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Ginzburg-Landau energy of multiband superconductors with interband pairing
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We derive microscopically the Ginzburg-Landau free-energy functional for a superconductor in which the
Cooper pairs are formed not only by quasiparticles from the same band, but also by quasiparticles from different
bands. In the simplest case of an s- or d-wave pairing in a two-band system, the order parameter has three
components describing two intraband and one interband pair condensates. The interband pairing-specific terms
in the free energy bring about some qualitative features in the phase diagram, for example, time-reversal
symmetry-breaking superconducting states are stabilized at low temperatures. We also show that, despite the
fact that the gradient energy of the interband component turns negative at a sufficiently large band splitting, a
nonuniform superconducting instability is generally suppressed due to the hybridization of the intraband and
interband condensates.
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I. INTRODUCTION

The properties of multiband, in particular two-band, su-
perconductors (SCs) have been at the forefront of condensed
matter physics research since the discovery of superconduc-
tivity in MgB2 (Refs. [1,2]). The list of materials in which
multiband effects are thought to play an important role also
includes Sr2RuO4 (Refs. [3,4]), NbSe2 (Ref. [5]), various
heavy-fermion compounds [6,7], iron-based SCs [8,9], doped
topological insulators [10,11], superconducting oxide inter-
faces [12,13], and others.

In the simplest theoretical approach [14,15] the Bardeen-
Cooper-Schrieffer (BCS) model is extended to the two-band
case by assuming that the pairing interaction shells near the
Fermi surfaces in the two bands do not overlap, so that the
Cooper pairs are formed only by the same-band quasiparticles.
In this case, the order parameter in a one-dimensional (1D)
pairing channel, e.g., s-wave or d-wave, has two components,
η1 and η2, which describe the pair condensates in the two
bands. The Cooper pairs can scatter from one band to the
other producing a “Josephson coupling” between the bands,
which depends on the relative phase of the two condensates.
It is this coupling that gives rise to the most spectacular dif-
ferences from the single-band case, such as the Leggett modes
[16,17], phase solitons [18], and fractional vortices [19,20]
(see reviews in Refs. [21,22]).

The recent experimental developments have motivated a
further extension of the theory of multiband superconductivity
in which the pairing of quasiparticles from different bands
is taken into account. The interband Cooper pairing can be
incorporated into the BCS framework by assuming that the
pairing interaction energy cutoff εc exceeds the band splitting.
For realistic band structures that would likely require a non-
phononic mechanism of pairing. In an alternative approach,
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one starts with a real-space pairing between different atomic
orbitals in a crystal lattice and then transforms it into the band
representation, which in general produces both intraband and
interband pairing terms in the Hamiltonian [23–28].

Assuming that the interband pairs are created through one
or another microscopic mechanism, one can use the group
theory to classify the possible symmetries of the intraband and
interband gap functions. Such phenomenological approach
has proved to be very useful in the studies of fermionic
superfuilds and superconductors [29–31], allowing one to
determine the stable states and possible structures of the
gap nodes even if the microscopic pairing mechanism is not
known.

In this paper, we derive the Ginzburg-Landau (GL) free-
energy functional in a clean multiband superconductor from
a microscopic theory. We assume that there are two bands
participating in superconductivity and take into account both
intraband and interband pairing. Our calculations are based
on an extended BCS model, in which the pairing shell in
the momentum space contains both Fermi surfaces. Although
we mostly focus on 1D pairing channels in a tetragonal SC,
which correspond to 1D irreducible representations of the
crystal point group D4h, our approach can be straightforwardly
generalized to other crystal symmetries, higher-dimensional
representations, and any number of bands.

The condensate of the Cooper pairs formed by the quasi-
particles from different bands is described by an additional
order-parameter component η̃. Therefore, the GL free en-
ergy depends on the three-component order parameter η =
(η1, η2, η̃). This leads to a more complicated structure of the
free energy and a number of novel features, compared to
the intraband-only GL theory. In particular, the fourth-order
terms containing the interband order parameter can stabilize
superconducting states that break time-reversal (TR) symme-
try. Also, since the interband pairs are by definition formed
by quasiparticles from the vicinity of different Fermi-surface
sheets, it is important to understand whether the interband
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pairs can have a nonzero center-of-mass momentum, thus
favoring a nonuniform superconducting state, which would
have profound consequences for observable properties. Our
answer, based on the analysis of the GL gradient terms, is
negative, i.e., a nonuniform superconducting instability is un-
likely to be realized.

The paper is organized as follows. In Sec. II, we review the
symmetry-based classification of the intraband and interband
gap functions and show, in particular, that the latter depend
crucially on the symmetries of the two Bloch bands involved
in the pairing. In Sec. III, the symmetry analysis is applied
to a generalized BCS Hamiltonian including all possible in-
traband and interband pairing interactions. In Sec. IV, the GL
functional is derived for the order parameter η, which has two
intraband and one interband components. Some of the effects
brought about by the interband pairing, namely, the emergence
of stable TR symmetry-breaking states in a two-band SC, are
discussed in Sec. V. Throughout the paper we use the units
in which h̄ = kB = 1, neglecting, in particular, the difference
between the quasiparticle wave vector and momentum.

II. PAIRING SYMMETRY: GENERAL ANALYSIS

We consider a centrosymmetric TR-invariant crystal de-
scribed by the point group G. External fields and impurities are
neglected. The exact band states |k, n, s〉, which incorporate
all effects of the periodic crystal lattice potential and the
electron-lattice spin-orbit (SO) coupling, are twofold degen-
erate at each wave vector k due to the combined symmetry
C = KI , called conjugation [32], where K is the TR operation
and I is the spatial inversion. We use the index n to label the
bands and also an additional index s = 1, 2 to distinguish two
orthonormal Bloch states |k, n, 1〉 and |k, n, 2〉 ≡ C|k, n, 1〉
within the same band. In the presence of the SO coupling, the
Bloch states have both spin-up and -down components, and s,
called the Kramers index or the conjugation index, is not the
same as the electron spin projection.

The Bloch bands are classified according to the irreducible
double-valued corepresentations (coreps) of the magnetic
point group G + CG at the � point (see Appendix A). In a
given band, the electron creation operators in the Bloch states
transform under the point-group operations and TR in the
following way [33]:

gc†
k,nsg

−1 =
∑

s′
c†

gk,ns′Dn,s′s(g), g ∈ G (1)

and

c̃†
k,ns ≡ Kc†

k,nsK
−1 = pn

∑
s′

c†
−k,ns′ (−iσ̂y)s′s. (2)

Here D̂n(g) is the �-point corep matrix in the nth band and
pn = ±1 is the band parity. We use the notation σ̂0 and σ̂ =
(σ̂x, σ̂y, σ̂z ), respectively, for the identity matrix and the Pauli
matrices in the Kramers space.

In this paper, we consider only the point group G = D4h,
which describes the symmetry of numerous important super-
conductors, from the high-Tc cuprates and iron pnictides to
Sr2RuO4. Due to the presence of the inversion symmetry, the
�-point coreps are either inversion even (�+) or inversion odd
(�−). The magnetic group D4h + CD4h has four double-valued

coreps �±
6 and �±

7 , only �+
6 being equivalent to the spin- 1

2
corep [34,35]. Therefore, �+

6 bands are pseudospin bands,
while �−

6 and �±
7 bands are nonpseudospin bands.

For the symmetry analysis of the intraband and interband
gap functions we follow Refs. [33,36]. Suppose there are two
bands crossing the chemical potential and participating in
superconductivity. The bands can have the same or different
symmetries, i.e., correspond to the same or different �-point
coreps. In the D4h case, there are 10 possible two-band combi-
nations: (�+

6 , �+
6 ), (�+

6 , �−
6 ), (�+

6 , �+
7 ), etc. At the mean-field

level, the Hamiltonian in a uniform superconducting state has
the form ĤMF = Ĥ0 + ĤSC, where

Ĥ0 =
∑

n=1,2

∑
k,s

ξn(k)c†
k,nsck,ns (3)

describes noninteracting quasiparticles in two twofold-
degenerate Bloch bands. The band dispersions ξn(k) =
ξn(−k) are counted from the chemical potential, which is set
equal to the Fermi energy εF . Without loss of generality, we
assume that ξ1(k) < ξ2(k) at all k. The pairing Hamiltonian is
given by

ĤSC = 1

2

∑
nn′

∑
k,ss′

�nn′,ss′ (k)c†
k,nsc̃

†
k,n′s′ + H.c., (4)

where the operators c̃†
k,ns create electrons in TR-transformed

states [see Eq. (2)]. The intraband pairing in the nth band is
described by the gap functions �̂nn, whereas �̂12 and �̂21

describe the pairing of quasiparticles from different bands (the
interband pairing). The latter can be included in a general
mean-field model on the same footing as the intraband gap
functions. Microscopically, interband pairs appear in a BCS-
like model if the pairing interaction shells near the Fermi
surfaces, which are defined by |ξ1|, |ξ2| � εc, overlap, i.e., if
the pairing interaction energy cutoff εc exceeds the interband
splitting (see Sec. III).

For each pair of bands, the gap function is a 2 × 2 matrix
in the Kramers space, which can be represented as follows:

�̂nn′ (k) = ψnn′ (k)σ̂0 + dnn′ (k)σ̂. (5)

By analogy with the standard (single-band) theory of super-
conductivity (see, for instance, Refs. [30,31]), one can call
ψnn′ and dnn′ the singlet and triplet components, respectively.
Note that the factors iσ̂y are absent from the expression (5)
because the gap functions are defined in Eq. (4) as the mea-
sures of the pairing between the quasiparticles in the states
|k, n, s〉 and K|k, n′, s′〉, not in |k, n, s〉 and | − k, n′, s′〉. This
ensures [37] that the Bogoliubov–de Gennes Hamiltonian
is a proper first-quantization Hamiltonian and that the gap
functions have natural transformation properties under the
symmetry operations. The anticommutation of the fermionic
operators imposes the following constraint:

�̂nn′ (k) = pn pn′ σ̂y�̂
�
n′n(−k)σ̂y, (6)

therefore, ψnn′ (k) = pn pn′ψn′n(−k) and dnn′ (k) =
−pn pn′dn′n(−k). We see that, while the intraband singlet
(triplet) gap functions are necessarily even (odd) in k, the
parity of the interband pairing is not determined by the
anticommutation requirement alone.
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Applying Eq. (1) to the pairing Hamiltonian (4), we find
that the symmetry operations from the point group induce the
following transformation of the gap functions:

g : �̂nn′ (k) → D̂n(g)�̂nn′ (g−1k)D̂†
n′ (g). (7)

Thus, the gap transformation properties are nonuniversal, in
the sense that they depend on the symmetries of the bands
involved in the pairing. The singlet components ψnn′ do not
necessarily transform as scalar functions of k, while the triplet
components dnn′ are not always pseudovectors. Even the intra-
band pairing may be affected: it was shown in Ref. [33] that in
certain bands in trigonal and hexagonal superconductors the
standard classification of triplet pairing states breaks down,
with profound consequences for the gap nodal structure. Re-
garding the response of the gap functions to TR, it follows
from Eq. (2) that

K : �̂nn′ (k) → �̂
†
n′n(k). (8)

To obtain this, we used the antilinearity of the TR operator
and the fact that Kc̃†

k,nsK
−1 = −c†

k,ns.

A. Order-parameter components

According to the Landau theory of phase transitions, the
gap functions, both intraband and interband, must correspond
to the same single-valued irreducible representation (irrep) γ

of the point group G, which is called the pairing channel. For
G = D4h, there are 10 single-valued irreps of either parity, 8
1D and 2 two-dimensional (2D) (see Ref. [34]). In particular,
the 1D irrep A1g describes the “s-wave” pairing, whereas the
2D irrep Eu describes the “p-wave” pairing. Note that we
use the “chemical” notation for the single-valued irreps cor-
responding to the pairing channels, reserving the � notation
for the double-valued coreps describing the symmetry of the
Bloch bands.

For each pair of bands, the gap function can be represented
as a linear combination of the matrix basis functions of the
d-dimensional irrep γ as follows:

�̂nn′ (k) =
d∑

a=1

ηa
nn′ φ̂

a
nn′ (k). (9)

The expansion coefficients ηa
nn′ here play the role of the order-

parameter components and are found by minimizing the free
energy of the superconductor. Transformation of the 2 × 2
matrix basis functions φ̂a

nn′ (k) under the point-group opera-
tions follows immediately from Eq. (7):

g : φ̂a
nn′ (k) → D̂n(g)φ̂a

nn′ (g−1k)D̂†
n′ (g) =

d∑
b=1

φ̂b
nn′ (k)Dγ ,ba(g),

(10)

where D̂γ (g) is the d × d representation matrix. In particular,
the basis functions in a 1D pairing channel satisfy the follow-
ing equation:

D̂n(g)φ̂nn′ (g−1k)D̂†
n′ (g) = χγ (g)φ̂nn′ (k), (11)

where χγ (g) is the character of g in the irrep γ . Similarly to
Eq. (5), the basis functions can be represented as sums of the

“singlet” and “triplet” components, the former containing the
identity matrix σ̂0 and the latter, the Pauli matrices σ̂.

Explicit expressions for the basis functions can be found
by solving Eq. (10), subject to several additional constraints.
First, it follows from the anticommutation condition (6) that

φ̂a
nn′ (k) = pn pn′ σ̂yφ̂

a,�
n′n (−k)σ̂y. (12)

Second, our crystal has an inversion center, so we can put
g = I in Eq. (10) and obtain

pn pn′ φ̂a
nn′ (−k) = Pγ φ̂a

nn′ (k), (13)

where Pγ ≡ χγ (I ) = ±1 is the parity of the pairing chan-
nel γ (not to be confused with the band parities p1 and
p2). Combining Eqs. (12) and (13), we see that φ̂a

nn′ (k) =
Pγ σ̂yφ̂

a,�
n′n (k)σ̂y. Therefore, the statement that an even pairing

(Pγ = +1) is purely singlet, i.e., the basis functions contain
only σ̂0, whereas an odd pairing (Pγ = −1) is purely triplet,
i.e., the basis functions contain only σ̂, is true only for the
intraband functions φ̂a

nn(k). For the interband gap functions,
both the singlet and triplet components can be present simul-
taneously without violating the Pauli principle, with the parity
of φ̂a

nn′ (k) determined by the relative parity of the bands (see
the examples in Secs. II B and II C below).

The final constraint on the basis functions is obtained using
the response to TR. According to Eq. (8),

K : φ̂a
nn′ (k) → φ̂

a,†
n′n (k). (14)

Note that K2 = 1 when acting on the gap functions and the
basis functions. It follows from Eqs. (10) and (14) that, for
a given pair of bands, the set {φ̂a

nn′ (k), φ̂a,†
n′n (k)} with a =

1, . . . , d forms the basis of a 2d-dimensional single-valued
corep of the magnetic point group G + KG, which is derived
from the irrep γ . The corep matrices are given by

D̂(g) =
(

D̂γ (g) 0

0 D̂∗
γ (g)

)
, D̂(K ) =

(
0 1̂d

1̂d 0

)
,

where 1̂d is the d × d unit matrix. According to Refs. [34,35],
coreps of magnetic groups are classified into three cases, A,
B, or C, which determine whether or not the TR symmetry
leads to an additional degeneracy and also the type of this
degeneracy. In case A, there is no additional degeneracy, i.e.,
the corep is reducible, whereas the TR symmetry brings about
additional degeneracy of the “doubling” type in case B and
of the “pairing” type in case C. One can show that all coreps
for the point group D4h are case A. Therefore, the set of the
TR-transformed basis functions φ̂

a,†
n′n (k) is the same as as the

set of φ̂a
nn′ (k), and one can put

φ̂a
nn′ (k) = φ̂

a,†
n′n (k) (15)

for all pairs of bands.
Returning to the order-parameter components, it follows

from Eqs. (6) and (12) that

ηa
nn′ = ηa

n′n. (16)

Therefore, the superconducting state corresponding to a d-
dimensional pairing channel in an N-band superconductor
is described by N (N + 1)d/2 independent order-parameter
components, of which Nd characterize the intraband pair
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TABLE I. Momentum dependence of the s-wave interband pair-
ing in a quasi-2D crystal with G = D4h (a is a real constant). First
column: the �-point coreps of the bands participating in the pairing.

ˆ̃φ(k)

(�±
6 , �±

6 ), (�±
7 , �±

7 ) σ̂0 + akxky(k2
x − k2

y )σ̂z

(�±
6 , �∓

6 ), (�±
7 , �∓

7 ) kxσ̂x + kyσ̂y

(�±
6 , �±

7 ) (k2
x − k2

y )σ̂0 + akxkyσ̂z

(�±
6 , �∓

7 ) kxσ̂x − kyσ̂y

condensates and N (N − 1)d/2, the interband ones. In the
two-band case, the order parameter has 3d components: ηa

11,
ηa

22, and ηa
12.

Using Eqs. (7) and (10), we see that under the point-group
operations the order parameter transforms as follows:

g : ηa
nn′ →

d∑
b=1

Dγ ,ba(g)ηb
nn′ . (17)

This means that the structure of the GL free energy depends
only on the pairing channel γ , but not on the symmetry of the
electron bands participating in the pairing. The latter affects
only the matrix structure and the momentum dependence of
the basis functions. Finally, it follows from Eqs. (8) and (15)
that

K : ηa
nn′ → ηa,∗

nn′ , (18)

i.e., the action of TR on the order parameter is equivalent
to complex conjugation. In a TR-invariant superconducting
state, all components of the order parameter are real.

B. Example: s-wave pairing

The s-wave pairing channel corresponds to the identity
irrep A1g. Here and below we assume a quasi-2D band struc-
ture, i.e., set k = (kx, ky). The gap functions (9) take the form
�̂nn′ (k) = ηnn′ φ̂nn′ (k), where n, n′ = 1, 2. The pairing channel
is even (Pγ = 1), therefore, according to Eqs. (12), (13), and
(15), the intraband basis functions are given by φ̂nn(k) =
αn(k)σ̂0, where αn are real and even in k. The interband basis
functions can be sought in the form

φ̂12(k) = ˆ̃φ(k) = α̃(k)σ̂0 + iβ̃(k)σ̂,

φ̂21(k) = ˆ̃φ†(k) = α̃(k)σ̂0 − iβ̃(k)σ̂, (19)

where the real functions α̃ and β̃ are even (odd) in k for the
bands of the same (opposite) parity.

The momentum dependence of α1,2, α̃, and β̃ is found
from the point-group constraint (11) with χγ (g) = 1 for all
g, which should be solved for each pair of bands. The intra-
band basis functions are just real invariant scalars, satisfying
αn(g−1k) = αn(k), so one can put α1,2(k) = 1 without loss of
generality. In contrast, the interband basis functions depend
on the symmetries of the bands involved in the pairing and
are listed in Table I (see Appendix B for the details of the
calculation).

Introducing the shorthand notation

η1 ≡ η11, η2 ≡ η22, η̃ ≡ η12 = η21, (20)

TABLE II. Momentum dependence of the p-wave interband pair-
ing in a quasi-2D crystal with G = D4h (a is a real constant). First
column: the �-point coreps of the bands participating in the pairing.

( ˆ̃φ1(k), ˆ̃φ2(k))

(�±
6 , �±

6 ), (�±
7 , �±

7 ) (iakyσ̂0 + kxσ̂z, −iakxσ̂0 + kyσ̂z )

(�±
6 , �∓

6 ), (�±
7 , �∓

7 ) (σ̂y, −σ̂x )

(�±
6 , �±

7 ) (iakyσ̂0 + kxσ̂z, −iakxσ̂0 + kyσ̂z )

(�±
6 , �∓

7 ) (σ̂y, −σ̂x )

the intraband and interband gap functions take the following
form:

�̂11(k) = η1α1(k)σ̂0, �̂22(k) = η2α2(k)σ̂0,

�̂12(k) = η̃[α̃(k)σ̂0 + iβ̃(k)σ̂],

�̂21(k) = η̃[α̃(k)σ̂0 − iβ̃(k)σ̂]. (21)

The order-parameter components η1, η2, and η̃ are found
by minimizing the free energy of the superconductor (see
Sec. IV).

We see from Eq. (21) that, while the structure of the intra-
band gap functions is standard for the singlet isotropic pairing,
the interband gap functions exhibit unconventional features
such as a nonzero triplet component and the parity which
depends on the relative parity of the bands. For example, for
the opposite-parity bands (�±

6 , �∓
6 ) or (�±

7 , �∓
7 ), we have

�̂12(k) = iη̃(kxσ̂x + kyσ̂y), (22)

which looks like a p-wave gap function, but in fact remains in-
variant under all elements of the point group, i.e., corresponds
to the identity irrep A1g. In particular, we have I : �̂12(k) →
p1 p2�̂12(−k) = �̂12(k), according to Eq. (7). The imaginary
factor in �̂12 ensures that η̃ → η̃∗ under the TR operation.

C. Example: p-wave pairing

For the p-wave pairing channel, which corresponds to
the 2D irrep Eu of D4h, the gap functions (9) take the
form �̂nn′ (k) = ∑

a=1,2 ηa
nn′ φ̂

a
nn′ (k). The pairing channel is

odd (Pγ = −1) and, according to Eqs. (12), (13), and (15),
the intraband basis functions are given by φ̂a

nn(k) = βa
n(k)σ̂,

where βa
n are real and odd in k. The interband basis functions

can be sought in the form

φ̂a
12(k) = ˆ̃φa(k) = iα̃a(k)σ̂0 + β̃a(k)σ̂,

φ̂a
21(k) = ˆ̃φ†

a (k) = −iα̃a(k)σ̂0 + β̃a(k)σ̂,

where the real functions α̃a and β̃a are odd (even) in k for the
bands of the same (opposite) parity.

The momentum dependence of βa
1,2, α̃a, and β̃a is found

from Eq. (10), which should be solved for each pair of
bands. For the intraband basis functions, one can put β1

n(k) =
(0, 0, kx ) and β2

n(k) = (0, 0, ky ). The interband basis func-
tions depend on the symmetries of the bands involved in the
pairing and are listed in Table II.

Introducing the shorthand notation

η1,a ≡ ηa
11, η2,a ≡ ηa

22, η̃a ≡ ηa
12 = ηa

21,
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where a = 1, 2, the intraband and interband gap functions
corresponding to the p-wave pairing take the following form:

�̂11(k) = (η1,1kx + η1,2ky)σ̂z,

�̂22(k) = (η2,1kx + η2,2ky)σ̂z,

�̂12(k) = η̃1
ˆ̃φ1(k) + η̃2

ˆ̃φ2(k),

�̂21(k) = η̃1
ˆ̃φ†
1 (k) + η̃2

ˆ̃φ†
2 (k). (23)

The order parameter has six components: the intraband ones
η1 = (η1,1, η1,2) and η2 = (η2,1, η2,2), and the interband ones
η̃ = (η̃1, η̃2), which can be found by minimizing the GL free
energy of the superconductor.

The structure of the intraband gap functions in Eq. (23)
is standard for a quasi-2D p-wave pairing. In contrast, the
interband gap functions look unusual because they essentially
depend on the symmetries of the bands and either contain a
nonzero singlet component or are even in k. The latter pos-
sibility, namely, �̂12(k) = η̃1σ̂y − η̃2σ̂x = �̂21(k), is realized
for any combination of the opposite-parity bands.

III. FULL PAIRING HAMILTONIAN

The symmetry analysis of the mean-field gap functions can
be straightforwardly extended to the full Hamiltonian describ-
ing the pairing interaction in the basis of the exact band states.
We have Ĥ = Ĥ0 + Ĥint, where Ĥ0 is given by Eq. (3) and

Ĥint = 1

2V
∑
kk′q

∑
nisi

V n1n2n3n4
s1s2s3s4

(k, k′; q)

× c†
k+ q

2 ,n1s1
c̃†

k− q
2 ,n2s2

c̃k′− q
2 ,n3s3

ck′+ q
2 ,n4s4

(24)

is the pairing Hamiltonian, ni = 1, 2 is the band index, and
si = 1, 2 is the Kramers index. The Cooper pairing takes place
between the quasiparticles in the states |k + q/2, n1, s1〉 and
K|k − q/2, n2, s2〉 [see Eq. (4)]. The center-of-mass momen-
tum of the pairs is equal to q. Quasiparticles from different
bands can form a pair with q = 0 if they have mismatched
energies within the interaction energy shell (see below).

Guided by a considerable precedent in the theory of uncon-
ventional superconductivity [30,31], we make the following
assumptions about the interaction function V . First, we ne-
glect its dependence on the pair center-of-mass momentum q
[taking this dependence into account can lead to some inter-
esting consequences, such as unusual gradient terms in the
GL energy (see Ref. [38]) which are not considered here].
Second, we assume, in the spirit of the BCS theory, that
only the quasiparticles inside a pairing shell near the Fermi
surface participate in the pairing. This assumption allows us to
calculate analytically the momentum integrals that determine
the GL coefficients (see below). In the two-band case, the
Fermi surface consists of two or more sheets corresponding
to the solutions of the equations ξ1(k) = 0 and ξ2(k) = 0, and

V̂ n1n2n3n4 (k, k′) ∝ θ [εc − |ξn1 (k)|]θ [εc − |ξn2 (k)|]
×θ [εc − |ξn3 (k′)|]θ [εc − |ξn4 (k′)|], (25)

where θ (x) is the Heaviside step function and εc is the energy
cutoff. Therefore, the interband pairing is present only if the

FIG. 1. The Fermi surfaces in the bands 1 and 2 located within
the BCS pairing shell (the shaded annulus). In general, the Fermi
surfaces can be anisotropic.

BCS shells in the two bands overlap, i.e., if

εc >
Eb

2
, Eb = max

k
|ξ2(k) − ξ1(k)|.

The third assumption is that the momentum dependence of the
pairing interaction inside the BCS shell can be represented in
a factorized form

V n1n2n3n4
s1s2s3s4

(k, k′) = −1

2
Vn1n2,n3n4

d∑
a=1

φa
n1n2,s1s2

(k)φa,∗
n4n3,s4s3

(k′),

(26)

where Vn1n2,n3n4 are the dimensional coupling constants and
φ̂a

nn′ (k) are the 2 × 2 matrix basis functions of the d-
dimensional pairing channel γ . Using the expression (26)
allows us to establish a direct connection with the mean-field
symmetry analysis developed in Sec. II A and also facilitates
the derivation of the effective action for our superconductor.

To make analytical progress, we use the following band
dispersions:

ξ1(k) = ξ (k) − Eb

2
, ξ2(k) = ξ (k) + Eb

2
, (27)

where Eb > 0 is the band splitting, which satisfies

Eb < 2εc � εF . (28)

Under these assumptions, the Cooper pairing, both intraband
and interband, takes place within a “thick” momentum shell
containing both Fermi surfaces, as illustrated schematically in
Fig. 1. The BCS cutoffs in Eq. (25) take the same form in
both bands and also appear in the basis functions as φ̂a

nn′ (k) ∝
θ [εc − |ξ (k)|]. The relative strength of the intraband and in-
terband pairing is controlled by the coupling constants.

The smallness of the superconducting energy scales com-
pared to the Fermi energy allows one to transform the
momentum integrals that appear in the calculations below as
follows: ∫

d2k
(2π )2

(. . . ) = NF

∫ εc

−εc

dξ 〈(. . . )〉, (29)

where NF = ∫
k δ[ξ (k)] is the density of states (DoS) corre-

sponding to ξ (k) and the angular brackets denote the average
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over the constant-energy surface ξ (k) = 0. It should be noted
that only the assumption that both Fermi surfaces are inside
the same BCS shell is crucial for our analysis. The assumption
εc � εF facilitates analytical calculations but can be relaxed,
e.g., one can extend the energy cutoff to the bandwidth if
needed.

One can use Eqs. (1) and (10) to show that the factorized
form (26) of the pairing interaction ensures that the Hamilto-
nian is invariant under the point-group operations: gĤintg−1 =
Ĥint. The coupling constants satisfy the constraints

Vn1n2,n3n4 = V ∗
n4n3,n2n1

, (30)

which follows from the Hermiticity of Ĥint, and also

Vn1n2,n3n4 = Vn2n1,n3n4 = Vn1n2,n4n3 , (31)

which follows from the anticommutation of the fermionic
operators. The final set of constraints,

Vn1n2,n3n4 = V ∗
n2n1,n4n3

, (32)

comes from the requirement that the Hamiltonian is invariant
under TR, i.e., KĤintK−1 = Ĥint, after Eq. (15) is taken into
account. Combining Eqs. (30), (31), and (32), we see that the
coupling constants for all band combinations are real and have
the following symmetry properties:

Vn1n2,n3n4 = Vn2n1,n3n4 = Vn1n2,n4n3 = Vn3n4,n1n2 . (33)

Therefore, in the two-band case there are six independent cou-
pling constants: V11,11, V22,22, V11,22, V11,12, V12,12, and V12,22,
the last three describing the pairing of quasiparticles from
different bands. The constants V11,11 and V22,22 describe the
intraband pairing in the bands 1 and 2, respectively, whereas
V11,22 describes the pair scattering (the Josephson coupling)
between different bands. In Appendix C, we calculate the

coupling constants in a simple model of the pairing interaction
which is local is real space.

In the remainder of the paper, we focus on the 1D pairing
channels, exemplified by the s-wave pairing (see Sec. II B).
The order parameter has three components, two intraband
and one interband [see Eq. (20)], which can be written in a
compact form as

η(r) =
⎛
⎝η1(r)

η2(r)
η̃(r)

⎞
⎠, η(q) = 1

V

∫
d2r η(r)e−iqr.

We shall also use the following shorthand notation for the six
independent coupling constants:

V11,11 = V11, V22,22 = V22, V11,22 = V12,

V11,12 = Ṽ13, V22,12 = Ṽ23, V12,12 = Ṽ33,

which can be combined into a real positive-definite symmetric
matrix

Ŵ =
⎛
⎝V11 V12 Ṽ13

V12 V22 Ṽ23

Ṽ13 Ṽ23 Ṽ33

⎞
⎠. (34)

To describe the “usual” two-band superconductor without the
interband pairing, all quantities with a tilde, namely, Ṽ13, Ṽ23,
Ṽ33, and η̃, should be set to zero.

In a uniform superconducting state, we have η(q) = ηδq,0

and, according to Appendix D, the self-consistency equa-
tions for the gap functions take the following form:

Ŵ −1η = 1

2
T

∑
m

∫
d2k

(2π )2
tr

(
∂Ĝ−1

∂η∗ Ĝ
)

, (35)

where ωm = (2m + 1)πT is the fermionic Matsubara fre-
quency and

Ĝ−1(k, ωm) =

⎛
⎜⎜⎜⎜⎝

iωm − ξ1(k) −�̂11(k) 0 −�̂12(k)

−�̂
†
11(k) iωm + ξ1(k) −�̂

†
21(k) 0

0 −�̂21(k) iωm − ξ2(k) −�̂22(k)

−�̂
†
12(k) 0 −�̂

†
22(k) iωm + ξ2(k)

⎞
⎟⎟⎟⎟⎠ (36)

is the inverse Green’s function. The intraband and interband
gap functions are given by Eq. (21). The momentum integrals
in Eq. (35) and everywhere below are understood to include
the cutoff, as in Eq. (29).

Since all 2 × 2 Kramers blocks in the matrix (36) commute
with each other, its inverse can be calculated analytically
producing a system of three coupled nonlinear equations for
the order-parameter components:

⎛
⎝η1

η2

η̃

⎞
⎠ = T

∑
m

∫
d2k

(2π )2
Ŵ

⎛
⎜⎝

�1(k, ωm)

�2(k, ωm)

2�̃(k, ωm)

⎞
⎟⎠, (37)

where

�1 = η1α
2
1

(
ω2

m + ξ 2
2 + |�2|2

) − η̃2η∗
2α1α2g2

ω4
m + 2Pω2

m + Q
,

�2 = η2α
2
2

(
ω2

m + ξ 2
1 + |�1|2

) − η̃2η∗
1α1α2g2

ω4
m + 2Pω2

m + Q
,

�̃ = η̃g2
(
ω2

m + ξ1ξ2 + |�̃|2) − η1η2η̃
∗α1α2g2

ω4
m + 2Pω2

m + Q
.

Other notations are as follows:

�n(k) = ηnαn(k), �̃(k) = η̃g(k), g =
√

α̃2 + β̃
2
,

P = 1

2

(
ξ 2

1 + |�1|2 + ξ 2
2 + |�2|2

) + |�̃|2,
Q = r2

1 + r2
2 + r2

3 ,

and

r1 = ξ1ξ2 − |�1�2| + �̃2, r2 = ξ1|�2| + ξ2|�1|,
r3 =

√
2g2[|�1�2||η̃|2 − Re (�1�2η̃∗,2)]. (38)
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As a side note, the inverse Green’s function (36) can
also be used to obtain the energies E (k) of the Bo-
goliubov quasiparticles in the bulk, by solving the equa-
tion det Ĝ−1(k, ωm)|iωm→E+i0 = 0. In this way, we find that
the Bogoliubov spectrum consists of four twofold-degenerate
branches ±E±, where

E±(k) =
√

P(k) ±
√

P2(k) − Q(k). (39)

The upper Bogoliubov excitation branch E+ is fully gapped in
the superconducting state, but the lower branch E− vanishes at
the wave vector k if r1(k) = r2(k) = r3(k) = 0, correspond-
ing to a gap node. For a detailed investigation of the nodal
structure of superconductors with the interband pairing, see
Refs. [36,39].

In the general case, i.e., when the intraband and interband
coupling constants are present in the matrix Ŵ , all three
components of η are nonzero. In the limit of purely intraband
pairing, we have Ṽ13 = Ṽ23 = Ṽ33 = 0 and η̃ = 0, so that the
Eq. (34) is reduced to the following form:(

η1

η2

)
=

(
V11 V12

V12 V22

)(
I1

I2

)
, (40)

where

In = 1

2
ηn

∫
d2k

(2π )2
α2

n

tanh
(√

ξ 2
n + |�n|2/2T

)
√

ξ 2
n + |�n|2

.

These are the standard gap equations for a two-band supercon-
ductor with the intraband pairing and the interband Josephson
coupling characterized by V12 (Ref. [14]). The phase transition
is of the second order and the critical temperature Tc is found
from the linearized version of Eq. (40).

The gap equations (37) remain invariant under a simultane-
ous rotation of the phases of the order-parameter components
η1, η2, and η̃ by the same amount. Therefore, η̃ can be set to
be real positive, but η1 and η2 can be complex:

η1 = |η1|eiϕ1 , η2 = |η1|eiϕ2 . (41)

In a TR-invariant superconducting state, all three components
are real and ϕ1,2 = 0 or π . Stable states that break TR sym-
metry are also possible (see Sec. V).

Due to its complexity, the system of the nonlinear gap
equations (37) with all the coupling constants present is not
the most convenient starting point for studying the physics
of our superconductor. For this reason, below we use the
GL formalism, i.e., assume that the phase transition is of
the second order and that the free energy in the vicinity of
the critical temperature Tc can be expanded in powers of the
order parameter η(r) and its gradients.

IV. GINZBURG-LANDAU FREE ENERGY

We focus on a two-band s-wave superconductor, with the
intraband and interband gap functions discussed in Sec. II B.
The GL free-energy density FGL = F2 + F4 near the super-
conducting phase transition is derived using the multiband
generalization of the effective action formalism (see Ap-
pendix D). While our results are also immediately applicable
to other 1D pairing channels, such as d-wave, calculations

for higher-dimensional pairing channels, such as the p-wave
pairing, are more involved and will be presented elsewhere.

The terms quadratic in the order parameter have the form

F2 = η†Âη + K1|∇η1|2 + K2|∇η2|2 + K̃|∇η̃|2. (42)

The temperature dependence enters only the uniform terms
through

1

NF
Â(T ) = �̂−1 −

⎛
⎝L(T ) 0 0

0 L(T ) 0
0 0 2L̃(T )

⎞
⎠, (43)

where

�̂ = NFŴ =
⎛
⎝λ11 λ12 λ̃13

λ12 λ22 λ̃23

λ̃13 λ̃23 λ̃33

⎞
⎠ (44)

is a symmetric matrix of the dimensionless coupling con-
stants, with Ŵ given by Eq. (34), and

L(T ) = ln

(
2eCεc

πT

)
,

L̃(T ) = ln

(
2eCεc

πT

)
+ �

(
1

2

)
− Re �

(
1

2
− i

Eb

4πT

)
, (45)

where C 
 0.577 is Euler’s constant and �(z) is the digamma
function. We assume that the intraband and interband ba-
sis functions are normalized as follows: 〈α2

1 (k)〉 = 〈α2
2 (k)〉 =

〈g2(k)〉 = 1. Note that L diverges at T → 0, which corre-
sponds to the standard logarithmic singularity in the intraband
Cooper channel, whereas L̃ does not diverge, since the sin-
gularity in the interband Cooper channel is cut off by the
band splitting. The gradient terms in Eq. (42) are discussed
in Sec. IV B below.

The expressions (42) and (43) are valid only if the coupling
constants form an invertible matrix. In the purely intraband
limit, we have λ̃13 = λ̃23 = λ̃33 = 0 and the matrix �̂ is singu-
lar. In this case, η̃ identically vanishes and the uniform terms
in Eq. (42) take the from

F2 = α1(T )|η1|2 + α2(T )|η2|2 + γ (η∗
1η2 + c.c.), (46)

where

α1(T ) =
[

λ22

λ11λ22 − λ2
12

− L(T )

]
NF ,

α2(T ) =
[

λ11

λ11λ22 − λ2
12

− L(T )

]
NF ,

γ = − λ12

λ11λ22 − λ2
12

NF .

Thus, the usual GL theory for a two-band superconductor
with the Josephson coupling between the bands is recovered
[40–42]. The opposite case of a purely interband pairing (only
λ̃33 �= 0) is discussed in Sec. IV A 2.

A. Critical temperature

In general, all six coupling constants in the matrix (44)
are nonzero. Phenomenologically, they are constrained only
by the requirement that �̂ is real and positive definite, which
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means, in particular, that the diagonal elements are all posi-
tive. The off-diagonal elements can have either sign.

At sufficiently high temperatures, the matrix Â is positive
definite and the minimum of the free energy is achieved at
η = 0, i.e., in the normal state. As the temperature is lowered,
one of the eigenvalues of Â changes sign, so that the critical
temperature Tc of the second-order phase transition into a uni-
form superconducting state is found by solving the equation

det Â(T ) = 0. (47)

It can be shown that the maximum critical temperature
corresponds to the state in which all three components of the
order parameter are nonzero (see Appendix E). In other words,
if all coupling constants are nonzero, then the normal-state in-
stability towards the general superconducting state (η1, η2, η̃)
occurs at a higher temperature than the instability towards
a reduced state (η1, η2, 0). This can be interpreted as an
“enhancement” of superconductivity by the interband pairing.

At given coupling constants, the onset of superconductivity
is controlled by the interband splitting Eb. We observe that

dTc

dEb
= −∂ (det Â)/∂Eb

∂ (det Â)/∂T

∣∣∣∣
T =Tc

.

The denominator here is positive, while for the numerator we
obtain from Eqs. (43) and (45)

∂

∂Eb
det Â = tr

(
adj Â

∂Â

∂Eb

)

= 1

2πT

(
A11A22 − A2

12

)
Im � ′

(
1

2
− i

Eb

4πT

)
,

where adj Â is the adjugate matrix. The function Im �(1/2 −
ix) is positive at all x > 0 and it follows from Sylvester’s cri-
terion that the principal minors of Â, including A11A22 − A2

12,
are positive at Tc. Therefore,

dTc

dEb
< 0, (48)

i.e., increasing the band splitting Eb always suppresses the
critical temperature, regardless of all other parameters of the
system, including the relative magnitudes of the intraband and
interband coupling constants.

After some straightforward manipulations, Eq. (47) takes
the form

AL2 − 2BL + 1 = 0, (49)

where

A = λ11λ22 − λ2
12

+ 2
(
λ11λ̃

2
23 + λ22λ̃

2
13 − 2λ12λ̃13λ̃23

)
L̃

1 − 2λ̃33L̃
,

B = λ11 + λ22

2
+

(
λ̃2

13 + λ̃2
23

)
L̃

1 − 2λ̃33L̃
.

A closed-form expression for the critical temperature can be
obtained only in the limit Tc � Eb. Using the asymptotic form
�(z) 
 ln z at z → ∞ (Ref. [43]), we find that L̃ attains a

finite-temperature-independent value:

L̃0 ≡ L̃(0) = ln
2εc

Eb
� 0. (50)

Now Eq. (49) can be easily solved, with the following result:

Tc = 2eCεc

π
e−1/λ, λ = B +

√
B2 − A. (51)

We assume that all six dimensionless coupling constants in
Eq. (44) are small in magnitude and that λ � 1, which corre-
sponds to the weak-coupling limit, in which Tc � Eb < 2εc.

The effects of the interband pairing, which are contained
in the last terms in A and B, depend on the six coupling
constants and also on the band splitting Eb, making it difficult
to characterize them by a simple single parameter. To make
progress, we assume that either all six coupling constants have
the same order of magnitude (which they do if the pairing is
local in real space, see Appendix C), or the three “interband”
constants differ from the three “intraband” ones by a factor

ω̃ = max(|λ̃13|, |λ̃23|, λ̃33)

max(λ11, λ22, |λ12|) . (52)

Another dimensionless parameter that appears in A and B,

ρ̃ = max(|λ̃13|, |λ̃23|, λ̃33) L̃0, (53)

can be used as a measure of the effect of the band splitting.
It is reasonable to assume that ρ̃ � 1 in the weak-coupling
theory, the assumption that would break down only if the band
splitting is exponentially small compared to εc.

1. Dominant intraband pairing

If the last terms in A and B represent small corrections, then
the critical temperature is largely determined by the intraband
coupling constants. In terms of the parameters (52) and (53),
this corresponds to ω̃ρ̃ � 1, in which case

λ = λ0[1 + O(ω̃ρ̃ )], (54)

where

λ0 = λ11 + λ22

2
+

√(
λ11 − λ22

2

)2

+ λ2
12

is the effective coupling constant in a two-band superconduc-
tor without interband pairing. If ω̃ � 1, then Tc → Tc0 + 0,
where Tc0 = (2eCεc/π )e−1/λ0 is the “intraband-only” critical
temperature.

At fixed coupling constants, the critical temperature of the
three-component superconducting state η = (η1, η2, η̃) is sup-
pressed by increasing the band splitting, until at Eb = 2εc we
have L̃0 = 0, the interband component disappears altogether,
and the phase transition takes place at Tc0 into the reduced
state with η = (η1, η2, 0). Further increasing Eb does not af-
fect the critical temperature because the pairing shells in the
two bands no longer overlap.

2. Dominant interband pairing

The extreme limit of a purely interband pairing is real-
ized when the only nonzero coupling constant is λ̃33, so that
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ω̃ → ∞. Then, the order parameter has only one component
η̃ and the critical temperature equation (49) takes the form

L̃(T ) = 1

2λ̃33
.

Since maxT L̃(T ) = L̃0 + O(1), the last equation does not
have a solution if λ̃33L̃0 � 1. Therefore, the purely interband
superconductivity is completely suppressed by a sufficiently
large band splitting, which is is analogous to the paramagnetic
pair breaking by a strong magnetic field in the usual BCS case
[44,45], with Eb playing the role of the Zeeman magnetic field.
At λ̃33L̃0 � 1, a nonuniform interband superconductivity of
the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) type [46,47] is
also suppressed.

Let us now suppose that the intraband coupling constants
are nonzero but small compared with the interband ones, so
that ω̃ρ̃ � 1. In this case, all three components of the order
parameter are nonzero and the critical temperature is given by
Eq. (51), with the effective coupling constant

λ = 2
(
λ̃2

13 + λ̃2
23

)
L̃0. (55)

If λ̃13 = λ̃23 = 0, then λ and therefore Tc vanish, in agreement
with the complete suppression of superconductivity in the
purely interband limit.

B. Gradient terms

The coefficients in the gradient energy can be evaluated
at the critical temperature, with the following result (see Ap-
pendix D for details):

K1 = 7ζ (3)NF w1

16π2T 2
c

, K2 = 7ζ (3)NF w2

16π2T 2
c

,

K̃ = 7ζ (3)NF w̃

8π2T 2
c

f1

( Eb

4πTc

)
, (56)

where ζ (3) 
 1.20 is the Riemann zeta function, wn =
〈α2

nv
2
x 〉 = 〈α2

nv
2
y 〉, w̃ = 〈g2v2

x 〉 = 〈g2v2
y 〉, and

f1(x) = − 1

14ζ (3)
Re � ′′

(
1

2
− ix

)
. (57)

This function is plotted in Fig. 2. In particular, in the limit of
a large band splitting Eb � Tc, using the asymptotics f1(x) ∝
−1/x2 at x � 1 (Ref. [43]), we find that the coefficient K̃ is
much smaller than K1 and K2:

|K̃|
K1,2

∼ T 2
c

E2
b

. (58)

Note that K̃ becomes negative at a sufficiently large band
splitting [changing sign at Eb/Tc 
 3.82 (see Fig. 2)], which
indicates a possible instability towards a nonuniform super-
conducting state even at zero external magnetic field. Let us
see if such an instability indeed takes place.

It follows from Eq. (42) that the critical temperature of a
continuous phase transition into a nonuniform state is found
from the equation det Â(T, q) = 0, where

Â(T, q) = Â(T ) +
⎛
⎝K1q2 0 0

0 K2q2 0
0 0 K̃q2

⎞
⎠, (59)

FIG. 2. The functions f1,2,3(x) which determine the dependence
of the GL free-energy coefficients on the band splitting Eb [see
Eqs. (56) and (63)], with x = Eb/4πTc. Note that f1(x) changes sign
at x 
 0.30.

where Â is given by Eq. (43). Therefore,

dTc

dx

∣∣∣∣
q=0

= − ∂ (det Â)/∂x

∂ (det Â)/∂T

∣∣∣∣
q=0

, x = q2. (60)

The denominator here is positive because the matrix Â is posi-
tive definite at temperatures above Tc, while for the numerator
we have

∂ (det Â)

∂x

∣∣∣∣
q=0

= (
A11A22 − A2

12

)
K̃ + (

A22A33 − A2
23

)
K1

+ (
A11A33 − A2

13

)
K2, (61)

where the matrix elements of Â are taken at T = Tc.
A nonuniform superconducting state has a higher critical

temperature than the uniform one if the derivative (60) is
positive. Since the coefficients multiplying K1, K2, and K̃ on
the right-hand side of Eq. (61) are nothing but the principal
minors of Â, which are all positive at Tc, the uniform super-
conducting state is unstable near Tc if K̃ < 0 and

|K̃| >
K1

(
A22A33 − A2

23

) + K2
(
A11A33 − A2

13

)
A11A22 − A2

12

.

In view of Eq. (58), this last condition is difficult to satisfy
for a large band splitting. Although one cannot rule out that
the nonuniform instability may be present in some fine-tuned
ranges of the parameters, we shall not further investigate this
possibility here.

C. Quartic terms

According to Appendix D, the uniform fourth-order terms
in the free-energy density have the form

F4 = β1|η1|4 + β2|η2|4 + β̃1|η1|2|η̃|2 + β̃2|η2|2|η̃|2
+ β̃3|η̃|4 + β̃4(η1η2η̃

∗,2 + c.c.), (62)
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with

β1 = β0
〈
α4

1

〉
, β2 = β0

〈
α4

2

〉
, β̃1 = 4β0 f2

( Eb

4πTc

)〈
α2

1g2
〉
,

β̃2 = 4β0 f2

( Eb

4πTc

)〈
α2

2g2
〉
, β̃3 = 2β0 f1

( Eb

4πTc

)
〈g4〉,

β̃4 = 2β0 f3

( Eb

4πTc

)
〈α1α2g2〉. (63)

Here

β0 = 7ζ (3)NF

16π2T 2
c

,

f1(x) is given by Eq. (57), and the functions

f2(x) = 1

14ζ (3)x
Im � ′

(
1

2
− ix

)
(64)

and

f3(x) = 1

7ζ (3)x2

[
Re �

(
1

2
− ix

)
− �

(
1

2

)]
(65)

are plotted in Fig. 2.
Generically, β1 and β2 are of the same order of magnitude:

β1 ∼ β2 ∼ β0. In the limit of a large band splitting (Eb �
Tc), we use the asymptotics f2(x) ∝ 1/x2 and f3(x) ∝ ln x/x2

(Ref. [43]) and find that the coefficients in the terms involving
the interband pairing are smaller than β1,2:

β̃1,2

β0
∼ T 2

c

E2
b

,
|β̃3|
β0

∼ T 2
c

E2
b

,
β̃4

β0
∼ T 2

c

E2
b

ln
Eb

Tc
.

Note that, similarly to K̃ , the coefficient β̃3 changes sign at
Eb/Tc 
 3.82, so that one could ask whether a first-order tran-
sition into the interband-only state η = (0, 0, η̃) can preempt
the second-order transition into the general state in which all
three components of the order parameter are nonzero. It is
easy to see that the answer is negative since the interband-only
state does not satisfy the gap equations (37) if all coupling
constants are present. In the purely interband limit, in which
only Ṽ33 is nonzero, superconductivity is completely sup-
pressed by the large band splitting (see Sec. IV A 2).

D. Discussion

Putting our results together, the GL free energy of a clean
two-band superconductor with interband pairing has the form

FGL = F2 + F4, (66)

where

F2 = α1|η1|2 + α2|η2|2 + γ (η∗
1η2 + c.c.)

+ α̃|η̃|2 + γ̃1(η∗
1 η̃ + c.c.) + γ̃2(η∗

2 η̃ + c.c.)

+ K1|∇η1|2 + K2|∇η2|2 + K̃|∇η̃|2 (67)

and F4 is given by Eq. (62). The coefficients in the uniform
quadratic terms are given by

αn = [(�̂−1)nn − L(T )]NF ,

α̃ = [(�̂−1)33 − 2L̃(T )]NF ,

γ = (�̂−1)12NF , γ̃n = (�̂−1)n3NF .

We see that, while αn changes sign at the temperature Tn =
(2eCεc/π ) exp[−(�̂−1)nn], the temperature dependence of α̃

is negligible if Eb � Tc, when L̃(T ) 
 L̃0 [see Eq. (50)].
Therefore, in the large band splitting limit, α̃ is just a positive
constant, which is consistent with the fact that superconduc-
tivity is completely suppressed in the interband-only case (see
Sec. IV A 2).

The explicit analytical expressions for the coefficients in
the GL expansion have been obtained using the band structure
model (27), which describes two electron or hole pockets
near the center of the Brillouin zone (BZ). The pockets have
slightly different sizes and can be anisotropic. The band struc-
ture of many real multiband materials is considerably more
complicated. For instance, the minimal model of iron-based
superconductors includes one electron pocket near the BZ
center and one hole pocket near the BZ corner [48], in which
case the approximation (29) is not applicable. In general,
according to Appendix D 1, the GL free energy with the in-
terband pairing still has the form given by Eqs. (66), (67), and
(62), where the coefficients can be obtained from Eqs. (D19)
and (D23) for each particular model of the band structure.
Nesting between different sheets of the Fermi surface, e.g.,
between the electron and hole pockets in iron-based supercon-
ductors, can result in the superconductivity coexisting with
other electronic instabilities, such as spin- or charge-density
waves [48,49]. These effects are beyond the scope of our
investigation.

From the symmetry point of view, the phenomenological
GL free energy can contain many more terms than those
listed in Eqs. (67) and (62). Namely, any combination of the
order-parameter components and their gradients which is (i)
real, (ii) invariant under all operations of the point group, and
(iii) invariant under a simultaneous rotation of the phases of
η1, η2, and η̃, can appear in FGL. For example, such quartic
terms as

η2
1η

∗,2
2 + c.c., η2

nη̃
∗,2 + c.c., |η̃|2(η1η

∗
2 + c.c.)

are all allowed by symmetry, as are the gradient terms

(∇η1)∗(∇η2) + c.c., (∇ηn)∗(∇η̃) + c.c.

Our microscopic derivation shows that, in order to obtain any
of these additional terms, one has to go beyond the extended
BCS framework.

A two-band superconductor with interband pairing is
characterized by a three-component order parameter η =
(η1, η2, η̃), so it is natural to ask how our results compare with
the GL energy for a three-band superconductor without inter-
band pairing. In the latter case, the order parameter also has
three components, η1, η2, and η3, which describe the intraband
pair condensates in each of the bands, and the free-energy
density is given by a straightforward extension of the standard
two-band GL theory:

F 3-band
GL =

3∑
n=1

[αn|ηn|2 + Kn|∇ηn|2 + βn|ηn|4]

+
∑
n �=n′

γnn′ (η∗
nηn′ + c.c.) (68)
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(see, e.g., Refs. [21,22,50,51]). The differences between
Eqs. (66) and (68) can be summarized as follows. In Eq. (67),
only the intraband coefficients α1 and α2 essentially depend
on temperature, but not α̃, in contrast to Eq. (68), in which
all three coefficients α1,2,3 are T dependent. In the gradient
terms in Eq. (67), the coefficient K̃ becomes negative and
much smaller than K1 and K2 in the large band splitting limit,
whereas all three gradient terms in F 3-band

GL are positive and
generally comparable in magnitude. Finally, the fourth-order
terms (62) have a more complicated structure than those in
Eq. (68). This leads to a rich variety of stable superconducting
states, including those that break TR symmetry (see the next
section).

V. TR SYMMETRY-BREAKING STATES

The GL free-energy expansion (66) is quantitatively valid
in the vicinity of the critical temperature Tc, where it can be
used to show that η ∝ (Tc − T )1/2, with all three components
real (see Appendix F). In this section, we assume that the
physics of our superconductor at temperatures much lower
than Tc can also be captured, at least qualitatively, by the free
energy (66), which is treated in the London approximation.
Namely, we fix the order-parameter magnitudes and minimize
FGL only with respect to the relative phases of the order-
parameter components.

Setting η̃ to be real positive and using Eq. (41), the uniform
phase-dependent terms in the free-energy density take the
form

Fphase = J cos(ϕ1 − ϕ2) + J̃1 cos ϕ1 + J̃2 cos ϕ2

+ J̃3 cos(ϕ1 + ϕ2), (69)

where

J = 2γ |η1||η2|, J̃1 = 2γ̃1|η1|η̃, J̃2 = 2γ̃2|η2|η̃,

J̃3 = 2β̃4|η1||η2|η̃2.

The first term in Eq. (69) has the form usual for two-
band superconductors, with J corresponding to the interband
Josephson coupling, whereas the remaining terms describe
the effects of the interband pairing. If the latter is neglected,
then there are only two uniform stable states: ϕ1 − ϕ2 = π

for J > 0 and ϕ1 − ϕ2 = 0 for J < 0, both of which preserve
TR symmetry. It follows from the results of the previous
section that J̃3 is positive, whereas J , J̃1, and J̃2 can have either
sign.

Before we proceed with finding the stable minima of the
free energy (69), we note that TR symmetry-breaking states
have been extensively studied in three-band superconductors
with only intraband pairing [50,52,53]. The three-band Lon-
don energy obtained from Eq. (68) depends on the condensate
phases ϕ1 and ϕ2 in two of the bands (one can set the phase in
the third band to zero) and looks similar to Eq. (69), but with
J̃3 = 0. The TR symmetry-breaking states in the three-band
model can be realized when the order-parameter phases are
“frustrated,” i.e., when sign(JJ̃1J̃2) > 0.

To make analytical progress, we assume that the intraband
parameters are the same in both bands, so that J̃1 = J̃2. Writ-
ing Fphase = |J| f (ϕ1, ϕ2), we have to minimize the following

function:

f (ϕ1, ϕ2) = σ cos(ϕ1 − ϕ2) + p(cos ϕ1 + cos ϕ2)

+q cos(ϕ1 + ϕ2), (70)

where σ = sign(J ) and

p = J̃1

|J| = J̃2

|J| , q = J̃3

|J| > 0.

If (ϕ1, ϕ2) is a critical point of f , then (ϕ1 + π, ϕ2 + π ) is a
critical point of f with p replaced by −p. Therefore, when
analyzing the minima of f , one can focus on p � 0. At q = 0,
TR symmetry-breaking states are only possible for σ > 0.

The critical points of f are found from the equations

σ sin(ϕ1 + ϕ2) − p sin ϕ1 + q sin(ϕ1 + ϕ2) = 0,

σ sin(ϕ1 − ϕ2) − p sin ϕ2 − q sin(ϕ1 + ϕ2) = 0. (71)

In addition to the trivial solutions ϕ1, ϕ2 = 0 or π , which
correspond to TR invariant states, these equations can also
have nontrivial solutions, in which the phases are different
from 0 and π . It can be shown (see Appendix G) that all
nontrivial critical points must satisfy the conditions

ϕ1 = ϕ2 or ϕ1 = −ϕ2. (72)

The critical point (ϕ1, ϕ2) is a local minimum of the free
energy if the Hessian matrix

Ĥ f =
(

f11 f12

f12 f22

)
, fi j = ∂2 f

∂ϕi∂ϕ j
(73)

is positive definite, i.e., if f11 > 0 and f11 f22 − f 2
12 > 0. The

stability analysis of the critical points is done below, sepa-
rately for J > 0 and J < 0.

A. J > 0

According to the discussion above, it is sufficient to con-
sider the following four critical points of f , at p � 0 and
q � 0:

I : ϕ1 = ϕ2 = π, fI = 1 − 2p + q,

II : ϕ1 = 0, ϕ2 = π, fII = −1 − q,

III : ϕ1 = ϕ2, cos ϕ1 = − p

2q
, fIII = 1 − q − p2

2q
,

IV : ϕ1 = −ϕ2, cos ϕ1 = − p

2
, fIV = −1 + q − p2

2
.

Here we also listed the energies at the critical points. The
superconducting states I and II are TR invariant, whereas the
states III and IV break TR symmetry. Calculating the Hessian
matrix (73), we obtain the conditions for the critical points to
be local minima of the free energy (70):

I : p > 2, 0 � q <
p

2
,

II : q >
p2

4
,

III : p > 2,
p

2
< q <

p2

4
,

IV : 0 < p < 2, 0 � q <
p2

4
. (74)

Since the regions of local stability for different states do not
overlap, there is only one stable state at each p and q (see
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FIG. 3. Stable states of the free energy (70) for J > 0. The states
I and II are TR invariant, while the states III and IV break TR sym-
metry. The black lines correspond to the continuous phase transitions
between isolated stable minima. At the blue line, the minima of
Eq. (70) are infinitely degenerate, as shown in Figs. 4 and 5.

the phase diagram in Fig. 3). The only exception is at q =
p2/4, when the free energy (70) has a whole line of degenerate
minima, instead of isolated critical points (see Appendix G).

The state I is continuously transformed into the states III
and IV at q = p/2 and p = 2, respectively. Regarding the
transition line q = p2/4, the states II and IV are both located
on this line at p < 2 (see Fig. 4), while the states II and III
are both located on this line at p > 2 (see Fig. 5). Although
the infinite degeneracy of the ground states at q = p2/4 can
possibly have interesting implications for the critical behavior,
we leave investigating those for a future work.

B. J < 0

It is sufficient to consider the following four critical points
of f , at p � 0 and q � 0:

I : ϕ1 = ϕ2 = π, fI = −1 − 2p + q,

II : ϕ1 = 0, ϕ2 = π, fII = 1 − q,

III : ϕ2 = ϕ1, cos ϕ1 = − p

2q
, fIII = −1 − q − p2

2q
,

IV : ϕ2 = −ϕ1, cos ϕ1 = − p

2
, fIV = 1 + q + p2

2
.

FIG. 4. The line of continuously degenerate minima of the free
energy (70) at q = p2/4 and p < 2. The empty and filled circles show
the states II and IV, respectively.

FIG. 5. The line of continuously degenerate minima of the free
energy (70) at q = p2/4 and p > 2. The empty and filled circles show
the states II and III, respectively.

Calculating the Hessian matrix (73), we obtain that the states
II and IV do not correspond to minima of the free energy (70)
at p, q � 0, and that the stability conditions for the other two
states are given by

I : 0 � q <
p

2
,

III : q >
p

2
, (75)

as shown in Fig. 6. At the transition line q = p/2, the TR
invariant superconducting state I is continuously transformed
into the TR symmetry-breaking state III.

C. Discussion

There are no TR symmetry-breaking states in a two-band
superconductor with the interband Josephson coupling but
without interband pairing. Such a system is described by the
London energy (70) with p = q = 0. In the presence of an
interband pairing component, both p and q become nonzero
and a two-band superconductor can support TR symmetry-
breaking states, as shown in the phase diagrams in Figs. 3
and 6.

The results for the three-band model with intraband-only
pairing are formally reproduced if one sets q = 0. We see that
even a small nonzero q, corresponding to a small nonzero
J̃3 in Eq. (69), leads to qualitative changes in the phase dia-
grams, both at J > 0 and J < 0. In particular, if J < 0 then

FIG. 6. Stable states of the free energy (70) for J < 0. The state
I is TR invariant, while the state III breaks TR symmetry.
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the superconducting state is TR invariant at q = 0 and all p,
because of the absence of “frustration” in the order-parameter
phases. However, at any nonzero q, a TR symmetry-breaking
state with ϕ1 = ϕ2 �= 0 or π appears in the phase diagram at
sufficiently small p.

VI. CONCLUSIONS

We presented a microscopic derivation of the GL free
energy in a clean two-band superconductor with all possible
Cooper pairings between the bands. Assuming a 1D pairing
channel, the order parameter has three components: the intra-
band ones, η1 and η2, which describe the pair condensates in
the two bands, and also the interband one, η̃, which describes
the pairs composed of the quasiparticles from different bands.
Our expression for the GL free energy differs significantly
from the previously studied three-band GL functionals with
intraband-only order parameters, both in the temperature de-
pendence of the coefficients and in the structure of the quartic
terms.

For the GL energy derivation we used the extended BCS
model, in which the pairing interaction energy cutoff exceeds
the band splitting, so that the Fermi surfaces in both bands
are located within the same pairing shell in the momentum
space. In its general form this model is characterized by
six coupling constants, which is reduced to three if one ne-
glects the interband pairing (the latter limit corresponds to the
usual two-band SC model). In our derivation, we neglected
the effects of disorder, which are known to be detrimental
for superconductivity if the pairing is anisotropic (see, e.g.,
Ref. [31]). According to Sec. II B, for some band combina-
tions the interband gap functions are essentially anisotropic
even for the s-wave pairing. In those cases, the interband
order parameter is expected to be suppressed by impurity
scattering. Detailed investigation of the effects of disorder on
superconductors with the interband pairing will be presented
elsewhere.

We showed that the superconducting critical temperature
Tc increases in the presence of the interband pairing and is
suppressed by the band splitting. Due to the large number of
parameters, we had to focus on some limiting cases to achieve
analytical progress. In particular, a closed-form expression
for Tc is available only if one assumes that the latter is the
smallest energy scale in the system, much smaller than the
band splitting Eb.

We also showed that the coefficient in the gradient energy
of the interband pairs changes sign at a sufficiently large band
splitting. In the absence of intraband pairing, that would lead
to a nonuniform superconducting state of the FFLO type, with
the band splitting playing the role of the Zeeman magnetic
field. However, this nonuniform instability is suppressed when
both the interband and intraband pair condensates are present
and hybridize since the intraband pairs prefer the zero center-
of-mass momentum.

The superconducting state that emerges immediately below
Tc has a real order parameter and, therefore, is TR invariant.
By treating the uniform terms in the GL energy in the London
approximation, we found that a variety of TR symmetry-
breaking states become stable at lower temperatures. The
fourth-order terms specific to the interband pairing give rise to

qualitative changes in the phase diagram, compared to a two-
or three-band superconductor with intraband-only pairing.
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APPENDIX A: SYMMETRY OF THE BLOCH STATES

In the presence of the electron-lattice SO coupling, the
conjugate Bloch states are spinors which have both spin-up
and -down components:

〈r|k, n, 1〉 = 1√
V

(
uk,n(r)
vk,n(r)

)
eikr,

〈r|k, n, 2〉 = 1√
V

(−v∗
k,n(−r)

u∗
k,n(−r)

)
eikr, (A1)

where V is the system volume and the Bloch factors uk,n(r)
and vk,n(r) have the same periodicity as the crystal lattice. The
states |k, n, 1〉 and |k, n, 2〉 form the basis of an irreducible
double-valued corepresentation (corep) of the magnetic point
group of the wave vector k. The full symmetry group of k
is “magnetic” because it contains the antiunitary conjugation
operation C. A detailed review of magnetic groups and their
coreps can be found, e.g., in Refs. [35,54]. If the crystal point
group is G, then the magnetic group at the � point is G =
G + CG. If the �-point corep is equivalent to the spin- 1

2 corep,
then the band is called a “pseudospin band.” In general, the
Bloch states at the � point do not transform as the pure spin
states due to the presence of additional orbital factors, and we
have a “non-pseudospin” band.

If the nth band transforms at the � point according to a 2D
double-valued corep described by 2 × 2 matrices D̂n(g), then
one can construct the Bloch bases at k �= 0 using the following
prescription [33]:

g|k, n, s〉 =
∑

s′
|gk, n, s′〉Dn,s′s(g), (A2)

where g ∈ G is either a proper rotation R or an improper ro-
tation IR. Starting with any wave vector k in the fundamental
domain of the BZ, the expression (A2) defines the Bloch states
at the wave vector gk. In a pseudospin band, one can put
D̂n(g) = D̂(1/2)(R) for all g, where D̂(1/2) is the spinor rep-
resentation of rotations. In this case, Eq. (A2) reproduces the
Ueda-Rice convention [55], which is widely used in theory of
unconventional superconductivity. In a non-pseudospin band,
the �-point corep is not equivalent to the spin- 1

2 corep, i.e.,
D̂n(g) �= D̂(1/2)(R) for some g.

Setting g = I in Eq. (A2), we have I|k, n, s〉 = pn| −
k, n, s〉, where pn = ±1 is the parity of the nth band. Since
the TR operation can be written as K = CI , we have

K|k, n, 1〉 = pn| − k, n, 2〉,
K|k, n, 2〉 = −pn| − k, n, 1〉, (A3)
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where we used the fact that C2 = −1 when acting on the spin-
1
2 wave functions. The transformation rules (1) and (2) follow
immediately from Eqs. (A2) and (A3).

APPENDIX B: INTERBAND s-WAVE PAIRING

The group D4h is generated by the rotations C4z and C2y,
and by the inversion I . The corep matrices have the form
[33–35]

D̂�6 (C4z ) = D̂(1/2)(C4z ), D̂�6 (C2y) = D̂(1/2)(C2y),

D̂�7 (C4z ) = −D̂(1/2)(C4z ), D̂�7 (C2y) = D̂(1/2)(C2y).

Note that D̂�7 is not equivalent to D̂(1/2), reflecting the fact that
�7 is a nonpseudospin corep. In the s-wave pairing channel,
the point-group constraint (11) takes the form

D̂n(g)φ̂nn′ (g−1k)D̂†
n′ (g) = φ̂nn′ (k). (B1)

Using the expression D̂(1/2),†(R)σ̂μD̂(1/2)(R) = ∑3
ν=1 Rμνσ̂ν ,

where R̂ is the 3 × 3 rotation matrix, we obtain that the singlet
and triplet interband components satisfy the following equa-
tions:

α̃(k) = ±α̃
(
C−1

4z k
)
, α̃(k) = α̃

(
C−1

2y k
)
,

β̃(k) = ±C4zβ̃
(
C−1

4z k
)
, β̃(k) = C2yβ̃

(
C−1

2y k
)
. (B2)

The upper signs are realized in the (�6, �6) or (�7, �7) bands,
while the lower signs in the (�6, �7) bands.

Some components of the interband pairing vanish identi-
cally for symmetry reasons. According to Eq. (B2), the C2z

invariance constraint for α̃ has the form α̃(k) = α̃(C−1
2z k) for

all band combinations. However, the C2z rotation acting on 2D
wave vectors is equivalent to inversion: α̃(C−1

2z k) = α̃(−k).
Therefore, α̃ = 0 if the bands have opposite parity. Similarly,
we have β̃(k) = C2zβ̃(C−1

2z k) = C2zβ̃(−k) for all band combi-
nations. Therefore, β̃x = β̃y = 0 if the bands have the same
parity, and β̃z = 0 if the bands have opposite parity.

One can easily find the lowest-order polynomial solutions
of the equations (B2). For instance, for the pairs of opposite-
parity bands (�±

6 , �∓
6 ) or (�±

7 , �∓
7 ) we have α̃ = β̃z = 0,

while β̃ = (β̃x, β̃y) is an odd function of k satisfying β̃(k) =
gβ̃(g−1k), with g = C4z or C2y. The simplest solution is β̃(k) =
k, which produces the gap functions (22). In a similar fashion,
one can obtain all other expressions in Table I.

APPENDIX C: LOCAL ATTRACTIVE INTERACTION

The origin of the interband pairing terms in Eq. (24) can
be illustrated using a simple model of an attractive local inter-
action in a crystal without the SO coupling. In real space, we
have

Ĥint = −υ

∫
d2r ψ

†
↑(r)ψ†

↓(r)ψ↓(r)ψ↑(r), (C1)

with the coupling constant υ > 0 and the field operators given
by

ψ↑(r) = 1√
V

∑
k,n

eikruk,n(r)ck,n1,

ψ↓(r) = 1√
V

∑
k,n

eikr pnuk,n(r)ck,n2. (C2)

Here we used the expressions (A1) and the fact that in the
absence of the SO coupling, one can set vk,n = 0. The lattice-
periodic Bloch factors uk,n satisfy the symmetry relations
u∗

k,n(r) = u−k,n(r) and uk,n(−r) = pnu−k,n(r), which, taken
together with Eq. (2), make sure that Kψ↑(r)K−1 = ψ↓(r) and
Kψ↓(r)K−1 = −ψ↑(r). For simplicity, we assume that the
orbital wave functions at the � point in both bands correspond
to the identity irrep �+

1 of D4h. This means that p1 = p2 = 1
and, if the spin is included, then both bands correspond to the
pseudospin double-valued corep �+

6 .
Substituting Eq. (C2), neglecting the “umklapp” contribu-

tions, and using the identity

c†
k+q/2,n1c̃†

k−q/2,n′1 = c†
−k+q/2,n′2c̃†

−k−q/2,n2,

the interaction Hamiltonian (C1) can be brought to the form
(24) with

V n1n2n3n4
s1s2s3s4

(k, k′; q)

= −υ

2
δs1s2δs3s4

〈
u∗

k+q/2,n1
uk−q/2,n2 u∗

k′−q/2,n3
uk′+q/2,n4

〉
c,

(C3)

where 〈(. . . )〉c denotes the average over the crystal unit cell.
The momentum dependence of the pairing interaction in the
band representation originates from that of the Bloch fac-
tors, which in turn can be found using the standard k · p
perturbation theory. The leading contributions to the pair-
ing interaction near the � point are obtained by substituting
uk,n(r) → un(r) ≡ uk=0,n(r) in Eq. (C3):

V n1n2n3n4
s1s2s3s4

= −υ

2
δs1s2δs3s4

〈
un1 un2 un3 un4

〉
c + (. . . ). (C4)

Here u1(r) and u2(r) are the Bloch factors, which are real
and invariant under all symmetry operations from D4h, and
the ellipsis stands for the momentum-dependent terms, which
we neglect.

It is easy to see that the pairing interaction (C4) has the
factorized form (26), with the basis functions given by φ̂nn′ =
σ̂0. This obviously corresponds to the s-wave pairing channel,
with

α1(k) = α2(k) = α̃(k) = 1, β̃(k) = 0

(see Sec. II B). For the coupling constants, we obtain

V11,11 =υ
〈
u4

1(r)
〉
c, V22,22 =υ

〈
u4

2(r)
〉
c, V11,22 = υ

〈
u2

1(r)u2
2(r)

〉
c,

V11,12 = υ
〈
u3

1(r)u2(r)
〉
c, V12,22 = υ

〈
u1(r)u3

2(r)
〉
c,

V12,12 = υ
〈
u2

1(r)u2
2(r)

〉
c.

All six independent coupling constants are nonzero and gener-
ically have the same order of magnitude. In the model (C1),
the momenta of the band electrons are allowed to take any
values in the BZ, so that the interaction energy cutoff is given
by the bandwidth.

APPENDIX D: DERIVATION OF THE GL FUNCTIONAL

We derive the free energy of the two-band superconduc-
tor with interband pairing using the effective bosonic action
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formalism [56]. The starting point is the representation of
the partition function in the form of a Grassmann functional
integral:

Z = Tr e−βĤ =
∫

DcDc̄ e− ∫ β

0 dτ [
∑

k,ns c̄k,ns∂τ ck,ns+H0(τ )+Hint (τ )],

where β = 1/T . The fermionic fields ck,ns(τ ) and c̄k,ns(τ ) are
labeled by the band index n = 1, 2 and the Kramers index s =
1, 2. The Hamiltonian is given by Eqs. (3) and (24).

Using the factorized expression (26) for the pairing inter-
action in a d-dimensional pairing channel, we introduce the
pair fields

B̄a
nn′ (q, τ ) = 1

V
∑
k,ss′

φa
nn′,ss′ (k)c̄k+q/2,ns ˜̄ck−q/2,n′s′ ,

Ba
nn′ (q, τ ) = 1

V
∑
k,ss′

φa,∗
n′n,s′s(k)c̃k−q/2,nsck+q/2,n′s′ ,

where a = 1, . . . , d and the “time-reversed” fermionic fields
are defined in the same way as the corresponding operators,
i.e., c̃k,ns(τ ) = pn

∑
s1

c−k,ns1 (τ )(−iσ̂y)s1s [see Eq. (2)]. Note
that B̄a

nn′ = B̄a
n′n and Ba

nn′ = Ba
n′n, according to the anticommu-

tation condition (12). The interaction part of the action takes
the form

Sint = −V
4

∫ β

0
dτ

∑
q,a

(
B̄a

11, B̄a
22, 2B̄a

12

)
Ŵ

⎛
⎜⎝ Ba

11

Ba
22

2Ba
12

⎞
⎟⎠,

where Ŵ is given by Eq. (34).

Next, we use the Hubbard-Stratonovich transformation to
decouple the interaction part:

e−Sint ∝
∫ ∏

a

D2ηa
11D2ηa

22D2ηa
12 e−Seff,0

× exp

[
−V

2

∫ β

0
dτ

∑
q,a

∑
nn′

(
ηa

nn′ B̄a
nn′ + ηa,∗

nn′ Ba
nn′

)]
.

Here ηa
11(q, τ ), ηa

22(q, τ ), and ηa
12(q, τ ) = ηa

21(q, τ ) are com-
plex bosonic fields, which can be interpreted as the fluctuating
order-parameter components, and

Seff,0 = V
∫ β

0
dτ

∑
q,a

(
ηa,∗

11 , ηa,∗
22 , ηa,∗

12

)
Ŵ −1

⎛
⎜⎝ηa

11

ηa
22

ηa
12

⎞
⎟⎠. (D1)

In order for the bosonic integral to be well defined, the matrix
of the coupling constants Ŵ has to be positive definite.

Introducing eight-component fermionic fields

C(k, τ ) = (ck11, ck12, ˜̄ck11, ˜̄ck12, ck21, ck22, ˜̄ck21, ˜̄ck22)�,

we arrive at the following expression for the partition function

Z ∝
∫

D2η e−Seff,0[η∗,η]
∫

D2c exp

(
1

2

∫ β

0
dτ C̄Ĝ−1C

)
.

(D2)

Here and below we use the shorthand notation η for the set of
fields ηa

11, ηa
22, and ηa

12. In the fermionic action, the summation
over the momenta as well as over the band, Kramers, and
Nambu indices is implied, and the Green’s operator is given
by

Ĝ−1
kns,k′n′s′ =

(
δkk′

[−δnn′δss′ ∂
∂τ

− εnn′,ss′ (k)
] −�nn′,ss′

(
k+k′

2 , k − k′, τ
)

−�∗
n′n,s′s

(
k+k′

2 , k′ − k, τ
)

δkk′
[−δnn′δss′ ∂

∂τ
+ ε̄nn′,ss′ (k)

]
)

, (D3)

where

ε̂nn′ (k) = δnn′ξn(k)σ̂0,

ˆ̄εnn′ (k) = pn pn′ σ̂yε̂
�
n′n(−k)σ̂y = δnn′ξn(k)σ̂0,

and the dynamical gap function fields have the form

�̂nn′ (k, q, τ ) =
d∑

a=1

ηa
nn′ (q, τ )φ̂a

nn′ (k).

Calculating the Grassmann integral in Eq. (D2), we obtain
Z ∝ ∫

D2η e−Seff[η∗,η], where

Seff[η
∗, η] = Seff,0[η∗, η] − 1

2Tr ln Ĝ−1 (D4)

is the effective bosonic action, with “Tr” denoting the trace
in the kτ space and the matrix trace with respect to the band,
Kramers, and Nambu indices.

The order-parameter components in an equilibrium super-
conducting state correspond to the static solutions η(q) of the
saddle-point equations δSeff/δη

∗ = 0. Using Eqs. (D1) and

(D3), the saddle-point action has the form Seff = βF , where

F = V
∑
q,a

(
ηa,∗

11 , ηa,∗
22 , ηa,∗

12

)
Ŵ −1

⎛
⎜⎝

ηa
11

ηa
22

ηa
12

⎞
⎟⎠

− 1

2
T

∑
m

Tr ln
(
Ĝ−1

0 − �̂
)

(D5)

is the free energy. In the second term, the summation is
carried out over the fermionic Matsubara frequency ωm =
(2m + 1)πT , “Tr” stands for the trace in the momen-
tum, band, Kramers, and Nambu spaces, Ĝ−1

0 (k, k′; ωm) =
δkk′ Ĝ−1

0 (k, ωm), where

Ĝ−1
0 (k, ωm) =

(
ĝ−1

1 (k, ωm) 0
0 ĝ−1

2 (k, ωm)

)
(D6)

is the inverse matrix Green’s function in the normal state, with

ĝ−1
n (k, ωm) =

(
iωm − ξn(k) 0

0 iωm + ξn(k)

)
⊗ σ̂0,
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and the superconducting pairing is described by the self-
energy matrix

�̂(k, k′) =
(

�̂11(k, k′) �̂12(k, k′)
�̂21(k, k′) �̂22(k, k′)

)
, (D7)

where

�̂nn′ (k, k′)

=
(

0 �̂nn′
(

k+k′
2 , k − k′)

�̂
†
n′n

(
k+k′

2 , k′ − k
)

0

)
.

The gap functions here are 2 × 2 matrices in the Kramers
space:

�̂nn′ (k, q) =
d∑

a=1

ηa
nn′ (q)φ̂a

nn′ (k). (D8)

The order parameter can be transformed into the coordinate
representation as follows: η(r) = ∑

q η(q)eiqr.
In a uniform superconducting state, we have η(q) =

ηδq,0, where η is found from the self-consistency equa-
tions ∂F/∂η∗ = 0. Taking the thermodynamic limit V → ∞,
we obtain from Eq. (D5)

Ŵ −1

⎛
⎜⎝

ηa
11

ηa
22

ηa
12

⎞
⎟⎠ = T

∑
m

∫
d2k

(2π )2

⎛
⎜⎝

�a
11

�a
22

�a
12

⎞
⎟⎠, (D9)

where

�a
nn′ (k, ωm) = 1

2
tr

(
∂Ĝ−1

∂ηa,∗
nn′

Ĝ
)

,

Ĝ−1(k, ωm) = Ĝ−1
0 (k, ωm) − �̂(k), and “tr” stands for the 8 ×

8 matrix trace in the band, Kramers, and Nambu spaces. The
critical temperature Tc of the phase transition into a uniform
superconducting state marks the emergence of a nonzero so-
lution of the coupled nonlinear equations (D9). In the case
of the s-wave pairing, Ĝ(k, ωm) can be calculated in a closed
form and we arrive at the gap equations (37).

In the general case, we retain the q dependence of the order
parameter, assume that the phase transition at temperature
Tc is of the second order, and expand the second term in
Eq. (D5) in the vicinity of Tc in powers of �̂, i.e., in powers
of the order-parameter components. In this way, we obtain
F = FN + FGL, where FN is the normal-state free energy and
FGL is the GL energy:

FGL[η∗, η] = F (0)
2 + F (1)

2 + F4 + · · · , (D10)

with F (0)
2 given by the first term in Eq. (D5) and

F (1)
2 = 1

2

∑
k,q

∑
n1,2

tr[�̂n1n2 (k, q)�̂†
n1n2

(k, q)]

× T
∑

m

Gn1 (k+, ωm)Ḡn2 (k−, ωm). (D11)

Here “tr” stands for the trace in the Kramers space,

Gn(k, ωm) = 1

iωm − ξn(k)
,

Ḡn(k, ωm) = 1

iωm + ξn(k)
= −Gn(−k,−ωm) (D12)

are the normal-state Green’s functions, and k± = k ± q/2.
The gap functions are given by Eq. (D8) and we obtain

F (1)
2 = −V

∑
q,ab

∑
n1,2

Cab
n1n2

(q)ηa
n1n2

(q)ηb,∗
n1n2

(q), (D13)

where

Cab
n1n2

(q) = 1

2V
∑

k

tr
[
φ̂a

n1n2
(k)φ̂b,†

n1n2
(k)

]

× T
∑

m

Gn1 (k+, ωm)Gn2 (−k−,−ωm)

= Cab
n1n2

(0) + Kab
n1n2,i jqiq j + O(q4) (D14)

is the static pair propagator, or the Cooperon. The terms linear
in q vanish because the basis functions have a definite parity
for all band combinations, while the quadratic terms produce
the GL gradient energy.

In the fourth-order term F4, we neglect the q dependence
of the Green’s functions, as well as that of the basis functions,
and obtain

F4 = V
2

∑
qi,ai

∑
ni

Ba1a2a3a4
n1n2n3n4

δq1+q3,q2+q4

× ηa1
n1n2

(q1)ηa2,∗
n2n3

(q2)ηa3
n3n4

(q3)ηa4,∗
n4n1

(q4), (D15)

where

Ba1a2a3a4
n1n2n3n4

= 1

2V
∑

k

tr
[
φ̂a1

n1n2
(k)φ̂a2,†

n3n2
(k)φ̂a3

n3n4
(k)φ̂a4,†

n1n4
(k)

]

× T
∑

m

Gn1 (k, ωm)Gn2 (−k,−ωm)Gn3 (k, ωm)

× Gn4 (−k,−ωm). (D16)

It is easy to check, using Eq. (15), that the Cooperons sat-
isfy Cab

n1n2
(q) = Cba

n2n1
(q) and that Ba1a2a3a4

n1n2n3n4
is invariant under

a simultaneous cyclic permutation of the lower and upper
indices. The expressions (D13) and (D15) can be used to
derive the GL energy for any pairing symmetry in a SC with
any number of bands. In this general case, the free energy
depends on N (N + 1)d/2 order-parameter components ηa

nn′ ,
such that ηa

nn′ = ηa
n′n.

1. 1D pairing in a two-band SC

If the pairing corresponds to a 1D irrep of the point group,
then we can drop the index a and obtain from Eq. (D13) the
following expression for the quadratic terms in the GL energy:

F2 = F (0)
2 + F (1)

2 = V
∑

q

η†(q)L̂(q)η(q), (D17)
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where

L̂(q) = Ŵ −1 −
⎛
⎝C11(q) 0 0

0 C22(q) 0
0 0 2C12(q)

⎞
⎠ (D18)

and Cnn′ are the pair propagators:

Cnn′ (q) = 1

4

∫
d2k

(2π )2
tr
[
φ̂nn′ (k)φ̂†

nn′ (k)
]

× tanh[ξn(k+)/2T ] + tanh[ξn′ (k−)/2T ]

ξn(k+) + ξn′ (k−)
. (D19)

The intraband basis functions are given by φ̂nn(k) = αn(k)σ̂0

and the interband ones by Eq. (19).
Using the band dispersions (27) and also Eq. (29), we

obtain

Cnn(q) = 1

4
NF

∫ εc

−εc

dξ

ξ

〈
α2

n

(
tanh

ξ+
2T

+ tanh
ξ−
2T

)〉

and

C12(q) = 1

4
NF

∫ εc

−εc

dξ

ξ

×
〈
g2

(
tanh

ξ+ − Eb/2

2T
+ tanh

ξ− + Eb/2

2T

)〉
,

where ξ±(k) = ξ ± v(k)q/2 and v = ∇kξ is the quasiparti-
cle velocity. The basis functions are normalized as follows:
〈α2

n (k)〉 = 〈g2(k)〉 = 1. To extract from the above expressions
the contributions that logarithmically diverge at εc → ∞, we
subtract and add their values for q = 0 and Eb = 0:

Cnn′ (q) = NF ln

(
2eCεc

πT

)
+ [Cnn′ (q) − Cnn′ (0)],

where C 
 0.577 is Euler’s constant. Due to the fast con-
vergence, we extend the limits of the ξ integration in the

bracketed term here to infinity and use the identity

1

4

∫ ∞

−∞

dξ

ξ

(
tanh

ξ + ε

2T
+ tanh

ξ − ε

2T
− 2 tanh

ξ

2T

)

= �

(
1

2

)
− Re �

(
1

2
+ i

ε

2πT

)
,

where �(z) is the digamma function [43].
In this way, we obtain the following expressions for the

intraband Cooperons expanded in powers of q:

1

NF
Cnn(q) = ln

(
2eCεc

πT

)
− 7ζ (3)

16π2T 2

〈
α2

n (vq)2
〉 + O(q4),

(D20)

where ζ (s) is the Riemann zeta function, with ζ (3) 
 1.20.
Similarly, for the interband Cooperon we have

1

NF
C12(q) = ln

(
2eCεc

πT

)
+ �

(
1

2

)
− Re �

(
1

2
− i

Eb

4πT

)

+ 1

32π2T 2
Re � ′′

(
1

2
− i

Eb

4πT

)
〈g2(vq)2〉

+ O(q4). (D21)

By symmetry, the only nonzero angular averages here are
given by 〈α2

nv
2
x 〉 = 〈α2

nv
2
y 〉 = wn and 〈g2v2

x 〉 = 〈g2v2
y 〉 = w̃.

Substituting the expressions (D20) and (D21) into Eq. (D18)
and taking the thermodynamic limit V → ∞, we finally ob-
tain F2 = ∫

d2r F2, with the energy density given by Eq. (43).
From Eq. (D15), the “uniform” quartic terms have the fol-

lowing form in the coordinate representation: F4 = ∫
d2r F4,

with the energy density

F4 = 1
2 B1111|η1|4 + 1

2 B2222|η2|4

+ 2B1112|η1|2|η̃|2 + 2B2221|η2|2|η̃|2
+ B1212|η̃|4 + B1122(η1η2η̃

∗,2 + c.c.), (D22)

where

Bn1n2n3n4 = 1

2

∫
d2k

(2π )2
tr
[
φ̂n1n2 (k)φ̂†

n3n2
(k)φ̂n3n4 (k)φ̂†

n1n4
(k)

]
T

∑
m

1

iωm − ξn1 (k)

1

iωm + ξn2 (k)

1

iωm − ξn3 (k)

1

iωm + ξn4 (k)
(D23)

can be calculated at the critical temperature. Under the as-
sumptions of Sec. III, it is legitimate to neglect the energy
dependence of the basis functions and calculate the ξ integrals
with εc → ∞ before the Matsubara sums. For example, in
B1212 we have

T
∑

m

∫ ∞

−∞
dξ

1

(iωm − ξ1)2

1

(iωm + ξ2)2

= πT

2

∑
m

sign ωm

(ωm − iEb/2)3
= 7ζ (3)

8π2T 2
c

f1

( Eb

4πTc

)
,

where f1(x) is given by Eq. (57). In this way, we arrive at
Eq. (62).

APPENDIX E: PROPERTIES OF Â(T )

The superconducting instability develops at the tempera-
ture Tc at which the matrix (43) loses positive definiteness.
According to Sylvester’s criterion, Â(T ) is positive definite if
and only if its principal minors δ1 = A11, δ2 = A11A22 − A2

12,
and δ3 = det Â are all positive. Let us show that, if all coupling
constants are nonzero, then it is δ3 that changes sign first as the
temperature is lowered.

Suppose that at Tc we have δ1 = 0, while δ2 > 0 and δ3 >

0, so that the phase transition occurs into the reduced state
(η1, 0, 0). It is easy to see that this is not possible because
δ2(Tc) = −A2

12 < 0, i.e., a contradiction.
Suppose now that δ2 = 0 at T = Tc, while δ1 > 0 and δ3 >

0, so that the phase transition occurs into the reduced state
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(η1, η2, 0). From Schur’s formula, at all T > Tc we have

δ3 = (
A11A22 − A2

12

)
A33

− (
A22A2

13 + A11A2
23 − 2A12A13A23

)
.

At T → Tc + 0, the first term on the right-hand side vanishes,
so that |A12| = √

A11A22, therefore,

δ3(Tc) = −[
√

A11A23 − sign (A12)
√

A22A13]2 < 0.

This contradicts the assumption that δ3 is still positive at Tc.

APPENDIX F: ORDER PARAMETER NEAR Tc

The temperature dependence of the order-parameter com-
ponents can be found by solving the nonlinear GL equations.
Minimizing the GL functional [see Eqs. (42) and (62)] in the
uniform state, we obtain

Â(T )η = −Q, Q =

⎛
⎜⎝Q1

Q2

Q3

⎞
⎟⎠, (F1)

where Â is given by Eq. (43) and

Q1 = (2β1|η1|2 + β̃1|η̃|2)η1 + β̃4η̃
2η∗

2,

Q2 = (2β2|η2|2 + β̃2|η̃|2)η2 + β̃4η̃
2η∗

1,

Q̃ = (β̃1|η1|2 + β̃2|η2|2 + 2β̃3|η̃|2)η̃ + 2β̃4η1η2η̃
∗.

Above the second-order superconducting transition at Tc,
Eq. (F1) has only the trivial solution η = 0.

We denote the eigenvalues of the real symmetric matrix
Â by α0(T ), α1(T ), and α2(T ), with the corresponding real
eigenvectors v0, v1, and v2 forming an orthonormal basis.
Each of the eigenvectors has two “intraband” and one “inter-
band” components, e.g., v0 = (v0,1, v0,2, ṽ0)�. To account for
the matrix Â losing positive definiteness at the phase transi-
tion, we assume that α0 changes sign at Tc:

α0(T ) = a0(T − Tc), a0 > 0, (F2)

whereas α1(Tc), α2(Tc) > 0. The eigenvector v0 is called the
zero mode of Â.

We can expand the order parameter in the eigenbasis of Â
as follows:

η = ψ0v0 + ψ1v1 + ψ2v2. (F3)

To find the temperature dependence of the coefficients ψ0,
ψ1, and ψ2, we substitute the expansion (F3) into the GL
equations (F1), use the orthonormality of the eigenvectors,
and obtain

αiψi = −viQ(ψ0, ψ1, ψ2), i = 0, 1, 2.

The right-hand sides of these equations are homogeneous cu-
bic polynomials of ψ0, ψ1, ψ2, and their complex conjugates.
Assuming ψ0 to be real positive and explicitly separating the
zero-mode contributions, we have

α0ψ0 = −2B0ψ
3
0 + (. . . ),

α1ψ1 = −2B1ψ
3
0 + (. . . ),

α2ψ2 = −2B2ψ
3
0 + (. . . ), (F4)

where

B0 = β1v
4
0,1 + β2v

4
0,2 + β̃3ṽ

4
0

+ (
β̃1v

2
0,1 + β̃2v

2
0,2 + 2β̃4v0,1v0,2

)
ṽ2

0 .

Other coefficients on the right-hand sides of the equations (F4)
can be calculated in the similar fashion.

Introducing the notation τ = (Tc − T )/Tc, we obtain from
Eqs. (F2) and (F4) that just below Tc, i.e., at τ → 0+, the
leading temperature dependence of the expansion coefficients
in Eq. (F3) is given by

ψ0 =
√

a0Tc

2B0
τ 1/2, (F5)

whereas

ψ1 = −2B1

α1
ψ3

0 ∝ τ 3/2, ψ2 = −2B2

α2
ψ3

0 ∝ τ 3/2

are much smaller than ψ0. Therefore,

η(T ) =
√

a0(Tc − T )

2B0
v0, T → Tc − 0. (F6)

All three order-parameter components depend on temperature
in the way that is usual in the Landau theory of phase tran-
sitions, with their relative magnitudes determined by the zero
mode of the matrix Â. Note that η is real, which means that
the TR symmetry is not broken in the superconducting state
immediately below Tc.

APPENDIX G: PROOF OF EQ. (72)

Introducing the notations s1,2 = sin ϕ1,2, and c1,2 =
cos ϕ1,2, the critical point equations (71) take the form

(q + σ )s1c2 + (q − σ )s2c1 = −ps1,

(q − σ )s1c2 + (q + σ )s2c1 = −ps2.

These equations can be “solved” for s1c2 and s2c1, and we
obtain s2

1c2
2 − s2

2c2
1 = σ (p2/4q)(s2

1 − s2
2), therefore, s2

1 = s2
2,

unless q = p2/4 at σ = +1 (recall that we assume p, q � 0).
Thus, any isolated critical point of the function (70) must
satisfy the condition

| sin ϕ1| = | sin ϕ2|, (G1)

therefore ϕ2 = ±ϕ1 or ϕ2 = ±ϕ1 + π . One can check using
Eq. (71) that the second possibility is never realized for non-
trivial critical points, i.e., for ϕ1 and ϕ2 other than 0 or π .

The condition (G1) can be violated if σ = +1 and q =
p2/4, in which case the minima of the free energy (70) satisfy

sin(ϕ1 + ϕ2) = −2

p
(sin ϕ1 + sin ϕ2),

sin(ϕ1 − ϕ2) = − p

2
(sin ϕ1 − sin ϕ2).

It is easy to see that these two equations are not independent
(they are “inverse” of each other), so that their solutions corre-
spond to whole lines, instead of isolated points, in the (ϕ1, ϕ2)
plane. These solutions are shown in Figs. 4 and 5, for p < 2
and p > 2, respectively.
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