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Local condensation of charge-4e superconductivity at a nematic domain wall
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In the fluctuation regime that precedes the onset of pairing in multicomponent superconductors, such as
nematic and chiral superconductors, the normal state is generally unstable toward the formation of charge-4e
order—an exotic quantum state in which electrons form coherent quartets rather than Cooper pairs. However,
charge-4e order is often suppressed by other competing composite orders, such as nematics. Importantly, the
formation of nematic domains is unavoidable due to the long-range strains generated, leading to one-dimensional
regions where the competing nematic order is suppressed. Here, we employ a real-space variational approach
to demonstrate that, in such nematic domain walls, charge-4e order is locally condensed via a vestigial-order
mechanism. We explore the experimental manifestations of this effect and discuss materials in which it can be
potentially observed.
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I. INTRODUCTION

Shortly after the development of the BCS model for su-
perconductivity, it was recognized that a gas of bosons could
also form a coherent state of pairs of bosons before the Bose-
Einstein condensation of individual particles, provided that
strong enough attractive interactions are present [1,2]. In nu-
clear matter, this concept has been employed to investigate the
interplay between α-particle condensation and deuteron con-
densation [3]. In condensed matter systems, pair condensation
of bosonic quasiparticles has been studied in various set-
tings, from biexcitons in semiconductors [4,5] to two-magnon
bound states in frustrated magnets [6,7]. A fascinating pos-
sibility is the emergence, in superconducting materials, of
a coherent state of pairs of Cooper pairs, dubbed quartets
[8–13]. Theoretically, while a microscopic description of
charge-4e order remains elusive, a charge-4e superconducting
state is expected to display gapless excitations [14,15] and
half flux-quantum vortices [11]. Experimentally, the search
for signatures of charge-4e superconductivity are ongoing.
Recently, such a state has been invoked to explain puzzling
magnetotransport data in kagome superconductors [16,17].

In the case of bosonic particles, the state with paired
bosons is thermodynamically stable only when there is more
than one bosonic “flavor” available for condensation (e.g.,
spin-1 bosons) [18,19]. This suggests that “multiflavor” su-
perconductors are a promising setting to search for charge-4e
superconductivity. Indeed, theoretical proposals for quar-
tet formation have included multicondensate systems [20],
spin-3/2 systems [21], spinor condensates [22], multiband
superconductors [23], pair-density waves [11,24–30], and
multicomponent superconductors [31–36]. In the latter case,
the superconductor is described by multiple gap functions
related by lattice symmetries, � = (�1, �2, · · · ); in group-
theory jargon, � transforms as a multidimensional irreducible
representation (IR) of the point group. There is a broad
range of pairing states that belong to this category, including
several versions of p-wave and d-wave states in tetragonal,

hexagonal, and cubic lattices [37,38]. More importantly, there
is experimental evidence for the realization of multicom-
ponent pairing in various systems of interest, from heavy
fermions [39–41] to moiré superlattices [42] to doped topo-
logical insulators [43–45].

The mechanism by which charge-4e order can emerge
in multicomponent superconductors is via the condensation
of a complex-valued composite order parameter, 〈� · �〉 �=
0, while the superconducting order parameter itself remains
zero, 〈�〉 = 0 (the former is not to be confused with the
real-valued composite 〈�† · �〉, which is always nonzero as
it breaks no symmetry) [31,46]. In other words, the transition
temperature of the composite order, T4e, must be larger than
the superconducting transition temperature Tc. This sponta-
neous symmetry-breaking, which is driven by fluctuations
and thus not captured by mean-field approaches, lowers the
U (1) gauge symmetry to Z2; the latter is further broken if
〈�〉 becomes nonzero. It is said then that the charge-4e and
charge-2e superconducting states are intertwined, and that the
former is a vestigial order of the latter [47,48].

The main obstacle for the stabilization of charge-4e vesti-
gial order is the competition with other vestigial phases, most
notably nematic and ferromagnetic. Indeed, besides U (1)
symmetry, the ground state of a multicomponent supercon-
ductor also breaks either time-reversal (chiral superconductor)
or rotational symmetry (nematic superconductor) [49]. These
additional symmetries can be broken before the onset of su-
perconductivity via the condensation of real-valued composite
order parameters of the type 〈�† · � · �〉, where � is a matrix
in the subspace spanned by the components of �. Large-N and
variational calculations found that the corresponding vestigial
nematic and ferromagnetic orders generally preempt the onset
of charge-4e order [50,51]—except for the special case of a
hexagonal nematic superconductor [31].

In this work, we investigate whether the local suppression
of the leading nematic or ferromagnetic vestigial order en-
ables the local condensation of charge-4e order. While it is
relatively well established that a subleading competing order
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FIG. 1. (a) Real-space sketch of our main result, the emergence
of charge-4e order at a nematic domain wall. (b) Phase diagram
of the vestigial orders supported by the nematic superconducting
ground state of a tetragonal system. Here, u, v, and w are the Landau
parameters of Eq. (9). The different shaded regions indicate which
vestigial channel is attractive: none (green), nematic (blue), and
leading nematic with subleading charge-4e (red).

can condense when the leading order is locally suppressed
[52], the situation we study in this paper is qualitatively dif-
ferent. Rather than two competing primary orders that break
different symmetries and that must be tuned close to a multi-
critical point, here the two instabilities are both described by
composite order parameters from the same primary supercon-
ducting order parameter, making them inevitably intertwined
via the vestigial order mechanism [47,48].

We start in Sec. II by discussing a 2D triplet supercon-
ductor without spin-orbit coupling (SOC), whose multicom-
ponent gap function has a continuous SU(2) symmetry. In
this case, the continuous symmetry globally forbids quasi-
long-range order of any composite order parameter, except
for charge-4e. Importantly, the vestigial phases emerging
in this case are representative of the four types of vesti-
gial phase found in other multicomponent superconductors,
namely, ferromagnetic, nematic, s wave charge-4e, and d-
wave charge-4e.

We then study the more realistic situation of discrete
multicomponent superconductors in tetragonal and hexagonal
systems in Sec. III. In this scenario, while long-range order
in the competing vestigial channel is unavoidable, it is locally
suppressed due to the formation of domains. Focusing on a
nematic superconductor on the tetragonal lattice, we employ a
real-space variational approach that treats all composite orders
on an equal footing. We find a wide range of parameters for
which charge-4e order is condensed at the nematic domain
walls. Importantly, while superconducting fluctuations are
enhanced near the domain walls, the superconducting order
parameter remains uncondensed, resulting in a local charge-
4e order, as illustrated schematically in Fig. 1(a). We finish
in Sec. IV by discussing the qualitative experimental mani-
festations of this local condensation and candidate materials
where this phenomenon may be realized. In Appendices A
and B we provide details on the free energy derivation, and
the implemented minimization strategy, respectively.

II. GLOBAL SUPPRESSION OF THE COMPETING
VESTIGIAL PHASES

To set the stage, we discuss a special case in which, for
symmetry reasons alone, the only order that can be stabilized
is charge-4e. Consider a 2D system in which the electrons
experience negligible SOC (e.g., graphene) and, in addition
to spin, have another pseudospin degree of freedom (e.g.,
sublattice or valley). Enforcing the pairing state to be mo-
mentum independent and pseudospin singlet, the gap function
must be spin triplet and represented by an order parameter
� = (�1, �2, �3)T that transforms as a vector in SU(2) spin
space. This is nothing but the d vector of a triplet supercon-
ductor [37,38], albeit even in momentum. While there is no
indication of valley-singlet spin-triplet superconductivity in
graphene, this type of state has been studied in twisted moiré
systems [53–56] and Bernal bilayer graphene [35,57]. The
superconducting action is given by

S =
∫

q
χ−1

q |�q|2 +
∫

x
(u|�x|4 + v|�x · �x|2), (1)

with (bare) superconducting susceptibility χ−1
q and q =

(q, ωn) denoting momentum and Matsubara frequency. The
interaction part has Landau coefficients u and v, where x =
(x, τ ) denotes position and imaginary time. The mean-field
phase diagram of this model is well established [58,59],
displaying different types of unitary and nonunitary pairing
depending on the sign of v.

To describe the vestigial orders, however, it is nec-
essary to go beyond mean field [48]; for our purposes,
a group-theoretical analysis is sufficient. There are four
symmetry-breaking bilinear combinations of �: two real-
valued composites

�(l=1) = i� × �̄, (2)

� (l=2)
μν = 1

2
(�μ�̄ν + �ν�̄μ) − 1

3
δμν |�|2, (3)

and two complex-valued ones

ψ (l=0) = � · �, (4)

ψ (l=2)
μν = �μ�ν − 1

3
δμν (� · �), (5)

where z̄ ≡ z∗. The superscript indicates the transformation
properties in SU(2) spin space, corresponding to a scalar
(l = 0), a vector (l = 1), or a tensor (l = 2). Each composite
has a clear physical interpretation: �(l=1) corresponds to time-
reversal symmetry breaking and, thus, vestigial ferromagnetic
order. � (l=2)

μν is associated with rotational symmetry breaking
in spin space, and therefore denotes (spin-)nematic vestigial
order [34,60,61]. Finally, ψ (l=0) and ψ (l=2)

μν correspond to
s-wave and d-wave charge-4e vestigial orders, respectively.

Because �(l=1), � (l=2)
μν , ψ (l=2)

μν , and � ≡ �(l=1) itself trans-
form nontrivially in SU(2) spin space (i.e., they are at least
Heisenberg-type order parameters), none of them can sus-
tain (quasi-)long-range order at nonzero temperatures in 2D.
On the other hand, because ψ (l=0) is a complex scalar (i.e.,
XY-type), it can establish quasi-long-range order through a
BKT transition. Therefore, the only state allowed to develop
quasi-long-range order in this model is the vestigial charge-4e
phase. We note that similar 2D and 1D models for triplet
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superconductors [34–36] and spinor condensates [22] have
been previously studied and shown to support charge-4e order.

III. LOCAL SUPPRESSION OF THE COMPETING
VESTIGIAL PHASES

A. Formalism for the vestigial orders

Despite being illuminating, the simple model above is
not representative of realistic multicomponent superconduc-
tors, where either SOC is not negligible or singlet states
are realized. Yet, it highlights an efficient strategy to realize
charge-4e order: suppression of the other, leading, vesti-
gial phases. While this generally cannot be accomplished
globally via Mermin-Wagner’s theorem, vestigial nematic or
ferromagnetic states tend to form domains to minimize the
elastic or magnetic dipolar energies. To explore this idea,
we consider a generic two-component superconducting order
parameter � = (�1,�2), which could describe (px, py)-
wave or (dxz, dyz )-wave states in tetragonal and hexagonal
lattices [37,38], or (dx2−y2 , dxy)-wave pairing in hexagonal
systems and 45◦-twisted bilayer tetragonal d-wave supercon-
ductors [62]. In contrast to the previous example, � now
transforms as a two-dimensional IR of a discrete point group.
While we will focus on tetragonal (D4h) superconductors,
where � transforms as the IR Eg or Eu, the conclusions apply
to all other cases.

We start by classifying all possible composite order pa-
rameters. As shown in Ref. [46], seven different bilinear
combinations can be formed. Apart from the symmetry-
preserving bilinear �A1g = �†τ 0�, with Pauli matrices τ i

acting on the � subspace, there are three additional real-
valued bilinears:

�A2g = �†τ y�, �B1g = �†τ z�, �B2g = �†τ x�. (6)

Here, �A2g breaks time reversal symmetry and causes ferro-
magnetism, while �B1g and �B2g break tetragonal symmetry
and cause nematicity. The three complex-valued bilinears are
given by

ψA1g = �T τ 0�, ψB1g = �T τ z�, ψB2g = �T τ x�, (7)

and describe, respectively, s-wave, dx2−y2 -wave, and dxy-wave
charge-4e superconductivity. In our notation, �n (ψn) denotes
real-valued (complex-valued) bilinears, whereas the super-
script n indicates the IR according to which the composite
transforms. The superconducting action is

S =
∫

x
r0|�x|2 + Sgrad + S int, (8)

where r0 = a0(T − T0) denotes the reference temperature
(a0, T0 > 0) and Sgrad contains the symmetry-allowed gradi-
ent terms [38]. The interaction part is given by [46]

S int =
∫

x

[
u

(
�

A1g
x

)2 + v
(
�

A2g
x

)2 + w
(
�

B1g
x

)2]
, (9)

and contains three independent interaction parameters u > 0
and v,w > −u. The mean-field phase diagram in the ( v

u , w
u )

parameter space is well established, displaying chiral and two
types of nematic superconductivity [11,38,49].

The vestigial orders associated with each mean-field
ground state were analyzed in Ref. [46] via a variational
approach. The leading vestigial instability is always that of
a real-valued composite (nematic or ferromagnetic), whereas
the vestigial charge-4e orders are always subleading. While
our conclusions hold across the entire phase diagram, here-
after we focus on the v > 0 > w region [Fig. 1(b)], where the
superconducting ground state is nematic and the competing
vestigial phases are dx2−y2 -wave nematic (�B1g) and s-wave
charge-4e (ψA1g). In bulk, the only vestigial order realized is
the nematic one [46]. However, because the effective interac-
tion in the charge-4e channel is attractive, the system could
gain energy by condensing this mode in regions where ne-
matic order is suppressed. Due to its Ising-like character, �B1g

can sustain long-range order at nonzero temperatures. How-
ever, because of the linear coupling between �B1g and strain,
nematic domains must form to minimize the elastic energy
and accommodate long-range lattice deformations. This opens
up the possibility of ψA1g condensation at nematic domain
walls.

B. Charge-4e condensation at the domain wall

To proceed, we employ a real-space Gaussian variational
approach, which treats all vestigial channels equally, on a 1D
grid of length L and i = 1, . . . , N sites. The variational ansatz
consists of a trial action S0 [46,63–65], which in our case is

S0 = 1

2

L

T

∑
i

�̂
†
i G−1

i �̂i + Sgrad, (10)

with the gradient contribution Sgrad explicitly given in
Eq. (A4). Represented in the Nambu basis �̂i = (�i, �̄i ), the
local inverse Green’s function,

G−1
i =

⎛
⎜⎜⎜⎝

Ri + �
B1g

i �
B2g

i − i�A2g

i φ
A1g

i + φ
B1g

i φ
B2g

i

Ri − �
B1g

i φ
B2g

i φ
A1g

i − φ
B1g

i

Ri + �
B1g

i �
B2g

i + i�A2g

i

H.c. Ri − �
B1g

i

⎞
⎟⎟⎟⎠, (11)

contains the real-valued (�n
i ) and complex-valued (φn

i , φ̄
n
i )

variational parameters, and the mass renormalization pa-
rameter Ri = r0 + �

A1g

i . Because S0 (10) is Gaussian, it is

straightforward to compute the variational free energy

Fv = −T log Z0 + T 〈S − S0〉0, (12)
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where Z0 = ∫
D(�, �̄) e−S0 is the partition function of the

trial action. The detailed evaluation of Eq. (12) is shown in
Appendix A, with the result given in Eq. (A9). Importantly,
the original Landau coefficients u, v, and w appear in Fv as dif-
ferent combinations in each symmetry channel, corresponding
to effective interactions [46]:

UA1g = 3u + v + w, uA1g = u − v + w,

UA2g = u + 3v − w,

UB1g = u − v + 3w, uB1g = u + v + w,

UB2g = u − v − w, uB2g = u + v − w. (13)

An attractive interaction (Un, un < 0) indicates a potential in-
stability, signaled by the condensation of the corresponding
variational order parameter (�n

i , φn
i ). Importantly, a vestigial

phase only emerges if superconductivity is not immediately
triggered by �n

i , φn
i �= 0. In the variational approach, this

condition can be verified by confirming that the variational
superconducting susceptibility remains finite. The local su-
perconducting susceptibility χi can be derived in the standard
way using a conjugate field, see, for example, Ref. [46] for de-
tails. Within the phase diagram region of interest (w < 0 < v)
we find the simple expression

χ−1
i = Ri − ∣∣�B1g

i

∣∣ − ∣∣φA1g

i − sign
(
�

B1g

i

)
φ

B1g

i

∣∣. (14)

The relationship (14) assumes that all other composite fields
are zero, which is also confirmed by our numerics. As is
commonly the case [48], the presence of a vestigial order
enhances the superconducting susceptibility, and thereby also
the transition temperature Tc.

In bulk, for most of the ( v
u , w

u ) phase diagram, there
are two competing attractive vestigial-order channels, corre-
sponding to a real-valued composite (nematic/ferromagnetic)
and a complex-valued one (s-wave/d-wave charge-4e). As
demonstrated in Ref. [46], the nematic/ferromagnetic insta-
bility is always the leading one in bulk [Fig. 1(b)]. Our goal
is to determine the fate of these phases along a nematic
domain wall. We therefore numerically minimize the free
energy (12) [or Eq. (A9)] for the N-site 1D grid with domain-
wall boundary conditions �

B1g

1 = −�
B1g

N = �
B1g

0 , where �
B1g

0
is the (self-consistently obtained) bulk value of the nematic
order parameter (see Appendix B for additional details). Con-
sider first the phase diagram region where the only attractive
vestigial-order channel is the nematic, i.e., UB1g < 0 but uA1g >

0 [red cross in Fig. 1(b)]. The results are shown in Fig. 2.
As the control parameter r0 ∝ T − T0 is decreased, a nematic
domain emerges below a temperature that coincides with the
bulk nematic critical temperature Tnem. Note that T < Tnem

for all three panels in Fig. 2. As expected, the domain wall
becomes sharper as the temperature is lowered, since the
wall width scales as t0/|�B1g

0 | where t0 is the gradient-term
stiffness, see Eq. (A4). At the domain-wall center, the su-
perconducting susceptibility χ is suppressed, consistent with
the fact that vestigial order enhances the superconducting
transition. Interestingly, χ−1 has a nonmonotonic spatial de-
pendence, displaying a dip at the domain-wall boundaries,
which can lead to local condensation of superconductivity
[yellow region of Fig. 2(c)]. No sign of charge-4e order is

FIG. 2. Variational nematic order parameter (�B1g), inverse su-
perconducting susceptibility χ−1 (14), and variational charge-4e
order parameter (φA1g) obtained from the numerical minimization of
the variational free energy (12) [or Eq. (A9)] across two nematic
domains (all in units of the gradient-term stiffness t0). Each panel
corresponds to a different temperature, parametrized by r0 ∝ T − T0.
The parameters used here are w = −0.5u and v = 0.1u [red cross in
Fig. 1(b)]. Here and in Fig. 3, we set t0/

√
uT0/L = 20/7.

observed, consistent with a repulsive effective interaction in
this channel.

Consider now the phase-diagram region where the charge-
4e vestigial channel is attractive, but subleading to the
nematic, UB1g < uA1g < 0 [purple cross in Fig. 1(b)]. As shown
in Fig. 3(a), nematic order emerges first, and it establishes
a domain wall. Now, however, as we lower the temperature
[Figs. 3(b) and 3(c)], the charge-4e order parameter φA1g

condenses inside the domain wall while the superconducting
susceptibility χ remains finite. This is the main result of
the paper. Because the domain wall is one dimensional, this
should be understood as a local condensation, since phase
slips will destroy long-range order along the wall. Note, even
though the d-wave charge-4e channel is repulsive in this
phase-diagram region, the order parameter φB1g condenses
due to the trilinear coupling between �B1g , φA1g , and φ̄B1g

(see the inset) [46]. We verified that this behavior is not
particular to this set of parameters, but occurs in any region
of the ( v

u , w
u ) phase diagram where s-wave/d-wave vestigial

charge-4e order is sufficiently attractive but subleading to
nematic/ferromagnetic vestigial order. The temperature T local

4e
at which the local condensation occurs can be thought of as
the result of a competition between the condensation energy
gain and the gradient energy penalty due to the spatially in-
homogeneous profile. In this regard, the condensation energy
is only available to the system below the temperature T ∗

4e at
which a bulk charge-4e order would occur if it was not sup-
pressed. Correspondingly, local condensation only emerges at
T � T ∗

4e, and it is essential that T ∗
4e is larger than the SC critical

temperature Tc, which can be satisfied for T ∗
4e � Tnem.
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FIG. 3. Same variational parameters as in Fig. 2, but evalu-
ated for the parameters w = −0.05u and v = 2.1u [purple cross in
Fig. 1(b)], corresponding to a subleading attractive charge-4e chan-
nel (uA1g < 0). Local condensation of φA1g is observed at the nematic
domain wall.

IV. DISCUSSION

In this work, we employed a variational approach to
demonstrate that charge-4e order locally condenses at nematic
domain walls that emerge in the normal state of nematic
superconductors upon approaching the superconducting tran-
sition. Before the onset of superconductivity, the system is
unstable toward the formation of vestigial nematic and charge-
4e orders arising from the fluctuation-induced condensation
of composite superconducting order parameters. Because
nematic order generally wins over charge-4e order, the sup-
pression of nematic order along the domain wall enables the
system to further minimize the free energy by condensing
charge-4e order. Since an analogous mechanism also applies
for chiral superconductors, our results point to a wide class
of systems—multicomponent superconductors—where local
charge-4e order can potentially emerge. Among the materials
for which there is strong experimental evidence for nematic
superconductivity, doped Bi2Se3 [43–45,66] and twisted bi-
layer graphene (TBG) [42,67,68] are the most promising
candidates to display this effect. Indeed, a vestigial nematic
phase exists in doped Bi2Se3 [69,70], whereas in TBG,
normal-state nematic order appears close to the superconduct-
ing dome [42]. There are also several chiral-superconductor
candidates [71], including the widely studied heavy-fermion
UPt3 [39–41].

An important question is how to experimentally detect
this effect. Since charge-4e order emerges at nematic domain
walls, local probes such as scanning tunneling microscopy
(STM) and scanning near-field optical microscopy (SNOM)
are ideal. Because the charge-4e state is expected to be gap-
less [14,15], its density-of-states (DOS) profile, which can
be accessed in a standard STM measurement, will likely

differ from the normal-state DOS only in subtle ways. On the
other hand, Josephson-STM, in which a superconducting tip is
used [72,73], could provide more direct evidence for quartets.
The SNOM technique has the unique capability of probing
the local optical response with a few nanometers resolution,
from which the properties of the local optical conductivity
σ (ω, r) can be inferred [74,75]. Because the charge-4e state
has a nonzero superfluid density [15], Im σ (ω, r) ∼ 1/ω is
expected to emerge at low frequencies near nematic domain
walls. While this behavior could also be due to a charge-2e
superconducting filament, only in the charge-4e case this be-
havior would be accompanied by a gapless DOS, which can be
probed via STM. These results also reveal the tantalizing pos-
sibility of using uniaxial strain to control the charge-4e phase,
since beyond a critical strain value, the sample becomes
mononematic domain and local charge-4e order disappears.
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APPENDIX A: DERIVATION OF THE VARIATIONAL
FREE ENERGY

Here, we derive the variational free energy associated with
the ansatz S0, i.e., we evaluate Eq. (12). For convenience,
we first repeat the setup of the problem and the notations
introduced in the main text. Expressing the two-component
superconducting order parameter � = (�1,�2) in terms of
the four-component Nambu basis �̂ = (�, �̄), we can rewrite
the real-valued and complex-valued bilinear combinations as

�n = �̂
†
Mn�̂, ψn = �̂

†
mn�̂. (A1)

Here, we defined the matrices

MA1g = τ 0σ 0/2, mA1g = τ 0σ−, MA2g = τ yσ z/2,

MB1g = τ zσ 0/2, mB1g = τ zσ−,

MB2g = τ xσ 0/2, mB2g = τ xσ− (A2)

with σ± = (σ x ± iσ y)/2 and τ i, σ i acting respectively on the
internal superconducting subspace and on the Nambu space.
For our specific setting of a one-dimensional grid of length L
with lattice sites labeled i, j = 1, . . . , N , the superconducting
action becomes

S = L

T

∑
i, j

�†
i

[
r0δi j + 1

2
f 0
i j

]
τ 0� j + S int, (A3)

where we introduced the gradient term

Sgrad = L

2T

∑
i, j

�†
i τ

0 f 0
i j� j, (A4)

described in terms of the hopping function f 0
i j = t0

2 (2δi j −
δi, j+1 − δi, j−1) and the stiffness parameter t0 > 0. Recall that
r0 = a0(T − T0) denotes the bare superconducting transition
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temperature with a0, T0 > 0. The interaction part is given by
[46] [see also Eq. (9)]

S int = L

T

∑
i

[
u

(
�

A1g

i

)2 + v
(
�

A2g

i

)2 + w
(
�

B1g

i

)2]
, (A5)

where the Landau parameters satisfy the conditions u > 0 and
v,w > −u in order for the action to be bounded.

As discussed in the main text, within the Gaussian varia-
tional approach, we choose a trial action [cf. also Eq. (10)],

S0 = 1

2

L

T

∑
i, j

�̂
†
i G−1

i, j �̂ j, (A6)

that is characterized by the inverse Green’s function

G−1
i j = G−1

i δi j + f 0
i jM

A1g, (A7)

G−1
i = 2RiM

A1g + 2
∑

n∈GR

�n
i Mn +

∑
n∈GC

(
φ̄n

i mn + H.c.
)
,

(A8)

which contains all variational parameters. Recall that we use
�n

i for real-valued variational composite order parameters
and (φn

i , φ̄
n
i ) for the complex-valued ones, where n denotes

the irreducible representation (IR) according to which the
composite transforms. Moreover, we also define the mass
renormalization parameter Ri = r0 + �

A1g

i . For convenience
of notation, we introduce the IR sets GR = {A2g, B1g, B2g} and
GC = {A1g, B1g, B2g} in Eq. (A8). Note that the local inverse
Green’s function (A8) is identical to Eq. (11).

Since the trial action (A6) is Gaussian, it is straightforward
to evaluate the variational free energy Fv , Eq. (12), see, for
example, Ref. [46] for technical details. In the real-space rep-
resentation (A6) it is convenient to promote the 4-component

field �̂i to a (4N )-component field via ˆ̂� = ∑
i P̂i�̂i, where

the projector P̂i is a (4N ) × 4 dimensional matrix whose ele-
ments are either zero or one, and P̂T

i P̂j = δi j14. The resulting
variational free energy Fv , up to an unimportant constant, is
given by

Fv = T

2
log det( ˆ̂G−1) + T

∑
i

{
2
[
r0 − Ri+ ŨA1gG

A1g

ii

]
G

A1g

ii

− 2
∑

n∈GR

(
�n

i − ŨnGn
ii

)
Gn

ii

−
∑

n∈GC

[(
φn

i − ũngn
ii

)
ḡn

ii + c.c.
]}

. (A9)

Here, ˆ̂G is the inverse of ˆ̂G−1 = ∑
i, j P̂iG−1

i j P̂T
j and Gn

i j is given

by the decomposition of Gi j = P̂T
i

ˆ̂GP̂j onto the symmetry
channels according to

Gi j = 2
∑

n∈{A1g,GR}
Gn

i jM
n +

∑
n∈GC

[
gn

i j (m
n)†+ ḡn

i jm
n
]
. (A10)

Finally, in Eq. (A9), the effective interaction parameters
{Ũn, ũn} = T

L {Un, un} in each symmetry channel are given by
Eq. (13), which agrees with the expressions found in the bulk
case [46].

APPENDIX B: DETAILS OF THE FREE ENERGY
MINIMIZATION

In this section, we present a few technical details related
to the minimization of the variational free energy (A9). The
implemented Matlab code can be found in Ref. [76]. As em-
phasized in the main text, we model the domain wall through
the boundary conditions �

B1g

1 = −�
B1g

N = �
B1g

0 , R1 = RN =
R0, and all other fields �n

1,N = φn
1,N = 0, where �

B1g

0 and R0

are the corresponding bulk values.
The free energy (A9) effectively depends only on the pa-

rameters T , t̂0 ≡ t0/
√

uT/L, {v,w}/u, and {r0, Ri,�
n
i , φ

n
i }/t0.

In the spirit of the Ginzburg-Landau approach, we assume
the most important temperature dependence to be in r0 =
a0(T − T0), and we set T = T0 elsewhere, with T0 denoting
the SC reference temperature. To facilitate the minimization
of the free energy (A9), we supply the minimizer with the
gradient expressions given by

∂Fv

∂Xi
= T

∑
j

{
V

A1g

j

∂G
A1g

j j

∂Xi
+

∑
n∈GR

V n
j

∂Gn
j j

∂Xi

+
∑

n∈GC

(
vn

j

∂gn
j j

∂Xi
+ c.c.

)}
, (B1)

where Xi ∈ {Ri,�
n
i , φ

n
i , φ̄

n
i } can be any of the variational pa-

rameters. In writing Eq. (B1), we exploited the fact that the
partial derivatives ∂Fv

∂Xi
|Gn,gn = 0 vanish [46]. Moreover, we

defined

V
A1g

j = 2
[
r0 − Rj + 2ŨA1gG

A1g

j j

]
, vn

j = −(
φ̄n

j − 2ũnḡn
j j

)
,

V n
j = −2

(
�n

j − 2ŨnGn
j j

)
. (B2)

To determine the remaining derivatives in Eq. (B1), we use
the Green’s function (A10) to identify

Gn
j j = 1

2
tr[G j jM

n], gn
j j = 1

2
tr[G j jm

n]. (B3)

Then, using the introduced projector matrix P̂i, we obtain the
relationship

∂G j j

∂Xi
= −P̂T

j
ˆ̂G ∂ ˆ̂G−1

∂Xi

ˆ̂GP̂j = −
∑
i1i2

G ji1

∂G−1
i1i2

∂Xi
Gi2 j, (B4)

which leads to the expressions

∂G j j

∂Ri
= −2G jiM

A1gGi j,
∂G j j

∂�n
i

= −2G jiM
nGi j,

∂G j j

∂φ̄n
i

= −G jim
nGi j . (B5)

It is now straightforward to compute the derivatives in
Eq. (B1) by using Eqs. (B5) and (B3); we find, for instance,

∂Gn
j j

∂Ri
= −tr[G jiM

A1gGi jM
n],

∂gn
j j

∂Ri
= −tr[G jiM

A1gGi jm
n], (B6)

and similar expressions for the other variational parameters.
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