Aμ, Aν]mn, (20)

and the Chern number is given by the integral over states with
negative energy of the BdG Hamiltonian,

C = 1

2π

∫
MBZ

d2kTr[F (k)]E (k)<0. (21)

We numerically evaluate this integral using the method by
Fukui et al. [88], which is highly efficient for gapped systems.
The Berry curvature is determined on a grid in a discretized
magnetic Brillouin zone (MBZ) by defining

Mmn
λ (kα) = 〈um(kα)|un(kα + eλ)〉. (22)

The points on the grid are labeled by kα and the spacing
vectors are eλ where λ = 1, 2. In terms of the link variables
defined as

Uλ(kα) = det Mλ(kα)

| det Mλ(kα)| , (23)

the discrete Berry curvature at each point on the grid is given
by

F̃ (kα) = ln(U1(kα)U2(kα + e1)U −1
1 (kα + e2)U −1

2 (kα)).
(24)

The Chern number is then given by

C = 1

2π i

∑
α

F̃ (kα). (25)

When the Chern number is odd, the system is in the topo-
logical superconducting phase hosting non-Abelian Majorana
quasiparticles. When the Chern number is even, the system
does not host Majorana quasiparticles, and is in the same
topological classification as a quantum Hall state. We find
both possibilities in our results, but since both cases are,
properly speaking, topological, we hereafter distinguish the
former class of systems by referring to it as the non-Abelian
topological phase.

III. RESULTS

We explored phase diagrams for a multitude of values of
SOC and periodic potential strength for small Landau level
filling factors (up to Landau level index n = 8), as shown in
Fig. 4. The self-consistent mean-field equations were solved
for each point on the phase diagrams, each of which consists
of 6400 (80 × 80) points. For each point, guesses consisting
of random complex numbers at each site within the MUC, as
well as uniform real numbers, were used to start the iterative
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FIG. 4. The density of states of the system in the normal state on the left and the phase diagram on the right showing �max (color bar),
the maximum value of the modulus of the self-consistent real-space pairing potential |� j | in the ground state. The points where non-Abelian
topological superconductivity is realized are denoted with small red stars. The parameters for each phase diagram are (a) VSO = 0 and Vsp = 0,
(b) VSO = 0.1 ≈ h̄ωc/2 and Vsp = 0, (c) VSO = 0.15 ≈ 3/2h̄ωc and Vsp = 0, (d) VSO = 0 and Vsp = 0.2 ≈ h̄ωc, (e) VSO = 0.1 ≈ h̄ωc/2 and
Vsp = 0.1 ≈ h̄ωc/2, and (f) VSO = 0.1 ≈ h̄ωc/2 and Vsp = 0.2 ≈ h̄ωc. The self-consistency equations for all systems are solved, and the systems
with a finite single-particle potential are boosted to an optimum value of Q.

algorithm, and 16 × 16 (with flux 4 h/e) MUCs were used.
The total energy was calculated for each solution [Eq. (16)]
and the solution with the minimum energy was taken to be
the ground-state solution. The color on the phase diagrams
denotes �max, the maximum value of the modulus of the
self-consistent real-space pairing potential |� j | in the ground
state. The points marked with red stars are points where the
system is in the non-Abelian phase; i.e., the Chern number is
an odd integer. The corresponding density of states (DOS) in
the normal state is shown to the left of each phase diagram.
Let us now consider four different cases.

No SOC or superlattice potential. Figure 4(a) shows the
phase diagram when both the SOC and single-particle poten-
tial are set to zero. The single-particle spectrum consists of
spin-degenerate Landau levels, which have a band width on
the order of 10−14 and their spacing (the cyclotron energy
h̄ωc) is approximately 0.2. The phase boundary separating
nonsuperconducting and superconducting regions of the phase
diagram displays substantial oscillatory behavior due to the
Landau level structure. At lower interaction strength, super-
conductivity is present when the chemical potential is tuned to
precisely the energy of a Landau level, but disappears when it
is tuned to the gaps between different Landau levels. We here-
after refer to regions of enhanced superconductivity at Landau
level energies as Landau level spikes. At larger interaction
strength (U � 3.5), superconductivity is strongly augmented,
and oscillations due to the Landau level structure disappear.
We will refer to this region as the strong-pairing regime. The
non-Abelian phase of topological superconductivity does not
appear in the system without a periodic potential and SOC.

Instead, the Chern numbers for all of the points shown are
even integers. This follows from the spin degeneracy of the en-
ergy levels (see Appendix E). In the weak-interaction portion
of the phase diagram, when the energies are between Landau
level spikes, the Chern number is 2ν where ν is the filling
factor, consistent with the system being in a quantum Hall
insulating phase. Within the Landau level spikes, the Chern
number is an even integer, starting at 2ν when the interaction
is weak, and decreases in even increments as the interaction
is increased, until the strong-pairing regime where the Chern
number is zero. It is interesting to note that superconductivity
and nontrivial topology coincide on the Landau level spikes,
although the topology is Abelian in nature.

SOC with no superlattice potential. Figures 4(b) and 4(c)
show the phase diagrams of systems without the single-
particle potential but with SOC strength VSO = 0.1 and VSO =
0.15, respectively. Due to nonzero SOC, the spin degeneracy
of the Landau levels is lifted, and the energies are given
approximately by

ε0 = 1

2
h̄ωc − 4,

εm,± = h̄ωc

(
m ±

√
π

4

V 2
SO

h̄2ω2
c

m + 1

4

)
− 4 (m > 0), (26)

and accordingly there are Landau level spikes at these
energies. Interestingly, we find small regions where the non-
Abelian phase of topological superconductivity appears, most
markedly at higher filling factors (at or around μ = −3).
For weaker interaction strength the Chern number at the
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FIG. 5. (a) The maximum absolute value of the pairing potential; (b) the BdG spectral gap (δE ); and (c) the Chern number (C) for systems
with chemical potentials along the orange line in Fig. 4(c) at U = 3.18 (left panel), the blue line in Fig. 4(e) at U = 3.2 (middle panel), and the
green line in Fig. 4(f) at U = 3.34 (right panel). The blue dots and red stars indicate systems we have studied. Blue dots correspond to systems
with even Chern number and red stars correspond to systems with odd Chern number. The transitions indicated by the black and green arrows
in the right panel are discussed in detail in the SM [76].

non-Abelian points is an odd integer close to twice the filling
factor, and decreases as the interaction strength is increased,
until the Chern number becomes zero in the strong-pairing
regime. The vortex structure at these points will be discussed
below. We remark that we do not find non-Abelian TSC aris-
ing from superconductivity in the lowest Landau level, which
has been the subject of recent studies [51,52,54].

Plots of the maximum absolute value of the pairing poten-
tial, the BdG spectral gap (δE ), and the Chern number (C),
for chemical potentials along the orange line in Fig. 4(c), at
fixed U = 3.18, are shown in the left panel of Fig. 5. Points
where the system is in the non-Abelian phase are denoted
with red stars. Oscillations in Fig. 5(a) (left panel) correspond
to the Landau level spikes. The spectral gaps in Fig. 5(b)
(left panel) come in two varieties: superconducting gaps and
quantum Hall insulating gaps. The values of the quantum
Hall insulating gaps, which occur when � = 0, are given by
2 min(|μ − εm±|), and are much larger than superconducting
gaps. When � �= 0, the gaps are superconducting gaps. Gen-
erally, the superconducting gaps are small, about an order of
magnitude less than the cyclotron energy, in the regime where
non-Abelian TSC appears. As seen in Fig. 5(c) (left panel),
the Chern number exhibits discrete jumps as the chemical
potential μ is tuned. These topological phase transitions come
in two varieties: (1) transitions where the change in the Chern
number is associated with a closing of the spectral gap, and
(2) first-order transitions, where the Chern number changes
without gap closing; these are associated with a change in
the vortex lattice structure. This is discussed in detail with
examples in the SM [76].

Superlattice potential with no SOC. Figure 4(d) shows the
phase diagram for the system with periodic potential strength
Vsp = 0.2 but without SOC. The optimum boost vector is used
for each point on the phase diagram. Despite the Landau
levels becoming significantly broadened, as can be seen in
the DOS and in the corresponding smearing of the Landau
level spikes, the non-Abelian phase does not appear, and the
system transitions from an Abelian TSC or quantum Hall in-
sulating phase at weak interaction to trivial superconductivity
at stronger interaction. It comes as no surprise that we do not
find the non-Abelian phase when there is a spin degeneracy.

This follows from Eqs. (19)–(21) and is established in detail
in Appendix E.

Both superlattice potential and SOC. Finally, including
both a single-particle potential and SOC leads to a consider-
able enhancement of non-Abelian TSC in the phase diagram.
Figure 4(e) shows the phase diagram for Vsp = 0.1 and VSO =
0.1, and Fig. 4(f) shows the phase diagram for Vsp = 0.2
and VSO = 0.1. Non-Abelian TSC, which is marked using
small red stars in the phase diagram, generally appears at
the boundary between the quantum Hall insulator and su-
perconducting phases, particularly along broadened Landau
level spikes. Plots of the maximum absolute value of the
pairing potential, the BdG spectral gap (δE ), and the Chern
number (C), for parameters along the blue line in Fig. 4(e)
and the green line in Fig. 4(f), are shown in the middle panel
of Fig. 5 and the right-hand panel of Fig. 5, respectively.
Points where the system is in the non-Abelian phase are de-
noted with red stars. Oscillations can be seen in the middle
panel of Fig. 5(a), and to a lesser degree in the right-hand
panel of Fig. 5(a), which reflect the Landau level spikes.
The spectral gaps are about an order of magnitude less than
the cyclotron energy, at points where non-Abelian TSC ap-
pears. Again, we find topological phase transitions that come
in the two varieties mentioned above (gap closing and first
order).

A. Vortices and Majoranas

Due to the applied perpendicular magnetic field, the pair-
ing potential experiences orbital frustration and Abrikosov
vortices develop at the centers of which the pairing potential
is zero. We find a plethora of configurations formed by the
Abrikosov vortices, some of which are quite unexpected. As
anticipated, Abrikosov vortices form a triangular lattice in the
n = 0 and n = 1 Landau levels when the SOC and single-
particle potential are absent. In addition we found square
vortex lattice solutions with approximately 1–2 % higher
energy than the triangular lattice solutions. With SOC, but
without single-particle potential, a triangular lattice of vor-
tices forms when the chemical potential is in the lowest five
spin-split Landau levels—an example is shown in Fig. 6(a). In
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FIG. 6. Typical vortex lattice structures from the solutions to the self-consistent mean-field equations (upper panels) with their current
textures (lower panels). (a) The vortex lattice at Vsp = 0, VSO = 0.1, U = 3.52, and μ = −3.92. In the lowest few Landau levels, the self-
consistent solution is a triangular lattice of Abrikosov vortices carrying flux h/2e. (b) The vortex lattice at Vsp = 0.2, VSO = 0.1, U = 3.34,
and μ = −3.66. The single-particle potential distorts the vortex lattice, drawing the vortices to areas of high potential energy. Typically in the
topological region, the system forms a lattice of giant vortices. (c) The vortex lattice at Vsp = 0, VSO = 0.1, U = 3.24, and μ = −3.08. Other
kinds of vortex order form at higher chemical potential (Landau level filling factor ν ≈ 10). For example, the vortices may form a (distorted)
honeycomb lattice.

both cases, at higher chemical potential, the vortex structure
is far more diverse. Of particular note is the vortex structure at
topological points in Figs. 4(b) and 4(c), a typical example
of which is shown in Fig. 6(c). Here the vortices form a
honeycomb lattice, although not all the bonds are identical.
Other interesting structures appear in the nontopological re-
gions in the strong-pairing regime at chemical potential above
the first few Landau levels. We show these in Fig. 7. Finally,
when a single-particle potential is included, the vortices are
distorted at all chemical potentials. In particular, vortices are
drawn to locations where the single-particle potential is high.
The vortices form dimer pairs, or combine to form giant vor-
tices, consisting of two Abrikosov vortices. Topological points
in Figs. 4(e) and 4(f) typically host the latter configuration
[Fig. 6(b)].

As revealed by the finite gap when the system is in the
non-Abelian topological phase, we do not find Majorana
modes with zero energy in the bulk of the system. Instead
the Majorana modes, which are thought to reside at vor-
tex cores, hybridize with their neighbors and open a gap
[9,10,12,13,52,89–98]. Nevertheless, because of the nontrivial
Chern number and the bulk-boundary correspondence, we ex-
pect there to be chiral Majorana edge modes at the boundaries
of samples in this phase.

IV. DISCUSSION

In this work, we investigated the emergence of TSC from
topologically flat bands broadened by a superlattice potential.
The robust SOC and the superlattice potential are essential
components of our model. We comment on the relationship of
our findings to potential materials platforms. A variety of sys-
tems have been discovered to exhibit superconductivity with
strong SOC, including iron-based superconductors, interfaces
of insulating oxides, and transition metal dichalcogenides
[99,100]. More detailed, material-specific calculations would
be required in the future to establish any specific candidate
material, which is beyond the scope of this paper.

Our calculations have focused on a specific region of pa-
rameter space, which in our model contains a large number
of parameters. It is important to identify candidate materials
which might correspond to the parameter regime studied here.
In the following discussion, we will express all energies in
our calculations in units of the hopping amplitude t , which
we have set to unity in our model. The cyclotron energy in
our calculations is approximately 0.2. We have selected SOC
strengths of 0.1 in the phase diagrams shown in Figs. 3(e)
and 3(f). Our calculations are therefore directly applicable
when the SOC strength is less than but close to the cyclotron
energy. The cyclotron energy in real materials is determined
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FIG. 7. Additional unexpected vortex lattice structures (above) from the solutions to the self-consistent mean-field equations with their
current textures (below). (a) Dimer vortex configuration at Vsp = 0.2, VSO = 0.1, U = 3.48, and μ = −3.66. Dimer configurations of vortices
can form due to the influence of the superlattice potential. We find that the appearance of dimerized vortices signals the exit from the non-
Abelian topological phase. [(b) and (c)] Unexpected vortex configurations may appear even in the absence of a superlattice potential particularly
at higher Landau level filling (or chemical potential). Shown here are (b) a stabilized square-lattice configuration at Vsp = 0, VSO = 0.1,
U = 3.2, and μ = −2.92 and (c) a “double dimer” at Vsp = 0, VSO = 0.1, U = 3.54, and μ = −3.22.

by the effective mass m∗, as well as the strength of the applied
magnetic field B through the formula

h̄ωc = h̄
eB

m∗ .

As an example, the cyclotron energy for bare electrons in
a magnetic field of 20 T is estimated to be about 2 meV.
Based on this information, we will now discuss some mate-
rials platforms individually. This is by no means intended to
be an exhaustive list. A summary of relevant parameters for
the following systems is provided in Table I.

Iron-based superconductors. The semimetallic iron pnic-
tides and iron chalcogenides are a group of high-temperature
superconductors that have generated significant enthusiasm

in the condensed matter community since their discovery in
2008. These discoveries have ushered in a remarkable era
of superconductivity known as the “iron age.” The Rashba
SOC in iron-based superconductors is found to be in the range
5–25 meV [101]. In addition, the pairing gap is found to be in
this same range [101]. However, due to the strong interactions
in these materials, the effective mass may be as high as 20
times the bare electron mass [102,115]. In order to model
these materials, it may be preferable to take the SOC to be
significantly greater than the cyclotron energy. It is anticipated
that increasing the SOC will not diminish TSC, and we have
performed additional calculations to support this claim. We
show results for Rashba SOC strength of VSO = 1.0 (five times
the cyclotron energy) in Fig. 8.

TABLE I. Estimates of key parameters in some select classes of spin-orbit-coupled superconductors. VSO is the SOC strength, determined
by the spin splitting at the Fermi level. � denotes the superconducting gap. m∗ is the effective electron mass, expressed in terms of the bare
electron mass me. h̄ωc is the cyclotron energy at a magnetic field of 20 T, computed using the material’s effective electron mass. TMD, transition
metal dichalcogenide.

Material VSO (meV) � (meV) m∗ (me) h̄ωc (meV)

Iron-based thin films 5–25 [101] 5–25 [101,102] 10 [102] 0.2
LaAlO3/SrTiO3 interfaces 1–10 [103,104] 0.04 [105] 3 [103,106] 0.7
TMDs [107–114] 50–150 (Ising) ∼1 ∼0.4 ∼6
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FIG. 8. Topological superconductivity still appears (denoted
with red stars) when the spin-orbit-coupling strength is high. In this
figure, the spin-orbit-coupling strength is VSO = 1.0, the superlattice
potential strength is Vsp = 0.2, and the interaction strength U = 3.98.
The Zeeman energy is zero.

Oxide interfaces. Superconductivity has been reported in
the electron gas formed at the interfaces of LaAlO3 and
SrTiO3 [116]. In addition, tunable Rashba SOC has been
explored in this system with Rashba SOC strength in the
range 1–10 meV [103,104]. The superconducting gap is found
to be approximately 40 µeV [105] and the effective mass is
m∗ = 3me where me is the electron mass [103,106]. Given
these parameters, we are optimistic about the applicability of
our results to this material platform.

Transition metal dichalcogenides. Superconductivity has
been reported in layers of transition metal dichalcogenide
(TMD) materials, resulting in 2D superconductivity. Exam-
ples of materials in this class include MoS2, MoSe2, WS2,
WSe2, and NbSe2. Layers of these materials break inversion
symmetry within the plane, giving rise to Ising, SOC. Ising
SOC tends to lock the electron spins perpendicular to the
plane in a momentum-dependent way. In TMDs, this man-
ifests as an effective Zeeman field with opposite signs at
the K and K ′ points of the hexagonal Brillouin zone. Be-
cause of dominant Ising SOC our calculations are not readily
applicable to these systems. However, Ising superconductiv-
ity still gives rise to a momentum-dependent spin splitting
[117], so it may be worthwhile in the future to investigate
the possibility of TSC using Ising SOC instead of Rashba
SOC, as we did in our calculations. We point out that a
crossover from Ising-dominant to Rashba-dominant SOC has
also been recently observed in NbSe2/Bi2Se3 heterostructures
[118]. We hope that our study will stimulate inquiry along this
direction.

In discussing the inclusion of a superlattice potential, the
lattice period of the superlattice is an additional relevant pa-
rameter. Our calculations have focused on the case where
the superlattice period is comparable to the magnetic length
�B. The magnetic length is determined by the strength of the
applied magnetic field B (in Tesla) through the formula

�B =
√

h̄

eB
≈ 25√

B
nm.

For reference, �B ≈ 6 nm for a magnetic field B = 20 T.
Below, we list systems where a superlattice potential may be
achievable.

Gating periodic patterned dielectric substrates. The en-
gineering of superlattices has been reported using patterned

dielectrics, with strengths up to 50 meV and lattice periods as
small as 35 nm [119–123]. In order to make direct connec-
tion with our results, let us suppose that the magnetic field
B ∼ 20 T, so that �B ≈ 6 nm. Thus, for our results to directly
apply, it may be desirable to reduce the lattice period of the
superlattice relative to what has been currently achieved. On
physical grounds, however, we expect that TSC is readily
achievable with large superlattice periods. This is because the
superlattice potential brings about TSC through a distortion
of the vortex lattice. This distortion is clearly possible with
large superlattice periods. Therefore, we see gating periodic
patterned dielectric substrates as a very promising route to
inducing TSC using a superlattice potential.

Moiré patterns. A moiré pattern can be formed by stacking
layers of materials with a relative twist, in which case the lat-
tice vectors of the two layers are relatively rotated by an angle
θ , or by stacking materials with slightly mismatched lattice
periodicities. The moiré pattern leads to a periodic potential
with a periodicity determined by θ with a strength on the order
of hundreds of meV [124] in bilayer MoS2. Exciting recent
progress has been reported in the fabrication of van der Waals
superconducting heterostructures wherein moiré patterns have
been achieved [125]. Since materials from this class typically
host Ising spin-orbit coupling instead of Rashba spin-orbit
coupling, further calculations would be required to make a
firm connection between our proposal and these materials.
Finally, we comment on the connection of the parameters of
our “effective” model to an experimental system. Our phase
diagram shows TSC at rather large U ∼ 3, an order of magni-
tude larger than the cyclotron energy. However, the gap � for
these values of U is roughly of the same order of magnitude
as the cyclotron energy. In experiments, it is the pairing gap
� that is typically measured rather than the coupling strength
U between electrons. Therefore, in order to relate our findings
to experimental data, the parameter U in our model should be
fixed by matching the gap � to its experimental value. We
have listed some values of � for systems that we discussed in
the previous paragraphs in Table I.

Previously, the helical phase of superconductors was dis-
cussed in the context of noncentrosymmetric superconductors
using Ginzburg-Landau theory [84–86,126]. Certain terms,
known as Lifshitz invariants, can be eliminated from the free
energy by performing a helical (or in our language, boost)
transformation when inversion symmetry is broken. This is
a similar procedure to the one we employ, albeit in a micro-
scopic theory. However, even in the absence of Rashba SOC
when inversion symmetry is preserved, helical transforma-
tions are necessary in our model because of the presence of
a magnetic field and superlattice potential.

This work has demonstrated the dramatic influence on the
vortex lattice structure by a superlattice potential, in the case
of �B/aM ≈ 1, where �B is the magnetic length and aM is the
superlattice vector. Understanding the vortex lattice structure
for other values of �B/aM, particularly irrational values, and
the corresponding topological properties in this model, will
be left for future work.

Finally, we would like to discuss some issues related to
realizing intrinsic quantum Hall superconductivity. It has been
over 50 years since quantum Hall superconductivity was
first explored [127]; however, due to the requirement of low
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densities or very high magnetic fields, it has not been achieved
in experiments. In addition, theoretical studies on intrinsic
quantum Hall superconductivity, including this one, have
relied on mean-field theories which do not allow for all pos-
sible instabilities. In a real material, the interaction will be
a mixture of attractive and repulsive, and this may lead to
competition between other correlated phases including, but
not limited to, FQHE, stripe phases, charge density waves, and
spin density waves. The question of whether other strongly
correlated phases may arise, particularly in the case of flat
LLs, is an interesting question beyond mean-field theory,
which we leave for the future.
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APPENDIX A: DERIVATION OF THE EXPRESSION
FOR THE NET CURRENT

In the main text, we pointed out that the condition that the
energy be minimized with respect to Q implies that the net
current vanishes, since the net current is Jnet = δEMF

δQ . In this
Appendix, we derive this expression for the net current. The
current density across a link starting at position ri along the μ

direction (μ = x, y) is

Jμ(ri ) = − ∂HMF

∂Aμ(ri )
, (A1)

where Aμ(ri ) is the hopping phase across the same link and
HMF is the mean-field Hamiltonian. The net current in the μ

direction is the sum over all of the sites of Jμ(ri ):

(Jnet )μ = −
∑

i

∂HMF

∂Aμ(ri )
. (A2)

As we have pointed out in the main text, shifting Q is
equivalent to shifting all of the hopping phases by a position-
independent amount A(r j ) → A(r j ) − Q. Under a small shift
δQ, the change in HMF, to first order in δQ, is given by

HMF({Aμ(ri ) − δQμ})

= HMF({Aμ(ri )}) −
∑

μ=x,y

δQμ

∑
i

∂HMF

∂Aμ(ri )

= HMF({Aμ(ri )}) + δQ · Jnet. (A3)

Therefore, we have,

(Jnet )μ = δHMF

δQμ

. (A4)

Taking the ground-state expectation value (and using the
Feynman-Hellmann theorem), we find Jnet = δEMF

δQ .

APPENDIX B: BOOSTS

Nonrelativistic physics is invariant under Galilean boosts,
whereas relativistic physics is invariant under Lorentz boosts.
In classical mechanics, the transformation rule for a Galilean
boost by velocity v is

x̄ = x + vt,

t̄ = t . (B1)

This increases the velocity of every particle in the
system by v.

Continuing to the quantum mechanical case, suppose we
have N identical fermions with mass m and momenta k1 �=
k2 �= · · · �= kN . We will neglect spin for the moment since
Galilean boosts do not affect the spins of the particles. The
action of a Galilean boost is given by an operator UB(v) which
acts on a first-quantized momentum eigenstate as follows:

UB(v)|k1, . . . , kN 〉 = |k1 + mv, . . . , kN + mv〉. (B2)

To deduce the operator form of UB(v), we determine its action
on position space eigenkets. In fact,

UB(v)|x1, . . . , xN 〉

= 1

LN

∑
{k}

exp

(
− i

∑
i

ki · xi

)
UB(v)|k1, . . . , kN 〉

= 1

LN

∑
{k}

exp

(
− i

∑
i

ki · xi

)
|k1 + mv, . . . , kN + mv〉

= 1

LN

∑
{k}

exp

(
− i

∑
i

(ki − mv) · xi

)
|k1, . . . , kN 〉

= exp

(
imv ·

∑
i

xi

)
|x1, . . . , xN 〉, (B3)

so we see that the position kets are eigenstates of the boost
operator. This also allows us to deduce that the operator form
of UB(v) is

UB(v) = exp (imv · X ) = exp (iMv · Rc.m.), (B4)

where X = ∑
i xi is the sum of the positions of all the parti-

cles, M = ∑
i mi = Nm is the total mass of the system, and

Rc.m. is the center-of-mass coordinate of the system. We see

that UB(v) is unitary. Using the form UB(v) = exp (imv · X ),
we can write UB(v) in second-quantized representation as

UB(v) = exp

(
imv ·

∫
d2r rc†

r cr

)
. (B5)

For notational consistency with the main text, we will set
mv = Q and define UB(v) ≡ UB(Q). Now consider the action
of UB(Q) on the field operators. We have (we may use the
Baker-Campbell-Hausdorff formula to show this)

c̄r := U †
B (Q)crUB(Q) = cre

iQ·r, (B6)

where barred operators are operators for the “boosted frame.”
As an example, let us apply this boost to a system of free
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spinless fermions described by the Hamiltonian

H =
∑

k

(ε(k) − μ)c†
kck, (B7)

where ck = 1
L

∑
r e−ik·rcr. Note that by Eq. (B6), we have

U †
B (Q)ckUB(Q) = c̄k = ck−Q. (B8)

Suppose we view the system in Eq. (B7) in a frame boosted
by Q; then the Hamiltonian H̄ in this frame is

H̄ = U †
B (Q)HUB(Q) =

∑
k

(ε(k) − μ)c̄†
kc̄k

=
∑

k

(ε(k) − μ)c†
k−Qck−Q

=
∑

k

(ε(k + Q) − μ)c†
kck. (B9)

It will be useful to see how the ground states in the laboratory
and boosted frames are related. In the laboratory frame, the
ground state is

|�0〉 =

⎛
⎜⎜⎝ ∏

k s.t.
ε(k)<μ

c†
k

⎞
⎟⎟⎠|0〉, (B10)

whereas in the boosted frame

|�̄0〉 =

⎛
⎜⎜⎝ ∏

ks.t.
ε(k)<μ

c̄†
k

⎞
⎟⎟⎠|0〉 =

⎛
⎜⎜⎝ ∏

ks.t.
ε(k)<μ

c†
k−Q

⎞
⎟⎟⎠|0〉

=

⎛
⎜⎜⎝ ∏

ks.t.
ε(k+Q)<μ

c†
k

⎞
⎟⎟⎠|0〉. (B11)

These are related as

|�0〉 = UB(Q)|�̄0〉. (B12)

This relation holds generally and can be used to find the
ground state in the laboratory frame once the ground state in
the boosted frame is known.

As a simple example to elucidate the procedure in the main
text, we may take a lattice system, in zero magnetic field,
described by the Hamiltonian

H =
∑
k,σ

(ε(k) − μ)c†
kσ

ckσ − U
∑

j

c†
j,↑c†

j,↓c j,↓c j,↑, (B13)

where ε(k) = −2( cos kx + cos ky). We perform a mean-field
decoupling with a helical ansatz, as discussed in the main ar-
ticle, to determine the self-consistent superconducting ground
state. The condensation energies are shown in Fig. 9, which
is used to determined the ground state, and the accompanying
Bogoliubov–de Gennes spectra for several boost vectors Q are

FIG. 9. The total energy, measured relative to the normal state
(i.e., the condensation energy), as a function of the boost vector Q.
The hopping amplitude in the square-lattice model has been set to
unity. The minima occur when the Fermi surface is situated such that
k+ + k− = G, where k± are momenta on opposite sides of the Fermi
surface and G is a reciprocal lattice vector. See Fig. 10.

shown in Fig. 10, where it can be seen how it changes for
different choices of Q.

APPENDIX C: ALGORITHM

Algorithm 1 is an algorithm to solve the mean-field prob-
lem self-consistently. Its inputs are the dimensions of the
MUC, which contains � = n�0 flux where n ∈ Z (�0 = h/e
is the flux quantum), the interaction strength U , the chemical
potential μ, the spin-orbit-coupling strength VSO, the superlat-
tice potential strength Vsp, and the initial guess for the s-wave
pairing potential �

(0)
j . Its outputs are the Gor’kov Green’s

function G(k) and the mean-field ground-state energy EMF of
the system.

Algorithm 1. Iterative algorithm for solving the mean-field
equations.

Require: M, N , n, U , μ, VSO, Vsp, �
(0)
j

Ensure: � j , G(k) ∀k ∈ MBZ, EMF

Build the diagonal blocks of HBdG(k) using h(k),
(k) ∀k ∈ HBZ;
δ� = ∞;
l = 0
While δ� > τ do � The tolerance for differences in � is
τ = 10−5.

Update/build �↓↑ using �
(l )
j ;

for k ∈ HBZdo
Update off-diagonal blocks of HBdG(k) using �↓↑;
Compute G(k) by diagonalization of HBdG(k), using (17)
and particle-hole symmetry for G(−k);
Do a running sum to compute �

(l+1)
j ;

end for
Compute pairing potential difference
δ� = max j

(∣∣�(l+1)
j − �

(l )
j

∣∣);
l ← l + 1;

end While
Compute EMF
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FIG. 10. The Bogoliubov–de Gennes spectrum for boost vectors
(a) at the minimum energy point Q = 0, where it can be seen that
a robust pairing gap opens; (b) at the minimum energy point Q =
(π, π ), where it can be seen that a robust pairing gap also opens; and
(c) slightly away from Q = 0. In general, away from the minimum
energy Q, one generally finds small indirect gaps, or indirect gap
closings in the spectrum.

APPENDIX D: HOW TO DETERMINE AN OPTIMUM
BOOST VECTOR ANALYTICALLY

For a particular gauge, the sum of the hopping phases
along edges linking the minima of the superlattice potential
determines an optimum boost vector (one that results in the
lowest mean-field energy). See Fig. 11. Such a boost leads to
zero accumulated phase for particles with k = 0 traversing the
unit cell of the potential in both the x and y directions, thereby
respecting the C4 symmetry of the superlattice potential and
resulting in the minimum energy.

FIG. 11. The unit cell of the superlattice potential used in the
main text. The color plot underneath the lattice shows the contours
of the potential with the maximum denoted in bright yellow and the
minimum in deep blue. For a given choice of gauge A, an optimum
boost vector (one that leads to the lowest mean-field energy) is given
by the sum of the hopping phases along edges connecting the minima
of the superlattice potential.

APPENDIX E: THE REASON THERE IS NO TSC
WHEN V SO = 0

We do not find topological superconductivity without spin-
orbit coupling. This follows from the spin degeneracy in the
spectrum of our BdG Hamiltonian in the absence of spin-orbit
coupling. Without spin-orbit coupling, the mean-field Hamil-
tonian reads

HMF = −
∑
j,δ,σ

(eiAδ (r j )c†
j+δ,σ c j,σ + e−iAδ (r j )c†

j,σ c j+δ,σ ) −
∑
j,σ

(μ − V (r j ))c
†
j,σ c jσ −

∑
j

(
� jc

†
j,↑c†

j,↓ + �∗
j c j,↓c j,↑ − |� j |2

U

)
.

(E1)

Consider the spin-flip operator F̂ defined as F̂ c j,σ F̂ † = c j,−σ . Clearly the hopping and chemical potential terms are invariant
under the operation of F . The action of F on the pairing term is

F̂H�F̂ † = −
∑

j

(
� jc

†
j,↓c†

j,↑ + �∗
j c j,↑c j,↓ − |� j |2

U

)
= −

∑
j

(
− � jc

†
j,↑c†

j,↓ − �∗
j c j,↓c j,↑ − |� j |2

U

)
. (E2)

So H� is, strictly speaking, not invariant under F̂ . It is,
however, invariant up to a global gauge transformation which
renders � j → −� j . Thus, the mean-field Hamiltonian has a
symmetry Ŝ = e−iN̂π/2F̂ where N̂ = ∑

j,σ c†
j,σ c jσ . Under this

symmetry, the eigenvectors of the BdG Hamiltonian generally
transform as ⎛

⎜⎜⎜⎝
u↑(k)
u↓(k)
v↑(k)
v↓(k)

⎞
⎟⎟⎟⎠ → i

⎛
⎜⎜⎜⎝

u↓(k)
u↑(k)

−v↓(k)
−v↑(k)

⎞
⎟⎟⎟⎠. (E3)

A spin-up state has the form (u(k) 0 0 v(k))T and so the
corresponding spin-down state is i(0 u(k) − v(k) 0)T.

Constructing the Berry connection matrix out of these two
bands, we see that

A↓↓
μ (k) = i[u∗(k)∂μu(k) + v∗(k)∂μv(k)] (E4)

and we find the same result for A↑↑
μ (k). The Berry curvatures

for these bands are thus the same: F↑↑
μν (k) = F↓↓

μν (k). The
Chern number for these bands is given by

C = 1

2π

∫
MBZ

d2k[F↑↑
xy (k) + F↓↓

xy (k)]

= 2
1

2π

∫
MBZ

d2k[F↑↑
xy (k)] ∈ 2Z. (E5)
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FIG. 12. The pairing potential is reduced based on the Pauli limit.
When the value of EZ reaches 0.2, all the points with pairing potential
less than or equal to approximately 0.2 in the absence of Zeeman
field (μ ≈ −4 to μ ≈ −3.3, highlighted with a blue rectangle) are
significantly reduced. However, we still find topological supercon-
ductivity (denoted with red stars). Here we have set the attractive
interaction U = 3.38, the superlattice potential strength Vsp = 0.2,
and the spin-orbit coupling strength VSO = 0.1.

Therefore, the sum of the Chern numbers from all the filled
bands is an even integer, thus excluding the non-Abelian topo-
logical phase.

APPENDIX F: ROLE OF ZEEMAN FIELD

We find that, upon including the Zeeman effect into the
calculation, superconductivity is suppressed due to the Pauli
limit,

EP
Z ≈ |�|, (F1)

where EP
Z is the Pauli-limited Zeeman energy and � is the

pairing potential. However, TSC survives. This is shown in
Fig. 12 and described in detail in the caption.

APPENDIX G: EMERGENCE OF p-WAVE
SUPERCONDUCTIVITY

In this section, we comment on the emergence of the p-
wave component of superconductivity in our model, which
can arise from s-wave superconductivity and Rashba spin-
orbit coupling due to singlet-triplet mixing [128,129], as
inversion symmetry is broken by Rashba spin-orbit coupling

FIG. 13. Top: The blue dots and red stars are the maximum
absolute value of the pairing potential. Blue dots correspond to
systems with even Chern number and red stars correspond to systems
with odd Chern number. The green triangles are 10U max(|� j↓+|)
and the orange triangles are 10U max(|� j↓+|). Middle: The BdG
spectral gap (δE ). Bottom: The Chern number (C). The parameters
are U = 3.34, Vsp = 0.2, and VSO = 0.1 (the same as in Fig. 6 of the
main article).

[99]. We explicitly show this by calculating p-wave compo-
nents of the order parameter.

Let us define

� jσδ = 〈c j,σ c j+δ,σ 〉. (G1)

The expectation values can be determined from the Gor’kov
Green’s function (see the SM [76]). It is convenient to trans-
form these variables to the px + ipy component � jσ+ and
px − ipy component � jσ−:

� jσ+ = 1
2 [� jσ x̂ − i� jσ ŷ],

� jσ− = 1
2 [� jσ x̂ + i� jσ ŷ]. (G2)

Out of the components � j↑+, � j↓+, � j↑−, and � j↓−, we find
that � j↑− and � j↓+ are dominantly the largest. In Fig. 13, we
show these components, together with the s-wave component,
for parameters U = 3.34, Vsp = 0.2, and VSO = 0.1 (the same
as in Fig. 6 of the main article). The green curve in the upper
panel is 10U max(|� j↓+|) and the orange curve in the upper
panel is 10U max(|� j↓+|). The curve with blue dots and red
stars is max(|� j |) = U max(|〈c j,↓c j,↑〉|). It is thus clear that
the s-wave component is much larger than the p-wave compo-
nent by roughly a factor of 60. We also see that the emergence
of a p-wave component accompanies the appearance of su-
perconductivity, not just topological superconductivity. This
is to be expected because superconductors with broken parity
and time-reversal symmetries typically exhibit singlet-triplet
mixing.
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[57] Z. Tešanović, M. Rasolt, and L. Xing, Phys. Rev. Lett. 63,

2425 (1989).
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[70] M. M. Maśka, Phys. Rev. B 66, 054533 (2002).
[71] P. Scherpelz, D. Wulin, B. Šopík, K. Levin, and A. K.

Rajagopal, Phys. Rev. B 87, 024516 (2013).
[72] S. Ran, C. Eckberg, Q. Ding, Y. Furukawa, T. Metz, S. Saha,

I. Liu, M. Zic, H. Kim, J. Paglione et al., Science 365, 684
(2019).

[73] T. Kim, C.-C. Chien, and S.-Z. Lin, Phys. Rev. B 99, 054509
(2019).

[74] G. Chaudhary, A. H. MacDonald, and M. R. Norman, Phys.
Rev. Res. 3, 033260 (2021).

[75] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
[76] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevB.109.134518 for details
on particle-hole symmetry, construction of the mean-field
groundstate, construction of the Gor’kov Green’s function and
writing correlation functions, derivation of an expression
for the current operator, derivation of the spin-orbit
coupling Hamiltonian, and a close examination of cases
where the spectral gap closes and re-opens across Chern
number-changing transitions. This includes a reference to M.
Ezawa, Y. Tanaka, and N. Nagosa, Sci. Rep. 3, 1 (2013).

[77] P. G. Harper, Proc. Phys. Soc. A 68, 874 (1955).
[78] M. Y. Azbel, Sov. Phys. JETP 19, 634 (1964).
[79] J. Zak, Phys. Rev. 134, A1602 (1964).
[80] E. Brown, Phys. Rev. 133, A1038 (1964).
[81] J. Zak, Phys. Rev. 134, A1607 (1964).
[82] D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[83] K. Yang and D. F. Agterberg, Phys. Rev. Lett. 84, 4970 (2000).
[84] R. P. Kaur, D. F. Agterberg, and M. Sigrist, Phys. Rev. Lett.

94, 137002 (2005).
[85] D. F. Agterberg and R. P. Kaur, Phys. Rev. B 75, 064511

(2007).
[86] D. F. Agterberg, Non-Centrosymmetric Superconductors

(Springer, Berlin, 2012), pp. 155–170.
[87] S. Mironov and A. Buzdin, Phys. Rev. Lett. 118, 077001

(2017).
[88] T. Fukui, Y. Hatsugai, and H. Suzuki, J. Phys. Soc. Jpn. 74,

1674 (2005).
[89] E. Grosfeld and A. Stern, Phys. Rev. B 73, 201303(R)

(2006).
[90] M. Cheng, R. M. Lutchyn, V. Galitski, and S. Das Sarma,

Phys. Rev. Lett. 103, 107001 (2009).
[91] M. Cheng, R. M. Lutchyn, V. Galitski, and S. Das Sarma,

Phys. Rev. B 82, 094504 (2010).
[92] A. W. Ludwig, D. Poilblanc, S. Trebst, and M. Troyer, New J.

Phys. 13, 045014 (2011).
[93] Y. E. Kraus and A. Stern, New J. Phys. 13, 105006 (2011).
[94] V. Lahtinen, A. W. W. Ludwig, J. K. Pachos, and S. Trebst,

Phys. Rev. B 86, 075115 (2012).
[95] C. R. Laumann, A. W. W. Ludwig, D. A. Huse, and S. Trebst,

Phys. Rev. B 85, 161301(R) (2012).
[96] M. A. Silaev, Phys. Rev. B 88, 064514 (2013).

[97] D. Ariad, E. Grosfeld, and B. Seradjeh, Phys. Rev. B 92,
035136 (2015).

[98] C. Li and M. Franz, Phys. Rev. B 98, 115123 (2018).
[99] E. Bauer and M. Sigrist, Non-centrosymmetric Superconduc-

tors: Introduction and Overview (Springer, Berlin, 2012), Vol.
847.

[100] M. Smidman, M. Salamon, H. Yuan, and D. Agterberg, Rep.
Prog. Phys. 80, 036501 (2017).

[101] S. Borisenko, D. Evtushinsky, Z.-H. Liu, I. Morozov, R.
Kappenberger, S. Wurmehl, B. Büchner, A. Yaresko, T. Kim,
M. Hoesch et al., Nat. Phys. 12, 311 (2016).

[102] S. Haindl, Iron-Based Superconducting Thin Films (Springer,
Berlin, 2021).

[103] A. D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C.
Cancellieri, and J.-M. Triscone, Phys. Rev. Lett. 104, 126803
(2010).

[104] K. V. Shanavas and S. Satpathy, Phys. Rev. Lett. 112, 086802
(2014).

[105] G. Singh, G. Venditti, G. Saiz, G. Herranz, F. Sánchez, A.
Jouan, C. Feuillet-Palma, J. Lesueur, M. Grilli, S. Caprara, and
N. Bergeal, Phys. Rev. B 105, 064512 (2022).

[106] L. Mattheiss, Phys. Rev. B 6, 4740 (1972).
[107] X. Xi, L. Zhao, Z. Wang, H. Berger, L. Forró, J. Shan, and

K. F. Mak, Nat. Nanotechnol. 10, 765 (2015).
[108] X. Xi, Z. Wang, W. Zhao, J.-H. Park, K. T. Law, H. Berger,

L. Forró, J. Shan, and K. F. Mak, Nat. Phys. 12, 139
(2016).

[109] M. M. Ugeda, A. J. Bradley, Y. Zhang, S. Onishi, Y. Chen,
W. Ruan, C. Ojeda-Aristizabal, H. Ryu, M. T. Edmonds, H.-Z.
Tsai et al., Nat. Phys. 12, 92 (2016).

[110] H. Wang, X. Huang, J. Lin, J. Cui, Y. Chen, C. Zhu, F.
Liu, Q. Zeng, J. Zhou, P. Yu et al., Nat. Commun. 8, 1
(2017).

[111] S. C. de la Barrera, M. R. Sinko, D. P. Gopalan, N. Sivadas,
K. L. Seyler, K. Watanabe, T. Taniguchi, A. W. Tsen, X. Xu,
D. Xiao et al., Nat. Commun. 9, 1427 (2018).

[112] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev.
Lett. 108, 196802 (2012).

[113] Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl, Phys. Rev.
B 84, 153402 (2011).
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