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It is well known that electronic states in graphene with a uniform Rashba spin-orbit interaction and uniform
magnetization, e.g., due to exchange coupling to a magnetic substrate, display an energy gap around the Dirac K
and K’ points. When the magnetization of graphene is nonuniform and forms a magnetic domain wall, electronic
states localized at the wall emerge in the energy gap. In this paper we show that similar localized electronic
states appear in the gap when the graphene is uniformly magnetized, while a domain wall appears in the Rashba
spin-orbit interaction (i.e., opposite signs of the Rashba parameter on both sides of the wall). These electronic
states propagate along the wall and are localized exponentially at the Rashba domain wall. They form narrow and
nearly parabolic (at small wave vectors) bands, with relatively large effective electron mass. However, contrary
to the magnetic domain wall, these states do not close the energy gap. We also consider the situation when the
magnetic domain wall coexists with the Rashba domain wall, and both walls are localized at the same position.
Electronic states due to the interplay of both domain walls are determined analytically and it is shown that the
electronic states localized at the walls close the gap when a magnetic domain wall (symmetric or asymmetric)
exists, independently of the Rashba parameter behavior.
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I. INTRODUCTION

Electronic properties of graphene can be substantially
modified by externally induced magnetization and Rashba
spin-orbit interaction (SOI) due to proximity effects. It is
well known that the interplay of perpendicular magnetization
and Rashba SOI opens a gap in the electronic spectrum
of graphene [1,2], making it semiconducting and therefore
useful for various applications in two-dimensional (2D)
electronics, spintronics, and optoelectronics [3,4]. Both
magnetization and Rashba SOI can be induced in graphene
due to proximity effects by encapsulation between thin
layers of appropriate magnetic and semiconducting materials
[5-17]. Domain walls (as well as topological excitations such
as skyrmions) in the magnetic layer of such a hybrid structure
remarkably modify the electronic properties of graphene, and
can lead to additional states in the electronic spectrum. These
states may determine new functionalities of graphene-based
devices. This, in turn, paves the way to new possibilities of
graphene applications, which are based on electric control of
the domain wall/skyrmion motion—similar to the racetrack
memory devices [18].

It has been shown theoretically that a magnetic domain
wall in the magnetic cover layer on graphene with uniform
Rashba SOI leads to electronic states that are exponentially
localized at the wall [2]. These states emerge in the gap
of bulk electronic spectrum created by the interplay of per-
pendicular magnetization and Rashba SOI. Interestingly, the
localized states are characterized by a certain chirality, which
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leads to persistent current along the domain wall. This cur-
rent is related to the corresponding quantum anomalous Hall
(QAH) phase, and very likely it may be used in dissipationless
electronics, similarly to heterostructures based on topological
insulators [19,20]. The considerations in Ref. [2] assumed a
very sharp (of atomic size) domain wall.

Domain walls and topological excitations that affect the
electronic structure of graphene are not limited to mag-
netic ones, and can be also of other origins. For example,
a superconducting layer on top of graphene induces a
superconducting-pairing field [21]. It was shown that the topo-
logical excitations (e.g., vortices) in the superconducting layer
can lead to localized electronic states in graphene as well
[22,23].

Another example appears when using boron-nitrite (BN) as
a substrate, which induces an effective sublattice-symmetry-
breaking field and leads to a gap in the Dirac spectrum of
graphene, Correspondingly, the stacking defects in the BN
substrate can be considered as a sublattice domain wall. In
the presence of spin-orbit interaction this domain wall can
generate the edge states at the domain wall. Recent theoretical
works have also shown that the domain walls between AB-
and BA-stacked bilayer graphene can support protected chiral
edge states related to the quantum valley Hall insulator phase
[24-26]. It is worth to note that other domain walls were also
investigated, e.g., in bilayer graphene systems, where domain
walls separate two energetically equivalent Bernal stackings
in the presence of an external magnetic field [27,28]. It has
been found that such a domain wall substantially affects the
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Magnetic layer M>0

FIG. 1. Schematic picture of a uniformly magnetized graphene
with a Rashba spin-orbit domain wall. The layer is in the x, y plane,
with the axis y along the domain wall. In turn, the axis z is normal to
the layer.

local electron density of states as well as electronic transport
properties of graphene bilayers.

Recently, it has been shown [29] that the edge states asso-
ciated with the domain walls of different origins in graphene
are topologically protected, so that small variations of relevant
parameters and/or scattering from impurities do not affect
these states. It was found, e.g., that a domain wall associated
with sign change in the valley-Zeeman spin-orbit coupling
binds two robust Kramers pairs within the bulk gap due to
the simultaneous presence of Rashba coupling.

An interesting situation is when the domain wall appears
in the Rashba spin-orbit coupling, i.e., when the spin-orbit
parameters on both sides of the wall have opposite signs.
The effect of such a sharp spin-orbit domain wall on trans-
port properties of electrons propagating across the domain
wall was studied in Refs. [30,31]. Similar problem was also
considered in Ref. [32], where, however, the domain wall
was of mixed nature, i.e., on one side of the wall there
was a nonzero magnetization and zero Rashba coupling,
while on the other side the situation was reversed. Trans-
port across such a wall revealed a significant anisotropic
magnetoresistance.

In this paper we consider a van der Waals heterostructure
consisting of a graphene monolayer deposited on a sub-
strate that ensures strong Rashba spin-orbit interaction in the
graphene. As the Rashba coupling can be easily tuned by ex-
ternal voltage, we assume that the substrate is gated with two
electrodes, that create two domains with positive and negative
Rashba coupling parameters, respectively. Such two domains
with opposite Rashba parameters can be achieved with a struc-
tured substrate, as well. In addition, the Rashba coupling can
be tuned by an external strain as well [33] and this also may be
exploited in preparation of graphene with structured Rashba
coupling. In turn, to create an exchange field in graphene, the
structure is assumed to be covered by a magnetic layer with
out-of-plane magnetization, e.g., by a monolayer of Crl; or
another semiconducting 2D material with out-of-plane easy-
axis magnetic anisotropy [6]. Schematically, the structure is
presented in Fig. 1.

The edge states in the considered structure appear at the
boundary between two different Rashba regions. Contrary
to the case of magnetic domain wall, these states do not
display chiral propagation and the corresponding dispersion
relations are rather symmetric and similar to the parabolic
ones. Moreover, these states do not close the gap, and for

certain model parameters we find a very narrow (flat) band of
edge states, which effectively describes heavy electrons (with
large effective mass). It is known that the existence of such
flat bands leads to many interesting physical phenomena such
as superconductivity, ferromagnetism, etc. [34—42].

We also consider a more general situation, when the
Rashba domain wall coexists with a magnetic domain wall
localized at the same position. The effects due to inter-
play of both domain walls is studied in detail, and these
effects are shown to depend on the strength of Rashba pa-
rameter and magnitude of magnetization on both sides of
the walls.

The outline of the paper is as follows. In Sec. II we consider
graphene with a model Rashba domain wall, and derive the
electronic states localized exponentially at the wall. Properties
of these states, including their spin polarization, are also ana-
lyzed there. The coexistence of Rashba and magnetic domain
walls is studied in Sec. III. Transport along the wall is studied
in Sec. IV, while summary and final conclusions are in Sec. V.

II. GRAPHENE WITH RASHBA DOMAIN WALL

In this section we consider graphene (atomic monolayer
of carbon atoms) with Rashba SOI induced by a substrate.
We assume two domains of the Rashba SOI, corresponding to
opposite signs of the Rashba parameter A, i.e., this parameter
changes sign when crossing the boundary between the do-
mains, referred to in the following as the Rashba domain wall.
In addition we assume a magnetic overlayer with uniform
magnetization normal to the graphene plane. The system is
shown schematically in Fig. 1.

Hamiltonian for electrons in graphene near the valley K
can be then written in the form

H=—iv(t,V, +1,V,) + A(x) (t,0, — 1y0,) + o.M, (1)

where 1; and o; are the Pauli matrices acting in the sublattice
and spin spaces, respectively, M is the magnetization-induced
Zeeman-like field (for simplicity referred to in the follow-
ing as magnetization) due to the proximity effect, with the
magnetization along the z axis normal to the x — y plane of
graphene, while A is the coupling constant of Rashba SOI,
which changes sign at the interface x = 0 (see Fig. 1),

—Xo, x<0,
Ao, x>0.

Ax) = { @)
Finally, the parameter v in Eq. (1) is related to the elec-
tron velocity vg in graphene, v = fivy [43,44]. Without
loss of generality we assume here M > 0 and Xy > 0.
This assumption will be relaxed in Sec. III, when we
will consider the coexistence of Rashba and magnetic
domain walls.

A. Dispersion relation for the edge states

Now we look for solutions of the Schrodinger equation,
(H — &) ¥(r) = 0, which are localized at the domain wall.
Since the parameter A is uniform along the y axis and depends
only on x, one can assume the wave function ¥ (x,y) in
the form ¥ ~ e<*e’®Y. The factor e’ describes plane-wave
propagation along the wall, while the factor ¢“* describes
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exponential localization of the wave function at the wall. To To have nonzero solutions, the determinant of the above set
have the exponential localization on both sides, the parameter ~ of linear equations must be equal to zero, which leads to the
k has to obey the following conditions: Rex > 0 for x < 0 following equation for «:

and Rex < 0 for x > 0. Since the Schrodinger equation is 4 4 2 2/ 2.2 5 2 2 2.9

in the matrix form, we look for its solution in the following =20k = M =€) + [(M - o) — vk

bispinor form: X [((M +e)* —v’k; | +4r5(M* — £%) = 0. (5)
wT (r) = kv ticx ( (pT, <p¢, X 1 Xi) 3) Solutions of this equation take the form,
liaos 20 o \/ 21 32) 2 2,2\
separately in the regions x < 0 and x > 0. Upon substitution K12 = i;(kyv —M"—e"+2 (M + )‘0) e —M )‘o) )
of Eq. (3) into the Schrodinger equation, one obtains the 1 12
following four equations for the bispinor components: K34 = i; (kf,vz -M? —&* — 2\/(M2 +23) e — MZA(Z)) .
(6)
M —e)p' —iv(k +k)x" =0,
. D ! In the general case, k¥ can have real and imaginary parts. If
M +e)p¥ +2irx" +iv(k +ky)x* =0, the real parts are nonzero then Rex; 3 > 0 and Re iy 4 < 0.
v (ke — * oot M—¢)x' =0, This means that in Eq. (3) we have to choose ¥ = «; or k3 for
vk —w)e i+ ( )x x < 0 and k = K, or k4 for x > 0. With this choice, the wave
iv (ky, — K)pt — (M +¢)xt =0, 4) function (3) decays as |x| — oo.
Solving Egs. (4) for x < 0 and x > 0 with the correspond-
where L = —Xg forx < O and A = +A¢ forx > 0. ing A and «, we find the following possible solutions:
1

—k)z,v2 + vzfci3 + (M —¢)?
2o (ky +K1.3)
Y1) = et L M—e ™)
v(ky +k13)

[— kv 4+ vy + (M — &)*] (ky — K13)
2xo(ky + K13)(e + M)

1

forx < 0, and

1
—k;v? + v, + (M —¢)?
C 2vkolky +k2a)
Ya(r) = o0 L M—e @®)
v(ky + Kk2.4)
[k + %G, + M — )] (ky — 12.4)
2ho(ky + K2.4)(e + M)

for x > 0. Using Egs. (7) and (8), one can present the general solution corresponding to the edge state as the following
superposition:

_ JAY1 +By3, x <0,
v = {Clﬁz + Dy, x>0, ©)

where A, B, C, D are constants to be determined from the continuity of wave function at x = 0 (see also Appendix) and the
normalization condition for ¥ (r).

The continuity condition at x = 0 leads to a system of four linear equations for the coefficients A, B, C, D, which has a nonzero
solution when the corresponding determinant is zero. After rather cumbersome calculations we arrive at the following equation:

(—e + M)[—{(=2M? — 25)e” + MPAg}E(0) E(=0) + Ag(—e + M)(e + M)(—v’k; + M + £7)]

=0, 10
A(e+MYM? + &2 —)(M? + &2+ ¢) {10
[
where £(¢) is defined as £(¢) = \/v2ky2 —M? — ¢ 4+ ¢ with Equation (10) determines energy of the edge states as a
r=2 \/(Mz i )L(z)) 2 _ M2 A%. function of k,. There are two solutions of this equation, i.e.,
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FIG. 2. (a) Dispersion curves of the edge states, £(k,) (red dashed
lines), for Ap =5 meV and M = 10 meV, and (b) the dependence
of e(k, = 0) on the parameter Aq. The solid black lines correspond
to bulk bands. The dots in (a) indicate the points for which the
spin polarization has been calculated, as will be discussed later. The
vertical dashed line in (b) indicates the magnitude of Ao/M used in
the following when calculating the spin polarization.

+e(ky). These solutions present the bands of edge states,
shown in Fig. 2(a) by the red dotted lines. As one can see,
there is an energy gap between the two bands of the edge
states. In turn, Fig. 2(b) shows how the energy of edge states
for zero wave vector, £(k, = 0), grows with the parameter Ao.
This figure also reveals the fact that the gap between bulk
(and also between the edge) states goes to zero for vanishing
Ao. Accordingly, the localized states disappear in the limit of
Ao — 0 because there is then no gap between the valence and
conduction bands, and therefore the real parts of the parame-
ters «; tend to zero.

To find the effective Hamiltonian for the edge states in the
vicinity of k, = 0 we use the k — p method. For this purpose
we define two basis functions

v D) =e® V), vPr) =R yPr), A

where wsl’z)(x) are the functions (9) with k, = 0, correspond-
ing to the eigenenergies €;, = £¢(0). Hence, we get for
i=1,2,

/ " dx Y0 A ¥ (x) = :(0) (12)

as wél’z)(x) are the eigenfunctions of Hamiltonian (1) corre-
sponding to k, = 0. Now, we calculate the matrix element

Wiy = / T axy V) A YO, (13)

o0

6
4 x10 ‘
— g = 0.5 meV
— )\ = 7.5 meV
3,—Ag:15meV i
- (a)
E
1
0 I
2 4 10

6
M [meV]

= (b)
= 04
W
Conduction bands for
02 - M = 8.0 meV i
: — X\ = 0.5 meV
— o = 7.5 meV
— X = 15 meV
0 I L L 4‘_/ I |
-1.4 -1 -0.6 -0.2 0.2 0.6 1 1.4
kyv/M

FIG. 3. (a) The effective electron mass in the edge states, m*/my,
corresponding to small values of k, and presented as a function of
magnetization M for indicated values of Rashba parameter. (b) Bulk
bands (colored areas) and the corresponding edge states (lines of the
same color as the corresponding bulk bands) for different values of
Ao, as indicated in the legend. For simplicity, only the bulk and edge
states of positive energy are shown here.

which is not zero for k, # 0 since the functions (11) are not
eigenfunctions of the Hamiltonian (1) for k, # 0.

Using the notation Wi, = kyw, one can write the equa-
tion for the edge states in the form of 1D Dirac equation with
the effective Hamiltonian

(A kyw
Heff - <kyw* _A>9 (14)

where we denoted A = £(0). For small values of k,, the pa-
rameter w is constant, and can be calculated numerically. The
energy spectrum of the above effective Hamiltonian is e(k,) =
+(A? + ky2,|w|2)1/ 2, and the corresponding electron effective

mass in the edge states is m* = h>A/|w|?. The dependence of
effective mass m* on the Rashba parameter and magnetization
M is presented in Fig. 3(a). This figure shows that the effective
mass increases with increasing M and also with decreasing Ay.
The electron effective mass can be extremely large for small
values of g, which effectively corresponds to heavy electrons
in a very narrow band. The corresponding dispersion curve of
the edge states is then very flat, see the dispersion curve in
Fig. 3(b) for Ap = 0.5 meV.

B. Spin polarization of the edge states

Having the wave function (9), one can calculate the corre-
sponding probability density |, (x)|? of finding an electron
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FIG. 4. Spin-density components (a) s, and (b) s, correspond-
ing to the edge states for indicated k, and &, and associated with
the Dirac points K and K’. The other parameters: Ao/M = 0.7 and
M = 10 meV. The red and blue lines correspond to the red and blue
points marked on the dispersion curves in Fig. 2. The curves for the
K and K’ Dirac points are equivalent.

at the point x. This probability decays exponentially with the
distance |x| from the wall, though some oscillatory terms also
appear due to imaginary components of the parameters k.

1 .
05 '
. ;
-0.5 ‘
x
4 6 4 2 0 2 4 6 8

xM /v

kyv/M

M /v

Following this, one can also find the corresponding expecta-
tion value of electron spin in the edge state described by the
wave vector k,
5, (1) = ¥ (0) o9, (2). (15)
Components of the calculated spin density are presented in
Fig. 4 as a function of x and for the energy and k, correspond-
ing to the red and blue points on the dispersion curves shown
in Fig. 2. Only the nonzero components of spin density, i.e.,
the x and z ones, are shown there. The component of spin den-
sity along the Rashba wall, that is, the y component, vanishes
exactly and it is not shown in Fig. 4. As one can note, the
spin density decays exponentially with the distance |x| from
the wall, revealing, however, some oscillations that follow
from the oscillations in the probability density with increasing
distance from the wall. The calculated spin density depends
not only on x, but also on k,. This dependence is explicitly
shown in the density plots of the x and z components of spin
density, see Fig. 5. The top panels correspond to the upper
energy branch (positive energy), whereas the lower one to the
lower energy branch (negative energy). These figures clearly
show the regions in the (k,,x) space, where the particular
spin components reach maximal and/or minimal values. For
instance, the absolute value of the x component is maximal in
the regime of small values of k,, being positive (negative) for
the upper (lower) energy branch. Behavior of the z component
is qualitatively different and there are more areas of large z
component. Note, the component along the domain wall, s,,
vanishes exactly for all values of k, and all values of x, so it is
not presented in Fig. 5.
The results on the spatial distribution of spin density as-
sociated with the edge electron states corresponding to wave
vectors k,, presented in Figs. 4 and 5, are the same for both

1 0.15
0.5 0.1
=
5 0 0.05 =
-0.5 0
1 -0.05
8 -6 -4 -2 0 2 4 6 8

M /v

FIG. 5. The (a), (c) x and (b), (d) z components of spin density associated with the edge states localized at the Rashba domain wall,
presented as a function of k, and x. The top (bottom) panels correspond to the upper (lower) energy branch. The y component is not presented

here as it vanishes for all values of k, and x.
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(b)
0.5 1
—e>0
—c<0
K=K
W0
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-1.5 -1 -0.5 0 0.5 1 1.5
kyv/M

FIG. 6. The (a) x and (b) z components of the integrated spin in
the edge states as a function of k,. The red (blue) curves corresponds
to the high (low) energy branch of the edge states. Here the energy
of Rashba spin-orbit coupling is equal 1y = M/2.

Dirac valleys K and K’. These figures also show that the
electron spin in an edge state for ¢ > 0 [upper energy band in
Fig. 2(a)] is opposite to the electron spin in the corresponding
state in the bottom energy band.

Figure 6 shows the integrated spin density s;v in the state
ky, calculated as ‘

s;{y = /OO Sk, (x) dx. (16)

The integrated spin density is shown there for the edge states
of both higher (¢ > 0) and lower (¢ < 0) energy.

The absolute values of the x component of integrated spin
are maximal for small wave vectors, whereas they decay to
zero for the wave vectors, where the corresponding dispersion
curves terminate (enter the relevant bulk bands). In turn, be-
havior of the z component of integrated spin is opposite, i.e.,
this component is small for small wave vectors and reaches
the largest values at the points where the dispersion curves
enter the bulk bands.

The total spin accumulated at the domain wall (per unit
length of the wall) is presented in Fig. 7. Here we assumed that
the Fermi level is located in the gap between the two branches
of the edge states. Accordingly, the total spin includes the
contributions of all edge states with energies e(k,) < 0,

dk
S=D. f 5o (1= 0letky)]) s, (17)

K.K’'

where 6(z) is the Heaviside’s function. In addition, the con-
tributions of both K and K’ valleys are included. In this
figure both x and z components of the spin accumulated at the

20 1=
_Sz
—8,
]
=
~
;b 0
A
2L 1 L il
0 5 10 15

M [meV]

FIG. 7. The total spin per unit length accumulated at the domain
wall as a function of magnetization M. Here the Fermi level is
assumed in the gap, so the total spin includes contribution from the
edge mode of lower energy.

wall are presented as a function of M. As expected, these two
components vanish in the limit of M — 0 as there are then no
edge states (and no energy gap). The total spin components
may in general change sign with increasing M.

III. INTERPLAY OF RASHBA AND MAGNETIC
DOMAIN WALLS

A. General case and numerical results

From the above consideration we already know that topo-
logical properties of the edge states in case of individual Rasba
wall in the presence of uniform magnetization are different
from those of individual magnetic domain wall in a uniform
Rashba field. As the edge states in the former case do not
connect valence and conduction bands, and thus do not close
the gap, they are not protected topologically. In turn, the
edge states associated with magnetic domain wall connect
the valence and conduction bands and thus close the energy
gap and are related to the quantum anomalous Hall phase.
It is interesting to explore the evolution of the edge states
between these two limiting situations by varying the relevant
parameters (magnetization and Rashba constant).

To do this we consider now a more general situation, when
both Rashba and magnetic domain walls coexist, and we
assume that the walls are located at the same positions, as
shown schematically in Fig. 8. The interplay of both domain
walls leads to interesting properties of the edge states. The
results of numerical calculations are shown in Fig. 9, where

M=M, M=M

o

1;& = N

X

FIG. 8. Schematic picture of a graphene-based hybrid system
with nonuniform Rashba spin-orbit coupling and nonuniform magne-
tization (coexisting Rashba spin-orbit and magnetic domain walls).
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feyv/M, leyv/ M,

Al x

2 2 A 0 1 2
kyv /M,

0
kyv/M

FIG. 9. Edge states for different parameters [A;, A,] of Rashba coupling and different magnetizations [M;, M,] on the left and right sides.
Top panels: (a)~(d) [Ar, 1] = [—Ao, dol, (@) [M;, M,] = [My, Mo], (b) [Mo/2, Mo, (¢) [—Mo/2, Mo], [—Mo, Mo] (d). Bottom panels: (e)—(h)
[Ml, M,] = [M(), —Mo], (e) [)xl, )x,] = [}Lo, )\.0], (f) [AO/Z, )\0], (g) [—A0/2, )Lo], (h) [—)&0, )\.0] Here, Ao = 10 meV and My = 10 meV. The insets
show schematically the corresponding magnitudes of [M;, M,] and [%,, A,], respectively).

we show the edge states in several situations, and for various
combinations of the Rashba parameter and magnetization on
both sides of the walls. Figures 9(a) and 9(e) correspond to
individual Rashba and magnetic domain walls, respectively.
The former situation was examined above, while the latter one
was studied in our earlier work, see Ref. [2].

For clarity of terminology we note that when a certain
parameter (magnetization or Rashba constant) has the same
sign on both sides of the boundary, we refer to this situation
as a step, while when this sign is opposite on both sides we
call it domain wall (antisymmetric, when the corresponding
absolute values of the parameter are the same on both sides,
and asymmetric otherwise). In Figs. 9(a)-9(d) the antisym-
metric Rashba domain wall (with opposite Rashba parameters
on both sides of the wall) is fixed, while the magnetization
changes from uniform [Fig. 9(a)] to the antisymmetric mag-
netic domain wall [Fig. 9(d)]. The situations in Figs. 9(b) and
9(c) correspond to magnetic step [Fig. 9(b)] and asymmetric
domain wall [Fig. 9(c)], respectively. From Figs. 9(a)-9(d)
it follows that when there is a magnetic domain wall in the
presence of a Rashba domain wall, there are two edge states,
which close the gap, independently if the magnetic wall is
asymmetric or antisymmetric. However, in the absence of
magnetic domain wall, the two edge states do not close the
gap.

In turn, in Figs. 9(e)-9(h) the magnetic domain wall is fixed
while the Rashba parameter changes from uniform [Fig. 9(e)]
to the antisymmetric Rashba domain wall [Fig. 9(h)]. The sit-
uations in Figs. 9(f) and 9(g) correspond to different absolute
values of the Rashba parameters on both sides of the mag-
netic wall; i.e., to a step [Fig. 9(f)] and asymmetric Rashba
domain wall [Fig. 9(g)]. These figures allow us to generalize
the conclusion from Figs. 9(a)-9(d) (see above) and state
that when a magnetic domain wall exists, there are two edge
states that connect valence and conduction bands closing the
energy gap—independently of the Rashba parameters (ex-
cept zero Rashba parameter, as there is then no gap and no
edge states). Note, that magnetic domain walls (independently

antisymmetric or asymmetric) exist in Figs. 9(c)-9(h), and in
all these figures the edge states close the gap. This is because
in all these situations the Chern numbers on both sides of the
magnetiic domain wall are different, contrary to Figs. 9(a)
and 9(b) where the Chern numbers on both sides are equal.
However, chirality of the edge states in Figs. 9(c)-9(d) is
opposite to that in Figs. 9(e)-9(h), which is due to the opposite
signs of the magnetization in these two cases. Consequently,
the Chern numbers have also opposite signs. According to
the discussion in Ref. [2], there is an equilibrium current
flowing along the wall, and the domain wall separates then two
regions in the quantum anomalous Hall phase. Thus, when the
Fermi level is located in the energy gap, one may expect the
quantum anomalous Hall conductance of the system [45,46],
Oyy = %nw, where

1 ; ,
o= 5 Z Z / PR, =k 4k (18)

is the Chern number, and €27 (k) is the z component of the
Berry curvature for the nth band in the momentum space (v
indicates two inequivalent Dirac points in graphene). For the
effective continuum model describing bulk states in the sys-
tem with a single magnetic domain, we find n., = 2 sgn(M),
with the same contributions from the K and K’ points,
nK =nk = 1sgn(M) [1,47-49]. From the bulk-boundary
correspondence follows that two chiral edge modes can be
expected at the interface between graphene and vacuum.

The system with a magnetic domain wall (independently
of the presence or absence of Rashba kink or domain wall)
can be treated as a junction of two QAH insulators with
opposite chiralities of the localized edge states. As a result,
there is a pair of topologically different topological insulators,
ne(x < 0) =2 and ng,(x > 0) = —2, which correspond to
the same symmetry class [50]. Thus, one may expect four
localized states propagating along the domain wall in the same
direction. The QAH conductivity at the domain wall is equal
to —4e?/h.
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However, we note that the interface is not between topo-
logically distinct insulators [50,51], so edge states are not
protected against scattering. In other words, there are two
topologically different phases, defined by different Chern
numbers, but Hamiltonians describing these two regions be-
long to the same class of topological order. Secondly, the
intervalley scattering processes are allowed for graphene, and
these scattering processes are the main obstacle in realization
of QAH effect in graphene-based systems.

In turn, the nonequilibrium charge and spin currents can
be induced by external driving force, such as electric field or
temperature gradient. This problem will be analyzed in the
next section. It is also worth to note that the two edge states
are degenerate in the case when both (Rashba and magnetic)
domain walls are antisymmetric, see Figs. 9(d) and 9(h). In
such a situation one can get simple analytical solutions for the
energy of edge states. This peculiar situation will be analyzed
in more detail in the following section.

B. Specific case of antisymmetric Rashba
and magnetic domain walls

When the antisymmetric magnetic and Rashba domain
walls coexist at the same position, energy of the edge states
can be obtained in the analytical form. Taking into account
Hamiltonian (1), modified by including magnetic domain
wall, and following the method described above for the indi-
vidual Rashba domain wall and in Ref. [2] for the individual
magnetic wall, we arrive at the following formula for the
energy of edge states localized at the antisymmetric double
Rashba-magnetic domain wall in the form:

FZUF

=+0—=k,, 19
& QZ)»(Z) y (19)

where vp is the (Fermi) electron velocity in graphene, while

0 = \2[ M2 (M3 +432) (M3 +33)]* — 2 — 6M223
(20)

and the + and — signs correspond to the configurations with
M, > 0 [Fig. 9(d)] and with M, < 0 [Fig. 9(h)], respectively.

Properties of the above edge states differ qualitatively from
those of the states localized at the individual Rashba domain
wall studied above, as well as from properties of the individual
magnetic domain studied in Ref. [2]. In the case of individual
Rashba domain wall, the distribution of the probability density
associated with a particular edge state is a symmetric function
of x (the axis x is normal to the wall). The same is also true
in the case of individual magnetic domain wall. In turn, in
the case of antisymmetric double Rashba-magnetic domain
wall, the probability density associated with a particular edge
state is not symmetric. This is shown explicitly in Fig. 10
for both modes separately and for both Dirac points. The left
panels corresponds to one the two edge state (solution for
A =B =1) and to the Dirac points K [Fig. 10(a)] and K’
[Fig. 10(b)], while the right panels correspond to the second
edge state (solution for C = D = 1) and to the Dirac points K
[Fig. 10(d)] and K’ [Fig. 10(e)]. In turn, Figs. 10(c) and 10(f)
show the difference of the probabilities in the points K and
K'. This difference is nonzero for both modes, and is shown

explicitly in Fig. 10(c) for the first mode, and in Fig. 10(f) for
the second mode. Accordingly, there is some asymmetry in
the distribution of the probability density (i.e., charge density)
between the two Dirac points. This property may be of some
interest for valleytronics. We recall, that such a property is
absent in the case of individual magnetic domain wall with
uniform Rashba coupling and in case of Rashba domain with
uniform magnetization. Obviously, the spin distribution cor-
responding to the considered here edge states associated with
the antisymmetric magnetic-Rashba double domain wall is
significantly different from the spin distribution for the edge
states associated with an independent Rashba wall and uni-
form magnetization (see Fig. 5).

The spin density integrated over x and summed over the
two edges states (i.e., the total spin associated with the edge
state described by k), is shown in Fig. 11 for both K and K’
Dirac points. This figure clearly shows the difference between
spin values corresponding to k, in the two Dirac points.

IV. NONEQUILIBRIUM TRANSPORT VIA CHIRAL
STATES AT THE DOMAIN WALL

Now, let us consider nonequilibrium spin and charge trans-
port via the chiral states at the composed (magnetic an
Rashba) domain wall due to applied voltage or temperature
gradient. To emphasize some basic features of these currents
we assume the antisymmetric double domain wall, where the
dispersion relation for both edge states is linear [these states
are degenerate as already discussed above, see Figs. 9(d)
and 9(h)]. This assumption allows to find simple analytical
expressions for the currents.

A. Voltage-induced electric current

Let us consider one-dimensional electrons at the do-
main wall and assume the case of linear dispersion relation,
Figs. 9(d) and 9(h). The corresponding spectrum is linear
in ky, &x = hivk,, where v the electron group velocity, v =
j:(Q/ZA%)vp, see Egs. (19) and (20). In the following we limit
ourselves to the case shown in Fig. 9(h). The corresponding v
is then negative. Apart from this, it depends on My and X,
and vanishes for My = 0. We also assume that the electrons
flowing along the wall are scattered only inelastically, e.g.,
from phonons, which leads to the energy relaxation. Using the
kinetic equation for the distribution function in the stationary
state and linear-response regime we find

Ey— = ——, 21
ev8 21

where E is the external electric field along the wall, t.
is the energy relaxation time, §f = f — fo, with fy(e) =
[e@=/6T 1+ 177" being the equilibrium distribution function
and u denoting the chemical potential. From Eq. (21) we get

6f = —eEvt, % (22)
ae

Importantly, we assumed here that the stationary state can
be reached at the energy relaxation length L, = |v|z,, which
should be smaller than the domain wall length, L, < L.
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FIG. 10. Distribution of the probability density for electron states with linear spectrum and localized at the double domain wall (coexisting
magnetic and Rashba antisymmetric domain walls). (a)—(c) present the probability density for one of the edge modes (corresponding to the
solution A, B = 1), while (d)—(f) present the probability density for the second edge mode (corresponding to C, D = 1). (a), (d) correspond to
Dirac point K while (b), (e) to K. In turn (c), (f) show the difference of the probability density in the K and K’ Dirac points for both edge
modes.

The nonequilibrium charge current due to electric field can
be calculated as

2 €0
I = 4ev/p(8)5f(8)d8 = %VT&E/ (_a_fo) de,

£ ae

(23)

where h = 27, € /h is the conductance quantum (per quan-
tum channel), p(¢) = 1/2mh|v| is the density of states (per
channel), while &g >~ &,/2 determines the energy limits of the
linear dispersion, with ¢, denoting the width of energy gap,
within which the edge states propagate. The factor of 4 takes
into account the two Dirac points and double degeneracy of
the edge states in each Dirac point (i.e., there are four quantum
transport channels). Note, the energy gap depends on M, and
Ao, and goes to zero when these parameters turn to zero.

FIG. 11. The x and z components of the spin associated with the We rewrite the above formula 23 in the form
edge states, plotted as a function of k,. Difference between the spins
in the states corresponding to k, and associated with the K and K" is ] — ﬁ lﬁ v / £ (_ 8_f()) de (24)
clearly visible. h L [ de ’
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FIG. 12. Electrical conductance due to the edge states as a func-
tion of My, calculated for the DW length L =30um, 7 = 0.1 K,
relaxation time 7, = 10 ps, chemical potential & = 10 peV and Ay =
10 meV. The inset shows the absolute value of the corresponding
electron velocity.

where V is voltage. Thus the conductance G = I/V is

G=

EE SO( 8f0> (25)

h L de

—&)

At low temperatures, kpT < &y, the integral in Egs. (24)
and (25) is equal to 1, and thus the conductance is G =
(4¢%/h)(Le/L).

Variation of conductance G with the parameters of the
wall, i.e., with Mj, is shown in Fig. 12 for indicated values
of Ag. The conductance vanishes for My — 0, as in that limit
there are no edge states. Then, the current increases with
increasing My and after reaching maximum at some value of
M, it starts to decrease with a further increase in M. This
behavior appears as a consequence of the variation of the
electron velocity with increasing M, which (for a constant
value of Ag) first increases with increasing M, and then starts
to decrease with M after reaching the maximal value, see the
inset in Fig. 12. A consequence of this decrease is a reduced
conductance with increasing M upon reaching the maximum
value.

B. Spin Seebeck effect

A nonequilibrium current can also flow along the wall,
when there is a nonzero temperature gradient along the wall.
To find this current we assume that electron and phonon sub-
systems are in a local quasiequilibrium, T,; = T,, = T, so that
the electron distribution function corresponds to quasiequilib-
rium at a local temperature of the lattice. This condition can
be realized if L, < L.

Due to the linear dispersion relation and the particle-hole
symmetry, the thermoelectric charge current vanishes as a
result of the cancellations of particle and hole contributions
to the charge current. This holds not only for the chemical
potential u = 0 (middle of the gap) but also for u shifted
away (not to far) from the middle of the gap. However, the
corresponding spin current vanishes only for u = 0, while for
u # 0 it becomes nonzero. As one can see from Fig. 11, elec-
tronic states localized at the domain wall are spin polarized,
and the expectation value of spin, s;(ky) = (0;)g,, in the k,
state can be approximated by s;(ky) = a,-ky2 + bik;,t . Here index

i = x, z corresponds to nonzero spin component (note that the
y component of spin polarization is zero). The parameters
a; and b; can be obtained by fitting to the data in Fig. 11.
This figure shows total expectation values of spin components
(including contributions from the two degenerate modes) in
the K and K’ Dirac points.

One can evaluate the thermoelectric spin current J; along
the domain wall as

F=v / [sf(e)+s{“<s>] p() 5f () de

Te bret
2nh3v T Z /80 ( 2\)2)(8—//«)

=K.K'
% de, (26)

where VT /T « 1. At low temperatures, kgT < €y, and for
n # 0, the thermally generated spin current is

2n T, uk3T?> VT ( 2b*u2>
) (e - h— at + = , (27
' 3y T _Z AN o @7
x=K,K'
where we used f % = 6 ® As the thermoelectric charge

sh
current vanishes in thls 11m1t I = 0 (see the discussion above),
we obtain a pure thermoelectric spin current.

V. SUMMARY AND CONCLUSIONS

We have derived analytical results for electronic states
localized at the Rashba domain wall. Such a wall (antisym-
metric or asymmetric) leads to edge states localized at the
wall. These states emerge in the gap between conduction
and valance bands and propagate along the wall. However,
these states do not close the gap, i.e., they do not connect the
conduction and valence bands. Thus, the gap survives, though
it is remarkably reduced. Such a behavior is in agreement with
equal topological Chern numbers on both sides of the Rashba
domain wall.

We have also analyzed coexistence of the Rashba and mag-
netic domain walls in graphene, when both walls are sharp and
located at the same position. In the absence of Rashba domain
wall and for uniform Rashba field, the problem reduces to that
analyzed in Ref. [2]. In a general case, independently of the
presence or absence of the Rashba domain wall and indepen-
dently if the magnetic wall is antisymmetric or asymmetric,
the edge states emerge in the gap between conduction and
valance bands and propagate along the wall. Moreover, these
states connect the conduction and valence bands, and thus
close the gap. This behavior is in agreement with different
topological Chern numbers on both sides of the magnetic
domain wall.

In the case of symmetric Rashba wall and uniform mag-
netization, dispersion relation of the edge states is symmetric
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with respect to reversal of the propagation direction (k, —
—ky). In the vicinity of zero wave vector, the dispersion
relation can be approximated by a parabolic band, and the
corresponding effective electron mass can be then extremely
large. This effective mass increases with increasing magneti-
zation M and decreasing magnitude of the Rashba parameter
Ao. Such heavy fermions may be responsible for various spe-
cific transport properties of the states localized at the domain
walls. In a general case, however, dispersion relations of the
edge states are not symmetric in k,.

The limit of antisymmetric Rashba and magnetic do-
main walls is particularly interesting as the dispersion
curves of both edge states are then linear in k, and de-
generate. This holds for both K and K’ Dirac points.
Additionally, we have analyzed the spatial distribution of

J

all components of the spin density associated with the edge
states.

Apart from the equilibrium currents, we have also calcu-
lated the nonequilibrium charge and spin currents induced by
electric field or temperature gradient. In the case of antisym-
metric domain walls (with linear in k, dispersion) we have
derived some analytical results, and found that the thermally
induced charge current vanishes, while the thermoelectric spin
current is then nonzero.
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APPENDIX: DERIVATION OF DISPERSION RELATION

To derive Eq. (10) we rewrite Eqgs. (7) and (8) in the following form:

1
—k2v? + vk + M? — 2Me + &*
T 2uieky + K1) A
Yi(x, y) = et . M—c¢ = 17 tiky Ci (Al)
v(ky + K1) D
(K202 + v} + M? — 2Me + &%) (ky — k1)
l 2ho(ky + K1)(e + M)
1
—k;v? + 0’3 + M? - 2Me + &?
' 2vho(ky + k3) ' 23
Y3(x,y) = e tiky y M—c¢ _ govtiky Cz (A2)
v(ky, +k3) Ds
(=kv* +v%kg + M? — 2Me + %) (ky — k3)
l 2ho(ky +K3)(e + M)
1
—k20? + 0%} + M? — 2Ms + &7
B - 2uio(ky + K2) y gi
2(x, y) = Y . M—c¢ — oxiky A3
e ol + ) s -
(kv 4+ v’ 4+ M? = 2Me + &%) (ky — i)
B 2hothy + K2)(E + M)
1
—kf,vz +v2k? + M? —2Me + &°
Yalx, y) = eiaxtiky zv)\(;‘;ky_—z < = fextiky gi (A4)
- v(ky, + Kk4) g‘;
_i(—kfv2 + vk; + M? — 2Me + %) (ky — k4)

2ok, + K4)(E + M)
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Since the real part of k| 3 is positive and of «; 4 negative we can write a general solution for the wave function corresponding to
the localized state at the Rashba domain wall (this wave function exponentially decays with x < 0 and x > 0) as

Yx <0) =AY (x)+Bys(x) (AS5)

Yx>0)=Cyy (x) + Dyy ), (A6)

where 1//f3 (x) = Y1 3(x) and 1//5 4(0) = Y 4(x), and A, B, C, D are the coefficients, which can be determined from the continuity
of the wave function at x = 0

AY(0)+B Y5 (0) =Cy; (0) + Dy (0). (AT)

Substituting to (A5), (A6) corresponding expressions (Al)—~(A4) for the wave functions ¥;(0) and ,,(0) we come to four
linear equations for the coefficients A, B, C, D

AAT + BAS — CA; — DA] =0,
ABT + BBy —CB; — DB; =0,
ACT +BC; —CC; —DCy =0,
ADT +BD; — CD; — DD =0. (A8)
The determinant of this system of equations should be equal to zero, and this gives us the equation for energy
AT AY AT A
det gll: 2: :gj: } Z‘; =0. (A9)
Dy Dy -D7 —Dj
Using (A1)-(A4) and calculating determinant (A9) leads to Eq. (10) for the energy ¢ of the localized states
(—& + M)[—{(—2M> = 33)e? + M213}E(0) (=) + 23 (—e + M)(e + M)(—v?kZ + M? + £7)]
e+ MM + 67 — (M + 6 + ) '
which is exactly Eq. (10) in the main text, with £(¢) and ¢ defined below Eq. (10).
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