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Hybridization induced triplet superconductivity with Sz = 0
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The Kitaev superconducting chain is a model of spinless fermions with tripletlike superconductivity. It
has raised interest since for some values of its parameters it presents a nontrivial topological phase that
hosts Majorana fermions. The physical realization of a Kitaev chain is complicated by the scarcity of triplet
superconductivity in real physical systems. Many proposals have been put forward to overcome this difficulty
and fabricate artificial triplet superconducting chains. In this work we study a superconducting chain of spinful
fermions forming Cooper pairs, in a triplet S = 1 state, but with Sz = 0. The motivation is that such pairing can
be induced in chains that couple through an antisymmetric hybridization to an s-wave superconducting substrate.
We study the nature of edge states and the topological properties of these chains. In the presence of a magnetic
field the chain can sustain gapless superconductivity with pairs of Fermi points. The momentum space topology
of these Fermi points is nontrivial, in the sense that they can only disappear by annihilating each other. For small
magnetic fields, we find well-defined degenerate edge modes with finite Zeemann energy. These modes are not
symmetry protected and decay abruptly in the bulk as their energy merges with the continuum of excitations.
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I. INTRODUCTION

The Kitaev chain, a prototypical one-dimensional toy
model of spinless fermions and p-wave superconductivity is
well known to host Majorana zero modes (MZMs) at the
ends of the chain. These spinless fermions form Cooper
pairs in a triplet state with S = 1 and a finite Sz component
of the total spin. The MZMs have, in principle, a prospect
of being applied to fault-tolerant topological quantum com-
putation [1–3]. However, p-wave superconductivity is very
difficult to find in real materials [4,5]. One realistic model,
proposed to experimentally search for MZMs is the one-
dimensional (1D) semiconductor-superconductor (SM-SC)
nanowire [6–13], where these modes are predicted to appear
at the ends of the wire under appropriate, specific conditions.
The Majorana nanowire consists of a semiconductor with a
large Rashba-type SOC in proximity to a conventional s-wave
superconductor under a magnetic (Zeeman spin-splitting)
field to achieve an effective p-wave superconductor [5].

In this work we consider a different model of a p-wave su-
perconducting chain. It has spinful fermions [14–16] that form
Cooper pairs in a triplet state S = 1, but with Sz = 0. This
type of p-wave pairing opens the possibility for obtaining new
chiral superconductors with topological properties [17,18].

The main motivation for studying these chains is the fol-
lowing. When atoms are deposited on a superconducting
substrate, in general its orbitals hybridize with those of the
substrate [19] providing a mechanism for inducing supercon-
ductivity in the chain. If the substrate is a BCS superconductor
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and the hybridization Vi j between the orbitals at site i of
the substrate and at site j of the chain is antisymmetric,
i.e., Vji = −Vi j , or in momentum space V−k = −Vk , the in-
duced superconductivity in the chain is of the type S = 1,
Sz = 0. The energy scale involved in this process can be
significant [19].

The mechanism that induces this type of superconduc-
tivity in the wire is similar to that occurring in multiband
superconductors [20–26]. Consider a two-band (a and b) su-
perconductor with an attractive interaction in the a band that
gives rise to a BCS pairing of the electrons in this band
(substrate). An antisymmetric hybridization Vk between these
electrons and those in the noninteracting b band induces a
pairing gap with p-wave symmetry, of the type S = 1, Sz = 0
in the b band (the chain) [20,22,23]. The induced p-wave
pairing �

p
ind(k), with S = 1, Sz = 0, is given by [20–23] (see

also note, Ref. [27])

�
p
ind(k) = Vk√(

εb
k − εa

k

)2 + 4|Vk|2
�s

a, (1.1)

where the quasiparticles in the interacting a band, with a
dispersion relation εa

k in the normal state, condense in an
s-wave BCS-singlet superconducting state with an s-wave
gap �a

s . The dispersion of the noninteracting band is given
by, εb

k . The antisymmetric hybridization Vk between the or-
bitals of different parities in the interacting and noninteracting
bands is responsible for an induced p-wave pairing �

p
ind(k),

of the type S = 1, Sz = 0, as given by Eq. (1.1) (see note,
Ref. [27]). Notice that Vk in Eq. (1.1) is a one-body term, or
simply, an interband hopping that transfer electrons between
orbitals of different parities between the bands. This mech-

2469-9950/2024/109(13)/134503(9) 134503-1 ©2024 American Physical Society

https://orcid.org/0009-0001-8041-9682
https://orcid.org/0000-0002-4587-9317
https://orcid.org/0000-0003-0167-8529
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.134503&domain=pdf&date_stamp=2024-04-01
https://doi.org/10.1103/PhysRevB.109.134503


SILVA, RIBEIRO, CALDAS, AND CONTINENTINO PHYSICAL REVIEW B 109, 134503 (2024)

anism for induced superconductivity is different from the
usual proximity effect that involves Cooper pair tunneling or
Andreev reflections at the nonsuperconductor-superconductor
boundary [28,29].

In this paper we consider a model that describes a BCS
superconducting substrate on top of which is deposited a chain
with noninteracting electrons. This kind of setup has already
been implemented experimentally [26,30]. The electrons in
the chain, the noninteracting b band, hybridize with those in
the a band of the superconducting substrate where the Cooper
pairs are formed. If this hybridization is antisymmetric, the
induced superconductivity in the chain is unconventional and
corresponds to the pairing �

p
ind in Eq. (1.1). In this equation,

�s
a is the BCS s-wave pairing of the substrate [27]. The model

is valid whenever the main coupling between the chain and
substrate is through the hybridization between their orbitals.
Notice that the hybridization, contrary to the spin-orbit in-
teraction, has no spin-flip terms and the Cooper pairs in the
chains preserve the antiparallel coupling of the spins inherited
from the BCS Cooper pairs of the substrate. The antisymmet-
ric character of the total wave function of the induced Cooper
pair is conferred by the antisymmetric hybridization Vk that
plays the role of the spatial-dependent wave function of the
pair and allows for a symmetric state of the spins [27]. Then,
the superconductivity induced in the chain is triplet S = 1, but
with Sz = 0. Notice that the antisymmetric character of the
hybridization arises when it mixes orbitals with angular mo-
menta that differ by an odd number [20,22,23]. This includes
the important cases that the orbitals in the chain-substrate
system have s − p or p − d character. For completeness the
model also includes the spin-orbit coupling (SOC) in the wire
and the effect of a magnetic field. In the case of SOC, this
limits the validity of our results to the case that the spin-orbit
interaction vanishes or is smaller than the induced supercon-
ducting parameter in the wire.

With the motivation of a physical mechanism to obtain an
S = 1, Sz = 0 p-wave-superconducting chain, and its possible
applications [17], we present here a study of the topological
properties and excitations of such a chain. In the absence
of a magnetic field and the conditions stated above for the
SOC, the S = 1, Sz = 0 chain is topological, for a range of
parameters. It presents four Majorana modes, two in each
extremity of a finite chain. As the magnetic field is turned
on, these modes acquire a finite Zeeman energy. They are
not symmetry protected and disappear as they merge with the
continuum of Bogoliubov excitations for a sufficiently high
magnetic field.

The S = 1, Sz = 0 chain, in the presence of a large mag-
netic field [12], presents gapless superconductivity due to
the presence of pairs of Fermi points [31,32]. The nontrivial
momentum space topology of these Fermi points implies their
stability, since they can only be destroyed by annihilating
in pairs [33,34]. The dispersion at the Fermi points is lin-
ear, like in Dirac points. This is in contrast with the Kitaev
chain that is a gapped superconductor with Majorana edge
modes.

The paper is organized as follows. In Sec. II we present the
Hamiltonian of the model. In Sec. III we obtain the energy
spectra of an infinite chain. In Sec. IV we study a finite chain
described by the Hamiltonian written in terms of Majorana

operators. The numerical results are shown in Sec. V. Sec-
tion VI is devoted to the calculation of the topological
invariant and topological indexes of the several phases of the
model. We conclude in Sec. VII.

II. HAMILTONIAN

The Hamiltonian describing the chain of N sites and spinful
fermions with a S = 1, Sz = 0 p-wave induced superconduct-
ing interaction is given by H = HN + HHS , where

HN = −μ

N∑
j=1,σ

c†
j,σ c j,σ − h

N∑
j=1,σ

σc†
j,σ c j,σ

−
N−1∑
j=1,σ

(t c†
j,σ c j+1,σ + H.c)

+ iλ
N−1∑

j=1,σ,σ̄

(c†
j,σ (σ y)σ σ̄ c j+1,σ̄ + H.c.),

HHS = −1

2

N−1∑
j=1,σ

(�(c†
j,σ c†

j+1,−σ − c†
j+1,σ c†

j,−σ ) + H.c.).

(2.1)

The first equation describes the normal chain in the presence
of a uniform external magnetic field h parallel to the wire
[7,8,13]. The quantity μ is the chemical potential, t a nearest-
neighbor hopping. In our strict one-dimensional model, the
Rashba-like term is essentially an antisymmetric spin-flip
hopping λ due to the spin-orbit interaction [5,6,11,35,36].

The Hamiltonian HHS represents the induced supercon-
ductivity in the chain due to its hybridization with the
BCS superconducting substrate [see Eq. (1.1)]. Since this
hybridization is antisymmetric, � is the induced antisym-
metric superconducting pairing (�i j = −� ji = �) between
fermions with antiparallel spins in neighboring sites of the
wire. In momentum space it is defined by Eq. (1.1), where
we removed all indices for simplicity. N is the number of
sites in the chain, and σ = ±, corresponds to spin up and
spin down, respectively. The total antisymmetry of the or-
der parameter with antiparallel spins is guaranteed by the
spatial antisymmetric wave function of the Cooper pairs.
Then the induced superconductivity is a triplet state with
S = 1, but with the z component of the total spin of the
Cooper pair Sz = 0. The term H.c. stands for Hermitian
conjugate.

III. INFINITE CHAIN

For an infinite chain with periodic boundary conditions
we can Fourier transform Hamiltonian Eq. (1.1) in
momentum space. We choose the basis �k = (c†

k,σ ,

c†
k,−σ , c−k,σ , c−k,−σ )T , with σ =↑ and −σ =↓ to obtain

H = 1

2

∑
k

�
†
kH(k)�k + 1

2

∑
k

[εk↑ + ε−k↓], (3.1)
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FIG. 1. Gap closing lines. At the blue lines, h= ± 2t ± μ the gap
closes at the time-reversal invariant momenta k = 0 and k = ±π .
Along the red (dashed) lines, the gap closes at k = ±π/2 (we con-
sider only the case, λ < �). In the figure we chose t as the unity
of energy (t = 1). The red dashed lines correspond to λ = 0.1 and
� = 0.5.

where εk↑↓ = −(2t cos k + μ ± h), λk = 2iλ sin(k) and
�k = 2i� sin k,

H(k) =

⎛
⎜⎜⎜⎝

εkσ λk 0 �∗
k

λ∗
k εk−σ �∗

k 0
0 �k −ε−kσ −λ∗

−k

�k 0 −λ−k −ε−k−σ

⎞
⎟⎟⎟⎠. (3.2)

Notice that λ∗
−k = λk , with a similar relation for �k . We re-

mark that in the present Hamiltonian, the gap parameter is k
dependent and has p-wave symmetry, distinctively from other
previous approaches, as for instance, in Refs. [8,9,32].

The Hamiltonian, Eq. (3.2), can be written as H = (εk −
μ)σz ⊗ τ0 − hσz ⊗ τz + iλkσz ⊗ τy − i�kσy ⊗ τx, where σi

and τi are Pauli matrices (i = x, y, z) and τ0 = σ0 are the
2 x 2 identity matrix and εk = −2t cos k. It has particle-hole
symmetry since UpH∗(k)U †

p = −H(−k), where Up = iσx ⊗
σ0. On the other hand, we have UtH∗(k)U †

t �= H(−k), with
Ut = iσ0 ⊗ σy, implying that the system is not time-reversal
invariant. Time-reversal invariance is broken by the magnetic
field, but also by the triplet pairing of the quasiparticles. The
Hamiltonian, Eq. (3.2), has an additional chiral symmetry that
will be discussed further on.

The Hamiltonian of the infinite chain can be diagonal-
ized and the dispersion relations of the quasiparticles are
given by

ω1(k) =
√

ε2
k + h2 + λ2

k + �2
k + 2

√(
h2 + λ2

k

)(
ε2

k + �2
k

)
,

ω2(k) =
√

ε2
k + h2 + λ2

k + �2
k − 2

√(
h2 + λ2

k

)(
ε2

k + �2
k

)
,

(3.3)

ω3(k) = −ω1(k) and ω4(k) = −ω2(k). These dispersions
have several gap closing lines, as shown in Fig. 1. Closing

of the gaps occur at the time-reversal invariant points of the
Brillouin zone, k = 0 and k = ±π , but also for k = ±π/2.
In the former case the critical fields at which the gap closes
are given by hc = ±2t ± μ and are independent of the other
parameters of the model.

The critical fields for gap closing at k = ±π/2 are given
by hc = ±

√
4(�2 − λ2) + μ2 and depend on � and λ, be-

sides the chemical potential μ. We can distinguish two cases,
λ > � and λ < �, but here we consider only the case of small
spin-orbit coupling λ < �. Notice that for μ = 0, and assum-
ing λ = 0, for simplicity, the first gap closing with increasing
field occurs for k± = ±π/2 and hc = ±2� (� < 2t). This
vanishing of the gap at a wavevector that is not time-reversal
invariant is particularly interesting and we will explore this
case numerically further on. We will also discuss the topolog-
ical nature of the different phases of the model.

IV. FINITE SIZE CHAINS

For the purpose of studying the edge modes in the system,
we consider a finite-size chain with N sites and open boundary
conditions. We neglect spin-orbit coupling (λ = 0), for sim-
plicity, in this section. We rewrite Eq. (1.1) in terms of new
real operators

c j,σ = 1
2

(
γ B

j,σ + iγ A
j,σ

)
, c†

j,σ = 1
2

(
γ B

j,σ − iγ A
j,σ

)
, (4.1)

where the Majorana operators satisfy γ
β
j.σ = γ

β†
j,σ ,

{γ β
i,σ , γ

β

j,σ ′ } = δi j,σσ ′ and γ
β
j.σ γ

β
j.σ = 1 (β = A, B). The symbol

σ in γ B
j,σ does not mean a Majorana of spin σ . It is only a

label to distinguish the various operators, since we need two
Majoranas to represent an electron of spin up and two for an
electron of spin down.

In terms of these new operators the Hamiltonian can be
rewritten as

H = −1

2

N∑
j=1,σ

(μ + σh)
(
1 + iγ B

j,σ γ A
j,σ

)

− it

4

N−1∑
j=1,σ

(
γ B

j,σ γ A
j+1,σ − γ A

j,σ γ B
j+1,σ

)

− i�

4

N−1∑
j=1,σ

(
γ B

j,σ γ A
j+1,−σ + γ A

j,σ γ B
j+1,−σ

)
. (4.2)

Next, we introduce four more Majorana operators given by

αA±
j,σ = γ A

j,σ ± γ A
j,−σ , αB±

j,σ = γ B
j,σ ± γ B

j,−σ . (4.3)

Notice that

αA±
j,σ = ±αA±

j,−σ , αB±
j,σ = ±αB±

j,−σ . (4.4)

Finally, in terms of these new operators, the Hamiltonian of
the superconducting chain can be written as

H = − iμ

4

N∑
j=1

(
αB+

j,↑αA+
j,↑ + αB−

j,↑αA−
j,↑

)

− i

8

N−1∑
j=1

(t + �)
(
αB+

j,↑αA+
j+1,↑ − αA−

j,↑αB−
j+1,↑

)
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− i

8

N−1∑
j=1

(t − �)
(
αB−

j,↑αA−
j+1,↑ − αA+

j,↑αB+
j+1,↑

)

− ih

4

N∑
j=1

(
αB+

j,↑αA−
j,↑ + αB−

j,↑αA+
j,↑

)
, (4.5)

where the sum over σ has been performed and expressed in
terms of σ =↑. This index σ =↑ now becomes redundant but
we keep it anyway. The α operators are such that

αA±
�,↑ = γ A

�,↑ ± γ A
�,↓, αB±

�,↑ = γ B
�,↑ ± γ B

�,↓. (4.6)

The Hamiltonian Eq. (4.5) describes two independent (±)
subchains that are coupled by the magnetic field term, the
last term in Eq. (4.5) (see Fig. 2). Notice from Eqs. (4.4)
and Eq. (4.5) that the magnetic-field term breaks time-reversal
symmetry, as it is not invariant under the change σ → −σ .

For t = � = 0, the Hamiltonian, Eq. (4.5), describes trivial
chains coupled by the magnetic field. On the other hand, if we
take μ = h = 0 and t = �, we obtain

H = −i�

4

N−1∑
j=1

(
αB+

j,↑αA+
j+1,↑ − αA−

j,↑αB−
j+1,↑

)
. (4.7)

Now the system consists of two decoupled ± chains, as shown
schematically in Fig. 2. The Majoranas αB−

1,↑ and αA+
1,↑ at the

beginning of these chains do not enter the Hamiltonian, as also
the Majoranas αB+

N,↑ and αA−
N,↑ at the ends of the chains. These

are the zero-energy edge modes that signal the existence of
a nontrivial topological phase in the superconducting chain.
Notice that the ± chains are not associated with a given spin
direction. As we show below, these zero modes persist for
|μ/2t | < 1, which characterizes the topological phase of the
system in the absence of a magnetic field (h = 0).

Then, for h = μ = 0 and t = �, the system is formed of
two independent Kitaev-like chains, each with two Majoranas.
We can combine the Majoranas at the edges of each chain to
obtain

g− = αB−
1,↑ + iαA−

N,↑, g+ = αB+
N,↑ + iαA+

1,↑, (4.8)

to form a pair of nonlocal fermions, one in each subchain.
Then, in the absence of a magnetic field, which couples

FIG. 2. Equation (4.7) describes two independent subchains (±)
in terms of the operators α±. The figure represents a topological
phase, with Majoranas at the edges of each subchain.

the ± subchains, the latter are the zero-energy edge modes
of the system. In terms of the original fermions operators,
we have

g− = (c1,↑ − c†
N,↑) − (c†

1,↓ + cN,↓) − ((c1,↓ − c†
N,↓)

− (c†
1,↑ + cN,↑)). (4.9)

We recall that in the Kitaev spinless p-wave superconduct-
ing chain, with S = 1, Sz = 1, the nonlocal fermion is given
by [37]

fK = (c1 − c†
N ) − (c†

1 + cN ). (4.10)

In the presence of a magnetic field, we can combine two
Majoranas, either in the same sites or on different edges, to
form the fermions. In the former case we have

g1 = αB−
1,↑ + iαA+

1,↑, gN = αB+
N,↑ + iαA−

N,↑, (4.11)

or in terms of fermion operators,

g1 = 2(c1,↑ − c†
1,↓), gN = 2(cN,↑ + c†

N,↓). (4.12)

These modes are present for |μ/2t | < 1, for 0 < h < h∗, i.e.,
for finite fields but below a critical field hc, as we show below.
They are localized at the edges of the chain and have a finite
Zeemann energy. They are not symmetry protected, as they
exist in a region of the phase diagram that is topologically
trivial, as evidenced by the topological invariant calculated
further on.

V. NUMERICAL RESULTS

In this section, we discuss the dispersion relations for an
infinite chain and obtain numerical results on finite chains of
size N with open boundary conditions, in the presence of SOC
and magnetic field. We consider two different situations that
are distinguished by the points of the Brillouin zone at which
the gap closes. This may occur either at the time-reversal in-
variant momenta k = 0, k = ±π , or at the points k = ±π/2.

A. Gap closing at k = ±π/2

First, for the infinite chain, with μ = λ = 0, the super-
conducting gap decreases with increasing magnetic field and
finally closes at the non-time-reversal wave vectors k = ±π/2
at a critical magnetic field hc = 2�, as shown in the disper-
sion relations of Fig. 3. For magnetic fields 2� < h < 2t , the
system enters a topological phase characterized by the pres-
ence of pairs of monopoles [31,32,38] at the field-dependent
wave vectors k = ±k1 and k = ±k2, as shown in Fig. 3(b).
Finally, for h = 2t the monopoles annihilate each other at the
time-reversal k points of the Brillouin zone, Fig. 3(c). These
results are not qualitatively affected by the presence of the
spin-orbit interaction, as can be seen in Fig. 3, where it is
taken finite. In the next section we will give a detailed analysis
of the topological nature of this phase. Notice that we are ne-
glecting the possibility of any finite momentum pairing, since
the superconductivity in the wire is induced by the s-wave
substrate.

For finite chains at h = 0, we confirm numerically the pres-
ence of four zero-energy Majorana modes, two at each edge of
the chain, for |μ/2t | � 1. Their wave functions are localized
at the ends of the chain. This is expected since in this limit
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FIG. 3. (a) Dispersion relations for t = 1, μ = 0, λ = 0.15, and
� = 0.5 (a) gap closing at k = π/2 for the critical field hc =√

4(�2 − λ2). (b) Two pairs of monopoles in the nontrivial topolog-
ical phase for hc < h < 2t (h = 1.2). (c) For h = 2t the two pairs
of monopoles annihilate at k = 0, and k = ±π . The color code indi-
cates the degree of superposition between particles and hole states.

of h = 0, the system consists of two decoupled Kitaev chains,
as we obtained before. Then, for h = 0 we find a topological
phase with zero-energy edge modes for |μ/2t | < 1.

(a)

(b)

(c)

FIG. 4. Spectrum of eigenvalues for a chain of 300 sites with
μ = 0, � = 0.6, λ = 0.1, and h = 0.2, in units of the hopping t
(t = 1). In (a) we show the energy spectrum with the edge modes in
the gap. In (b) the energy of the 4 edge modes, with two degenerate, is
emphasized. In (c) the wave functions of the modes shown in (b) (see
also Fig. 5).

As we turn on the magnetic field in the finite chain, the
four edge modes persist in the presence of a small field,
but now they are separated in two double-degenerate modes
with finite energies, as shown in Fig. 4. The lower energy
states correspond to the Zeemann energy of an electron with
spin parallel to the field and the excited state, with positive
energy, to that of an electron with spin antiparallel to the
field. The wave functions of these edge modes decay in the
bulk with a penetration length which is nearly field indepen-
dent and corresponds to that of the system in the absence of
the field. Further increasing the magnetic field (μ = λ = 0),
as it reaches the value h∗ = �, i.e., before the gap closes,
the energy of the local modes merge with the continuum
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FIG. 5. The energy of the edge modes aligned with the magnetic
field and their wave functions, for μ = 0, � = 0.6, λ = 0.1, and h =
0.4. These modes combine to a form a single quasiparticle with the
correct total Zeemann energy. This quasiparticle is delocalized since
its wave function resides in the two opposite edges of the chain.

of Bogoliubon excitations and their wave functions become
abruptly delocalized. The closest analogy of this phenomenon
is the Chandrasekhar-Clogston limit in conventional super-
conductors [39] where the magnetic field is screened up to
a critical field beyond which it penetrates abruptly in the bulk.

Further increasing the field, the gap decreases and closes
for a critical field hc = ±

√
4(�2 − λ2) + μ2, in the presence

of SOC (λ < �). The effect of SOC in this case is to compete
with the superconducting gap, reducing it. Finally, for h > hc,
Fermi points appear in the system. These Fermi points are
topologically protected as we discuss further on. Notice in
Fig. 4(a) that the spectra are always particle-hole symmetric
and this holds for any values of the parameters of the Hamilto-
nian, in agreement with what was obtained previously. Further
on, we will discuss the existence of a hidden chiral symmetry
of the Hamiltonian.

It is interesting to investigate how the edge modes give rise
to a full electronic spin. They can combine either on the same
edge or on different edges as a delocalized quasiparticle. The
numerical results in Fig. 5 show that the wave functions of the
modes with negative energy, i.e., with spins aligned parallel
to the field are localized on two opposite edges of the chain.
Consequently, the wave function of the electron with spin up,
parallel to the magnetic field, is delocalized with equal weight
on different edges of the chain, as shown in Fig. 5. The same
holds for the excited state with spin down. Notice also in Fig. 5

FIG. 6. As a new gap opens and the Zeemann energy falls in a
gap, the edge modes reappear. In this case at the trivial topological
phase with M = 0, for t = 1, h = 2.3, � = 0.5, λ = 0.1, and μ = 0
(see Fig. 7).

that the energy of two edge modes are required to give the
Zeeman energy of a single electron.

Finally it is shown in Fig. 6, that for large enough fields,
local modes reappear when their Zeemann energy falls in a
gap of the spectra of bogoliubons.

B. Gap closing at time-reversal wave vectors

The gap closing phenomena that occurs at the time-reversal
invariant wave vectors in the present study are associated with
the annihilation of monopoles, shown in Fig. 3(c). Monopoles
of different charges annihilate each other exactly at these
points, k = 0 and k = ±π . These monopoles, or Fermi points
are nontrivial topological objects in momentum space [31].
They are characterized by a topological charge, given by a
winding number [31].

For h = 0 we observe gap closing as a function of the
chemical potential for μ = ±2t at the time-reversal point
k = 0. Also for h = 0 the spin-orbit interaction can promote
gap closing for λ = �. However, we restrict our study here
for the case λ < �.

VI. TOPOLOGICAL INVARIANT

In order to characterize the different phases and transitions
at the gap closing points, we calculate topological indices
for our problem. First we seek for a chiral symmetry of the
Hamiltonian, Eq. (3.2). We want to find an operator K , i.e., a
matrix K that anticommutes with H and such that it satisfies
K.K = 1. Imposing these conditions, {K,H} = 0 and K2 = 1,
we find they can be satisfied with K = σx ⊗ σ0. Applying
the same unitary transformation UKU T that diagonalizes the
matrix K , to the Hamiltonian H, we obtain H′ = UHU T as

H′ =
[

0 A
A∗ 0

]
,

where

A =
[−2(εk + h − μ) −2(�k + λk )

−2(�k − λk ) −2(εk − h − μ)

]
,
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with εk = −2t cos k, �k = 2i� sin k, and λk = 2iλ sin k. This
chiral symmetry of the Hamiltonian is due to the particle-hole
symmetry of the spectrum that we observe for all values of the
parameters, even in the presence of a magnetic field.

In order to calculate the topological invariant we first
obtain

G(k) = ∂ ln det[A(k)]

∂k
, (6.1)

which is given by

G(k) = −4tμ sin k − 4(t2− (�2− λ2)) sin 2k

−h2+ μ2+ 4t cos k(μ+ t cos k) + 4(�2− λ2) sin2 k
.

(6.2)

Introducing

M(k) = 1

2π i

∫
G(k)dk (6.3)

and performing the integration, we get

M(k) = 1

2π
	m[ln(−h2 + μ2 + 4t cos k(μ + t cos k)

+ 4(�2 − λ2) sin2 k)]. (6.4)

The topological invariant is obtained from

M = 2[M(π ) − M(0)]. (6.5)

We get
(i) M = 1, for (2t − μ)2 < h2 and (2t + μ)2 > h2.
(ii) M = −1, for (2t + μ)2 < h2 and (2t − μ)2 > h2.
(iii) M = 2, for h = 0 and μ < 2t .
(iv) M = 0, for h = 0 and μ > 2t .
For λ = h = 0 and |μ/2t | < 1 we find M = 2, due to

the two pairs of Majoranas in the uncoupled chains, as we
obtained previously, and in agreement with simulations.

Since the gap may also close at k = π/2, we have
additionally [35,36]

M = 2M(π/2) − M(π ) − M(0), (6.6)

that yields
(i) M = 2, for (2t ± μ)2 > h2 and h2 > 4(�2

− λ2)
+ μ2.

(ii) M = 1, for h2 > μ2 + 4(�2 − λ2) and
(2t + μ)2 > h2 > (2t − μ)2 or
(2t − μ)2 > h2 > (2t + μ)2

(iii) M = 0, for h2 > μ2 + 4(�2 − λ2) and h2 < (μ
± 2t )2.

In these cases the indexes are not universal in the sense
that the phase boundaries depend on the parameters � and λ.
The latter competes with superconductivity and it’s role is to
renormalize (reduce) the superconducting gap. The topologi-
cal indexes of the different phases are shown in Fig. 7.

It is interesting to look at the phase diagram in Fig. 7
together with the dispersion relations shown in Fig. 3(b).
These relations were obtained for μ = 0 and 2t > h >√

4(�2 − λ2). This region of the phase diagram is associated
with a topological index M = 2 that in this case counts the
number of pairs of topological Fermi points in this phase.
The topological charge of a Fermi point is characterized by

FIG. 7. Topological indexes M of the different regions of the
phase diagram. The red line, corresponding to h = 0, |μ/2t | < 1, has
M = 2. To obtain the gap-closing lines at (π/2), we used � = 0.5
and λ = 0.1, in units of t . Phases with topological indexed (1,-1) and
(2,-2) are gapless phases with one and two pairs of Fermi points,
respectively.

a winding number, similar to the one we calculated. It is inte-
grated in a closed contour in momentum space that embraces
the Fermi point [31,32]. In a one-dimensional system, this
involves integrating all along the Brillouin zone, as in the
calculation of the winding number, Eq. (6.3).

It is also relevant that the region of the phase diagram with
μ = 0 and h < �, where we observed magnetically polarized
edge modes, is topologically trivial, with M = 0. This im-
plies that these modes are not symmetry protected.

Finally, Fig. 8 shows the region of the phase diagram where
protected Majorana modes are observed. They occur only at
h = 0, for |μ|/2t | < 1 and λ < �.

VII. CONCLUSIONS

In this work we presented a study of the topological prop-
erties of a superconducting chain with electrons pairing in a
spin-triplet state S = 1, but with the zth component Sz = 0.
The motivation for this study is that this type of pairing can
be induced in a chain whose orbitals have an antisymmetric
hybridization with those of a BCS s-wave superconducting
substrate. Alternative pairings to the simple spinless case
studied by Kitaev have been considered to obtain topological
superconductors. In particular, equal-spin pairing [40] and
d-wave pairing [35,36] were proposed. Here we studied the
case S = 1, Sz = 0 with a concrete physical motivation. We
have obtained the symmetry properties and calculated the
topological indexes of the model and obtained a rich phase
diagram with trivial and topological phases distinguished by
these indexes.
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FIG. 8. Region of the phase diagram, in color, where protected
Majorana edge modes are observed. It is characterized by a topo-
logical index M = 2, and requires that h = 0 and |μ/2t | < 1. The
uncolored region, λ > �, has no Majorana edge modes.

We pointed out the existence of a topological phase, in the
absence of a magnetic field, with four Majorana modes, two
in each edge of the finite chain. In small finite fields h < �,
these modes become spin polarized. Each pair of edge modes
gives rise to a full electronic spin that can align parallel or
antiparallel to the magnetic field. A full polarized electronic

spin has a wave function on both edges of the chain and cor-
responds to a delocalized quasiparticle. These edge modes are
not symmetry protected, as they occur in a region of the phase
diagram characterized by a trivial topological index M = 0.
For magnetic fields h > � these edge modes disappear as they
merge with the spectrum of bogoliubons. This occurs before
the gap closes at h = 2�.

For h > 2
√

�2 − λ2 the topological excitations are in mo-
mentum space and correspond to pairs of Fermi points. At
these points the dispersion relations are linear in momentum.
These Fermi points occur in a large region of parameters of
the phase diagram. They appear in pairs (Weyl fermions) and
can only be destroyed by annihilating each other [31,32] at
the time-reversal wave vectors of the Brillouin zone. We have
found nontrivial phases [41] with a single pair, M = 1, and
two pairs of Fermi points, M = 2.
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