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An effective field theory (EFT) for dynamical axions in Weyl semimetals (WSMs) is presented. A pseudoscalar
axion excitation is predicted in WSMs at sufficiently low temperatures, independently of the strength of the Weyl
fermion self-coupling. For strong fermion self-coupling the axion is the gapless Goldstone boson of chiral U(1)ch

spontaneous symmetry breaking. For weak fermion self-coupling an axion is also generated at nonzero chiral
density for Weyl nodes displaced in energy, as a gapless collective mode of correlated fermion pair excitations
of the Fermi surface. This is an explicit example of the extension of Goldstone’s theorem to symmetry breaking
by the axial anomaly itself. In both cases, the axion is a chiral density wave or phason mode of the superfluid
state of the WSM, and the Weyl fermions form a chiral condensate 〈ψ̄ψ〉 at low temperatures. In the presence
of an applied magnetic field, the axion mode becomes gapped, in analogy to the Anderson–Higgs mechanism in
a superconductor. ’t Hooft anomaly matching from ultraviolet to infrared scales is directly verified in the EFT
approach. WSMs thus provide an interesting quantum system in which superfluid, non-Fermi liquid behavior,
and a dynamical axion are predicted to follow directly from the axial anomaly in a consistent EFT that may be
tested experimentally.
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I. INTRODUCTION: QFT AXIONS AND EMERGENT
AXIONS IN WSMs

Condensed matter systems can host excitations considered
in relativistic quantum field theory (QFT) and high-energy
particle physics, but which have remained unobserved or
difficult to study in that setting. An interesting example
spanning these subfields is the emergence of chiral fermion
excitations in Weyl semimetals (WSMs). In a WSM, elec-
tronic valence and conduction bands intersect the Fermi
level at isolated points, the Weyl nodes, close to which the
quasi-particle spectrum is linear and gapless. The low-lying
excitations are thus Weyl fermions [1–4], described by two-
component spinors with momentum and spin either aligned or
antialigned, and hence states of either positive or negative chi-
rality respectively. The effective Hamiltonian of these gapless
Weyl fermion quasiparticles is identical to that proposed by
H. Weyl almost a century ago [5], but so far not observed in
high energy physics, with the Fermi velocity vF of the WSM
replacing the speed of light c in relativistic QFT.

According to the Nielsen–Ninomiya theorem [6], such
Weyl nodes must arise in pairs, with each pair composed of
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opposite chirality Weyl fermions. Although a WSM often has
more than two Weyl nodes, the minimal and simplest situation
is that of a single pair of Weyl nodes, which has also been
encountered [7,8], and upon which we focus for simplicity in
this paper.

The emergence of Weyl fermions in WSMs leads to a
direct connection with the chiral (also referred to as the axial,
triangle, or Adler–Bell–Jackiw) anomaly [9,10], the physical
consequences of which can be studied now in a setting very
different than the relativistic QFT context in which it was
originally found. In WSMs the chiral anomaly has been shown
to be responsible for the quantum anomalous Hall effect and
the chiral magnetic effect [11–17]. Recent reviews of anoma-
lies and related transport properties in WSMs may be found
in [18–20].

Related to the presence of the axial anomaly is the sug-
gested appearance of an axion in WSMs [13–15], i.e., a
pseudoscalar ‘phason’ collective mode that couples linearly
to the topological density εαβμνFαβFμν = 2Fμν F̃μν = 8E ·
B [21–24]. In the Standard Model of particle physics, the
strong nuclear interactions are also described by a gauge
theory, quantum chromodynamics (QCD), based on the lo-
cal non-Abelian color group SU(3). Soon after QCD was
introduced it was recognized that the QCD Lagrangian could
contain the topological term θ tr(GμνG̃μν ), which is the non-
Abelian generalization of θ FμνF̃μν , with Gμν the SU(3) color
gauge field strength of QCD, and θ ∈ [0, 2π ] is an arbitrary
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phase angle. The problem is that such a term violates the
discrete symmetries of charge conjugation (C) and space re-
flection parity (P), whereas the strong nuclear interactions
respect these symmetries to a very high degree of accuracy. In
fact, experimental data lead to a bound on θ , θ � 10−9 [25],
consistent with θ = 0, whereas QCD itself provides no reason
for θ either to be identically zero, or fine tuned to the required
small enough nonzero value.

The axion was introduced as a new particle to solve this
strong CP problem of QCD, by promoting the fixed constant
θ angle to a local dynamical field, which could relax to zero or
a very small value by its own dynamics [26–29]. Although the
initial axion proposal was quickly ruled out by experiment,
it survives in modified form with much weaker coupling to
known particles, as still the most often considered solution to
the strong CP problem of QCD. In addition, a weakly coupled
axion of this kind is a candidate for the dark matter that
apparently makes up 25% of the total mass-energy in the uni-
verse [30]. This proposed weakly coupled cosmological axion
also has not been detected, after more than four decades of
intensive and increasingly sensitive searches, which continue
up to the present [31–33]. Given these null results to date,
from a particle physics perspective, it is worth considering
alternatives to a “fundamental” axion field for a solution to the
CP problem. Thus any example where an axion-like mode can
be realized as a collective or emergent phenomenon of quan-
tum many-body physics is interesting, for the possible light it
could shed on the CP ‘naturalness’ problem of the Standard
Model. For this, it is important to identify the requirements
and physical mechanism(s) by which an axion can emerge as
a collective mode in a realistic many-body system that can
be studied in a laboratory environment, where the parameters
of the system can be varied and controlled. This is just what
WSMs provide.

From a condensed matter perspective, a possible axion
excitation in WSMs has been discussed primarily through
the introduction of four-fermion interactions [14] of the
Nambu–Jona-Lasinio (NJL) type [34,35], which induce the
spontaneous symmetry breaking (SSB) of U(1)ch chiral
symmetry. The axion is then the Nambu–Goldstone boson
generated by this SSB of a global symmetry. As a result of
this SSB, typically described by the introduction of a scalar
field order parameter developing a nonzero expectation value
in its ground state, the Weyl fermions acquire a mass gap. A
preliminary claim of detection of an axionic mode in a WSM
has been made in Ref. [21], although this awaits confirmation
and study of the excitation spectrum and its detailed proper-
ties.

At the same time, the axial or chiral anomaly breaks
U(1)ch symmetry explicitly, violating the Ward–Takahashi
(WT) identities of U(1)ch invariance. Thus it is not clear how
this explicit breaking of a global symmetry by the anomaly
is to be reconciled with the usual formulation of Goldstone’s
theorem, where the symmetry is assumed to be exact at the
microscopic level, and only the ground state of the theory
spontaneously breaks the symmetry. The usual statement of
Goldstone’s theorem and massless Goldstone boson depend
upon the existence of a bosonic order parameter and degener-
ate states of the same energy, related by the symmetry. Neither
a scalar order parameter nor the requisite U(1)ch symmetry

are immediately apparent in a fermionic theory possessing an
anomaly, which explicitly violates this very symmetry.

Despite these apparent differences with the usually con-
sidered requirements of Goldstone’s theorem, it was shown
in a previous paper that a gapless pseudoscalar chiral density
wave (CDW) in the anomalous fermion theory follows from
the axial anomaly itself [36]. The CDW may be understood
as a collective excitation of the Fermi surface and a result of
fermion-antifermion (particle-hole) pairing, similar to Cooper
pairing in a superfluid or superconductor. The gapless collec-
tive mode is made manifest as a 1/k2 massless pole of the
axial anomaly triangle amplitude [37]. Thus it appears that
the Goldstone phenomenon applies also the case of anomaly
symmetry breaking (ASB), despite—or rather as a direct con-
sequence of—the axial anomaly itself. Clarifying this state of
affairs and applying it to WSMs where the pseudoscalar CDW
is an axion is the first principal aim of this paper. We will
show that the familiar description of SSB by a scalar order
parameter and proof of Goldstone’s theorem can be extended
to the case of anomalous symmetry breaking (ASB). Indeed
both can be derived from the same UV complete QFT in
different limits and, remarkably, both lead to essentially the
same low-energy effective theory of a relativistic superfluid
with an axion excitation.

An interesting related issue is that of decoupling of heavy
(gapped) degrees of freedom from the low-energy spectrum,
and the status of anomaly matching between the SSB phase,
where the fermions become massive, and the ASB phase,
where they were assumed (at least at first) to remain massless.
The expectation of ’t Hooft anomaly matching [38] is that
the form and magnitude of the chiral anomaly should be
renormalization group invariant, and hence the same across
phases and across widely different distance scales, even if the
fermions develop a mass gap.

Naively a large fermion mass gap might lead one to ex-
pect that the fermions and the entire axial anomaly decouple
entirely at low energies or large distances, which would ap-
pear to violate ’t Hooft anomaly matching across scales. In
the Standard Model, this anomaly matching from the short
distance scales of perturbative QCD to the low-energy pion
dynamics of the confined theory is critical to accounting for
the experimentally verified low-energy decay rate π0 → 2γ ,
in terms of the quantum numbers of the constituent colored
quarks [39]. Historically this success played an important role
in the establishing of QCD as the theory of the strong inter-
actions. However, a proof of anomaly matching between the
short distance, high energy quark degrees of freedom of QCD
and the long distance, low-energy theory of mesons in which
quarks are confined and do not appear at all in the low-energy
spectrum of QCD is necessarily indirect in full QCD [38],
because a complete understanding of the mechanism of quark
confinement is still lacking.

In the effective field theory (EFT) motivated for application
to WSMs of this paper, it turns out that anomaly matching
across energy scales and phases can be checked and verified
directly by perturbative methods. Consequently, this EFT pro-
vides a consistent framework from UV to IR in which the
fundamental question of decoupling—or its opposite, ’t Hooft
anomaly matching—can be addressed systematically. Provid-
ing an explicit example of derivation of low-energy superfluid
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behavior emerging from an EFT, itself obtained from a UV
complete QFT, in which the axial anomaly remains intact is
the second principal goal of this paper.

In order to avoid potential misunderstandings across dif-
ferent sub-fields, let us emphasize that the EFT approach
for WSMs of this paper, which takes full advantage of the
emergent Lorentz symmetry (with Fermi velocity replacing
c), and Weyl symmetry (broken only by the axial anomaly)
that WSMs enjoy at their Weyl points, can apply only for
energies sufficiently close to such a Weyl node. These sym-
metries are clearly not exact, since the linear dispersion E ∝ p
for fermionic excitations near the Weyl node(s) upon which
our approach relies, are violated by the nonlinear terms in
the fermion spectrum and Fermi arcs at higher energies of
the height of the Weyl cones 
W , typically of the order of
100 meV or more [1–4]. For energies well below this 
W

WSMs provide a laboratory realization of effective Lorentz
invariance where the effects of the axial anomaly of relativistic
QFT and an EFT based on these first principles can be studied
systematically, and the consequences of these approximate
symmetries are expected to apply for energies E � 
W at a
Weyl node. For simplicity we focus in this paper on a single
isolated Weyl node and neglect the effects of the nonlinear
terms suppressed by E/
W , and other effects due to impuri-
ties, etc.

Let us also remark at the outset that another potential
source of confusion is the (at least) three different notions of
EFT in common use in the literature.

(i) The full one-particle irreducible (1PI) quantum effec-
tive action �[ϕ] obtained by computing quantum corrections
to a classical action Scl[φ], independently of scale.

(ii) The low-energy expansion of this nonlocal 1PI quan-
tum effective action in inverse powers of the heavy mass M of
some quantum field(s) which are completely ‘integrated out,’
to obtain a local (Wilson) effective action Seff,M applicable to
energy scales lower than M.

(iii) The hydrodynamic or Fluid effective action SFluid

defined only by symmetries, conservation laws and the
equation of state of the system in local thermodynamic equi-
librium, applicable only at macroscopic distance scales, with
no reliance upon any specific microscopic theory.

In the case of (i) the generating function of connected
correlation functions W [J] is first defined by the functional
integral

exp{iW [J]} ≡
∫

[Dφ] exp{iScl[φ] + iJ ◦ φ} (1)

over a set of quantum fields {φi(x)}, governed by the classical
action Scl[φ] in the presence of the external sources Ji(x).
In (1), the shorthand notation J ◦ φ is employed to denote∫

d d x Ji(x)φi(x) in d space-time dimensions. The 1PI quan-
tum effective action �[ϕ] is then defined as the Legendre
transform of W [J] [40,41],

�[ϕ] ≡ W [Jϕ] − Jϕ ◦ ϕ, (2)

evaluated at Jϕ (x) ≡ J[ϕ(x)] obtained by solution of the im-
plicit equation

δW [J]

δJi(x)

∣∣∣∣
J=Jϕ

= ϕi(x), (3)

which must be inverted to find Jϕ (x) and inserted into (2).

The 1PI effective action �[ϕ] so defined is the generating
functional of proper vertices, and the {ϕi(x)} are the back-
ground or mean fields of the background field method [42].
If the original Scl is renormalizable and UV complete, its 1PI
effective action �[ϕ] and the equations of motion following
from it apply at any scale without restriction. However, in
general �[ϕ] formally defined by (2) is a nonlocal functional
of ϕ, that cannot be calculated exactly. Restrictions then in-
evitably arise in the approximations necessary to calculate it.
As a familiar example, the one-loop approximation to �[ϕ]
for the ϕi space-time constants (not necessarily fundamen-
tal fields) are the order parameters of the effective potential
Veff (ϕ) at finite temperature or density that can be used to
diagnose SSB and the restoration of symmetry [43], as well
as to prove the Goldstone theorem [44,45]. The 1PI effective
potential is therefore closely related to the Landau theory of
phase transitions, with parameters fit to data in condensed
matter applications rather than calculated from first principles
of microphysics [46].

If some of the quantum fields in (1) are massive with large
mass gap M, one expects that their effects can be neglected at
low energies E � M, or equivalently distances much larger
than 1/M, as a consequence of decoupling [47]. In that
case, such heavy fields may be ‘integrated out’ completely
in (1), with no sources or mean fields specified for them.
This procedure is also usually difficult to carry out explicitly,
especially when the ‘fundamental’ or UV complete theory
is itself unknown. In that case one relies on the symmetries
of the low-energy theory and scaling dimensions to expand
the effective action in a power series of local operators of
the remaining light fields in ascending powers of 1/M. A
familiar example of this EFT approach is Chiral perturbation
theory [48,49]. Since the separation of scales specified by M is
closely related to the Wilsonian classification of infrared (IR)
relevant and irrelevant operators in statistical and condensed
matter physics [50–52], the EFT (ii) organized this way in
terms of a heavy mass scale is referred to here as the Wilson
effective action [53].

Finally, at the lowest energy scales when almost no infor-
mation is available about the underlying microscopic theory
or its fundamental interactions, one can consider a hydrody-
namic or Fluid EFT (iii) which is based only upon symmetries
and conservation laws, and a specified equilibrium equation of
state of the system. Assuming local equilibrium on micro-
scopic scales (i.e., on order of the mean free path and smaller)
is maintained, small deviations from the equilibrium relations
at the longest wavelength macroscopic scales such as sound
waves can be studied [54].

Generally, each of these three meanings of “effective field
theory” is different from the others and the relationship be-
tween them is nontrivial. The remarkable fact following from
explicit anomaly matching in WSMs is that the chiral anomaly
admits a consistent description from fundamental principles
of QFT connecting these three approaches, starting from a
single renormalizable theory of Weyl fermions coupled to
scalars and electromagnetism in both the SSB and ASB cases,
as we shall show, at least at zero temperature and in a pure
sample without defects.

The organization of this paper is as follows. We begin in
the next section, Sec. II, with a review of the axial or chiral
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anomaly of fermionic QED4, and the gapless collective boson
excitation of the Fermi surface it implies. In Sec. III, we
show how the effective action of the axial anomaly applied
to a WSM with Weyl nodes displaced in energy may be
written in a local form in terms of a collective phason field
and recognized as describing a gapless relativistic superfluid
chiral sound mode, which is a dynamical propagating axion.
In Sec. IV, we show that this phason mode becomes gapped in
the presence of a magnetic field B, and in fact coincides with
the massive Schwinger boson of QED2, when its propagation
direction is aligned with B. In Sec. V, we show how self-
interactions of the Weyl fermion modes may be incorporated
into the WSM model, by means of the Nambu–Jona-Lasino
model, and Hubbard–Stratonovich transformation, introduc-
ing a scalar field � whose expectation value for strong enough
fermion self-coupling describes the spontaneous breaking of
the U(1)ch chiral symmetry, and gapping of the Weyl modes.
In Sec. VI, we propose a UV renormalizable theory with both
fermions and bosons encompassing both the strong and weak
fermion coupling regimes, thus allowing a consistent descrip-
tion of both SSB by the scalar order parameter field and ASB
by the axial anomaly collective mode itself at nonzero chiral
chemical potential. In Sec. VII, we study perturbations from
equilibrium in this theory and show that the long wavelength
Goldstone sound mode of the scalar � is the SSB phase
satisfes exactly the same dynamical equation of motion as
the axion collective boson of the axial anomaly at finite chi-
ral chemical potential, thus verifying that ASB via the axial
anomaly itself must also lead to a scalar chiral condensate of
〈ψ̄ψ〉 and Goldstone mode. In Sec. VIII, the consistency of ’t
Hooft anomaly matching between the massless Weyl fermion
and SSB cases where the Weyl fermions become gapped is
shown explicitly in the EFT across these two cases. In Sec. IX,
it is shown that Goldstone’s theorem can be extended from the
more familiar case of SSB by an explicit scalar order param-
eter field to the ASB case through the axial anomaly itself at
nonzero μ5, so that the gapless axion collective mode of the
previous sections is also a Goldstone boson. Section X con-
tains our summary and discussion of results, looking ahead to
future work.

There are also three appendices of supplementary material.
Appendix A contains additional details of the axial triangle
anomaly in QED4, and particularly its infrared apsect, asso-
ciated spectral sum rule, and derivation by an unsubtracted
Kramers–Kronig dispersion relation. Appendix B gives the
details of the dimensional reduction of the axial anomaly from
d = 4 to d = 2 dimensions for a constant, uniform magnetic
field background, and the connection to the Schwinger boson
of QED2 described in Sec. IV. Appendix C gives the details
of the integrating out of massive fermions, which provides the
connection between the NJL model of Sec. V and the Wilson
effective action (ii) of the SSB phase of a WSM where the
Weyl fermion modes acquire a mass gap.

II. AXIAL ANOMALY IN QED4

The Lagrangian of Dirac fermions ψ coupled to electro-
magnetism with charge strength e is

L f = ψ̄ γ μ(i
↔
∂μ + eAμ + bμγ 5)ψ − mψ̄ψ, (4)

FIG. 1. The one-loop axial anomaly 〈Jμ

5 JαJβ〉 triangle diagram,
which is �

μαβ

5 (p, q) of (A4) in momentum space. The solid lines
represent the propagators of Dirac fermions and the wavy lines
external photon legs, which carry off four-momenta p and q from
the electromagnetic current vertices Jα and Jβ . The incoming four-
momentum at the axial current vertex Jμ

5 is k = p + q by momentum
conservation.

where
↔
∂μ = 1

2 (
→
∂μ − ↔

∂μ), ψ̄ = ψ†γ 0, and we have allowed for
a nonzero fermion mass gap m and additional coupling to an
external axial vector potential bμ ≡ A5

μ with unit strength.
The Lagrangian (4) is invariant under the local U(1)EM

phase transformation

ψ → eiαψ, ψ̄ → ψ̄ e−iα, eAμ → eAμ + ∂μα (5)

for any m. When m = 0 (4) is also invariant–at the classical
level–under the additional U(1)ch local chiral phase transfor-
mation

ψ → eiβγ 5
ψ, ψ̄ → ψ̄ eiβγ 5

, bμ → bμ + ∂μβ, (6)

in which the right and left chiralities transform oppositely.
By Noether’s theorem these two classical invariances of the
action S f = ∫

d 4x L f at m = 0 imply the conservation of
both the electric and axial currents,

Jμ = δS f

δAμ

= eψ̄γ μψ, Jμ

5 = δS f

δbμ

= ψ̄γ μγ 5ψ, (7)

with

∂μJμ = 0, ∂μJμ

5 = 2imψ̄γ 5ψ (classically). (8)

The m = 0 case thus has an apparent U(1)EM ⊗ U(1)ch sym-
metry.

As is well known, this apparent larger classical symmetry
at m = 0 does not survive in the quantum theory, since it
turns out to be impossible to simultaneously satisfy the re-
quirements of Lorentz invariance, U(1)EM gauge invariance
and U(1)ch chiral invariance at the quantum many-particle
level [9,55,56]. This conflict of symmetries first appears at the
one-loop level of the triangle diagram of Fig. 1.

The triangle diagram �
μαβ

5 (p, q) is naively ultraviolet (UV)
linearly divergent at large loop momenta or short distances,
and hence is a priori undefined and in need of some further
prescription. As reviewed in Appendix A, it is rendered finite
and well-defined by the requirements of

(1) Lorentz and parity/time reversal invariance of the vac-
uum or ground state (A4);

(2) electric charge current conservation (A2);
(3) Bose symmetry (A5) under interchange of the photon

legs;
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(4) real part obtained from imaginary part by unsubtracted
dispersion (Kramers–Kronig) relation.

With these four requirements �
μαβ

5 (p, q) does not satisfy
axial or chiral invariance (8) in the massless fermion limit
m → 0.

In fact, contraction of �
μαβ

5 (p, q) defined by requirements
1–4 with the external momentum kμ = pμ + qμ entering at
the axial vector vertex gives the well-defined result

kμ �
μαβ

5 (p, q) = A υαβ (p, q), (9)

where

υαβ (p, q) ≡ εαβρσ pρqσ = υβα (q, p) (10)

and A is most conveniently presented as an integral over
Feynman parameters x, y in the form

A(k2; p2, q2; m2) = e2

2π2

(
1 − 2m2

∫ 1

0
dx

∫ 1−x

0
dy

1

D

)
,

(11)
where the denominator D in (11) is given by (A8). The second
term proportional to m2 is what would be expected from the
axial vector divergence ∂μJμ

5 = 2imψ̄γ 5ψ (8) following from
use of the on-shell Dirac equation for fermions of mass m,
cf. (A10) [57]. The first term in (11), namely,

A(k2; p2, q2; m2 =0) = e2

2π2
, (12)

which survives even in the case of massless fermions
m → 0, is the finite axial or chiral anomaly, since it violates
the expectation of the classical divergence of ∂μJμ

5 (8) vanish-
ing at m = 0.

The result (11) and (12) is equivalent to

∂μ

〈
Jμ

5

〉∣∣
m=0 ≡ A4 = e2

16π2
εαβμνFαβFμν

= α

2π
Fμν F̃μν = 2α

π
E · B (13)

in position space, in the presence of external electric E and
magnetic B fields. Here F̃μν ≡ 1

2 εαβμνFαβ is the dual of Fμν ,
and α = e2/4π � 1/137.036 is the fine structure constant.

The determination of �
μαβ

5 and (11) solely by the con-
ditions 1–4 above shows that these symmetry requirements
are all that are necessary and sufficient to determine the
anomaly (13), which is finite and independent of any UV
divergences or renormalization. Thus the axial anomaly may
be viewed as a low-energy or macroscopic feature of QFT,
which is why it is relevant for EFT treatments of both particle
physics and condensed matter systems such as WSMs.

The triangle amplitude �
μαβ

5 (p, q) for massless fermions
may be decomposed as

�
μαβ

5 (p, q) = 2α

π

kμ

k2
εαβρσ pρqσ + �

μαβ

5 ⊥ (p, q), (14)

where �
μαβ

5 ⊥ is transverse, kμ�
μαβ

5 ⊥ (p, q) = 0, and hence
nonanomalous, while the first term in (14) which is respon-
sible for the anomaly contains a massless 1/k2 pole. Whereas
the transverse part may (and does) receive all manner of radia-
tive corrections from higher order processes, the longitudinal
anomalous pole contribution in (14) is protected from such

FIG. 2. The e+e− co-linear massless fermion pair state of oppo-
site helicities from the triangle diagram of Fig. 1 represented as a
single massless effective boson.

corrections by the Adler–Bardeen theorem [58]. This remark-
able fact can be understood to be a result of the topological
character of the anomaly equation (13) [59,60], and another
indication of its long distance properties. The topologically
protected massless pole at k2 = 0 in the anomaly term de-
scribes a two-particle fermion/antifermion intermediate state
in the triangle diagram, with this fermionic pair propagating
coherently and co-linearly at the speed of light [61], cf. Fig. 2.
F2This fermion pair state of opposite helicities is just that of
a massless boson [37].

This gapless bosonic mode is a collective excitation of
the Fermi–Dirac sea, revealed first in one spatial dimen-
sion in the Schwinger model of massless QED2 [62], and
in fermionic condensed matter systems as Luttinger liq-
uids [63–65]. Similar Luttinger liquid-like behavior has been
conjectured in higher dimensional fermion systems at low
temperatures [66–68]. It is the 1/k2 anomaly pole in (14) that
provides the theoretical basis for this conjecture to be physi-
cally realized in WSMs, with the Fermi velocity vF replacing
the speed of light c, and the fermion pairing to be analogous
to the Cooper pairs of a superfluid condensate [36].

The bosonic excitation arising directly from the axial
anomaly itself provides a new realization of Goldstone’s
theorem, anomaly symmetry breaking (ASB), discussed in
Sec. IX, without (so far) any explicit reference to a bosonic
order parameter expectation value violating the U(1)ch sym-
metry, as in the usual case of SSB. We shall see that despite
the fact that the axial anomaly modifies the WT identities of
the theory whereas SSB preserves them, the two apparently
distinct situations of ASB and SSB are very closely related
and can be described by the same low-energy EFT, as a super-
fluid with a Goldstone sound mode that is an axion excitation
in a WSM.

III. ANOMALY EFFECTIVE ACTION AND SUPERFLUID
EFT OF WEYL NODES DISPLACED IN ENERGY

Since the axial current Jμ

5 is the variation of the action
with respect to the external axial potential bμ, the longitudinal
projection of (14) is the variation of the nonlocal 1PI effective
action (i) [37,69,70]

�NL
anom[A, b] =

∫
d 4x

∫
d 4y bμ(x) ∂μ

x �−1
xy A4(y)

= α

2π

∫
d 4x

∫
d 4y [bμ∂μ]x�−1

xy

[
Fαβ F̃αβ

]
y

(15)

in position space, where �−1
xy = 1

4π2 (x − y)−2 denotes the
massless scalar propagator inverse of the wave operator � =
∂μ∂μ = −∂2

t + ∇2 in 3 + 1 space-time dimensions and A4

the axial anomaly given by (13). The effective action (15) is
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nonlocal, although its variation with respect to bμ which gives
〈Jμ

5 〉, and subsequent acting with ∂/∂xμ, reproduces the local
result (13).

The nonlocal 1PI effective action (15) can also be ex-
pressed in a local form

Sanom[η; A, b] =
∫

d 4x
[
(∂μη + bμ)Jμ

5 + ηA4
]

(16)

upon the introduction of the local pseudoscalar potential
η. The variation of (16) with respect to η reproduces the
anomaly (13), while the variation of (16) with respect to the
hydrodynamic current Jμ

5 produces the constraint ∂μη + bμ =
0. Solving this constraint for η gives η = −�−1∂μbμ, and
substituting this back into (16) reproduces the nonlocal ac-
tion (15) with its massless pole, after integration by parts.
This variational method with respect to a current in which
no reference to the underlying QFT variables ψ is made, is
employed for effective actions of fluid hydrodynamics (iii), in
which context η is called a Clebsch potential [71].

Note that apart from the anomaly term ηA4, (16) depends
upon the linear combination ∂μη + bμ, which is invariant
under η → η − β, bμ → bμ + ∂μβ. This is a suggestive rem-
nant of the local U(1)ch symmetry (6), although the fermions
themselves do not appear explicitly in the anomaly effective
action (16). The fluid form has only bosonic variables, and a
fluid variational principle in which only the full current Jμ

5 is
varied, not its fermionic constituents. Thus it is not immedi-
ately apparent from (16) to what complex bosonic variable �

the phase η corresponds, or how its magnitude |�| is related
to the underlying fermion QFT.

On the constraint ∂μη + bμ = 0, the ηA4 term alone
in (16) is the form of the effective action of the axial
anomaly that can be shown to be responsible for the anoma-
lous Hall conductance, as well as the chiral magnetic and
chiral separation effects [13,36]. Further, if 2bμ = (2b0, 2bi )
is the difference in the energies and momenta of the two
Weyl nodes of a WSM respectively, illustrated in Fig. 3,
then η = −xμbμ = t b0 − x · b is the chiral phase obtained by
a fixed chiral rotation on the fermions through Fujikawa’s
method [72,73], and (16), giving the effective action of the
axial anomaly for such WSMs in [2,13,15].

In the WSM literature, the phase θ = −2η multiplying the
axial anomaly A4 in (16) is called an “axion.” However, in
QFT the axion of [28,29] is a propagating pseudoscalar field,
not simply a chiral rotation angle, of a fixed bμ axial potential
characterizing Weyl nodes in their equilibrium configuration.
To obtain a true propagating axion in a WSM the two Weyl
nodes of Fig. 3 must be allowed to fluctuate around their
equilibrium values, and a kinetic term for η must be added.
Such a kinetic term may just be assumed to be present in the
EFT, as IR relevant terms in the Wilsonian sense (ii), e.g.,
Refs. [14,74,75]. However the origin of this kinetic term is not
specified in that case and its coefficient must be treated as an
unknown free parameter that can only be fixed by experiment
in such an approach.

On the other hand, continuing with the Fluid description
(iii) of free massless fermions with displaced Fermi levels for
left- and right-handed Weyl fermions automatically provides
just such a kinetic term for small deviations from equilibrium,
with coefficient fixed by the equilibrium equation of state,

FIG. 3. Two Weyl cones separated by (2b0, 2b) in momentum
space. Here we assume zero charge chemical potential, so the Weyl
cones are filled up to the Fermi energy, as indicated by the fill pattern.
We also neglect the effects of nonlinear interactions at energies 
W

far from the Weyl nodes, so that the EFT description applies for
energy excitations and |2b0| � 
W .

once the energy density ε(n5) of the fermions as a general
function of the chiral number density n5 is taken into account.
Adding this nonanomalous −ε(n5) term to the local anomaly
effective action (16) results in the fluid effective action

SFluid = Sanom[η; A, b] −
∫

d 4x ε(n5)

=
∫

d 4x
[
(∂μη + bμ)Jμ

5 + ηA4 − ε(n5)
]

(17)

for the massless fermion system at finite n5. The variation of
this effective action with respect to Jμ

5 is now nontrivial and
leads to

∂μη + bμ −
(

dε

dn5

)(
dn5

dJμ

5

)
= 0 ⇒ Jμ

5 = − n5

μ5
(∂μη + bμ)

(18)

instead of the constraint ∂μη + bμ = 0, and where the Lorentz
frame-invariant definition of n2

5 = −Jμ

5 J5 μ has been used. The
quantity μ5, likewise invariantly defined by

μ5 = dε

dn5
, μ2

5 = −(∂μη + bμ)(∂μη + bμ), (19)

carries the interpretation of the axial chemical potential of
the chiral effective fluid. Using these definitions, (17) can be
expressed in the form

Seff,fluid =
∫

d 4x (μ5n5 − ε + ηA4) =
∫

d 4x (P + ηA4),

(20)
where P = μ5n5 − ε is the equilibrium pressure of the fluid at
zero temperature.

For a WSM whose two Weyl nodes of opposite chirality
are displaced in energy and momentum space by 2b0 and 2bi

respectively, as in Fig. 3, in the rest frame of the material
in equilibrium all time derivatives vanish, whereas J0

5 = n5
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is nonvanishing. Thus when the nonzero ε(n5) and μ5 of the
fluid in (17) are taken into account, we have

η̄ = −x · b, ˙̄η = 0, (21a)

μ5 = b0, J0
5 = n5, (21b)

and the electric current

Jμ = 2α

π
F̃μν ∂νη ⇒ J̄ = 2α

π
B ˙̄η = 0 (22)

and axial current J̄5 = 0 vanish in equilibrium from (18)
and (21a), including also in the presence of a background
magnetic field B. In equilibrium with E = 0, the anomaly A4

also vanishes, and ∂μJ̄μ

5 = 0. Note that as a result of (18) and
using J̄0

5 = n5 and J̄5 = 0 in equilibrium, we find ˙̄η = μ5 −
b0, and the anomalous electric current is zero in equilibrium,
consistent with the literature [76].

Now since η is a dynamical field in the effective fluid de-
scription and Jμ

5 depends on η through (18), small fluctuations
δη(t, x) from equilibrium can be considered and these will
generate small fluctuations in μ5 and Jμ

5 , according to

δμ5 = δη̇, (23a)

δJ0
5 = δn5 = δn5

δμ5
δμ5 = δn5

δμ5
δη̇, (23b)

δJi
5 = − n5

μ5
∇ i δη, (23c)

for the chiral current components and their departure from
equilibrium. To first order in these departures from equilib-
rium the variation in (23b) may be replaced by its value from
the equilibrium equation of state,

δn5

δμ5
� dn5

dμ5
, (24)

where we drop overbars on the equilibrium values of μ5, n5,
which are independent of t, x. Now using the definition of the
sound speed in the fluid

v2
s = d p

dε
= n5 dμ5

μ5 dn5
= n5

μ5

(
dn5

dμ5

)−1

, (25)

the axial anomaly equation ∂μ(δJμ

5 ) = δA4 for the linear vari-
ations in (23) may be expressed in the form

∂μ

(
δJμ

5

) = dn5

dμ5

(
∂2

∂t2
− v2

s ∇2

)
δη = α

2π
δ(FμνF̃μν ). (26)

This follows also from (17), expanded to quadratic order in
the departures from equilibrium, i.e.,

S (2)
eff,fluid � ∫

d 4x

[
1

2

dn5

dμ5
δη

(
− ∂2

∂t2
+ v2

s ∇2

)
δη + δη δA4

]
.

(27)

If the anomaly term δA4 is assumed to be of the same order
of small variation δη from equilibrium, the coupling of δη

to electromagnetism would need to be considered. However
since A4 ∼ E · B is quadratic in the EM fields, this will only
be the case if there is a nonzero background field of either E
or B. The latter is considered in the next section. Otherwise if
both E and B are flucutations from the vacuum of E = B = 0,
the last term in (27) is third order in fluctuations and the EM

influence on δη can be neglected. This last term in (27) will
nevertheless generate an electric current as in (22) that acts as
source for Maxwell’s equations.

Equation (26) shows that the effective action of the ax-
ial anomaly, expressed in the hydrodynamic fluid form (16)
and (17), predicts the existence of a gapless pseudoscalar
chiral density wave (CDW) that couples linearly to FF̃ and
therefore may be identified as an axion for a WSM arising
from displaced Weyl nodes, as in Fig. 3, that fluctuate from
their equilibrium value. This axionic CDW arises from the
axial anomaly itself, independently of direct fermion self-
interactions. For the specific example of free Weyl fermions
we have the zero temperature equilibrium relations

n5 = (
Jμ

5 J5 μ

)1
2 = 2

∫
|p|�μ5

d3 p
(2π )3

= μ3
5

3π2
, (28a)

ε(n5) = 2
∫

|p|�μ5

d3 p
(2π )3

|p| = μ4
5

4π2
= 3

4
(3π2)

1
3 n

4
3
5 , (28b)

P(μ5) = μ5n5 − ε = μ4
5

12π2
= ε

3
,

dP

dμ5
= n5 (28c)

and the speed of the CDW, vs in this specific case of free
fermions with Weyl nodes displaced in energy and momen-
tum, is given by

v2
s

∣∣
free = 1

3 v2
F , (29)

where we have reinserted the Fermi velocity vF which plays
the role of the speed of light in the relativistic (gapless) Weyl
fermion Hamiltonian.

These simple considerations following from the axial
anomaly itself in its effective fluid description (20) predict the
existence of a true dynamical and propagating collective axion
excitation of a WSM with a pair of Weyl nodes displaced in
energy. In Sec. IX, we shall show that the appearance of this
gapless mode of a WSM can be understood as a consequence
of an extension of Goldstone’s theorem to the case of anomaly
symmetry breaking. Physically, it is a collective mode arising
from small perturbations of the Fermi surface of a WSM, with
the fermion pairing arising through electromagnetism and the
axial anomaly itself, as in Fig. 2. At zero temperature and in
the absence of defects this CDW axionic mode is dissipation-
less, and the effective action (17) of the WSM fluid is that of
a relativistic superfluid [77].

IV. AXION FOR WSMs IN A CONSTANT UNIFORM
MAGNETIC FIELD: DIMENSIONAL REDUCTION

As a second example of the application of the hydrody-
namic EFT to a WSM, consider a WSM, for free or very
weakly self-interacting fermions, and with no offset in energy
of the Weyl nodes, i.e., b0 = 0, but placed in a constant,
uniform magnetic field B = Bx̂. In this case the triangle di-
agram and vertex �

μαβ

5 reduces to its longitudinal component
only and the effective action restricted to excitations along B
becomes exact [36]. The details of this dimensional reduction
in a constant uniform magnetic field with the fermions in their
lowest Landau level (LLL) are reviewed in Appendix B for
the convenience of the reader.
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The energy density of chiral fermions in their LLL in
3 + 1 space-time dimensions ε(n5) can be related to the en-
ergy density of fermions in 1 + 1 space-time dimensions ε2

by

ε(n5) = eB

2π
ε2(ñ) = π2

eB
n2

5, (30)

where

n5 = eB

2π
ñ (31)

is the 3 + 1 dimensional chiral number density of fermions in
the LLL, in terms of

ñ = (−j̃ aj̃a)
1
2 , a = 0, 1, ε2(ñ) = π

2
ñ2 (32)

the chiral density and energy density of 1 + 1 dimensional
fermions restricted to moving in the x̂ direction along B. The
2D chiral current and number density in (32) are denoted by
j̃a and ñ respectively.

Factoring out a common factor of the electron number den-
sity per unit area eB/2π in the LLL leads to the 2D effective
action

Sanom,B = eB

2π

∫
d 2x⊥

∫
d 2x [(∂aη + ba)j̃a + ηA2 − ε2(ñ)]

(33)
of a 2D chiral superfluid, where the two dimensional axial
anomaly is

A2 = e

2π
εabFab = eE

π
, (34)

where the a, b indices range over 0,1 only and the electric
field E = F10 is also in the x̂ direction along B. The 2D axial
chemical potential

μ̃ = dε2

dñ
= (−∂aη ∂aη)

1
2 = π ñ = μ5 = dε

dn5
(35)

is in fact the same as that evaluated in 4D. Note that in 2D
the axial anomaly (34) is linear in the electric field, so that
variations in A2 will be of the same order as those of η in
2D, or in 4D as a result of dimensional reduction in a classical
background B field.

Apart from the overall factor of eB
2π

∫
d 2x⊥, the 2D effective

action in (33) for excitations along the B direction is thus [36]

S2D =
∫

d 2x [(∂aη + ba)j̃a + ηA2 − ε2(ñ)]

=
∫

d 2x
[
−π

2
∂aχ ∂aχ − (eE + ∂aba) χ

]
(36)

in terms of a local pseudoscalar boson field χ , related to the
chiral phase η by

η = −πχ + θ

2
→ −πχ, (37)

where the arbitrary constant θ phase angle associated with the
anomaly is set to zero here. The 2D effective fluid action (36)
for excitations parallel to the B field is then recognized as
the bosonic effective action of the fermionic sector of the
Schwinger model, i.e., QED2 of massless fermions [36,62,70]
in which the gauge potential in εabFab/2 = εab∂aAb of the 2D

model has been replaced by eAa + εa
cbc of the dimensionally

reduced 4D theory.
The variations

j̃ a = δ

δba
S2D[χ ; A, b] = ∂aχ,

ja = δ

δAa
S2D[χ ; A, b] = −εab∂bχ (38)

express the bosonization rules for the 2D chiral and electric
currents. The extremization

δ

δχ
S2D[χ ; A, b] = π �2χ− (E + ∂aba)= π (∂aj̃a− A2) = 0

(39)
recovers the 2D axial anomaly (B8), and the 2D wave oper-
ator �2 shows that the χ (or η) boson is a true propagating
axion degree of freedom as a result of the anomaly itself.
The Green’s function of the 2D wave operator (�−1

2 )xy =
− 1

π
ln(x − y)2 in (40) is the massless scalar propagator in

d = 2 space-time dimensions, describing propagation along
the B direction. The nonlocal form of (36) is

SNL
2D [A, b] = − 1

2π

∫
d 2x

∫
d 2x′ (∂aba + E )x

(
�−1

2

)
xx′

× (∂aba + E )x′ (40)

assuming the electric field E = E (t, x) x̂ is also along the B
direction and independent of the transverse coordinates y.

By the Gauss law ∂xE = ρ, an electric field

E = −2αB

π
η (41)

parallel to the B field direction is induced. Finally, variation
of (33) with respect to η reproduces the axial anomaly back in
3 + 1 dimensions

∂μJμ

5 = eB

2π2

[(
∂2

t − ∂2
x

)
η + ∂aba

] = 2α

π
EB = −

(
2αB

π

)2

η,

(42)
which is equivalent to the linear wave equation(

∂2
t − ∂2

x + 2α

π
eB

)
η = −∂aba (43)

with the mass gap M2 = 2αeB/π . The energy-momentum
offset of the Weyl modes may be set to zero, ba = 0, at this
point. It has been retained in (43) only to illustrate that such
an offset which is varying in time or space acts as a source for
the axion phase mode aligned with the magnetic field B.

The wave equation (43) describes chiral density waves
(CDWs) and chiral magnetic waves (CMWs) here propagating
at the speed of sound vs = vF = 1, with the quantum numbers
of an axion. The CDW/CMW η wave arises as a gapless
bosonic mode of the axial anomaly describing excitations of
the one dimensional Fermi surface of chiral fermions in the
LLL, and is a direct consequence of massless anomaly 1/k2

pole. However, as a result of the dimensional reduction to 2D,
the 2D anomaly (34) and E in (41) is of the same order as η

itself. Thus, in this case, the interaction of η and A2 cannot
be neglected as in the 4D case of Sec. III, and as a result the
axion mode becomes massive (gapped) by its electromagnetic
interactions, exactly as the Schwinger boson does in the 2D
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Schwinger model, and analogously to the Anderson–Higgs
mechanism in the Standard Model. Thus by this dimensional
reduction, a WSM subjected to a magnetic field gives rise to
CDW/CMW axionic excitations along the B direction, due
to the axial anomaly itself, and furnishes a second example
of ASB in the absence of any direct fermion-fermion interac-
tions, other than electromagnetic ones.

V. FERMION SELF-INTERACTIONS
AND SSB OF CHIRAL SYMMETRY

In the condensed matter literature on WSMs, it is usually
supposed that the fermion excitations at the Weyl nodes may
be subject to a generic four-fermion interaction of the Nambu–
Jona-Lasino (NJL) type [14,34,35]

LNJL = 1
4 G[(ψ̄ψ )2 − (ψ̄γ 5ψ )2] (44)

of unspecified origin in the material. This NJL Lagrangian is
invariant under the global U(1)EM ⊗ U(1)ch chiral symmetry
ψ → eiα+iβγ 5

ψ just as the massless fermion Lagrangian (4) is
at the classical level. For G > 0 the interaction (44) is attrac-
tive. Since this fermion self-coupling G has mass dimension
−2, the NJL theory is nonrenormalizable in the UV and must
come equipped with a cutoff at some high energy scale 
,
corresponding to a short distance cutoff 1/
.

The fermion self-coupling G is most conveniently handled
by introducing a two-component charge neutral scalar field

� = φ1 + iφ2γ
5, �† = φ1 − iφ2γ

5 (45)

in the Dirac matrix space, with both scalar (φ1) and pseu-
doscalar (φ2) components, coupled to the fermions through
the Yukawa interaction

LY = −gψ̄�ψ = −gψ̄ (φ1 + iφ2γ
5)ψ, (46)

where g is a dimensionless Yukawa coupling. Since the
fermions transform under a U(1)EM ⊗ U(1)ch phase trans-
formation by (6), the interaction (46) is invariant under this
transformation provided

� → e−2iβγ 5
� = (φ1 cos 2β + φ2 sin 2β )

+ i(φ2 cos 2β − φ1 sin 2β )γ 5, (47)

i.e., � is electrically neutral but carries a chiral charge that is
opposite in sign to that of ψ and twice as large. The interaction
Lagrangian

Lint = −gψ̄ (φ1 + iφ2γ
5)ψ − g2

G

(
φ2

1 + φ2
2

)
(48)

is equivalent to the original four-fermion NJL interaction La-
grangian (44) after a Hubbard–Stratonovich transformation,
obtained by extremizing Lint with respect to φi, yielding

gφ1 = −1

2
Gψ̄ψ, gφ2 = − i

2
Gψ̄γ 5ψ, (classically)

(49)
and substituting the result into Lint, whereupon LNJL is recov-
ered. Thus the fermion bilinears of the NJL model are replaced
by the � boson field in this description.

In the NJL model, the U(1)ch symmetry is spontaneously
broken, 〈ψ̄ψ〉 �= 0, and the fermion acquires a mass gap m if
the self-coupling G exceeds a certain critical value Gc. This

follows from the solution of the minimization of the effective
potential for 〈ψ̄ψ〉, which leads to condition

2m

(
1

G
− 1

Gc

)
= − m3

4π2
ln


2

m2
, Gc ≡ 8π2


2
, (50)

in terms of the ultraviolet cutoff 
 � m. If G < Gc, the only
solution of (50) for real m is m = 0, the U(1)ch symmetry
remains unbroken and the fermion remains massless. On the
other hand, if G > Gc a second solution appears with m > 0,
given by

m2


2
ln


2

m2
= 1 − Gc

G
> 0, for G > Gc, (51)

in which the U(1)ch symmetry is spontaneously broken and
the fermion acquires a mass gap m > 0. By computing the
second derivative of the scalar effective potential with re-
spect to φ1, it is straightforward to show that the symmetric
solution at m = 0 becomes unstable, cf. (C6), and the SSB so-
lution (51) has a lower energy if G > Gc. Thus, for sufficiently
strong fermion self-interactions the fermions become gapped
with m > 0, and the ground state breaks the U(1)EM ⊗ U(1)ch

symmetry down to U(1)EM. As a result, Goldstone’s theorem
for the spontaneous breaking of a global symmetry assures us
that there is a gapless Goldstone boson corresponding to the
chiral phase of the � field, in more than one spatial dimension.

These statements and the condition for SSB of U(1)ch

have their analogs in the effective potential of the bosonic
field �, once it is provided with a quartic self-interaction
term λ tr �4, so that its energy is bounded from below. The
U(1)EM ⊗ U(1)ch invariant quartic potential

V (σ ) = κ

2
σ 2 + λ

4
σ 4 (52)

depends only upon σ = |�| and the parameters κ and λ > 0.
The minimum of this potential at

V ′(σ̄ ) = κσ̄ + λσ̄ 3 = 0, (53)

which admits the solution

σ̄ =
√−κ

λ
�= 0 if κ < 0, (54)

so that the � field develops an expectation value 〈φ1〉 ≡ σ̄ �=
0 in the ground state that spontaneously breaks the U(1)ch

symmetry if κ < 0. Comparing the quadratic term in (52) to
that of the fermion loop in (C29) shows that

κ = 2g2

(
1

G
− 1

Gc

)
(55)

and the condition for SSB in the scalar theory κ < 0 coincides
with the condition G > Gc in the fermionic NJL model. Upon
identifying also

λ = g4

4π2
ln


2

m2
(56)

from the quartic term induced by the fermion loop in (C29),
we then find that

m2 = g2σ̄ 2 = −g2 κ

λ

= 8π2

ln(
2/m2)

(
1

Gc
− 1

G

)
> 0 for G > Gc, (57)
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which is equivalent to the gap equation (50) in the fermionic
NJL model with cutoff 
, demonstrating the consistency of
the scalar field description with the original NJL fermionic
one.

Since the scalar � defined by (46) and (49) has mass
dimension one, the quartic potential term λ tr�4 and kinetic
terms for �, Tr(∂μ�†∂μ�), are dimension four. Although
neither are generally considered in the condensed matter lit-
erature on WSMs, these terms are IR relevant in the sense
of the Wilson renormalization group and are necessarily gen-
erated also, with coefficients logarithmically dependent upon

, once the fermion one-loop quantum corrections to the NJL
model are considered, cf. Appendix C.

The classical U(1)EM ⊗ U(1)ch symmetry (5) and (6), prior
to consideration of the anomaly dictates that the kinetic terms
for � must occur in the invariant combination

tr[(∂μ�† − 2ibμγ 5�†)(∂μ� + 2ibμγ 5�)] (58)

and that the kinetic terms for the Aμ and bμ = A5
μ potentials

involve only their respective field strength tensors, namely
FμνFμν and F 5

μνF 5 μν should also be included for a UV com-
plete theory in general. A mixed FαβF 5 αβ term is disallowed
by the discrete symmetries of charge conjugation or parity
spatial reflection.

These terms are generated by fermion loop integrations,
with a logarithmic dependence upon the UV cutoff 
, as
shown in Appendix C, just as one would be expect by power
counting and the U(1)EM ⊗ U(1)ch classical symmetry. A UV
renormalizable effective theory must contain these terms from
the very beginning. In such a UV completion of the EFT the
couplings κ, λ, and g and the fermion mass gap m will all be
be finite renormalized parameters independent of the UV cut-
off 
, to be fixed by experiment, and the scalar potential (52)
can be treated at tree level, as in the classical Landau theory
of phase transitions [46]. This is the approach we take in the
next section.

VI. A RENORMALIZABLE THEORY FOR WSMs
ENCOMPASSING BOTH ASB AND SSB

The effective Lagrangian in the two cases of free or weakly
interacting fermions and strongly self-interacting fermions
with SSB can be derived as different limits of one and the
same UV renormalizable classical theory with Lagrangian

Lcl = − 1
4 FμνFμν + ψ̄ γ μ(i

↔
∂μ + eAμ + bμγ 5)ψ

− gψ̄�ψ + L�, (59)

with the bosonic Lagrangian

L� = −1

8
tr[(∂μ�† − 2ibμγ 5�†)(∂μ� + 2ibμγ 5�)]

− κ

8
tr(�†�) − λ

32
tr
(
�†�

)2

= −1

2
(∂μφ1 − 2bμφ2)2 − 1

2
(∂μφ2 + 2bμφ1)2

− κ

2

(
φ2

1 + φ2
2

) − λ

4

(
φ2

1 + φ2
2

)2
, (60)

where we keep all possible relevant terms up to dimension
four, fully invariant under the U(1) ⊗ U(1)ch and Lorentz
symmetries. The couplings g, κ, λ will now be arbitrary
renormalized (i.e., UV cutoff independent) parameters that
ultimately would have to be fixed by experiment in any given
WSM. The fermions are taken to be massless initially, with
any mass generated only through the Yukawa interaction, and
the scalar � developing a vacuum expectation value 〈�〉 =
〈φ1〉 �= 0.

As already discussed, one should also allow for kinetic
terms for the axial vector potential, such as Fμν

5 F5μν/ f 2
5 for

the transverse part of bμ, with an independent normalization
and chiral coupling f 2

5 analogous to the electromagnetic cou-
pling e of Lcl. Anticipating that the U(1)ch symmetry will be
broken by the axial anomaly, a kinetic term (∂μbμ)2 for the
longitudinal component with another independent coupling
as well as a mass term bμbμ could also be allowed in (59).
However, once the U(1)ch symmetry is explicitly broken by
the axial anomaly, there is nothing preventing this mass term
from being large, of the order of the cutoff scale 
, in which
case all the components of the axial vector potential will be
gapped and play no role in the low-energy EFT at long wave-
length scales. Thus we omit from the effective Lagrangian Lcl

of (59) all such kinetic and mass terms involving the axial
potential bμ from the outset.

The U(1)EM ⊗ U(1)ch symmetry of the classical action
Scl = ∫

d 4x Lcl, with (59) and (60) results in the electromag-
netic and axial currents

Jμ = δScl

δAμ

= eψ̄γ μψ, (61)

Jμ

5 = δScl

δbμ

= ψ̄γ μγ 5ψ + 4 φ2
↔
∂μφ1 − 4bμ

(
φ2

1 + φ2
2

)
, (62)

being conserved by Noether’s theorem, independently of
SSB or a nonzero fermion mass, upon use of the classi-
cal equations of motion following from Scl, i.e., before any
consideration of the axial anomaly. Defining the polar repre-
sentation for �,

� = σ exp(2iζγ 5), (63)

the bosonic part of the effective action (60) becomes

L� = − 1
2 ∂μσ ∂μσ − 2σ 2 (∂μζ + bμ)(∂μζ + bμ) − V (σ ),

(64)

and the axial current has both the fermionic and bosonic
contributions

Jμ

5 = ψ̄γ μγ 5ψ − 4σ 2 (∂μζ + bμ) ≡ Jμ

5 [ψ] + Jμ

5 [�], (65)

where

Jμ

5 [�] = 4 φ2
↔
∂μφ1 − 4bμ

(
φ2

1 + φ2
2

) = −4σ 2 (∂μζ + bμ)
(66)

is the bosonic part of the axial current.
Note that the bosonic terms in both (64) and (65) depend

on the chiral phase ζ of (63) only through the combination
∂μζ + bμ, while the U(1) ⊗ U(1)ch invariant quartic poten-
tial (52) depends only upon σ = |�|. In the presence of a
nonzero bμ, the chiral chemical potential is identified as the
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invariant combination [77]

μ2
5 = −(∂μζ + bμ)(∂μζ + bμ) = (ζ̇ + b0)2 − (∇ζ + b)2

(67)
in the fluid description, analogous also to (19), and thus the
effective potential to be minimized with respect to σ when
μ5 �= 0 is

Veff(σ,μ5) = −2μ2
5σ

2 + V (σ ) (68)

showing that a nonzero chiral chemical potential enters Veff

with a negative sign, always tending to destabilize the U(1)ch

symmetric state at σ = 0. Indeed the condition

V ′
eff(σ̄ , μ5) = −4μ2

5 σ̄ + V ′(σ̄ ) = 0 (69)

with λ > 0 admits the two possible solutions

(a) σ̄ = 0, if 4μ2
5 < κ, U(1)ch symmetric, (70a)

(b) σ̄ =
√

4μ2
5 − κ

λ
�= 0, if 4μ2

5 > κ, U(1)ch SSB.

(70b)

In the SSB case (b), (66) together with (67) informs us that

n5

μ5
= 1

μ5

√
−Jμ

5 J5μ = 4σ̄ 2 (71)

connecting the EFT fluid description (iii) in the equilibrium
ground state with the scalar field description. By standard
arguments [77] this SSB state defines a relativistic superfluid
with the polar angle field ζ the Goldstone mode of U(1)ch SSB
that dominates the long distance/low-energy spectrum and can
be identified with the axion. Equation (71) may be viewed as
a definition of n5, but the essential scale of SSB is of course
σ̄ .

In the U(1)ch symmetric case (a) the bosonic fields (φ1, φ2)
are a gapped doublet with equal mass squared κ − 4μ2

5 >

0. Thus they play no role at large distances and can be
dropped entirely in the low-energy EFT, while with gσ̄ =
0 the fermions remain massless. In the limit of non-self-
interacting and massless fermions the axial anomaly must be
taken into account by adding the anomaly effective action (15)
or (16) to the classical action of (59). In other words in (a),
taking the quantum fermion loop and the axial anomaly into
account means making the replacement of the classical (4)
coupled to electromagnetism by the 1PI effective action

L (a)
eff = − 1

4 FμνFμν + ψ̄ γ μ(i
↔
∂μ + eAμ)ψ

+ (∂μη + bμ)Jμ

5 + ηA4 (72)

in which the ψ̄γ μγ 5ψ term of (4) is included in (16) and no
fermion self-interactions appear explicitly. Since the anomaly
leads to the fermion pairing as in Fig. 2, single fermonic
excitations do not appear in the spectrum at zero temperature
and the fermionic term in (72) can also be dropped, so that we
obtain the low-energy effective action in the ASB case

SASB =
∫

d 4x

[
−1

4
FμνFμν + (∂μη + bμ)Jμ

5 + ηA4

]
= SEM[A] + Sanom[η; A, b] (73)

in the T = 0 vacuum, with Sanom given by (16). This is the
low-energy effective action that applies for a WSM for Weyl
nodes displaced in energy, when supplemented by the nonva-
cuum −ε(n5), as in Sec. III, or for a WSM placed in a strong
magnetic field, with excitations aligned with the B field in the
dimensional reduction of Sec. IV. In both cases, η describes an
axionic mode. The axion remains gapless if EM interactions
can be treated as higher order, as in Sec. III, or becomes
gapped if they are of the same order, as in the effectively 2D
case of Sec. IV.

We shall next demonstrate that the low-energy effective
action in the SSB case (b) leads to essentially the same low-
energy effective action as (73), with the polar angle ζ of the
scalar � field replacing the chiral angle and Clebsch potential
η of Sanom in the ASB case (a).

VII. PERTURBATIONS FROM EQUILIBRIUM:
SUPERFLUIDITY AND THE GOLDSTONE SOUND MODE

In terms of the parameters of the potential V (σ ), the equi-
librium values of the energy density and pressure are

ε̄ = κσ̄ 2 + 3
4λσ̄ 4, (74a)

P̄ = 1
4λσ̄ 4, (74b)

where σ̄ is given by (70b). The absence of any axial current in
equilibrium requires J5 = 0 so that

∇ ζ̄ = −b, (75)

while ˙̄ζ = 0 and J̄0
5 = n̄5, μ̄

2
5 = (b0)2 in applying this EFT to

WSMs in the case of Weyl nodes displaced in energy and
momentum as in Fig. 3. From (71) and the minimization
condition (69) at σ = σ̄ , we also have

4σ̄ 2μ̄2
5 = μ̄5n̄5 = σ̄V ′(σ̄ ) (76)

in the equilibrium ground state of U(1)ch SSB.
These equilibrium relations may also be used for small

deviations away from equilibrium in the long wavelength limit
of the EFT in the effective boson description. Expressing the
polar field variables as their equilibrium values plus small
time and space dependent perturbations, i.e.,

σ = σ̄ + δσ, (77a)

ζ = ζ̄ + δζ , (77b)

ζ̇ + b0 = μ̄5 + δζ̇ , (77c)

∂iζ + bi = ∂i(δζ ) (77d)

with b0 = μ5, and expanding the action (64) to the second
order in perturbations around the SSB ground state, we find
(cf. Ref. [77])

S(2)
� = −1

2

∫
d 4x

[
δσ

(−� + M2
σ

)
δσ

− 4σ̄ 2δζ�δζ − 16μ̄5σ̄ δσ δζ̇
]
, (78)

where

M2
σ = V ′′

eff(σ̄ ) = V ′′(σ̄ ) − 4μ̄2
5

= V ′′(σ̄ ) − V ′(σ )

σ̄
= 2λσ̄ 2 = 2

(
4μ̄2

5 − κ
)
. (79)
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The last term of (78) shows that there is a mixing between
the gapless Goldstone mode δζ and gapped δσ mode, which
affects the low-energy Goldstone mode. Substituting the com-
plex Fourier decomposition δζ ∼ e−iωt+ik·x, we find the 2×2
Hermitian matrix(

−ω2 + k2 + M2
σ 4iωμ̄5

−4iωμ̄5 −ω2 + k2

)
(80)

operating on the two-component vector (δσ, 2σ̄ δζ ) of pertur-
bations. Setting the determinant of this matrix to zero gives a
quadratic equation for ω2, which yields the spectrum, consist-
ing of one solution for ω2 that is gapped at the scale M2

σ , and
a second solution at

ω2 = v2
s k2 + O

(
k4

M2
σ

)
, (81)

which is a gapless acoustic Goldstone mode with speed of
sound that differs from the speed of ‘light’ c = 1 of the Weyl
node Fermi velocity. This sound speed is given instead by

v2
s = M2

σ

M2
σ + 16μ̄2

5

= σ̄ V ′′(σ̄ ) − V ′(σ̄ )

σ̄ V ′′(σ̄ ) + 3V ′(σ̄ )

= λσ̄ 2

2κ + 3λσ̄ 2
= dP̄/d σ̄

d ε̄/d σ̄
= dP̄

d ε̄
, (82)

which agrees with that obtained from a hydrodynamic ap-
proach to a sound mode.

Thus although vs �= 1 due to the spontaneous breaking also
of Lorentz symmetry by the condensate rest frame where
J0

5 = n5 but J5 = 0, the Goldstone mode remains gapless. This
is an axionic acoustic sound mode with speed (82). Note also
that this agrees with the v2

s = 1/3 and (74) agrees with the
equation of state p = ε/3 of free massless fermions if and
only if κ = 0, in which case the EFT is conformal. Any κ �= 0
corresponds to nonvanishing self-interactions of the fermions
in the NJL description which breaks conformal invariance.

The eigenmode of (80) propagating with the sound speed
vs of (82) is the linear combination[
k2

(
1 − v2

s

) + M2
σ

]
δσ − 8μ̄5σ̄ δζ̇ = 0 or δσ � 8μ̄5σ̄

M2
σ

δζ̇

(83)

to lowest order in k2/M2
σ for long-wavelength acoustic exci-

tations of the superfluid. Thus, for this linear combination,
the second action to second order of the perturbations (78)
becomes

S(2)
� � 1

2

(
4σ̄ 2

v2
s

) ∫
d 4x δζ

(
− ∂2

∂t2
+ v2

s ∇2

)
δζ

= 1

2

dn5

dμ5

∫
d 4x δζ

(
− ∂2

∂t2
+ v2

s ∇2

)
δζ (84)

for the Goldstone sound mode at long wavelengths. In
obtaining this last relation (25) and (82) has been used. Uti-
lizing (66), (77), and (83), the linear perturbations in the axial
current are

δJ0
5 = 8σ̄b0 δσ + 4σ̄ 2 δζ̇

= n5

μ5

(
1 + 16μ2

5

M2
σ

)
δζ̇ = n5

μ5

1

v2
s

δζ̇ = dn5

dμ5
δζ̇ (85)

and

δJ5 = −4σ̄ 2∇(δζ ) = − n̄5

μ̄5
∇(δζ ). (86)

Thus the axial anomaly equation becomes

∂μ(δJμ

5 ) = dn5

dμ5

(
∂2

∂t2
− v2

s ∇2

)
δζ = 2α

π
δ(E · B) (87)

if the anomaly source is also varied to linear order.
Comparing (87) for the perturbations in the phase field δζ

in the case of SSB in the effective potential Veff of (68) with
the perturbations in the Clebsch potential δη of the anomaly
effective action (26), we see that they coincide, and with the
same sound speed vs when κ = 0, corresponding to the case
of free fermions considered in Sec. III. This shows the case
of ASB and more familiar SSB in fact describe the same low-
energy hydrodynamic effective theory of a chiral superfluid
in the sense of (iii) of Introduction. This result, perhaps at
first sight surprising, may be understood from the following
considerations.

In the SSB case (b), the fermions acquire a mass gap
m = gσ̄ from the Yukawa interaction in (59) and no longer
appear at distances greater than 1/m. Thus they can be inte-
grated out entirely at low energies as in Appendix C. Since
the EFT of (59) is renormalizable, the effect of integrating out
the fermions is to renormalize the parameters of the remain-
ing bosonic effective theory, and to add the finite anomaly
action (C19) in the bosonic sector. That the axial anomaly
survives intact even when the fermions become massive due
to SSB is seen by the explicit computation of the effective
action, and in particular the term (C19) of Appendix C, which
coincides with the last term of (16) with η = ζ . Thus, in this
case (b) of SSB, the effective bosonic action of the WSM
becomes

L (b)
eff = − 1

4 FμνFμν + L� + ζA4, (88)

with L� given by (64). However in L� there remain both the
angular phase mode ζ which is gapless and the radial mode
δσ with mass gap Mσ of (78) and (79). The latter decouples
at energy scales less than Mσ , so that the effective low-energy
action for small fluctuations from equilibrium is only (84),
but this is exactly the same result following from the fluid
effective action (20) in the ASB case for two Weyl nodes
displaced in energy, with ζ taking the place of η. Thus, in
the SSB case (b), the effective action for low-energy gapless
excitations only is

SSSB =
∫

d4x

[
−1

4
FμνFμν + (∂μζ + bμ)Jμ

5 + ζ A4− ε(n5)

]
(89)

which is the same as (73) after the addition of the −ε(n5)
term and replacement of η by ζ . To lowest order in fluctua-
tions from equilibrium, the effective action in the SSB case
becomes

S (2)
SSB = 1

2

dn5

dμ5

∫
d 4x δζ

(
− ∂2

∂t2
+ v2

s ∇2

)
δζ +

∫
d 4x δζA4

(90)
and its variation gives (87), with v2

s given by (82).
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The reason for identification of the Clebsch potential η

with the bosonic polar phase angle ζ of the SSB phase is
also not difficult to understand. Inspection of the Yukawa
interaction in the polar representation

ψ̄�ψ = σ ψ̄ exp(2iζγ 5)ψ (91)

shows that ζ of the scalar � can be shifted to the phase of
the fermion fields by a U(1)ch transformation (6) by (47),
with β = ζ . Then e2iζγ 5

is the complex phase factor of the
fermion condensate matrix 〈ψ̄ψ〉. The fact that η appears in
the EFT of ASB in (73) in exactly the same way as ζ does in
the EFT of SSB in (89) implies that there must be a fermion
condensate in the ASB with this chiral phase, induced by
the axial anomaly alone, even it is not immediately apparent
from the introduction of η in (16). As discussed further in
Sec. IX, the cases of ASB and SSB, which appear at first sight
to be quite different, are both associated with formation of
a fermion chiral condensate, which spontaneously breaks the
U(1)ch symmetry and leads to the same low-energy collective
axion excitation, although by a different route.

VIII. T’ HOOFT ANOMALY MATCHING AND
NONDECOUPLING OF THE AXIAL ANOMALY

The effective action of the axial anomaly (16) is based on
massless fermions, m = 0. As soon as the condition (70b) for
SSB is satisfied, σ̄ �= 0, and the fermion becomes massive,
then for any finite fermion mass the fermionic contribution
to the axial anomaly A is reduced according to (11). This m
dependent reduction in A is the nonanomalous contribution to
the divergence of the chiral current 2imψ̄γ 5ψ for free massive
Dirac fermions, according to (A10), and turns off the anomaly
completely in the m → ∞ limit, consistent with decoupling of
very heavy fermions in the Wilsonian effective action at low
energies. This decoupling occurs if the fermion mass is simply
added to the free Dirac Lagrangian in (4), explicitly breaking
the U(1)ch invariance of the massless theory.

On the other hand if the fermion mass m = gσ̄ is a result of
SSB in the EFT of Sec. VI, for which the axial current (62) is
a classically conserved Noether current, the mass suppression
of the anomaly in (A10) should be canceled by the bosonic
contribution to the axial current (66). That this is indeed the
case can be shown from the classical equations of motion
following from (59), or in perturbation theory by computing
the contribution to the axial anomaly of the bosonic term via
its coupling to the fermions (and hence electromagnetism)
through the Yukawa interaction (46). Expanding −gψ̄�ψ to
linear order in ζ in the polar representation gives the contribu-
tion to the bosonic part of the axial current in (66)

− 4σ̄ 2(−igσ̄ )(2i)
∫

d 4x′ 〈∂μζ (x)ζ (x′)〉 ψ̄γ 5ψ (x′)

= −8gσ̄ 3∂μ
x

∫
d 4x′ 〈ζ (x)ζ (x′)〉P (x′) (92)

in position space, where P = ψ̄γ 5ψ . Using the definition of
the canonically normalized Goldstone boson propagator

4σ̄ 2〈ζ (x)ζ (x′)〉 = −i
∫

d 4k

(2π )4

eik·(x−x′ )

k2
(93)

FIG. 4. The triangle diagram that contributes to the bosonic part
of the axial current vertex Jμ

5 [�] of (66) to two-photon amplitude
�

μαβ

5 (p, q), given by (92) in position space or (94) in momentum
space. Its contraction with kμ gives a contribution to the axial
anomaly which is equal and opposite to the mass-dependent contri-
bution of the fermion vertex Jμ

5 [ψ] of (65) given by (A10).

and going over to momentum space, the bosonic contribution
to the amplitude (A1) represented by the diagram of Fig. 4 is

�
μαβ

5 �
(p, q) = −2m

kμ

k2



αβ

5 (p, q), (94)

where 

αβ

5 (p, q) is given by (A10) and m = gσ̄ for the
fermion mass has been used. The contraction of (94) with kμ

therefore gives −2m

αβ

5 (p, q) which is equal and opposite in
sign to the mass-dependent contribution of the fermion vertex
Jμ

5 [ψ] given by (A10) [10].
Since the bosonic contribution to the nonanomalous diver-

gence of the axial current (61) cancels the fermionic mass
contribution, the axial anomaly

∂μJμ

5 = A4 = e2

16π2
εαβμνFαβFμν = 2α

π
E · B, (95)

is completely unaffected by the onset of SSB and the fermion
mass it generates. In fact this is a necessary consequence of
the Adler–Bardeen theorem which also holds in the U(1)EM ⊗
U(1)ch sigma model of Sec. VI [58].

Thus the fermions never decouple and continue to con-
tribute the same amount (95) to the axial anomaly which
remains true at any scale in both the ASB case with nominally
massless fermions and the SSB case with the fermion mass
generated by SSB of U(1)ch. This is an explicit demonstration
of ’t Hooft anomaly matching from UV to IR scales, and its
renormalization group invariance. Even in the limit m → ∞
the full axial anomaly (95) remains unaltered and is simply
transferred entirely to the bosonic degrees of freedom, as
shown by (C17)–(C20) in Appendix C.

IX. THE GOLDSTONE THEOREM FOR ANOMALOUS
SYMMETRY BREAKING

The Noether current (62) of the classically U(1)EM ⊗
U(1)ch invariant effective action Scl = ∫

d 4x Lcl, given
by (59) and (64), satisfies the identity

∂μJμ

5 = i
δScl

δψ (x)
γ 5ψ + iψ̄γ 5 δScl

δψ̄ (x)
+ 2φ2

δScl

δφ1(x)

− 2φ1
δScl

δφ2(x)
, (96)
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so that the axial current is classically conserved on-shell by
use of the equations of motion following from variation of the
action Scl. In the quantum theory, this relation becomes a WT
identity[

∂μ

δ

δbμ(x)
− i

δ

δψ (x)
γ 5ψ − iψ̄γ 5 δ

δψ̄ (x)
+ 2φ1

δ

δφ2(x)

− 2φ2
δ

δφ1(x)

]
� = A4, (97)

for the 1PI effective action �[A, b, ψ, ψ̄,�] defined by the
Legendre transform (2) and (3), with the addition of the
anomalous axial current divergence A4 of (95) at right. By
the nondecoupling and ’t Hooft anomaly matching of the
previous section, the full anomaly (95) applies independently
of the fermion mass at all scales. If the fermions occur only
in internal loops and no sources or mean fields are introduced
for them, the 1PI effective action �[A, b,�] is independent of
ψ and ψ̄ , and the corresponding terms in the anomalous axial
WT identity may be dropped.

In the familiar situation of SSB with no anomaly, the WT
identity (97) with A4 = 0 is the basis upon which Goldstone’s
theorem is established. In that case, (97) is first integrated over
the space-time volume

∫
d 4x, selecting the Fourier component

at zero four-momentum. Since the first term on the left-hand
side is a total divergence and the 1PI effective action � of (2)
by definition does not contain one-particle singularities at
pμ = 0, this total divergence term gives zero contribution.
Then the result is functionally differentiated once more with
respect to φ2(x′) to obtain∫

d 4x

[
φ1(x)

δ2�

δφ2(x)δφ2(x′)

]
= δ�

δφ1(x′)
. (98)

If this is evaluated at the extremum of �, at which the first
variation at right vanishes, and if this extremum occurs for a
nonzero constant φ1 = σ̄ , we obtain

σ̄

∫
d 4x

[
δ2�

δφ2(x)δφ2(x′)

]
= −σ̄ G−1

22 (p)
∣∣

p=0 = 0 (99)

in momentum space, since it follows from the definition of
� in (2) that the second variation of � at left is (minus) the
inverse propagator G−1

22 of the φ2 field. Since at zero four-
momentum G−1

22 (0) is the φ2 mass gap, (99) shows that the φ2

scalar is a massless Goldstone boson in the SSB state where
σ̄ �= 0.

Now we may ask how this standard result is affected by
the presence of the anomaly A4 in the anomalous WT iden-
tity (97). Note first that the antisymmetric variation in (97)
becomes [

2φ1
δ

δφ2(x)
− 2φ2

δ

δφ1(x)

]
� = δ�

δζ (x)
(100)

in the polar representation (63). Thus repeating the step above
of integrating over the space-time volume

∫
d 4x, setting to

zero the integral of the total divergence, but now functionally
differentiating with respect to the polar angle ζ (x′) gives∫

d 4x
δ2�

δζ (x)δζ (x′)
= δA4(x)

δζ (x′)
= 0. (101)

Since the expression at left is proportional to the ζ field
inverse propagator at pμ = 0, the anomalous term A4 does
not spoil Goldstone’s theorem or give rise to a mass gap
of the polar ζ mode, provided that the anomaly A4 itself is
independent of ζ , at least to first order at the extremum of the
effective action �.

For the scalar EFT of Sec. VI and (101) in the polar repre-
sentation is clearly equivalent to the standard form of (99) by
the change to polar field variables (63). However, the results
of Secs. III and VII, in particular comparison of (26) and (87)
shows that they are identical also upon substitution of η for ζ .
One can check that this general theorem holds in the EFT of
Secs. III and VII, with ζ is replaced by η in the former case. It
fails in the 2D dimensional reduction of Sec. IV because the
2D anomaly itself depends on the chiral rotation angle η = ζ

at linear order, by (34) and (41), so that the right side of (101)
is nonvanishing after dimensional reduction. This dependence
generates an effective mass gap for the would-be Goldstone
mode for dynamical electric fields by the Anderson–Higgs
mechanism.

Note that (99) and (101) hold and the ζ angular mode
is gapless even if Lorentz invariance is broken and the p2

terms in G−1
22 (p0, p) or G−1

ζ (p0, p) of (101) have unequal
coefficients and the velocity of propagation differs from c
(or vF ). This is clearly relevant to the case of Weyl nodes
displaced in energy considered in Secs. III and VII, where
a preferred rest frame is defined by the nonzero μ5. In this
case, the speed of propagation of the Goldstone mode is not
vF (the surrogate for the relativistic speed of light in a WSM),
but the sound speed (29) or (82) instead, determined by the
equilibrium equation of state and d p/dε. Although the CDW
propagates at a different sound speed, it remains gapless, and
the Goldstone theorem (101) holds in the case of ASB as well
as the more familiar SSB case, resolving the apparent paradox
of ASB giving rise to a Goldstone mode despite the anomaly
explicitly violating the U(1)ch symmetry. It also supports by
explicit examples in WSMs the more abstract argument that a
gapless Goldstone mode should be expected also in the case of
anomalous continuous symmetries, based on the construction
of noninvertible defect boundary operators [78,79].

The alert reader will have noticed that (99) is a relation
for a canonically normalized scalar field φ2 and is multiplied
by the expectation value σ̄ in the SSB case. In the U(1)ch

symmetric phase, (70a) σ̄ = 0 and (99) becomes null: there
is no Goldstone boson. On the other hand, (101) is expressed
entirely in terms of the polar phase angle field ζ , which is di-
mensionless, and not a canonically normalized field (except in
d = 2). Referring to the explicit examples of Secs. III or VII,
we see that the missing factor with the correct dimensions is
supplied by dn5/dμ5 in the case of Weyl nodes displaced in
energy. Thus this quantity proportional to σ̄ 2 must be nonva-
nishing for (101), or the corresponding relation in terms of
η, and the U(1)ch symmetry must be spontaneously broken
for (101) to be non-null and a Goldstone boson to exist.

That σ̄ must be nonzero for a Goldstone boson to exist
leads to the conclusion that a fermion condensate 〈ψ̄ψ〉 �= 0
must be present also in the ASB case of Weyl nodes sep-
arated by energy, at nonzero μ5, even though it does not
appear explicitly in (26) and (27). This is also indicated in
the bosonic description by the fact that any nonzero chiral
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FIG. 5. The attractive channel of magnetic interactions of
fermions leading to Cooper pairing. The photon line must be dressed
by interactions in the chiral plasma if Debye screening is present at
nonzero μ5.

chemical potential with even free massless fermions in
Sec. III, corresponding to the critical value of κ = 0 in V (σ ),
destabilizes the symmetric ground state to the broken symme-
try state. This is the chiral analog of recent studies of nonzero
chemical potentials and charge densities being connected with
SSB of U(1) symmetry and superfluid behavior as well [80].

Since no direct four-fermion self-interaction was postu-
lated in the ASB case for a system of apparently “free”
fermions, one may ask what the mechanism of symmetry
breaking is that can produce a superfluid state and Goldstone
mode. Since the fermion pairing in the ASB case is due to
the axial anomaly itself, one must recognize that the Weyl
fermions are not actually “free,” but still subject to the elec-
tromagnetic interaction that leads to the anomaly. We are thus
led to the conclusion that it is the same electromagnetic inter-
actions of the fermions responsible for the axial anomaly that
are also responsible for the formation of nonzero 〈ψ̄ψ〉 �= 0
condensate, spontaneously breaking the U(1)ch symmetry in
addition.

In fact it has been known for some time that long range
magnetic interactions which are not Debye screened in a
plasma of finite charge density and chemical potential μ lead
to logarithmic divergences of the fermion self-energy � ∼
ln(E − μ) for excitations E close to the Fermi surface [81,82],
an effect which is enhanced in degenerate relativistic plas-
mas [83], and which leads to non-Fermi liquid behavior of
the plasma [84]. The corresponding calculations have not
been performed for a degenerate chiral plasma of massless
fermions at nonzero μ5 to our knowledge. It is natural to con-
jecture however that the same unscreened long range magnetic
interactions provide an attractive channel for fermion pair in-
teractions of Fig. 5, which generates an effective four-fermion
interaction even if none were present initially. In that case one
would also expect that evaluation of the fermion self-energy in
Fig. 6 in the chiral plasma will lead to a nontrivial solution to
the fermion gap equation with a chiral condensate 〈ψ̄ψ〉 �= 0
that spontaneously breaks U(1)ch symmetry in the case of
nonzero μ5 as well.

If that is indeed the case, the superfluid axion CDW mode
in the ASB case would be accounted for as the bound state

FIG. 6. The one-loop fermion self-energy � to be calculated for
nonzero chiral potential μ5 needed for the gap equation in the ASB
case. The photon propagator is the same as in Fig. 5.

of the Cooper pairs produced by the anomaly itself as in
Fig. 2, purely by their electromagnetic interactions for arbi-
trarily small coupling e, consistent with the existence of the
axial anomaly due to those same interactions with electro-
magnetism. This same calculation at finite temperature T and
μ5 should also determine the critical temperature Tc ∼ μ5 at
which the condensate first vanishes and with it the Goldstone
mode and superfluid behavior. The fermion anomaly diagram
of Fig. 1 itself should also be calculated at nonzero μ5 to
directly verify the existence of the gapless pole with the CDW
sound speed v2

s = 1
3v2

F of (29), and complete the picture in the
ASB case.

X. SUMMARY AND DISCUSSION

Exploiting the formal identity of gapless Weyl nodes in
WSMs to massless Weyl fermions in relativistic QFT, we
have proposed in this paper a UV renormalizable effective
theory in Sec. VI that encompasses both the case of SSB by
four-fermion interactions of the NJL kind as in Sec. V, and
the case when these interactions between the Weyl nodes are
weak and below the SSB threshold of G � Gc or κ � 0. This
provides a consistent QFT framework and basis for deriving
controlled low-energy EFT limits for WSMs in both cases.
There is of course no claim that (59) represents the “true” mi-
croscopic degrees of freedom of a WSM, which depend upon
the electronic valence and conduction bands of the material.
The point is rather that by expressing the EFT in terms of a
small number of finite parameters that are insensitive to short
distance physics, which can be determined by measurements
in each WSM, the Landau paradigm of EFTs of types (i)
and (iii) can be found for WSMs, and their consequences
reliably deduced independently of the microscopic physics.
Integrating out the Weyl fermions when they become gapped
can also be studied, as in EFTs of type (ii) in Appendix C.

That the axial anomaly is a consequence purely of the
symmetries of the ground state, independently of high energy
or short distance physics has been emphasized in Appendix A,
to elucidate why it plays an important role in the low-energy
EFT of a WSM. The massless 1/k2 pole and finite sum rule
associated with the anomaly are low-energy features of the
axial anomaly, which leads to a propagating collective axion
mode that should be present in WSMs even for cases in which
direct fermion-fermion interactions are weak or absent. In the
framework proposed by starting with (59), the axial anomaly
and the axionic collective mode to which it leads can be
derived from first principles of QFT in WSMs, which directly
gives a superfluid EFT of type (iii). This axion excitation is
a collective mode of correlated fermion pairs at the Fermi
surface, and arises in a zero temperature WSM, whether or not
there are strong four-fermion interactions of the Weyl modes.
In the case of strong four-fermion interactions, the axion is
a Goldstone mode of the SSB of U(1)ch symmetry breaking
with a nonzero scalar order parameter σ̄ in its ground state.

Equation (101) shows that despite the axial anomaly ex-
plicitly contributing an anomalous term to the U(1)ch WT
identity in (97), it does not spoil Goldstone’s theorem as long
as A4 itself is independent of U(1)ch rotations to first order,
when evaluated at the ground state extremum of the effec-
tive action �. Thus the effective action of the axial anomaly
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itself (16) predicts the existence of a propagating gapless
CDW which is linearly coupled to the E · B anomaly, which
can be identified as an axion even in WSMs with weakly inter-
acting Weyl modes, where such a collective boson mode might
not have been expected. This extends Goldstone’s theorem to
the ASB case, supporting more formal arguments in [78,79]
with an example of laboratory realizable system of anomalous
symmetry breaking.

In both the SSB and ASB cases, the axion is a collective
Goldstone excitation of a low temperature superfluid phase
of a WSM, as in both cases the low-energy EFT is of the fluid
form (iii) of a relativistic superfluid with the Fermi velocity vF

of the Weyl nodes replacing the speed of light c of relativistic
QFT. In both cases the low-energy EFT of axions η = ζ in
WSMs takes the form

SWSM =
∫

d 4x

[
−1

4
FμνFμν + (∂μη + bμ)Jμ

5 − ε(n5) + ηA4

]
,

(102)

where bμ = (b0, bi ) is the axial vector potential, whose equi-
librium value is one-half the separation of Weyl nodes in
energy and spatial momentum respectively, cf. Fig. 3, and A4

is the axial anomaly (13) which is independent of scale. In
the case of Weyl nodes displaced from each other in energy,
μ5 �= 0, cf. (71), the gapless axionic excitation from equi-
librium following from (102) is described by the quadratic
action (90) and the linear equation of motion (87) with δζ =
η, together with Maxwell’s equations following from (102).
For a WSM placed in a strong enough magnetic field, such
that the fermions are all in their lowest Landau level, (102)
reduces instead to the two-dimensional effective action (33)
or (36), for excitations along the B direction. This dimension-
ally reduced effective action is equivalent to massless QED2,
i.e., the Schwinger model [62], in which case the axionic
excitation acquires the squared mass gap M2 = 2αeB/π , in
analogy with the Anderson–Higgs mechanism in a supercon-
ductor.

The η variable was introduced in (16) as a Clebsch poten-
tial in an effective fluid description, with no apparent scalar
order parameter of spontaneous U(1)ch symmetry breaking to
which it is attached. Yet the fact that the axionic mode in
this case obeys exactly the same equation of motion (26) as
the phase mode ζ (87) of the bosonic order parameter is a
clear indication that the two cases of ASB and SSB are in fact
very closely related. In particular a chiral condensate 〈ψ̄ψ〉
scalar order parameter that spontaneously breaks the U(1)ch

symmetry (even with the anomaly present) should exist for
which exp(2iη) is its complex phase. Verifying this will re-
quire finding a nontrivial solution of the gap equation resulting
from the self-energy of Fig. 6 with 〈ψ̄ψ〉 �= 0. In that case, the
spontaneous breaking of the classical U(1)ch symmetry would
be due to fermion pairing through the attractive channel of
Fig. 5 and the axion mode of Fig. 2 the result of the same
electromagnetic interactions that give rise to the axial anomaly
itself. This same self-energy at finite temperature T should
determine when the coherent state Cooper pairing dissociates
and the superfluid to normal Fermi liquid fluid phase transition
takes place. This would be expected to be at temperatures
T ∼ μ5 = (μ5/10 meV) 116 K.

The WSM realization of axionic excitations opens new
opportunities for experimental tests of the theoretical ideas
presented in this paper. For example, the frequency de-
pendence of the AC current in (22) induced in external
electromagnetic fields with nonzero E · B may be used to ex-
perimentally probe the propagating axionic mode. The axionic
mode and resulting current response may also be induced by
other sources, e.g., external strain fields. We will discuss these
and other potential experimental signatures in a forthcoming
publication.

The EFT approach to WSMs presented here provides an
interesting application of the ’t Hooft anomaly matching con-
dition across scales from the UV renormalizable (59) and (60)
to the macroscopic superfluid effective theory of emergent
axion excitations of (73) or (89). An intriguing possibility is
that additional insights into the operation of the axial anomaly,
anomaly matching and possible emergent axionic mode in the
Standard Model of particle physics could result from detailed
study of the properties and excitations of WSMs, to which the
EFT of this paper can be applied.
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APPENDIX A: THE CHIRAL ANOMALY IN QED4

AND ITS IR ASPECT

In this Appendix we briefly review the evaluation of the
fermion triangle amplitude in Fig. 1,

�
μαβ

5 (p, q)

= i
∫

d 4x
∫

d 4y eip·x+iq·y 〈0|T Jμ

5 (0)Jα (x)Jβ (y)|0〉
∣∣∣∣
A=0

(A1)

in momentum space by imposing the appropriate symme-
tries of the low-energy theory. Conventions used in this
and subsequent appendices for Dirac γ matrices satisfying
the anticommutation property {γ μ, γ ν} = −2 ημν with ημν =
diag(−1, 1, 1, 1), are such that γ 0 = (γ 0)† is Hermitian
while the γ i = −(γ i )† are anti-Hermitian. The chirality ma-
trix γ 5 ≡ iεαβμνγ

αγ βγ μγ ν/4! = iγ 0γ 1γ 2γ 3 = (γ 5)† (with
ε0123 = 1) is also Hermitian, with eigenvalues ±1 correspond-
ing to right-handed or left-handed chiralities respectively.
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TABLE I. The 6 third-rank Lorentz pseudo-tensors linear in
εαβρσ satisfying (A2), only 4 of which are linearly independent due
to the Schouten identity [37,85].

i τ
μαβ

i (p, q)

1 −p · q εμαβγ pγ − pβ υμα (p, q)
2 p2εμαβγ qγ + pαυμβ (p, q)
3 pμ υαβ (p, q)

4 p · q εμαβγ qγ + qα υμβ (p, q)

5 −q2εμαβγ pγ − qβυμα (p, q)
6 qμ υαβ (p, q)

First, observe that a possible linear UV divergence of
�

μαβ

5 (p, q) proportional to an arbitrary four-vector, if present,
would imply that the vacuum or ground state is not Lorentz
invariant. Hence the first requirement 1 of Lorentz invariance
automatically forces this possible linear divergence to zero
identically. Explicitly, since �

μαβ

5 (p, q) must be a function
only of the two independent four-momenta p and q, and with
three Lorentz indices must transform as a third-rank tensor,
it follows that �

μαβ

5 (p, q) must be expressible as a sum of
all possible third-rank tensors τ

μαβ
i (p, q), each of which can

depend only upon the two independent external 4-momenta
pμ and qν . If the vacuum ground state is also invariant under
the discrete symmetry of spatial reflection parity (P) combined
with time reversal (T), then each of the τ

μαβ
i (p, q) basis ten-

sors must also involve one factor the totally antisymmetric
Levi–Civita pseudo-tensor εαβρσ , since Jμ

5 and hence �
μαβ

5
is odd under P and T separately, but invariant (even) under the
combined operation of PT.

Next, electric current conservation at the two electromag-
netic current vertices Jα and Jβ requires that each of the basis
tensors τ

μαβ
i (p, q) into which (A1) can be expanded must

satisfy

pα τ
μαβ
i (p, q) = 0 = qβ τ

μαβ
i , for each i. (A2)

Defining the psuedo-tensor υαβ (p, q) by (10), which satisfies

pαυαβ (p, q) = 0 = qβυαβ (p, q), (A3)

it is easily shown by exhaustive enumeration that there are
exactly six tensors meeting all of the symmetry requirements
of τ

μαβ
i (p, q), which are listed in Table I [37].

Thus general conservation and invariance principles pre-
scribe that the triangle amplitude (A1) must be expressible as

�
μαβ

5 (p, q) =
6∑

i=1

fi(k
2; p2, q2; m2) τ

μαβ
i (p, q), (A4)

where the form factors fi = fi(k2; p2, q2) are Lorentz scalar
functions of the three independent Lorentz invariants p2, q2

and k2 = (p + q)2. Since each of the six basis tensors sat-
isfying (A2) in Table I are homogeneous of degree 3 in the
external momenta, 3 powers of momenta have been extracted
from the triangle amplitude �

μαβ

5 (p, q). Hence the remaining
scalar amplitude functions fi are of degree −2 therefore may
be expressed as Feynman integrals that are quadratically con-
vergent, i.e., independent of any high energy or short distance

cutoff. The result is that requirements (1) and (2) render the
triangle amplitude �

μαβ

5 (p, q) UV finite and well-defined.
The full amplitude (A4) must also be Bose symmetric,

�
μαβ

5 (p, q) = �
μβα

5 (q, p) (A5)

under simultaneous interchange of p, q and α, β. Owing to
the Bose symmetry and overcompleteness of the six tensors
in Table I, finally only two of the scalar coefficient functions,
f1 and f2 say, need to be independently computed. The finite
scalar coefficient functions are given in the literature [9,86],
and most conveniently expressed in terms of integrals

fi(k
2; p2, q2; m2) = e2

π2

∫ 1

0
dx

∫ 1−x

0
dy

ci(x, y)

D
(A6)

over the Feynman parameters (x, y) with 0 � x + y � 1,
where the ci(x, y) are the simple polynomials

c1(x, y) = c4(x, y) = xy,

c2(x, y) = c5(y, x) = x(1 − x)

c3(x, y) = c6(x, y) = 0, (A7)

and the denominator D of (A6) is

D = p2x(1 − x) + q2y(1 − y) + 2p · q xy + m2

= (p2 x + q2 y)(1 − x − y) + xy k2 + m2 ≡ xy(k2 + S),
(A8)

which defines the quantity S(x, y; p2, q2; m2) for arbitrary fi-
nite fermion mass m. Both D and S are strictly positive for
spacelike momenta, k2, p2, q2 > 0.

Computing the contraction with the momentum kμ = (p +
q)μ entering at the axial vector vertex results in the well-
defined finite result (9) with

A(k2; p2, q2; m2) = 2p · q f1 + p2 f2 + q2 f5

= e2

π2

∫ 1

0
dx

∫ 1−x

0
dy

D − m2

D

= e2

2π2

(
1 − 2m2

∫ 1

0
dx

∫ 1−x

0
dy

1

D

)
(A9)

by (A6) and (A8), and Table I, which is (11) of Sec. II. The
second term proportional to m2 is what would be expected
from the axial vector divergence ∂μJμ

5 = 2imψ̄γ 5ψ , cf. (8),
following from use of the on-shell Dirac equation for fermions
of mass m, i.e.,

2im
∫

d 4x
∫

d 4y eip·x+iq·y〈P (0)Jα (x)Jβ (y)
〉∣∣∣∣

A=0

≡ 2m

αβ

5 (p, q) = −e2m2

π2
υαβ (p, q)

∫ 1

0
dx

∫ 1−x

0
dy

1

D
(A10)

in the same Feynman parameter representation, with P =
ψ̄γ 5ψ the pseudoscalar density [57].

If the fermion mass m = 0, this last term of (A9) propor-
tional to m2 vanishes, and (12) is the finite and nonzero axial
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current anomaly. On the other hand, in the limit m2 → ∞,
the denominator D of (A8) can be replaced by m2, and the
entire A of (A9) is canceled since 2

∫ 1
0 dx

∫ 1−x
0 dy = 1, hence

A = 0, so that the fermion decouples entirely and there is no
anomaly pole in this limit.

One should recognize that conservation at the axial vector
vertex Jμ

5 could be required, by defining �
μαβ

5 (p, q) to violate
the charge conservation condition 2 instead. The anomaly
is fundamentally a conflict between symmetries, forcing
a choice between the classical conservation equations (8),
which can only be decided by additional physical input. Since
charge conservation is well-established, and it is known that
the m → 0 limit is not equivalent to the m = 0 theory when
e �= 0, which limit is beset with infrared (IR) divergences,
cf. [87–89] and Appendix A, the choice is made to preserve
U(1)EM and discard U(1)ch as a fundamental symmetry.

This derivation of the chiral anomaly and anomaly pole
relies only upon the low-energy symmetries of the the-
ory. Thus exactly the same anomaly is obtained by any
method which satisfies these same symmetry requirements,
among them Pauli–Villars regularization [90], dimensional
regularization [56], heat kernel methods [91], or Fujikawa’s
regularization of the fermion functional integral for the axial
current [72,73]. The fact that these various methods were
developed in QFT to regularize its short distance behavior, as
the first step to removing UV divergences in a renormalization
procedure, led to some obscuring of the physical basis of the
axial anomaly as an essentially IR phenomenon. The only
role these more sophisticated regularization methods play is
simply to require �

μαβ

5 to satisfy conditions 1–4, which are
properties of the vacuum or ground state of the theory.

To emphasize its independence of extreme high energy
or short distance physics, and relation to fermion pairing,
one may also derive (9) and (11) by a dispersion approach.
For this one observes that the absorptive part of the triangle
amplitude (A4) is determined by the on-shell matrix elements

∑
n〈0|Jμ

5 |n〉〈n|JαJβ |0〉 for timelike kμ, with |n〉 a complete set
of two-particle intermediate fermion/antifermion states. This
on-shell absorptive part is well-defined and finite, and in no
need of regularization. Then the full amplitude is obtained
from the Kramers–Kronig dispersion relation

fi(k
2; p2, q2; m2) =

∫ ∞

0

ds

k2 + s
ρi(s; p2, q2; m2),

(A11a)

Im( fi(k
2−iε; p2, q2; m2)) = πρi(s; p2, q2; m2)|s=−k2

(A11b)

in the complex k2 plane. Inserting 1 = ∫ ∞
0 ds δ(s − S)

into (A6), and using D = xy(k2 + S) from (A8) allows us to
express these absorptive parts by

ρi(s; p2, q2; m2)

= e2

π2

∫ 1

0
dx

∫ 1−x

0
dy

ci(x, y)

xy
δ(s − S(x, y; p2, q2; m2))

(A12)

in the Feynman parameter integral representation. Using (A7)
it follows from (A12) that the combination of absorptive parts
appearing in (11) or (A9)

2p · q ρ1 + p2ρ2 + q2ρ5

= (k2 + s) ρ1 − e2 m2

π2

∫ 1

0
dx

×
∫ 1−x

0

dy

xy
δ(s − S(x, y; p2, q2; m2)) (A13)

which vanishes at s = −k2 when m = 0. Thus there is no
anomaly in the absorptive part of (A4).

On the other hand from c1(x, y) = xy given in (A7), we
have from (A12) that

ρ1(s; p2, q2; m2) = e2

π2

∫ 1

0
dx

∫ 1−x

0
dyδ

(
s − (p2x + q2y)(1 − x − y) + m2

xy

)
�= 0, (A14)

so that using this in (A9) with (A13), the s integral is triv-
ially performed by definition of the Dirac δ-function, and one
obtains

A(k2; p2, q2; m2) =
∫ ∞

0

ds

k2 + s
(2p · q ρ1 + p2ρ2 + q2ρ5)

=
∫ ∞

0
ds ρ1(s; p2, q2; m2)

− e2 m2

π2

∫ 1

0
dx

∫ 1−x

0
dy

1

D
. (A15)

Comparing (A15) to (A9) we have finally that∫ ∞

0
ds ρ1(s; p2, q2; m2) =

∫ ∞

0
ds ρ1(s; p2, q2; m2 = 0)

= A(k2; p2, q2; m2 = 0) = e2

2π2

(A16)

independently of m (and also of p2, q2 � 0), which can be
verified directly from (A14).

Thus the axial anomaly in the real or dispersive part of
the triangle amplitude at m = 0, (12) is associated with the
UV finite spectral sum rule (A16) which holds for all p2, q2,

m2 > 0, and also in the limiting case where p2 = q2 =
0 and m2 → 0+. This is possible despite the fact that
ρ1(s; p2, q2; m2) vanishes pointwise as p2, q2, m2 → 0+ (in
any order) for any nonzero s, because

lim
p2,q2m2→0+

ρ1(s; p2, q2; m2) = e2

2π2
δ(s) (A17)

becomes a singular Dirac δ-function in this limit, as may also
be verified by inspection of (A14).

The imaginary, absorptive part of the axial current diver-
gence A of (9) or (A13) vanishes for m = 0, in accordance
with expectations from the classical theory, since (k2 +
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s)ρ1(s)|s=−k2 = 0. However computing the real, dispersive
part of kμ�

μαβ

5 requires dividing (A13) by k2 + s (the rel-
ativistic analog of the energy denominator of first order
perturbation theory) which cancels the first factor, leaving
ρ1(s) itself. By direct calculation the spectral function ρ1(s)
does not vanish, even in the m → 0 limit. The reason for this
can be traced to the fact that even in the massless limit, a
charged Dirac fermion can make a transition to a virtual state
of the opposite helicity by the emission of a photon [87–89],
that is to say, massless Dirac fermions do not become two de-
coupled Weyl fermions in the presence of electromagnetism.
This results in the matrix elements 〈n|JαJβ |0〉 of the two elec-
tromagnetic current vertices to the fermion pair intermediate
state in the imaginary part of the triangle diagram Fig. 1
remaining nonvanishing in the massless fermion limit, and
contributing positively to ρ1(s; p2, q2; m2 =0) as in (A14).
That its integral over s, as in (A16), gives a finite constant
result independent of p2, q2 � 0 is a statement of the finite
constant residue of the 1/k2 anomaly pole for m = 0 in the
longitudinal part of the triangle amplitude, protected by the
Adler–Bardeen theorem [58].

It is significant that this dispersive analysis, relying only
upon the well-defined, finite imaginary absorptive parts of
the triangle amplitude �

μαβ

5 , matrix elements of low-energy
states, and unsubtracted Kramers–Kronig dispersion relations
(A11), leads to the full amplitude obeying conditions 1–4 of
Sec. II, and the axial anomaly (13), without encountering UV
divergent integrals requiring regularization at any step. The
appearance of the 1/k2 gapless pole singularity with residue
fixed by the finite sum rule (A16) demonstrate that the axial
anomaly is an infrared (more properly, relativistic light cone)
feature of the low-energy effective theory, independent of UV
short distance physics [37,88,92].

APPENDIX B: THE AXIAL ANOMALY FOR WSMs
IN A CONSTANT UNIFORM MAGNETIC FIELD

In a constant uniform magnetic field B= Bx̂, the Fourier
transform of the electromagnetic potential Ãγ=2,3(q) is
nonzero in the transverse ŷ, ẑ directions, while the constancy
of B = F23 implies that

q2Ã3(q) − q3Ã2(q) =
∫

d 4z e−iq·z(q2A3(z) − q3A2(z))

= −iB (2π )4 δ4(q) (B1)

proportional to a δ function at qμ = 0. The vectors kμ = pμ +
qμ = pμ of Fig. 1 are then equal to each other. If their spatial
components are taken to lie also in the x̂ direction, parallel to
B, then the τ2 tensor in Table I is the only one contributing to
�̃

μαγ

5 (p, q)Ãγ (q), which for γ = 2, 3 is nonzero only for μ =
a, α = b ranging over the 0,1 components. We then obtain∫

d 4q

(2π )4
�

abγ
5 (p, q)Aγ (q)

∣∣∣∣
k⊥=p⊥=0

= iB f2(k2; k2, 0)
(
k2εab − kbkcεa

c
)

(B2)

for the constant, uniform B field, in terms of the antisymmetric
tensor εab ≡ εab23 of the remaining two a, b = 0, 1 space-
time indices. Next noting from (A8) that D = p2x(1 − x) =

FIG. 7. The one-loop axial anomaly in two dimensions.

k2x(1 − x) for m = 0 and q = 0, the function f2 evaluates
simply to

f2(k2; k2, 0)
∣∣
m=0 = 2 f1(k2; k2, 0)|m=0 = e2

2π2

1

k2
= 2α

π

1

k2
,

(B3)

explicitly showing the 1/k2 pole in this case. Thus the full
anomaly vertex �

abγ
5 (p, q) is given entirely by its longitudinal

projection in this case of constant, uniform B.
In fact this result for the (three-point) triangle amplitude is

closely related to the (two-point) polarization tensor

�ab
2 (k) = i〈 ja jb〉 = 1

πk2
(kakb − k2ηab) (B4)

of massless fermions in 1+1 dimensional QED2. This 2D
polarization tensor (B4) satisfies the usual vector WT identity
ka�

ab
2 (k) = 0 of electric current conservation. On the other

hand, the 2D chiral current is

j̃ a = −εa
b jb, (B5)

which is dual to the electric current jb. Thus the chiral current
polarization

�̃ab
2 (k) ≡ i〈j̃ a jb〉 = −εa

c�
cb
2 (k) = 1

πk2

(
k2εab − kbkcεa

c
)

(B6)
satisfies the anomalous WT identity

ka�̃
ab
2 (k) = −kaε

ab

π
, (B7)

which is the axial anomaly

∂aj̃a = A2 = 1

2π
εabFab = 1

π
E (B8)

in 1 + 1 dimensions, illustrated in Fig. 7. Here E = F10 the
electric field strength in the x̂ direction parallel to B.

The dimensional reduction to 1 + 1 dimensions results
from the fact that with (B3) and (B6) and (B2) may be written
as∫

d 4q

(2π )4
�

abγ
5 (p, q)Aγ (q)

∣∣∣∣
k⊥=p⊥=0

= 2iαB �̃
(5) ab
2 (k), (B9)

which is nonzero only for μ = a, α = b = 0, 1 in a constant
uninform magnetic field B = Bx̂ in the indicated limits. Thus
the three-point axial triangle anomaly for massless fermions
in 3 + 1 dimensions becomes proportional to the two-point
polarization tensor �̃ab

2 the 4D axial anomaly becomes pro-
portional to the 2D axial anomaly, i.e.,

A4|B = eB

2π
A2 = 2αEB

π
→ 2αB (E + ∂aba), (B10)

after rescaling the electric field E → eE parallel to B, in order
to accord with standard (Heaviside–Lorentz) conventions in
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4D electromagnetism. In the last replacement of (B10) we
have allowed for the fact that in 2D the chiral potential ba =
εa

cAc is also dual to the electric potential, i.e., b0 = A1, b1 =
A0, and εab∂aAb → εabAb + ba, so that A2 is given by (B8)
when both the electric and axial potentials are nonvanishing.

A consequence of this dimensional reduction from 4D
to 2D is that the gapless collective boson composed of
fermion/antifermion pairs propagating along the B direction,
described by the 1/k2 anomaly pole in 4D, becomes in this
case for k⊥ = 0, precisely the 1/k2 propagator pole of the
effective boson of the 2D Schwinger model for vanishing 2D
electric coupling constant [36,62,70].

The dimensional reduction (B9) from 4D to 2D for
semimetals in a constant, uniform magnetic field amounts
to the LLL approximation for the 3 + 1 dimensional axial
polarization tensor

i
〈
T Ja

5 (t, x, y)Jb(t, x′, y′)
〉
LLL

= 2iαB
∫

dω

2π

∫
dk

2π

∫
d 2k⊥
(2π )2

eik·(x−x′ )+ik⊥·(y−y′ )

× e−k2
⊥/2eB�̃ab

2 (ω, k) (B11)

in terms of the 1 + 1 dimensional one (B4), along the
magnetic field direction [93–97]. Integrating over the
transverse y direction, the exponential factor in (B11)
is set to unity, so that the Fourier transform in t, x

gives

i
∫

d 2x e−ik·(x−x′ )
∫

d 2y
〈
T Ja

5 (t, x, y)Jb(t, x′, y′)
〉

LLL

= 2iαB �̃ab
2 (k) =

∫
d 4q

(2π )4
�

abγ
5 (p, q)Aγ (q)

∣∣∣∣
k⊥=p⊥=0

(B12)

by (B9). Thus the axial anomaly of the 4D triangle diagram
coincides with the 2D chiral polarization of gapless fermions
in a constant, uniform magnetic field in the LLL approxima-
tion. The 4D axial current along the magnetic field direction
Ja

5 = (eB/2π ) ja
5 , a = 0, 1 in terms of the 2D chiral current ja

5
since eB/2π is just the electron number density per unit area
in the LLL.

The relation (B12) may also be understood as an expres-
sion of the low-energy or infrared nature of the axial anomaly.
Since the higher Landau levels are effectively gapped by eB,
only the LLL’s gapless excitations contribute to the excitations
parallel to the B direction at distance scales much larger than
1/

√
eB. If an external electric field is turned on adiabatically,

only fermions in the LLL can be excited, and the d = 4 axial
anomaly factorizes into its d = 2 counterpart with a transverse
density proportional to the uniform magnetic field strength
B [6,98]. The contribution of the axial anomaly to the effective
action of massless fermions becomes exact in this limit. Thus
the 4D triangle anomaly provides a relevant interaction in the
low-energy, long distance EFT of gapless fermionic modes in
Weyl and Dirac semimetals placed in a constant, uniform B
field.

APPENDIX C: INTEGRATING OUT THE FERMIONS IN THE LIMIT OF LARGE FERMION MASS

Here we will present a derivation of the effective action [of type (ii)] in a WSM from first principles. The action we consider
is given by (4) and (44). The four-fermion interaction, which is of the NJL type, is the same as the one considered in the
condensed-matter literature, e.g., Ref. [14]. Its treatment in the high-energy physics literature is highly developed due to the
interest in the NJL model as a model for QCD mesons; see, e.g., Refs. [99–101]. Our computations will use the covariant
derivative expansion techniques described in Refs. [102–109]. We will focus only on specific terms of interest and not attempt
to derive the full effective field theory.

After the introduction of Hubbard–Stratonovich fields φ1 and φ2 given by (49), the action becomes that of (4) with zero bare
mass along with (48). The fermions can now be integrated out to obtain the effective action of φ1, φ2, Aμ, and bμ only

Seff = −iTr ln[γ μ(i∂μ + eAμ + bμγ 5) − gφ1 − igφ2γ
5] −

∫
d 4x

g2

G

(
φ2

1 + φ2
2

)
, (C1)

where Tr denotes the full trace over coordinate space and matrices. With standard manipulations assuming continuous momen-
tum fermionic states to express Tr, this can be brought to the form

Seff =
∫

d 4x

{
i
∫

d 4k

(2π )4
tr

∞∑
n=1

(−1)n

n

(
i /D + /bγ 5 − gφ1 − igφ2γ

5

/k − m

)n

− 1

G

[
(gφ1 + m)2 + g2φ2

2

]}
, (C2)

where /D = γ μDμ, Dμ = ∂μ − ieAμ, tr denotes the trace over matrices only, and we shifted gφ1 → gφ1 + m. Below we will
perform explicit evaluations of terms of interest in Seff diagramatically. Our calculations will capture terms of the effective action
expanded in fields and derivatives. Results for more terms than we consider here are included in Refs. [105–108].

First of all, for g �= 0 the extremization condition δSeff/δφ1|φ1=φ2=0,Aμ=bμ=0 = 0 gives

2m

G
= i

∫
d 4k

(2π )4
tr

1
/k − m

= 4mI1, (C3)
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where1

I1 = −i
∫

d 4k

(2π )4

1

k2 + m2


�m= 1

16π2

(

2 − m2 ln


2

m2

)
. (C4)

We use a hard cutoff 
 to regularize the loop integral I1. We will be working with 
 � m.2 With the definition
Gc = 8π2/
2, (C3) becomes

2m

(
1

G
− 1

Gc

)
= − m3

4π2
ln


2

m2
. (C5)

If G < Gc, then the only solution of (C5) is m = 0, but if G > Gc we have a solution with m �= 0 which signals spontaneous
breaking of chiral symmetry. To examine stability of the m = 0 vacuum, we evaluate

−δ2Seff

δφ2
1

∣∣∣∣
m=φ1=φ2=0,Aμ=bμ=0

= 2g2

G
− ig2

∫
d 4k

(2π )4
tr

1

/k2 = 2g2

(
1

G
− 1

Gc

)
. (C6)

Thus, for G < Gc (respectively G > Gc) the m = 0 vacuum is stable (respectively unstable). In the remainder of this section we
work in the broken phase (m �= 0) and focus on terms in the effective action involving φ2, Aμ and bμ.

Quadratic terms in φ2 with no derivatives are generated by

(C7)

and a kinetic term for φ2 is generated from the sum of diagrams

(C8)

Due to cyclicity of the trace3 the first two diagrams in the right-hand side of (C8) are equal, as are the second four. We have

(C9)

where

I2 = −i
∫

d 4k

(2π )4

1

(k2 + m2)2


�m= − 1

16π2

(
1 − ln


2

m2

)
, (C10)

Jμν
2 = −i

∫
d 4k

(2π )4

kμkν

(k2 + m2)3
. (C11)

With a gauge invariant regulator or the introduction of suitable counterterms we may obtain Jμν
2 = 1

4ημνI2. Then,

LD2φ2
2
= −g2I2

(
2Dμφ2Dμφ2 − 2φ2

2D2
) = −g2I2 [Dμ, φ2][Dμ, φ2]. (C12)

In our case, [Dμ, φ2] = ∂μφ2. As a result, in the effective action we will have the terms

Sφ2
2
+ S∂2φ2

2
=

∫
d 4x

(
Lφ2

2
+ L∂2φ2

2

) =
∫

d 4x

[
−g2

(
1

G
− 2I1

)
φ2

2 − g2I2∂
μφ2∂μφ2

]
. (C13)

The φ2
2 term is eliminated by the gap equation (C3) and we are left with

S∂2φ2
2
= −

∫
d 4x g2I2∂

μφ2∂μφ2, (C14)

which is the kinetic term for the massless Nambu–Goldstone boson of spontaneous chiral symmetry breaking.

1To evaluate the integral we Wick rotate by k0 = ik0
E . With our metric conventions, k2 = k2

E .
2As usual, the cutoff drops out of all physical quantities because G depends on 
. For example, if m is measured, then the gap equation (C3)

simply gives us the dependence of the bare coupling G on 
, with m fixed at the measured value. Observables depend on the measured m and
not the cutoff-dependent G.

3Here we invoke cyclicity of Tr as opposed to tr; see Ref. [107, Sec. 3.4].
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There are no terms linear in φ2 and b with no derivatives because the corresponding trace is zero, but with one derivative in
addition we have the sum of diagrams

(C15)

The first three diagrams are equal, as are the last three. A straightforward calculation gives

S∂φ2b = −
∫

d 4x 4gmI2∂
μφ2bμ. (C16)

Further terms of relevance to our discussion arise at fifth order. More specifically, we are interested in terms with one power
of φ2 and four derivatives:

(C17)

where

I3 = −im2
∫

d 4k

(2π )4

1

(k2 + m2)3


�m= 1

32π2
. (C18)

Since [Dμ, Dν] = ieFμν , we find

Sφ2∂2A2 =
∫

d 4x
2ge2

m
I3φ2Fμν F̃μν = ge2

16π2

∫
d 4x

φ2

m
Fμν F̃μν, (C19)

Collecting the contributions (C14) and (C16), and (C19), we have

Seff ⊃
∫

d 4x

(
−g2I2∂

μφ2∂μφ2 − 4gmI2∂
μφ2bμ + ge2

16π2

φ2

m
Fμν F̃μν

)
. (C20)

Further terms involving derivatives of bμ should be included, e.g., an F 5
μν F̃ 5μν term with F 5

μν = ∂μbν − ∂νbμ (see Ref. [108]),
but we omit them here.

Terms quadratic in A and terms quadratic in b are given respectively by

(C21)

where

Jμν
1 = −i

∫
d 4k

(2π )4

kμkν

(k2 + m2)2
(C22)

and

(C23)

To preserve gauge invariance we need to demand LD2 = 0, or Jμν
1 = 1

2ημνI1. With this choice we still get a mass for the axial
vector. Adding this to (C20), we get

Seff ⊃
∫

d 4x

(
−4m2I2BμBμ + ge2

16π2

φ2

m
Fμν F̃μν

)
, Bμ = bμ + g

2m
∂μφ2. (C24)

An infinitesimal chiral rotation of the original fermion with x-dependent parameter β = β(x), namely

ψ → (1 + iβγ 5)ψ, ψ̄ → ψ̄ (1 + iβγ 5), (C25)

which results in the appearance of an anomaly term
∫

d 4x e2

8π2 βFμν F̃μν in the effective action, leaves the theory (C24) invariant
if gφ2 → gφ2 − 2mβ and bμ → bμ + ∂μβ. This guarantees that (C17) is the only source of the anomaly in this picture.
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A quadratic and a quartic contribution in φ1 are generated via

(C26)

where

I4 = −im4
∫

d 4k

(2π )4

1

(k2 + m2)4


�m= 1

96π2
. (C27)

In the large 
/m limit, we find

(C28)

Thus

Lφ2
1
+ Lφ4

1
= −1

2
g2

(
2

G
− 2

Gc

)
φ2

1 − 1

4

g4

4π2
ln


2

m2
φ4

1 , (C29)

which is consistent with (C6). Requiring that m2 = −κ/λ, κ < 0, now gives us the gap equation (C5) once again. Comparing
with (52), we find (55) and (56).

Note that the quartic in φ2 contribution is

(C30)

which is exactly as required for consistency with (52), since σ 2 = φ2
1 + φ2

2 .
With the polar representation (63), φ2

1 + φ2
2 = σ 2 and the field ζ is dimensionless. Using (63) in our action, given by (4) with

zero bare mass along with (48), we get

S =
∫

d 4x

{
ψ̄[γ μ(i

↔
∂μ + eAμ + bμγ 5) − gσe2iζγ 5

]ψ − g2

G
σ 2

}
. (C31)

To compute the effective action associated with integrating out ψ we define a chirally rotated fermion ψ ′ = eiζγ 5
ψ . Then,

S =
∫

d 4x

{
ψ̄ ′[γ μ(i

↔
∂μ + eAμ + B′

μγ 5) − gσ ]ψ ′ − g2

G
σ 2 + e2

8π2
ζ Fμν F̃μν

}
, B′

μ = bμ + ∂μζ , (C32)

and the fermion ψ ′ can again be integrated out as above. It is important to note that the chiral rotation of the fermion results
in a contribution to the effective action associated with the transformation of the path-integral measure, namely the last term
in (C32). This contribution has been discussed in [109] using covariant derivative expansion methods. The linear dependence on
ζ in (C32) follows from the Adler–Bardeen theorem [58], together with Bardeen’s general results for the axial anomaly [110].
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