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Persistent spin dynamics in magnetically ordered honeycomb-lattice cobalt oxides
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In the quest to find quantum spin liquids, layered cobalt oxides Na2Co2TeO6 and Na3Co2SbO6 have been
proposed as promising candidates for approximating the Kitaev honeycomb-lattice model. Yet, their suitability
has been thrown into question due to observed long-range magnetic order at low temperatures and indications of
easy-plane, rather than Kitaev-type, spin anisotropy. Here, we use muon-spin relaxation to reveal an unexpected
picture: Contrary to the anticipated static nature of the long-range order, the systems show prevalent spin
dynamics with a spatially uneven distribution and varied correlation times. This underlines that the magnetic
ground states cannot be solely described by the long-range order, suggesting a significant role of quantum
fluctuations. Our findings not only shed light on the complex physics of these systems but also underscore
the need for a refined approach in the search for realizable quantum spin liquids.
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I. INTRODUCTION

Materials that might realize the Kitaev model for quantum
spin liquids [1] have attracted considerable interest [2,3]. The
model represents a distinct route to magnetic frustration on
the honeycomb lattice, where each spin cannot simultane-
ously satisfy the bond-dependent and mutually orthogonal
Ising interactions with its three neighbors. Realizing these
interactions in crystalline materials involves a delicate balance
[4–9] among the electron interaction, crystal-field splitting,
and spin-orbit coupling. In particular, the desired Kitaev-type
three-dimensional (3D) interaction anisotropy is at variance
with the two-dimensional (2D) geometry of the honeycomb
lattice. To best approximate the Kitaev model, the crystal-field
and hopping parameters need to be locally restricted to the
magnetic ions and their ligands, without significantly involv-
ing more distant atoms that reflect the lattice geometry.

Recently, cobalt oxides with a layered honeycomb-lattice
structure, including Na2Co2TeO6 (NCTO), Na3Co2SbO6

(NCSO), and BaCo2(AsO4)2 (BCAO), have been intensely
studied for their potential to realize the Kitaev model [7,8,10–
18]. Compared to the 4d and 5d counterparts such as in
α-RuCl3 [6] and Na2IrO3 [5], respectively, the Co2+ 3d or-
bitals in these compounds are expected to be more localized.
However, whether this localization is sufficient to suppress di-
rect (i.e., not via ligands) hopping between nearest neighbors
and farther-neighbor hopping remains a point of contention
[17,19–24]. While farther-neighbor hopping might be treated
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as a perturbation to the nearest-neighbor (Kitaev) model,
which can already influence important characteristics of the
magnetic order and excitations [18,22,25–27], direct hopping
is believed to lead to a strong departure from the Kitaev model
concerning the interaction anisotropy [17,19–21,23,24]. As
most of the cobalt oxides do develop long-range magnetic
order at low temperatures, such departures from the ideal
Kitaev model cannot be neglected.

A crucial aspect related to the direct nearest-neighbor
hopping, when combined with crystal-field and spin-orbit ef-
fects, is whether the cobalt oxides are better described by an
easy-plane (XXZ) model than the Kitaev model. Ab initio
calculations suggest that this may indeed be the case for
NCTO and BCAO [19–21,23]. Yet, even for NCSO, which
is considered more compatible with a Kitaev-like theoreti-
cal starting point [23,28,29], recent studies present evidence
supporting XXZ-like anisotropy [30]. Notably, XXZ- and
Kitaev-like models are very different in their magnetic frustra-
tion properties: A bond-independent XXZ model is bipartite
on the honeycomb lattice, such that it needs to be sup-
plemented by farther-neighbor interactions in order to be
frustrated [19–21,24,31]. Even in the fully bond-dependent
Ising limit, the frustration is still arguably weaker than in the
Kitaev model, because the model no longer has three mutually
orthogonal spin anisotropy axes (instead, they are 120◦ apart).
It is thus important to search for signs of magnetic quantum
fluctuations in the cobalt oxides to evaluate their potential for
manifesting novel quantum states of matter.

In this paper, we present a comprehensive muon (μ+)-
spin relaxation (μSR) study of NCTO and NCSO, conducted
from the paramagnetic states to deep inside their magneti-
cally ordered states. By varying temperatures and applying
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FIG. 1. (a), (b) Crystal structures of Na2Co2TeO6 and
Na3Co2SbO6, respectively, along with calculated muon stoppage
sites indicated by small spheres near the cobalt atoms. (c),
(d) Magnetic susceptibility of Na2Co2TeO6 and Na3Co2SbO6,
measured on single crystals with in-plane magnetic fields of 5000
and 1000 Oe, respectively. The data are plotted together with
specific heat data measured in zero field to demonstrate TN and the
homogeneity of the samples.

longitudinal magnetic fields, we were able to distinguish be-
tween muon-spin relaxation caused by static and dynamic
magnetic moments. In both materials, we discovered that the
dynamic relaxation rate peaks at a temperature substantially
below the ordering temperature (TN), displaying a stretched-
exponential behavior indicative of a glasslike distribution of
relaxation times. Crucially, we found that a considerable frac-
tion of the spins maintain their dynamic nature even at temper-
atures that are an order of magnitude below TN. These obser-
vations provide compelling evidence for significant quantum
fluctuations in both systems, underscoring their highly frus-
trated nature. The persistent spin dynamics could also impose
constraints on the nature of the magnetic ground states.

Figures 1(a) and 1(b) compare the crystal structures of
NCTO and NCSO. The honeycomb-lattice cobalt layers are
formed by edge-sharing CoO6 octahedra. They are separated
by sodium atoms and have weak interlayer magnetic coupling
[25,32]. While this renders the difference in the interlayer
stacking of the two systems (hexagonal in NCTO and mon-
oclinic in NCSO) seemingly unimportant, the monoclinic
distortion of NCSO affects the Co-O bonding geometry and
produces dramatic in-plane magnetic anisotropy [33]. Both
systems show large in-plane versus out-of-plane magnetiza-
tion anisotropy [11,12,33], which can be attributed to either
global XXZ-like easy-plane anisotropy, or bond-dependent
Kitaev-like anisotropy supplemented by off-diagonal coupling
[34]. Their transition temperatures TN differ by about a factor
of 4 [Figs. 1(c) and 1(d)], and it is believed that NCSO is
closer to a ferromagnetic instability [10,33].

II. EXPERIMENTS

μSR is a powerful probe of both static and dynamic mag-
netization in solids. In both NCTO and NCSO, implanted

FIG. 2. (a) μSR spectra of NCTO measured far above TN. A
longitudinal field (LF) of 0.01 T decouples the nuclear dipolar fields.
(b) Near-zero-field μSR spectra measured at selected temperatures.
(c) Demonstration of stretched-exponential fitting of the data ob-
tained in near-zero field and just above TN. (d) Lowest-temperature
spectra under various LFs, revealing a dual static and dynamic nature
of the relaxation.

muons are expected to stop not far from the cobalt layers
[Figs. 1(a) and 1(b)], which makes them very sensitive to
internal magnetic fields generated by the cobalt atoms. Our
μSR experiments were performed on the ARTEMIS beam
line at the Japan Proton Accelerator Research Complex (J-
PARC), which utilizes both doublepulse higher-count-rate and
single-pulse higher-time-resolution methods. Polycrystalline
NCTO and NCSO were ground from single crystals grown
with a self-flux method [12,33] and pressed into pellets of
about 5 mm in thickness and 25 mm in diameter. NCTO was
mounted in a helium-4 cryostat while NCSO was measured
in both helium-4 and helium-3 cryostats. All the μSR data of
NCSO discussed in the paper were from the helium-3 cryostat.
The base temperatures of helium-4 and helium-3 cryostats are
about 3.3 and 0.3 K, which are about one order of magnitude
below the respective TN of the systems. We performed our
measurements under a variety of longitudinal magnetic fields
(LFs, up to H = 0.4 T) parallel to the initial μ+ spin direc-
tion, and analyzed the data using the software suite MUSRFIT

[35]. μSR spectra are represented by the corrected asymmetry
of the muon-decay counts as a function of delay time after
implantation.

III. RESULTS

Figure 2(a) displays the μSR spectra of NCTO obtained at
52 K. As the temperature is far above TN = 26.7 K, the ob-
served relaxation is not caused by static internal fields related
to the magnetic order. The significant difference between the
zero-field (ZF) and the LF = 0.01 T spectra indicates that the
former is affected by cobalt nuclear magnetic moments, which
the weak LF is sufficient to decouple. As such a weak LF
is not expected to be comparable to internal magnetic fields
generated by the Co electronic magnetic moments (over 2μB
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FIG. 3. μSR spectra of Na2Co2TeO6 (NCTO) under various lon-
gitudinal fields (LFs) at (a) T = 27.9 K, (b) 26.6 K, (c) 19.2 K, and
(d) 13.7 K.

in NCTO [12]), we continue to display in Fig. 2(b) the spectra
obtained with LF = 0.01 T at lower temperatures. Additional
temperature- and LF-dependent data of NCTO are displayed
in Fig. 3, and similarly obtained data for NCSO are displayed
in Figs. 4 and 5.

For a quantitative analysis, we fit the spectra to a sum of
dynamic and static components [36,37],

A0Pz(H, t ) = Abg + A1 exp[−(�t )β] + A2{α(H ) exp[−(λLt )]

+ [1 − α(H )] cos(γμBt + φ) exp[−(λT t )]},
(1)

FIG. 4. (a) μSR spectra of Na3Co2SbO6 (NCSO) measured far
above TN. A longitudinal field (LF) of 0.01 T decouples the nuclear
dipolar fields. (b) Near-zero-field μSR spectra measured at selected
temperatures. (c) Demonstration of stretched-exponential fitting of
the data obtained in near-zero field and just above TN. (d) Lowest-
temperature spectra under various LFs, revealing a dual static and
dynamic nature of the relaxation.

FIG. 5. μSR spectra of NCSO measured using (a) the helium-4
cryostat and (b) the helium-3 cryostat. The ZF spectra clearly show
that the background level for the helium-4 cryostat is negligible and
that for the helium-3 cryostat is about 0.025. All the μSR data
of NCSO discussed in the paper were measured by the helium-3
cryostat except for that in (a).

where A0 is the initial asymmetry and Pz(H, t ) the nor-
malized polarization function. A1 and A2 are magnitudes of
contributions from the dynamic and static phases, respec-
tively, and Abg denotes the background asymmetry. Abg is
negligible for NCTO and determined to be 0.025 for NCSO,
as shown by the ZF spectra at 26.6 and 13.3 K in Figs. 3 and
5, respectively. The dynamic contribution is best described by
a stretched-exponential relaxation function, where � is the
dynamic spin-lattice-relaxation rate and β the exponent, the
physical meaning of which will be discussed later. A2 is zero
above TN and increases (at the cost of decreasing A1) below
TN. α accounts for the effect of LFs on the relaxation caused
by the magnetic order. Because of powder average, α equals
1/3 at LF = 0.01 T (or ZF) and gradually increases with
increasing LFs. This is manifested by the fact that the data
in Figs. 2(d) and 4(d) for LF above 0.01 T are approximately
offset from one another along the vertical direction. The os-
cillation term cos(γμBt + φ) is practically unimportant in our
measurements due to the fast damping rate of the oscillations
(λT ) [38] and our limited time resolution. The relaxation rate
λL is practically negligible at low temperatures because the
spectra at LF = 0.01 T are virtually time independent at large
t [Figs. 2(b) and 4(b)].

Figure 6 summarizes our findings from the fits for both
NCTO and NCSO. At LF = 0.01 T, we observe a clear de-
crease in the initial asymmetry (corrected asymmetry at t = 0)
upon cooling below TN as the long-range magnetic order
forms [Fig. 6(a)]. This can be directly seen from Fig. 2(b),
where each of the five spectra starts from a different initial
value. We attribute this behavior to the fact that the inter-
nal magnetic fields associated with the static phase [A2 term
in Eq. (1)] are strong, making the asymmetry oscillate too
rapidly to be resolved by our time resolution. Our understand-
ing about this static-phase contribution is corroborated by the
spectra under LFs at 3.3 K [Fig. 2(d)], where the initial asym-
metry increases with increasing LFs. Especially for NCTO,
the observed initial asymmetry does not behave as a typical
order parameter below TN. Instead, it undergoes a gradual,
nearly linear decrease with cooling at LF = 0.01 T, and levels
off below about 16 K [Fig. 6(a)]. This indicates that the
system somehow resists to develop conventional long-range
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FIG. 6. (a) Muon-spin asymmetry in the nominal t = 0 limit
measured by our relatively poor time resolution. (b) Muon relaxation
rate as a function of temperature. The relaxation is primarily caused
by dynamic internal fields because longitudinal fields up to 0.4 T
have little effect on it [Fig. 2(d)]. (c) Stretched exponent used in our
fits to the time spectra (see text). Below TN, the data are consistent
with a stable exponent and are therefore fit to a common value.
Arrows indicate TN of the two systems.

order, possibly due to magnetic frustration and the existence
of closely competing ground states.

After the initial decrease in asymmetry, the spectra in
Fig. 2(b) show gradual damping over time, which is observed
even under LF = 0.4 T at 3.3 K [Fig. 2(d)], indicating that a
dynamic phase coexists with the static phase. This dynamic
contribution is characterized by the relaxation rate � and the
stretched exponent β [A1 term in Eq. (1)]. It is clear from
Fig. 2(c) that a simple exponential function, i.e., with β = 1,
would fail to describe the data obtained near TN. Instead, we
find that β decreases from 1 steeply to about 1/3 as the sample
is cooled towards TN, and stays that way below TN [Fig. 6(c)].
Significant deviations from a simple exponential relaxation
function usually signify a broad distribution of spatially inho-
mogeneous correlation times, which is commonly observed in
glassy magnets [39–41]. Indeed, β = 1/3 has been reported
in the metallic spin glass AgMn [42,43]. Since NCTO and

FIG. 7. Volume fraction of dynamic [A1/(A1 + A2)] and static
phases [A2/(A1 + A2)] as determined from the fit values of A1

and A2 according to Eq. (1). A2 = 0 has been assumed in the fits
above TN.

NCSO are chemically ordered systems, we attribute our ob-
servation of stretched exponents to spin-glass-like behaviors
which have previously been observed in geometrically frus-
trated antiferromagnets [44–46]. This understanding is further
supported by the unusual temperature evolution of the relax-
ation rate �, which serves as a one-parameter abstraction of
the relaxation process. Namely, we find that � reaches its
maximum only at a temperature significantly lower than TN

[Fig. 6(b)], which is inconsistent with a conventional second-
order phase transition at TN [40,47]. We notice that NCTO un-
dergoes successive magnetic transitions below TN [15,48,49]
while NCSO exhibits no further magnetic transition below
TN [33]. The data suggest that substantial spin fluctuations
continue to exist below TN until a much lower tempera-
ture is reached. This is consistent with previous inelastic
neutron scattering results on NCTO [32], where spectrally
well-defined spin waves were only observed far below TN.

IV. DISCUSSION

Taken together, our μSR data indicate that the magnetic
orders in NCTO and NCSO are distinct from conventional
long-range magnetic order [50], as they (1) are not accom-
panied by an anomaly of � at TN [Fig. 6(b)], (2) exhibit a
“glassy” growth of the internal fields below TN [Fig. 6(a)],
and (3) have a wide distribution of correlation times even
in the well-ordered state [Fig. 6(c)]. To go one step further,
we can use A1 and A2 in Eq. (1) to estimate the volume
fractions that are dynamic and static, respectively, at a given
temperature (Fig. 7). In line with the unconventional nature
of the orders, the result reveals that a significant fraction of
the samples remains dynamic down to the lowest tempera-
ture. In fact, despite the different TN, the two systems look
remarkably similar. In the case of NCTO, it is known that
the spin excitation spectrum exhibits a gap of over 1 meV at
3.3 K [15,25,32], which makes thermal fluctuations unable to
cause significant spin dynamics in the system. Because NCSO
exhibits even stronger spin anisotropy than NCTO [33], it is
likely that in the well-ordered state the system has an even
larger excitation gap than NCTO. However, our data show that
the dynamic volume fraction in NCSO is as large as 40% even
at the very low temperature of 0.3 K. We therefore believe that
the observed spin dynamics are caused by quantum rather than
thermal fluctuations.

It is also important to consider the role of quenched
disorders, which have been shown to affect spin dynamics
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observed by μSR in related systems such as α-RuCl3 and
Cu2IrO3 [51–54]. Having examined our crystals with scan-
ning transmission electron microscopy, in the search for lattice
imperfections similar to those in Cu2IrO3 [53], we confirm
that both NCTO and NCSO have well-ordered crystal lat-
tices without frequent stacking faults or pronounced chemical
inhomogeneity. While our μSR data were taken on poly-
crystalline samples, the samples were obtained by grinding
single crystals which have previously been shown to be of
very high quality and homogeneity [12,32,33]. We further
note that a recent μSR study of single-crystalline NCTO has
arrived at similar conclusions as ours [38]. Therefore, we
believe that disorders are weak in our samples and cannot
explain the observed persisting dynamics down to very low
temperatures.

The presence of significant spin dynamics in both NCTO
and NCSO deep in the ordered state suggests that the sys-
tems may be driven into a quantum paramagnetic state if the
semiclassical order can be suppressed. Coexisting long-range
order and fractionalized excitations have been proposed in
a recent thermal transport study [55]. We further speculate
that the dynamic phase volumes, up to about 40% in both
systems at the lowest temperature, may corroborate recent
proposals of multi-q magnetic orders in the two systems
[30,32,48,49,56]. Specifically, if the spin anisotropy of these
cobalt oxides is indeed XXZ- rather than Kitaev-like [17,19–
21,23,24], meaning that the ordered moments all lie parallel to
the ab plane [30], the proposed multi-q orders would feature
1/4 of the cobalt sites being (classically) “spinless” (in spite of

large ordered moment size measured in diffraction [57,58]) in
NCTO [32,48,49] and half of the sites having smaller classical
moments than the other half [30]. Such scenarios are in good
qualitative agreement with the dynamic volume fractions we
observe.

V. CONCLUSION

To conclude, we have discovered persistent and spatially
inhomogeneous spin dynamics deep inside the magneti-
cally ordered states of two layered honeycomb-lattice cobalt
oxides. Our findings indicate that the systems are highly frus-
trated despite their formation of long-range order, and imply
that they continue to hold promise for realizing different quan-
tum states of matter if the semiclassical aspect of the ground
states can be further suppressed.
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