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Enhancement of superconductivity in the Fibonacci chain
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We study the interplay between quasiperiodic disorder and superconductivity in a one-dimensional tight-
binding model with the quasiperiodic modulation of on-site energies that follow the Fibonacci rule, and all
the eigenstates are multifractal. As a signature of multifractality, we observe the power-law dependence of the
correlation between different single-particle eigenstates as a function of their energy difference. We numerically
compute the mean-field superconducting transition temperature for every realization of a Fibonacci chain of a
given size and find the distribution of critical temperatures, analyze their statistics, and estimate the mean value
and variance of critical temperatures for various regimes of the attractive coupling strength and quasiperiodic
disorder. We find an enhancement of the critical temperature compared to the analytical results that are based on
strong assumptions of the absence of correlations and self-averaging of multiple characteristics of the system,
which are not justified for the Fibonacci chain. For the very weak coupling regime, we observe a crossover where
the self-averaging of the critical temperature breaks down completely and strong sample-to-sample fluctuations
emerge.
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I. INTRODUCTION

Fractals are intricate geometric objects that are self-similar
across different scales [1,2]. The concept of fractality has
revolutionized the development of novel materials and de-
vices, offering unique properties and applications. Materials
featuring fractal structures showcase exceptional character-
istics typically not observed in their nonfractal counterparts.
One remarkable example is the recent advancement in frac-
tal graphene-based materials [3]. These materials display
remarkable mechanical strength, electrical conductivity, and
thermal stability, making them highly suitable for a diverse
range of applications, including energy storage and sensing.
The fractal structures have proven to be efficient in photo-
voltaic devices [4] since they enhance light absorption and
significantly improve the efficiency of solar cells. For in-
stance, the utilization of fractal-shaped nanowires in solar
cells has led to heightened light trapping and absorption com-
pared to conventional designs [5].

From a theoretical perspective, there have been notable
efforts to explore the conditions under which fractal geom-
etry can enhance a property critical for applications, such
as superconductivity. Following the development of the mi-
croscopic theory of superconductivity by Bardeen, Cooper,
and Schrieffer (BCS) [6–8], the influence of disorder on su-
perconductivity garnered considerable attention [9–15]. Early
studies [16–19] suggested that a superconducting phase could
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emerge when the Fermi energy EF resides in the region of the
Anderson mobility edge due to strong correlations between
fractal wave functions. Subsequent research predicted an in-
crease in critical temperature even in quasi-one-dimensional
(quasi-1D) wires [20–22], quasi-two-dimensional (quasi-2D)
materials [19], and weakly disordered 2D systems [23].

While many studies (see Refs. [17,18,24,25] and refer-
ences therein) focused on the situation when the transition in a
clean system described by the standard BCS-type mean-field
theory is modified by disorder, inducing significant overlap
between multifractal wave functions with different eigenen-
ergies, there are also quasiperiodic materials that possess
these features intrinsically without extrinsic disorder [26,27].
Quasiperiodic systems, readily realized experimentally in
various structures like artificial atomic chains and quasi-
2D semiconducting heterostructures [28], serve as examples.
The Fibonacci chain [29–33], a one-dimensional quasiperi-
odic structure closely related to three-dimensional icosahedral
quasicrystals [34,35], offers an intriguing realm for supercon-
ductivity studies. The energy spectrum in this system exhibits
a Cantor-set-type fractal structure [36], and the multifractal
eigenfunctions demonstrate long-range power-law spatial and
temporal correlations. It is therefore a natural test bed for the
effect of fractality on the superconducting properties.

Phenomenological arguments were put forward [25] sug-
gesting multifractal correlations of wave functions enhance
superconductivity. This was later tested close to the Ander-
son transition within a mean-field approximation [18]. The
difficulty is that in this setting one has to solve a disordered
gap equation without the simplifications brought in by trans-
lation invariance. A common approach is to average the gap

2469-9950/2024/109(13)/134504(7) 134504-1 ©2024 American Physical Society

https://orcid.org/0000-0002-8697-2745
https://orcid.org/0000-0002-5343-4086
https://orcid.org/0000-0003-1447-8913
https://orcid.org/0000-0002-3033-0452
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.134504&domain=pdf&date_stamp=2024-04-02
https://doi.org/10.1103/PhysRevB.109.134504


MENG SUN et al. PHYSICAL REVIEW B 109, 134504 (2024)

equation and ignore the correlations [19]. As we demonstrate
in this work, neglecting the correlations removes an important
enhancement of the critical temperature.

The outline of this paper is as follows. We define the
model and study its spectral correlation function in Sec. II.
Then the mean-field approximation of superconductivity in
the model and the behavior of the average critical temperature
are studied in Sec. III. The breakdown of self-averaging of the
critical temperature and the crossover in the coupling strength
are discussed in Sec. IV, followed by conclusions in Sec. V.

II. MODEL AND SPECTRAL CORRELATION FUNCTION

We consider the 1D Fibonacci chain, which serves as a
fundamental model representing quasicrystals. This chain ex-
hibits several noteworthy properties, as outlined in a recent
study by Jagannathan [29]: (1) deterministic construction, (2)
a finite number of possible configurations for chains of finite
length, and (3) multifractal eigenstates. The Fibonacci chain is
constructed following a well-defined deterministic algorithm.
Despite its complexity, the Fibonacci chain possesses a finite
number of possible configurations, allowing detailed analy-
sis. Finally, one of the remarkable features of the Fibonacci
chain is that its eigenstates exhibit multifractal behavior for
all strengths of the on-site potential h, leading to intricate pat-
terns with varying degrees of complexity and self-similarity,
regardless of the specific values of the on-site potential.

Here we focus on a chain model with on-site energies
arranged according to the Fibonacci rule. The tight-binding
Hamiltonian,

ĤF = −
∑

i

(ĉ†
i ĉi+1 + ĉ†

i+1ĉi + hiĉ
†
i ĉi ), (1)

describes particles hopping between lattice sites with dimen-
sionless (measured in units of hopping amplitude) on-site
potential hi. The potential takes two values ±h, which are
arranged according to the Fibonacci sequence rule F : {A →
AB, B → A}. The nth Fibonacci sequence Sn is the concatena-
tion of the two previous ones Sn = [Sn−1, Sn−2]. To construct
the Fibonacci-type potential for a system of size L, we first
write down a long enough Fibonacci sequence, then cut a
segment containing L consecutive letters, and make the substi-
tution A → h and B → −h. The number of different segments
is N = L/2 [N = (L − 1)/2] for even (odd) L [30]. In this
way, we generate an ensemble of N different realizations
of on-site energy arrangements, each being a subset of the
Fibonacci sequence.

Some properties of the eigenstates of the Fibonacci chain
were studied recently [29,37,38]. For example, a perturbative
renormalization group analysis was used to analytically deter-
mine fractal dimensions for the off-diagonal Fibonacci chain
[32] in the weak potential strength limit (h � 1).

For the issue of superconducting transition, the most
important property of multifractal systems [17,25] is the
energy-resolved overlap of different eigenstates described by
the correlation of two single-particle wave functions [25],

C(ω) = Ld
∑
r,n,m

〈|ψn(r)|2|ψm(r)|2δ(εm − εn − ω)〉, (2)

FIG. 1. The correlation function (3) of the Fibonacci chain for
fixed system size L = 2000 and several disorder strengths. The
solid black lines are the power-law fits, Eq. (3). The fitted val-
ues of γ and E0 are γ ∼ 0.0146, 0.0333, 0.0542, 0.0754 and E0 ∼
82.1, 173.3, 254.6, 325.9[δL] for h = 0.1, 0.2, 0.3, 0.4.

where Ld is the system volume, ψn(r) and εn are the eigenstate
and eigenenergy of the Hamiltonian (1), respectively, and ω

is the fixed energy difference between two eigenstates. This
function demonstrates power-law decay at the Anderson tran-
sition [17,39],

C(ω) =
(

E0

|ω|
)γ

, (3)

in some frequency domain δL < ω < E0, where δL is the mean
level spacing and E0 is the energy scale. The power-law ex-
ponent γ is connected to the multifractal dimension by the
simple relation [18,25,40] γ = 1 − d2

d , where d is the spatial
dimension of the system and d2 is the fractal dimension of
eigenfunctions [41].

We confirm the power-law decay of the correlation in the
Fibonacci chain (see Fig. 1) for different disorder strengths
by numerical diagonalization of the Hamiltonian (1) and av-
eraging over different realizations, i.e., different slices of the
length L cut from the nth Fibonacci word. Using the numer-
ically computed correlator (3), we further estimate the upper
energy scale E0 and the exponent γ from the power-law fits
shown in Fig. 1. Similar behavior of correlation functions was
also confirmed in Ref. [42]. We also note that in a recent
work [43], Jagannathan and Tarzia focused on the disorder
effects on the quasiperiodic tiling, and they observed the non-
monotonic evolution of spatial properties of eigenstates with
disorder strength but only as a finite-size effect vanishing in
the thermodynamic limit. However, in this work, we study
modifications present in long, but finite, chains.

III. MEAN-FIELD SUPERCONDUCTIVITY

The spinful fermions on a tight-binding chain with lo-
cal attraction are described by the negative-U Hubbard
Hamiltonian,

Ĥ =
∑

σ

ĤF,σ + U
L∑

i=1

n̂i↑n̂i↓, (4)
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where the single-particle part ĤF,σ is given by Eq. (1) for each
of the spin components σ =↑,↓. The second term, with n̂iσ =
ĉ†

iσ ĉiσ being the occupation number operator of electrons with
spin σ on the ith site, is the attractive Hubbard interaction with
dimensional coupling constant U .

To investigate the superconducting properties we write the
Hamiltonian in the single-particle eigenbasis of ĤF,σ ,

ĉiσ =
∑

n

ψn(i) ĉnσ , (5)

following [17,44] and keep only the terms most relevant for
the superconductivity:

Ĥ =
∑
nσ

εnĉ†
nσ ĉnσ + U

∑
nm

Mnmĉ†
n↑ĉ†

n↓ĉm↑ĉm↓, (6)

Mnm =
∑

i

|ψn(i)|2|ψm(i)|2, (7)

where εn is the single-particle energy of eigenstate n obtained
from Eq. (1) and σ = {↓,↑} is the spin label. The subscripts
n and m label the eigenvalues and eigenstate, and the index i
is the lattice index. The mean-field approach [45] leads to the
gap equation

�n = |U |
2

∑
m

Mnm�m

εm
tanh

( εm

2T

)
, (8)

where εm = √
ε2

m + �2
m is the excitation energy of the su-

perconductor [45] and the gap function is defined as an
anomalous Green’s function, �n = 〈ĉn↑ĉn↓〉. The supercon-
ducting transition is signaled by the appearance of a nonzero
�n with changing temperature T .

The routine approach to analyzing the transition is based
on a few assumptions [17–19]:

(1) The density of states and the wave functions are uncor-
related.

(2) The density of states ν0 is self-averaging and energy
independent in the window of the Debye frequency εD around
the Fermi energy, for example, one assumes the phonon-
electron interaction, which, after elimination of phonons, can
be presented as a pointlike attraction (similar to the attractive
Hubbard term) but only between electrons whose energies
are within the Debye energy width window around the Fermi
level. This is a standard assumption leading to the so-called
BCS theory with effective Hubbard-like energy-dependent at-
traction U (ε),

U (ε) =
{
λ/ν0, ε < εD,

0, ε � εD,
(9)

where ν0 is the density of states at the Fermi level and λ is the
dimensionless coupling constant.

(3) All gap functions �n are self-averaging.
(4) Finally, there is no correlation between the wave func-

tions’ overlap integral Mnm and the gaps �n.
Only under all the above-mentioned conditions does the

gap equation acquire the following form in the continuous
limit after averaging over the disorder realizations:

�(ε) = λ

2

∫ εD

−εD

dε′

ε(ε′)
C(ε − ε′) tanh

(
ε(ε′)
2T

)
�(ε′). (10)

Here the eigenenergies εn and εm of the Fibonacci chain are
substituted with the continuous energies ε and ε′ under the
assumption that all other energy scales are much larger than
the mean level spacing, and ε(ε′) is the same excitation energy
as defined after Eq. (8). Further assuming that all the gaps �n

vanish at the transition, i.e., in the continuous limit �(ε) = 0,
and that the Debye energy εD is much larger than the frac-
tal scale E0 leads to the following equation for the critical
temperature:

1 = λ

∫ εD

0

C(ε)

ε
tanh

(
ε

2T A
c

)
dε, (11)

which admits the solution

T A
c = εDD(γ )

[
1 + γ

λ

(
εD

E0

)γ ]− 1
γ

, (12)

with

D(γ ) = [2γ (2γ+1 − 1)�(−γ )ζ (−γ )]
1
γ , (13)

where ζ (x) is the Riemann ζ function [19].
We extract the values of E0 and γ from the correlation

function (2), which takes the power-law scaling form (3), as
we verified in Sec. II. With these averaged parameters, we
can evaluate the critical temperature using Eq. (12). We show
in Fig. 2 by the solid line the critical temperature computed
via Eq. (12) as a function of the coupling strength for the
Fibonacci chain system with different potential strengths.

However, this approach is based on at least four assump-
tions outlined above which are hard to justify. Instead, we
compute the critical temperature numerically without a priori
assumptions on statistics and correlations between various
entries present in Eq. (8). We solve the linearized gap equa-
tion (8) in the limit of vanishing gaps �n → 0,

�n = λ

2ν0

|εm|<εD∑
m

Mnm

εm
tanh

(
εm

2Tc

)
�m, (14)

to find the critical temperature Tc numerically for every re-
alization of the Fibonacci potential and then analyze the
statistics of the ensemble of critical temperatures: their dis-
tribution function, mean value, and variance.

The results for the average critical temperature of the Fi-
bonacci chain, computed along the above lines, are presented
in Fig. 2 for several system sizes L, disorder strengths h, and
couplings λ. For the convenience of presentation, the points
are manually shifted horizontally for fixed couplings λ. The
vertical bars show the standard deviation of the critical tem-
perature. For convenience we show the error bars only for the
case h = 0.30; the error bars for other disorder strengths show
similar behavior. Finally, we estimate the critical temperature
in the thermodynamic limit using the finite-size extrapolation.
The results are shown by black markers.

We observe that over a wide range of couplings the average
critical temperature is self-averaging with small variance. The
variance increases significantly as the coupling strength is
decreased, as seen in the bottom plot of Fig. 2. This suggests
the existence of a crossover coupling strength λ̃ below which
the critical temperature starts to lose its self-averaging prop-
erty and sample-to-sample fluctuations become important.
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FIG. 2. Average critical temperature for different system sizes
(shown by the color of the markers) and different disorder strengths
(shown by the shape of the markers). The black points are the result
of the extrapolation to the infinite size. The solid lines are the analyt-
ical result of Ref. [19] given by Eq. (12). The vertical bars show the
temperature variance for disorder h = 0.3. For different system sizes
and disorder strengths, the markers are shifted to the left and right
relative to the green markers. Top: larger couplings λ. Bottom: small
couplings λ.

A detailed discussion of this crossover and its properties is
provided in the next section.

The main result shown in Fig. 2 is the clear discrepancy be-
tween the two procedures: assuming self-averaging properties
and the absence of correlation followed by analytic solution
of the Eq. (12) and a straightforward numerical analysis of
random critical temperatures found from the nonaveraged
Eq. (14) with no assumptions at all. That is, although the crit-
ical temperature itself self-averages, this self-averaging value
is different from the solution of Eq. (12). In most regions of
the coupling strength, we find an enhancement of the critical
temperature compared to the analytical formula, Eq. (14). We
attribute this additional enhancement to the proper treatment

FIG. 3. The enhancement ratio R = T N
c /T A

c vs coupling λ at
L = 4000 for different disorder strengths h: 0.2 (squares), 0.25,
(triangles) and 0.3 (circles). T N

c is the critical temperature computed
numerically; T A

c is the critical temperature predicted by Ref. [19].
The markers are connected by solid lines in the region λ > λ̃. The
black line corresponds to R = 1 and is shown for convenience.

of the Debye cutoff energy in our approach: as explained in
the Appendix of Ref. [19], Mayoh and García-García’s analyt-
ical expression is achieved by extending the integral limit of
Eq. (11) from εD to infinity, which is not always justified for a
power-law correlations between eigenstates. By denoting the
average critical temperature following from Eq. (14) as T N

c ,
we calculate the enhancement ratio R = T N

c /T A
c , as shown

in Fig. 3. For visual convenience, the ratio data points are
connected by lines for the coupling strengths above the self-
averaging crossover, λ � λ̃. As one can see, the enhancement
ratio is suppressed by increasing the coupling strength, and
both results, Eqs. (12) and (14), converge to the mean-field
theory. This behavior can be explained by the competition
between the coupling λ and the disorder h. As λ > h, the
coupling strength is dominant, and the formation of Cooper
pairs is local, not affected by the realization of the disorder
potential. On the other hand, when λ < h, the potential takes
the main role in defining which state and its time-reversal
partner are to be coupled. This results in a further enhance-
ment in critical temperature due to the multifractality of wave
functions and larger variance due to the sensitivity to disorder
realization.

IV. BREAKDOWN OF SELF-AVERAGING AND
CROSSOVER IN THE COUPLING STRENGTH

We saw in Fig. 2 that the variance of the average critical
temperature increases significantly for small enough cou-
plings λ. In this section, we discuss the breakdown of the
self-averaging of the critical temperature and quantify the
crossover coupling strength λ̃.
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FIG. 4. The PDF of the critical temperatures for disorder strength
h = 0.3 and L = 4000 for different coupling strengths. The crossover
coupling strength is λ̃ ≈ 0.16.

In order to define the crossover coupling strength λ̃, we use
Eq. (14), from which we extract the critical temperature

λW (T ) � = �. (15)

It is an eigenproblem equation for the matrix W with the
following matrix elements:

Wnk (T ) = Mnk

2ν0εk
tanh

(
εk

2T

)
. (16)

Note that W depends explicitly on the disorder realization
through the eigenvalues εk and eigenstates of the Fibonacci
chain appearing in M (7). It directly follows from the above
equations that for a given realization of the Fibonacci poten-
tial, the superconducting instability at some finite T exists
only if the largest eigenvalue �(T = 0) of W (T = 0) is
greater than 1/λ, or, equivalently, λ � 1/�(T = 0). Based
on this and the finite number of realizations of the Fibonacci
potential for a given system size L, we define

λ̃−1 = min
{hi}

�(T = 0), (17)

where the min is taken over the realizations of the Fibonacci
potential. The coupling λ̃ corresponds to the appearance of the
first disorder realization without a superconducting phase.

We now demonstrate that λ̃ provides a proper definition
of the crossover coupling, below which the self-averaging
property of Tc is lost. The naive argument is as follows:
for λ < λ̃ more and more disorder realizations stop having
a superconducting phase, therefore increasing the sample to
sample fluctuations and making the average less well defined.
In Fig. 4, we show the probability density distributions (PDFs)
of critical temperatures for several values of λ with λ̃ ≈ 0.16.
We observe that as the coupling strength is decreased, the
average Tc becomes less representative. For λ > λ̃, the PDF
has a bell shape and can be reasonably well approximated by
a Gaussian, for instance, at λ = 0.25. Closer to the crossover
value λ̃, the distributions (green and red) spread out, and sev-
eral close peaks appear in the PDF. For λ < λ̃, the distribution
continues to spread and acquires a visible tail for smaller Tc,
and the trivial case Tc = 0 starts to accumulate (orange and

FIG. 5. The self-averaging metric α vs λ for different disorder
strengths h at system size L = 4000. The vertical dashed lines denote
the position of the crossover λ̃ for the respective disorder strengths.
The points in the self-averaging regime, λ > λ̃, are connected by the
solid lines. α becomes order 1 for λ � λ̃.

blue). As a consequence, the standard deviation of the critical
temperature increases significantly.

To further investigate the crossover coupling strength and
the breakdown of self-averaging of the critical temperatures,
we study the following metric of self-averaging:

α =
〈
T 2

c

〉
〈Tc〉2

− 1, (18)

which quantifies the fluctuations around the average compared
to the average itself: it is zero for a perfectly self-averaging
quantity (with δ-function distribution). The values of order
1 indicate that fluctuations around the average become com-
parable to the average itself, and the self-averaging property
is lost. In Fig. 5, we show the values of α computed for the
Fibonacci chain for different disorder strengths h at system
size L = 4000. The vertical dashed lines indicate the position
of the crossover λ̃ for several disorder strengths. The solid
lines connect the points for couplings above the crossover
λ̃. We observe from Fig. 5 that the two definitions of the
crossover from self-averaging to no self-averaging, α and λ̃,
agree well. The jump in the self-averaging parameter α from

FIG. 6. Finite-size scaling for the crossover coupling λ̃ vs system
size L. The fits are based on the data for the seven largest sizes: L =
2000, 2500, 3000, 3500, 4000, 4500, 5000.
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values of order 10−2 to values of order 1 occurs precisely
around the coupling λ̃.

Last, we extract the thermodynamic limit of λ̃ by extrapo-
lation, as shown in Fig. 6: extrapolation suggests finite values
of λ̃ in the thermodynamic limit. Also, the crossover λ̃ de-
creases with decreasing disorder strength. This behavior can
be anticipated as follows: for h = 0, the system is described
by the BCS theory and Tc ∼ exp(−1/λ). For a finite disor-
der, the nonzero values of λ̃ indicate a transition from the
superconducting phase to the insulator phase. The observed
dependence of λ̃ on disorder strength naturally connects the
two limits.

V. CONCLUSIONS

In this work, we considered an open 1D chain with the
Fibonacci potential h and calculated correlation of two single-
particle wave functions for different disorder strengths h. We
found a power-law behavior of the correlation function, which
reflects the multifractal character of the eigenstates of the Fi-
bonacci chain. Using the single-particle eigenstates, we used
the mean-field theory to compute the critical temperature of
the superconducting transition following two different pro-
cedures: (1) averaging Eq. (14) first, then solving it for Tc,
e.g., by averaging the spatial correlation function C(ω) and
estimating the multifractal related parameters γ and E0, we
analytically calculated the critical temperature via Eq. (12)
assuming self-averaging of all characteristic variables (as
explained above); (2) we first solved Eq. (14) and then per-
formed averaging, e.g., by solving Eq. (14) numerically for
the critical temperature for a fixed realization of the Fibonacci
potential and analyzing the statistics (PDF, mean value, and
variance) of the ensemble of critical temperatures.

We found a clear discrepancy between the results obtained
with these two methods, which we attribute to neglecting cor-
relations present in Eq. (14) between Tc and the single-particle
eigenfunctions in the kernel M and eigenvalues εm. Our cor-
rect numerical treatment of disorder clearly demonstrates the
enhancement of the critical temperature in comparison to
other mean-field approaches relying on neglecting the corre-
lations in Eq. (14) for the critical temperature.

We observe that for strong enough couplings, the criti-
cal temperature is self-averaging; however, that breaks for
weaker couplings. We introduced the quantity λ̃ to quantify
the breakdown of the self-averaging property of the critical
temperature. When λ > λ̃, the self-averaging is well pre-
served, and the distribution of the critical temperature can
be approximated by a Gaussian. On the other hand, when
λ � λ̃, the standard deviation starts to spread significantly, in-
dicating that the solution for the critical temperature becomes
extremely sensitive to the disorder realization.

Note added. Recently, we became aware of an interesting
related work [46].
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