
PHYSICAL REVIEW B 109, 134511 (2024)

Superconductor-altermagnet memory functionality without stray fields
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A novel class of antiferromagnets, dubbed altermagnets, exhibit a nonrelativistically spin-split band structure
reminiscent of the order parameter phase d-wave superconductors, despite the absence of net magnetization. This
unique characteristic enables utilization in cryogenic stray-field-free memory devices, offering the possibility
of achieving high storage densities. We here determine how a proximate altermagnet influences the critical
temperature Tc of a conventional s-wave singlet superconductor. Considering both a bilayer and trilayer, we
show that such hybrid structures may serve as stray-field-free memory devices where the critical temperature is
controlled by rotating the Néel vector of one altermagnet, providing infinite magnetoresistance. Furthermore, our
study reveals that altermagnetism can coexist with superconductivity up to a critical strength of the altermagnetic
order as well as robustness of the altermagnetic influence on the conduction electrons against nonmagnetic
impurities, ensuring the persistence of the proximity effect under realistic experimental conditions.

DOI: 10.1103/PhysRevB.109.134511

I. INTRODUCTION

The intricate interplay of superconductivity and mag-
netism remains a focal point in modern condensed matter
physics [1–3]. Its allure stems both from a fundamen-
tal viewpoint and cryogenic technology applications such
as extremely sensitive detectors of radiation and heat as
well as circuit components such as qubits and dissipation-
less diodes. Whereas superconductor-ferromagnet (SC-FM)
structures have been studied extensively, the interest in anti-
ferromagnetic materials has been comparatively limited [4–9]
up until recently [10–22].

A particularly interesting new development is antiferro-
magnets that break time-reversal symmetry and feature a
spin-split band structure that does not originate from relativis-
tic effects such as spin-orbit coupling. Dubbed altermagnets
in the literature, these are spin-compensated magnetic sys-
tems with a huge momentum-dependent spin splitting even
in collinearly ordered antiferromagnets. Ab initio calculations
have identified several possible material candidates that can
host an altermagnetic state, including metals such as RuO2

and Mn5Si3 as well as semiconductors/insulators such as
MnF2 and La2CuO4 [23–28].

Superconducting memory devices with infinite magne-
toresistance have been proposed [29,30] and observed [31]
using superconducting spin valves, a trilayer configuration
comprised of a central superconductor flanked by two fer-
romagnets. By exploiting the inverse proximity effect, the
critical temperature Tc of the superconductor can be dy-
namically modulated through manipulation of the relative
magnetization orientations. In this way, Tc changes up to
1 K have been reported [32]. However, the property enabling
the functionality of such structure via external fields is also
its drawback, depending on the precise mode of operation:
the magnetization. The disadvantage is the inevitable exis-
tence of a stray field surrounding the structure, which limits
how closely multiple structures of this type can be packed

together without disturbing each other. Therefore, finding a
way to control Tc in a structure without any net magnetization
could offer a major advantage to the implementation of such
architecture in cryogenic devices. Recent strides in unravel-
ing the altermagnet/superconductivity interplay encompass
a spectrum of phenomena, including studies of Andreev re-
flection [33,34], Majorana zero modes [35], the Josephson
effect [36–38], and interplay with spin-orbit interaction [39].

We here determine the effect of the altermagnetic spin
splitting on the critical temperature of an adjacent super-
conductor and suggest using an AM-SC-AM trilayer as a
stray-field-free memory device. Commencing our study, we
investigate a simple model demonstrating coexistence of
altermagnetism and superconductivity and show that the al-
termagnetic field is detrimental to the superconducting order
parameter, akin to the Pauli limit in superconductors subjected
to magnetic fields [40]. Progressing to AM-SC bilayers, we
unveil a modulation in the critical temperature, caused by the
altermagnetic order. This modulation is nonmonotonic as a
function of the altermagnetic strength, and can both suppress
or increase Tc compared to the normal metal case. We ex-
plore different geometries, showing that the relative direction
of the interface and the altermagnetic order parameter yield
vastly different results. A study of AM-SC-AM trilayers is
then performed, highlighting the influence of the parallel or
antiparallel directions of the order parameters in the two al-
termagnets. Finally, we investigate the role of impurities in
the altermagnetic material. We find that impurities do not
suppress the influence of altermagnetic spin order on the
itinerant electrons, making the altermagnetic proximity effect
relevant even in experiments utilizing materials that have a
short mean-free path.

II. THEORY

The lattice Bogoliubov-de Gennes (BdG) frame-
work [41,42] is suitable for studying AM-SC heterostructures.
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We employ an attractive Hubbard Hamiltonian to
model a conventional phonon-mediated s-wave singlet
superconductor:

HU = −
∑

i

Uic
†
i↓c†

i↑ci↑ci↓, (1)

where ciσ and c†
iσ destroy and create an electron with spin

σ , and Ui > 0 is the magnitude of the attractive potential.
The attractive Hubbard U term generally differs from the
effective electron-electron interaction mediated by phonons
(obtained by performing a Schrieffer-Wolff transformation)
in terms of momentum and spin indices. Nevertheless, at the
mean-field level these models give the same result for the
conventional BCS channel for Cooper pairing. We define bi =
ci↓ci↑ and perform a mean-field expansion bi = δbi + 〈bi〉,
ignoring second-order terms in the deviation from expectation
values. Finally, we define a (site-dependent) superconducting
order parameter

�i = Ui〈ci↑ci↓〉, (2)

and arrive at the mean-field Hamiltonian

Hmf = −
∑

i

(�ic
†
i↓c†

i↑ + �∗
i ci↑ci↓), (3)

where we disregarded a constant term, which is absorbed in
the ground-state energy.

We note that a constant on-site potential Ui = U corre-
sponds to an isotropic gap in momentum-space that pairs
electrons with opposite spin and momentum, which is consis-
tent with the Bardeen-Cooper-Schrieffer theory for an s-wave
superconductor. We employ this mean-field superconducting
Hamiltonian, including also the effect of altermagnetism and
impurities,

H = E0 −
∑

iσ

(μ − wi )c
†
iσ ciσ −

∑

i

(�ic
†
i↓c†

i↑ + �∗
i ci↑ci↓)

−
∑

〈i, j〉σ
ti jc

†
iσ c jσ −

∑

〈i, j〉σσ ′
(mi j · σ)σσ ′c†

iσ c jσ ′ , (4)

where μ is the chemical potential, σ = (σ1, σ2, σ3) is the
Pauli vector, and wi is an impurity potential taken to be
randomly distributed at a given number of sites in the mag-
net. For comparison, we consider two different forms of the
spin-dependent interaction mi j : (i) an on-site potential mi j =
mzδi j ẑ, corresponding to a ferromagnetic term, and (ii) mi j =
+mez for nearest-neighbor hopping along the x axis and mi j =
−mez for hopping along the y axis, corresponding to an effec-
tive altermagnetic term, similar to what was used in Ref. [36].
The spin-dependent hopping term parametrized by mi j in our
Hamilton operator can be understood as a Coulomb-exchange
interaction experienced by electrons that are hopping on
top of a background of localized spins that form collinear
antiferromagnetic order [27]. For a bulk altermagnet, the
spin-dependent hopping used in this paper as well as in
Ref. [36] takes exactly the cosine form suggested discussed
in Refs. [27,43,44], when Fourier transforming to momen-
tum space. Moreover, both the Hubbard model [45,46] and
the tight-binding model with spin coupling between itinerant
and localized spins have recently been used [47] to derive
dispersions that qualitatively match the low-energy form of

the cosine Hamiltonian. The effect of the antiferromagnetic
order in the localized spins exerted on the itinerant fermions
{ciσ , c†

iσ } in the Hamiltonian Eq. (4) is thus modeled via mi j ,
owing to the fact that this is an effective model for the con-
duction electrons which breaks the PT -symmetry required to
have a spin-split altermagnetic band structure. Formally, one
could in principle solve self-consistently for the parameter m
in the altermagnet to determine how it is affected by supercon-
ductivity. This would be relevant for spontaneous and intrinsic
coexistence of altermagnetism and superconductivity in the
same material. Instead, we take m to be a fixed constant and
solve for � self-consistently. This scenario is experimentally
relevant in a scenario where the altermagnetic spin splitting
has been induced by placing a thin superconductor on top of
an altermagnet, stacking them along the z direction, whereas
the spin splitting of the bands is present in the kx-ky plane.
This is similar to what has been done experimentally in thin
ferromagnetic insulator/superconductor systems [31,48,49],
and obviates the need to solve self-consistently for the spin-
splitting parameter as it is induced from an external source.
Note that in such a case, the induced m in the superconductor
can be smaller than � despite the altermagnetic spin splitting
in the host material being much larger than �. This is because
the induced spin splitting via the proximity effect scales with
the tunnel coupling to the material, which strongly suppresses
its magnitude.

We assume nearest-neighbor hopping, i.e., ti j = t , and
scale all other parameters in units of t . The superconducting
order parameter is determined from the site-dependent self-
consistent gap equation in Eq. (2). We assume here that the
attraction only occurs in the singlet channel. The singlet phase
is more robust than the triplet channel when impurity scatter-
ing, which is always present to some extent in real materials,
is included. We note that even if the pairing potential only
exists in the singlet channel, triplet superconducting correla-
tions can still be induced via the proximity effect when such
a superconductor is in contact with an altermagnet. For a
discussion concerning the pairing potential in the triplet chan-
nel when superconductivity coexists with altermagnetism, see
Ref. [50]. Throughout the paper, we fix μ = −t/2 and Ui =
1.7t . The magnetic terms, superconducting order parameters,
and impurity potentials are only nonzero in their respective
regions. Specifically, the altermagnetic term mi j is finite only
when both sites i, j inside are in the altermagnet. Expectation
values of physical observables are formally computed by per-
forming a trace (using a complete basis set) over the density
matrix ρ and the matrix representation of the observable un-
der consideration. The details of this density matrix are not
needed for the results presented in our work. This is because
the superconducting order parameter and other expectation
values can in practice be obtained self-consistently without
explicitly computing ρ first, the reason being that expectation
values of creation-annihilation pairs of the diagonalized quasi-
particle operators give Fermi-Dirac distribution functions.

III. METHODOLOGY

At each site i, the fermionic operators can be organized
into Nambu vectors ĉi ≡ (ci↑, ci↓, c†

i↑, c†
i↓), which may in turn

be collected into a 4N-element vector č ≡ (ĉ1, . . . , ĉN )
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encompassing all fermionic lattice operators. The
Hamiltonian operator is subsequently represented using
a 4N × 4N matrix: H = E0 + 1

2 č†Ȟ č. We solve the BdG
equation by numerically diagonalizing Ȟ and expressing
physical observables such as the superconducting gap in
Eq. (2) in terms of its eigenvectors and eigenvalues. This
process entails an initial guess �g for the order parameter,
and then self-consistently diagonalizing the Hamiltonian until
the superconducting gap equation converges. In this paper,
however, our main interest is the critical temperature Tc,
and thus we do not need the explicit numerical value of the
gap. With that said, we typically find a low-temperature gap
magnitude of order � 	 0.15t with our parameters. Instead,
we perform N� self-consistent iterations and compare the
resulting value of the order parameter with the small initial
value �g = 10−4t . This solution strategy is very similar to
the methodology used, e.g., in Ref. [51]. We define the SC as
being in the superconducting state when the median value of
the order parameter inside the superconductor has increased
compared to the initial value �g. The critical temperature is
subsequently ascertained by performing a binomial search
in critical temperatures, as was done in Ref. [52]. In order
to make the computational time manageable, it is necessary
to consider a lattice size that is much smaller than in an
experimental setting. For instance, in order to ensure that the
width of the superconducting layer is comparable to the super-
conducting coherence length, which is inversely proportional
to �, one must use a large value for the superconducting order
parameter. Nevertheless, the BdG lattice framework is known
to give predictions that compare well, both qualitatively and
quantitatively, with experimentally realistic systems [53,54]
as long as the ratio of the length scales in the problem (such
as the width of the system and the coherence length) is
reasonable, which is the approach we have taken.

IV. RESULTS AND DISCUSSION

A. Altermagnetic destruction of the superconducting order

Prior to delving into heterostructures of superconductors
and altermagnets, it is instructive first to understand the effects
of the altermagnetic term in Eq. (4) on the superconduct-
ing order, and employ periodic boundary conditions along
both axes. To this end, we consider a system with coexist-
ing altermagnetic and superconducting order. We vary the
altermagnetic strength m and calculate the critical tempera-
ture self-consistently using the methodology outlined above.
The results are shown in Fig. 1: the effect of altermagnetism
is to suppress the superconducting order, which vanishes
for an altermagnetic strength of m ≈ 0.05t . The results are
juxtaposed with the effects of ferromagnetism, which also
suppresses the superconductivity in a similar way, as is well
known [40,55], although the critical field is much larger than
in the altermagnetic case. We note that in general there exists
additional solutions to the self-consistency equation besides
the one shown in the top pane of Fig. 1, such as � = 0. These
solutions have a higher free energy than the solution for �

that we have presented. Thus, we are presenting the solution
for �, which corresponds to the thermodynamic ground state
of the system. These unstable branches are discussed in detail
in the Appendix of Ref. [56].

(a)

(b)

FIG. 1. The (a) order parameter and (b) critical temperature
as a function of the altermagnetic and ferromagnetic strength in
a Nx = Ny = 20a0 structure with coexisting superconductivity and
altermagnetic/ferromagnetic spin splitting. The termperature in (a) is
set to T = 0.01t/kB, where kB is the Boltzmann constant.

After establishing the analogous interaction between the al-
termagnetic and ferromagnetic terms with superconductivity,
a natural inquiry arises regarding the impact of altermagnets
on superconductors within heterostructures. Specifically, we
will focus our attention on the influence of altermagnets on
the critical temperature within AM-SC systems.

B. Junction geometries

Employing a square lattice with lattice constant a0, we
explore two distinct AM-SC geometries: a straight junction,
where the interface is aligned with the crystallographic axis,
and a skewed junction, where the interface is rotated 45◦ com-
pared with the crystallographic axis, see Fig. 2. Here, and in
the rest of the paper, we employ periodic boundary conditions
along the axis parallel to the interface, and hard wall boundary
conditions along the axis perpendicular to the interface. We
denote the number of lattice sites in the x (y) direction by Nx(y).
In the straight junction, hopping across the interface happens
exclusively along the x axis, while in the skewed junction,
hopping across the interface happens equally along the x and
y axis. The inverse proximity effect in the SC-AM system
can be probed by calculating the critical temperature Tc in the
SC. The result is depicted in Fig. 2, highlighting a significant
disparity in the behavior between the straight and skewed
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(d)

FIG. 2. (a) The straight junction and (b) the skewed junction
geometries. (c) The hopping term for a spin-up (spin-down) elec-
tron (hole). For a spin-down (spin-up) electron (hole), the signs
are reversed. (d) The critical temperature for the straight (St) and
skewed (Sk) geometries with Ny = 20a0, NAM

x = 10a0, NSC
x = 6a0,

and N� = 50.

junction configurations. We emphasize that the normalization
in this figure is the critical temperature in a superconductor
in contact with a m = 0 altermagnet, i.e., a normal metal.
Hence, the critical temperature is never raised compared to
the critical temperature in the bulk superconductor, but it is
raised compared to the critical temperature in a superconduc-
tor in proximity with a normal metal. In the skewed junction,
the effect of the altermagnetism is to suppress Andreev re-
flection [57], which is the underlying mechanism causing
the (inverse) proximity effect. This happens because the
altermagnetic term causes different hopping for electrons and
holes involved in Andreev reflection. Thus, the inverse prox-
imity effect is suppressed for high values of m, causing the

Parallel (P)

Antiparallel
     (AP)

(a)

(b)

FIG. 3. (a) The AM-SC-AM system with P and AP alignment of
the altermagnets. (b) The critical temperatures in a system where the
length of the SC is 12a0, and Ny = 20a0. The altermagnets on either
side have a length of 10a0.

critical temperature to increase. In the case of the straight
junction, an additional factor comes into play—induced mag-
netization brought about by the inverse proximity effect [58].
This phenomenon leads to a pronounced oscillatory behavior
in the critical temperature. The induced magnetization can be
understood by noting that spin-up electrons favor hopping in
the x direction, causing leaking spin-up electrons from the
SC into the AM to be trapped in the AM for large m. In the
skewed junction, this effect is averaged out, and the induced
magnetization in the SC vanishes.

C. AM-SC-AM trilayers

An intriguing extension to the discussion above can be
achieved by adding another altermagnet to the AM-SC system
considered above. This system entails two distinct scenarios:
one where the two altermagnets are aligned and one where
the second altermagnet is rotated (in real space) by 90◦. We
refer to these situations as a parallel (P) and antiparallel (AP)
alignment, see Fig. 3. Rotating the second altermagnet is akin

134511-4



SUPERCONDUCTOR-ALTERMAGNET MEMORY … PHYSICAL REVIEW B 109, 134511 (2024)

(a) (b)

(c)

FIG. 4. �C↑ as a function of m and Ni, for impurity strength of
(a) wi = 1t and (b) w = 3t . (c) �C↑ as a function of m and μ in a
system without impurities., The system size is Nx = Ny = 20a0.

to changing the sign of m in this region, or equivalently to
a 180◦ rotation in spin space. In Fig. 3(b), the critical tem-
perature of the SC is calculated for different values of m in
the two different systems. In the P alignment, the situation is
analogous to the AM-SC system considered above, and we
see a similar Tc modulation pattern. In the AP alignment case,
the critical temperature is lower than in the P alignment for
most values of m. To understand why this is the case, we
note that the superconducting coherence length in our sys-
tem ξS = h̄vF /π�0, where vF = 〈|dEk/dk|〉/h̄ is the normal
state Fermi velocity, where 〈. . .〉 represents averaging over the
Fermi surface, which can be calculated by introducing peri-
odic boundary conditions along both axes [51], is comparable
to the system length. This is typically the regime investigated
experimentally. In light of this, we attribute the lower critical
temperature to the appearance of crossed Andreev reflection
(CAR), sometimes referred to as nonlocal Andreev reflec-
tion [59]. It is well known that for an F-S-F heterostructure,
the AP alignment of ferromagnets gives enhanced CAR com-
pared to the P alignment [60], and we attribute the results of
Fig. 3(b) to a similar origin. The CAR process (strictly speak-
ing, inverse CAR) breaks up a Cooper pair into electrons that
become spatially separated in different leads, thus suppressing
the superconducting condensate. As more Cooper pairs are
transmitted out of the SC due to CAR, the critical temperature
drops accordingly. Importantly, switching between the P and
AP alignment can experimentally be performed by rotating
the Néel vector, since this effectively switches the spin-up
and spin-down bands in the altermagnet. A similar Tc mod-
ulation in conventional antiferromagnets was very recently
reported [61]. Notably, the Néel vector has been found to
be controllable by spin-transfer torques [62,63], spin-orbit
torques [64], and by optical methods [65]. This opens the
possibility of using the suggested device as a stray-field-free
memory device operating in the THz regime, enabling the
prospect of ultrafast switching.

FIG. 5. The impurity average plotted together with the clean
system, which is the same as the straight system in Fig. 2(b). In the
bottom pane, the temperatures are normalized to the zero-impurity
and zero-magnetism critical temperature Tc,0(m = 0), showing that
Tc is slightly higher in the presence of impurities. In the top pane,
the temperatures are normalized to unity for m = 0, i.e., the two
curves are normalized by a different factor, which illustrates that the
variation in Tc with m is of similar magnitude in both cases.

D. Impurity scattering

Materials with substantial impurity scattering are highly
relevant for experiments. For this reason, we will concentrate
on the role of impurities in altermagnets, before moving on to
the proximity effect in a system with a dirty altermagnet. Im-
purities are accounted for through an on-site potential [66–68]
at a fraction Ni of all sites, with a fixed strength wi, and
randomly chosen sites in the altermagnet, similar to the
methodology in Ref. [68]. Observables are calculated by av-
eraging over 100 different impurity configurations. As the
impurity scattering is isotropic, one might expect that the
altermagnetic spin splitting, which is anisotropic, disappears
in the presence of impurities. To test this, we define the bona
fide order parameter �C↑,

�C↑ =
∑

i

[〈c†
i↑ci+x̂↑〉 − 〈c†

i↑ci+ŷ↑〉], (5)
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which is a measure of the anisotropy of the effective hopping
parameter (for spin-up particles) in the system, and depends
on both t and m in general. For square systems, we expect
the system to be invariant under C4 rotations for m = 0, i.e.,
�C↑ = 0. Thus, we can use �C↑ to determine whether the
system is altermagnetic or not. In Fig. 4, we plot the results
for different values of m and Ni, for wi = 1.0t and wi = 3.0t ,
comparable to other values used in the literature [67]. Evi-
dently, the altermagnetic order is resilient to the nonmagnetic
impurities in the system; the slight suppression of the order
parameter for strong impurity scattering [i.e., the upper parts
of the plots in Figs. 4(b) and 4(a)] can be explained by the fact
that the impurities takes the form of local chemical potentials.
Hence, a high concentration of impurities has the effect of
an effective renormalized global chemical potential. To show
this, we calculate the order parameter �C↑ for different values
of global chemical potentials, as shown in Fig. 4(c). The
suppression of the order parameter for high absolute values
of μ is similar to the behavior of the order parameter for high
impurity configurations in Figs. 4(a) and 4(b). The reason for
the dependence of the order parameter magnitude on μ is that
the latter determines the filling factor and density of states
at the Fermi level, which in turn affects the superconducting
pairing.

Finally, we repeat the calculations of the straight junction
in Fig. 2, including impurities in the AM. We set the strength
of the impurities to wi = 1.0t and the fraction of sites occu-
pied by impurities to 0.2, and perform the calculations for 100
different impurity configurations, before averaging over the
resulting values of the critical temperature. The results are
shown in Fig. 5, and show that although the critical temper-
ature curve is different from the clean system, the (inverse)
proximity effect is still present, which is evident from the fact
that the critical temperature varies with a similar magnitude
compared with the clean system.

Thus, we conclude that impurities are not strongly
detrimental to the altermagnetic modulation of the super-
conducting order, which means that the effect should be
experimentally visible even for dirty materials. We have
thus found that the analogy between d-wave superconductor
and altermagnetism [28] is not useful in impurity considera-
tions: whereas d-wave superconductivity is highly sensitive
to nonmagnetic impurities, the altermagnetic effect on the
conduction electrons survives even in the presence strong
impurity potentials. This is due to the d-wave Fermi surface
of altermagnets being spin split, prohibiting the scattering
between the spin bands in the absence of spin-flip impurities.

V. CONCLUSION

We have solved the lattice Bogoliubov-de Gennes equa-
tions in heterostructures of superconductors and altermagnets.
Our study indicates that altermagnetic materials have the po-
tential to be used in cryogenic spintronic devices, for instance
as stray-field-free spin switches showing infinite magnetore-
sistivity, using spin-transfer torques, spin-orbit torques, or
optical methods to rotate the Néel vector. Nonmagnetic im-
purities are not severely detrimental to the altermagnetic
proximity effect, allowing for this effect to be present also in
altermagnetic materials in the diffusive transport regime.
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