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Gilbert damping in two-dimensional metallic antiferromagnets
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A finite spin life-time of conduction electrons may dominate Gilbert damping of two-dimensional metallic an-
tiferromagnets or antiferromagnet/metal heterostructures. We investigate the Gilbert damping tensor for a typical
low-energy model of a metallic antiferromagnet system with honeycomb magnetic lattice and Rashba spin-
orbit coupling for conduction electrons. We distinguish three regimes of spin relaxation: exchange-dominated
relaxation for weak spin-orbit coupling strength, Elliot-Yafet relaxation for moderate spin-orbit coupling, and
Dyakonov-Perel relaxation for strong spin-orbit coupling. We show, however, that the latter regime takes place
only for the in-plane Gilbert damping component. We also show that anisotropy of Gilbert damping persists for
any finite spin-orbit interaction strength provided we consider no spatial variation of the Néel vector. Isotropic
Gilbert damping is restored only if the electron spin-orbit length is larger than the magnon wavelength. Our
theory applies to MnPS3 monolayer on Pt or to similar systems.
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I. INTRODUCTION

Magnetization dynamics in antiferromagnets continue to
attract a lot of attention in the context of possible applications
[1–4]. Various proposals utilize the possibility of THz fre-
quency switching of antiferromagnetic domains for ultrafast
information storage and computation [5,6]. The rise of van
der Waals magnets has had a further impact on the field due to
the possibility of creating tunable heterostructures that involve
antiferromagnet and semiconducting layers [7].

Understanding relaxation of both the Néel vector and
nonequilibrium magnetization in antiferromagnets is recog-
nized to be of great importance for the functionality of
spintronic devices [8–13]. On one hand, low Gilbert damping
must generally lead to better electric control of magnetic
order via domain wall motion or ultrafast domain switching
[14–16]. On the other hand, an efficient control of magnetic
domains must generally require a strong coupling between
charge and spin degrees of freedom due to a strong spin-orbit
interaction, that is widely thought to be equivalent to strong
Gilbert damping.

In this paper, we focus on a microscopic analysis of Gilbert
damping due to Dyakonov-Perel and Elliot-Yafet mecha-
nisms. We apply the theory to a model of a two-dimensional
Néel antiferromagnet with a honeycomb magnetic lattice.

Two-dimensional magnets typically exhibit either easy-
plane or easy-axis anisotropy, and play crucial roles in
stabilizing magnetism at finite temperatures [17,18]. Easy-
axis anisotropy selects a specific direction for magnetization,
thereby defining an axis for the magnetic order. In contrast,
easy-plane anisotropy does not select a particular in-plane
direction for the Néel vector, allowing it to freely rotate
within the plane. This situation is analogous to the XY
model, where the system’s continuous symmetry leads to
the suppression of out-of-plane fluctuations rather than fixing

the magnetization in a specific in-plane direction [19,20].
Without this anisotropy, the magnonic fluctuations in a two-
dimensional crystal can grow uncontrollably large to destroy
any long-range magnetic order, according to the Mermin-
Wagner theorem [21].

Recent density functional theory calculations for single-
layer transition metal trichalgenides [22], predict the existence
of a large number of metallic antiferromagnets with honey-
comb lattice and different types of magnetic order as shown
in Fig. 1. Many of these crystals may have the Néel magnetic
order as shown in Fig. 1(a) and are metallic: FeSiSe3, FeSiTe3,
VGeTe3, MnGeS3, FeGeSe3, FeGeTe3, NiGeSe3, MnSnS3,
MnSnS3, MnSnSe3, FeSnSe3, NiSnS3. Apart from that it has
been predicted that antiferromagnetism can be induced in
graphene by bringing it in proximity to MnPSe3 [23] or by
bringing it in double proximity between a layer of Cr2Ge2Te6

and WS2 [24].
Partly inspired by these predictions and recent techno-

logical advances in producing single-layer antiferromagnet
crystals, we propose an effective model to study spin relax-
ation in 2D honeycomb antiferromagnet with Néel magnetic
order. The same system was studied by us in Ref. [25],
where we found that spin-orbit coupling introduces a weak
anisotropy in spin-orbit torque and electric conductivity.
Strong spin-orbit coupling was shown to lead to a giant
anisotropy of Gilbert damping.

Our analysis below is built upon the results of Ref. [25],
and we investigate and identify three separate regimes of spin-
orbit strength. Each regime is characterized by qualitatively
different dependence of Gilbert damping on spin-orbit inter-
action and conduction electron transport time. The regime of
weak spin-orbit interaction is dominated by exchange field
relaxation of electron spin, and the regime of moderate spin-
orbit strength is dominated by Elliot-Yafet spin relaxation.
These two regimes are characterized also by a universal factor
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FIG. 1. Three antiferromagnetic phases commonly found among
van der Waals magnets. Left to right: Néel, zig-zag, and stripy.

of 2 anisotropy of Gilbert damping. The regime of strong spin-
orbit strength, which leads to substantial splitting of electron
Fermi surfaces, is characterized by Dyakonov-Perel relaxation
of the in-plane spin component and Elliot-Yafet relaxation of
the perpendicular-to-the-plane Gilbert damping, which leads
to a giant damping anisotropy. Isotropic Gilbert damping is
restored only for finite magnon wave vectors such that the
magnon wavelength is smaller than the spin-orbit length.

Gilbert damping in a metallic antiferromagnet can be qual-
itatively understood in terms of the Fermi surface breathing
[26]. A change in the magnetization direction gives rise to a
change in the Fermi surface to which the conduction electrons
have to adjust. This electronic reconfiguration is achieved
through the scattering of electrons off impurities, during
which angular momentum is transferred to the lattice. Gilbert
damping, then, should be proportional to both (i) the ratio
of the spin life-time and momentum life-time of conduction
electrons, and (ii) the electric conductivity. Keeping in mind
that the conductivity itself is proportional to momentum life-
time, one may conclude that the Gilbert damping is linearly
proportional to the spin life-time of conduction electrons. At
the same time, the spin life-time of localized spins is inversely
proportional to the spin life-time of conduction electrons. A
similar relation between the spin life-times of conduction and
localized electrons also holds for relaxation mechanisms that
involve electron-magnon scattering [27].

Our approach formally decomposes the magnetic system
into a classical subsystem of localized magnetic moments and
a quasiclassical subsystem of conduction electrons. A local
magnetic exchange couples these subsystems. Localized mag-
netic moments in transition-metal chalcogenides and halides
form a hexagonal lattice. Here we focus on the Néel-type anti-
ferromagnet that is illustrated in Fig. 1(a). In this case, one can
define two sublattices A and B that host local magnetic mo-
ments SA and SB, respectively. For the discussion of Gilbert
damping, we ignore the weak dependence of both fields on
atomic positions and assume that the modulus S = |SA(B)| is
time independent.

Under these assumptions, the magnetization dynamics of
localized moments may be described in terms of two fields,

m = 1

2S
(SA + SB), n = 1

2S
(SA − SB), (1)

which are referred to as the magnetization and staggered
magnetization (or Néel vector), respectively. Within the mean-
field approach, the vector fields yield the equations of motion

ṅ = −J n × m + n × δs+ + m × δs−, (2a)

ṁ = m × δs+ + n × δs−, (2b)

where dot stands for the time derivative, while δs+ and δs−
stand for the mean staggered and nonstaggered nonequi-
librium fields that are proportional to the variation of the
corresponding spin densities of conduction electrons caused
by the time dynamics of n and m fields. The energy J is pro-
portional to the antiferromagnet exchange energy for localized
momenta.

In Eq. (2) we have omitted terms that are proportional to
easy-axis anisotropy for the sake of compactness. These terms
are, however, important and will be introduced later in the text.

In the framework of Eq. (2) the Gilbert damping can be
computed as the linear response of the electron spin-density
variation to a time change in both the magnetization and the
Néel vector (see e.g., Refs. [25,28,29]).

In this definition, Gilbert damping describes the relaxation
of localized spins by transferring both total and staggered
angular momenta to the lattice by means of conduction elec-
tron scattering off impurities. Such a transfer is facilitated by
spin-orbit interaction.

The structure of the full Gilbert damping tensor can be
rather complicated as discussed in Ref. [25]. However, by
taking into account easy-axis or easy-plane anisotropy we
may reduce the complexity of relevant spin configurations to
parametrize,

δs+ = α‖
mṁ‖ + α⊥

m ṁ⊥ + αmn‖ × (n‖ × ṁ‖), (3a)

δs− = α‖
n ṅ‖ + α⊥

n ṅ⊥ + αnn‖ × (n‖ × ṅ‖), (3b)

where the superscripts ‖ and ⊥ refer to the in-plane and
perpendicular-to-the-plane projections of the corresponding
vectors, respectively. The six coefficients α‖

m, α⊥
m , αm, α‖

n , α⊥
n ,

and αn parametrize the Gilbert damping.
Inserting Eq. (3) into the equations of motion of Eq. (2)

produces familiar Gilbert damping terms. The damping pro-
portional to time derivatives of the Néel vector n is in general
many orders of magnitude smaller than that proportional to
the time derivatives of the magnetization vector m [25,30].
Due to the same reason, the higher harmonics term αmn‖ ×
(n‖ × ∂t m‖) can often be neglected.

Thus, in the discussion below we may focus mostly on the
coefficients α‖

m and α⊥
m that play the most important role in

the magnetization dynamics of our system. The terms propor-
tional to the time derivative of n correspond to the transfer
of angular momentum between the sublattices and are usually
less relevant. We refer to the results of Ref. [25] when dis-
cussing these terms.

All Gilbert damping coefficients are intimately related to
the electron spin relaxation time. The latter is relatively well
understood in nonmagnetic semiconductors with spin-orbital
coupling. When a conducting electron moves in a steep poten-
tial it feels an effective magnetic field caused by relativistic
effects. Thus, in a disordered system, the electron spin is
subject to a random magnetic field each time it scatters off an
impurity. At the same time, an electron also experiences pre-
cession around an effective spin-orbit field when it moves in
between the collisions. Changes in spin direction between col-
lisions are referred to as Dyakonov-Perel relaxation [31,32],
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while changes in spin direction during collisions are referred
to as Elliot-Yafet relaxation [33,34].

The spin-orbit field in semiconductors induces a character-
istic frequency of spin precession �s, while scalar disorder
leads to a finite transport time τ of the conducting elec-
trons. One may, then, distinguish two limits: (i) �sτ � 1
in which case the electron does not have sufficient time to
change its direction between consecutive scattering events
(Elliot-Yafet relaxation), and (ii) �sτ � 1 in which case the
electron spin has multiple precession cycles in between the
collisions (Dyakonov-Perel relaxation).

The corresponding processes define the so-called spin re-
laxation time τs. In a 2D system the spin life-time τ ‖

s , for
the in-plane spin components, appears to be double the size
of the life-time of the spin component that is perpendicu-
lar to the plane τ⊥

s [32]. This geometric effect has largely
been overlooked. For nonmagnetic 2D semiconductor one can
estimate [35,36]

1

τ
‖
s

∼
{

�2
s τ, �sτ � 1

1/τ, �sτ � 1
, τ ‖

s = 2τ⊥
s . (4)

A pedagogical derivation and discussion of Eq. (4) can be
found in Refs. [35,36]. Because electrons are confined in two
dimensions the random spin-orbit field is always directed in-
plane, which leads to a decrease in the in-plane spin-relaxation
rate by a factor of two compared to the out-of-plane spin
relaxation rate as demonstrated first in Ref. [32] (see Refs.
[36–40] as well). The reason is that the perpendicular-to-the-
plane component of spin is influenced by two components
of the randomly changing magnetic field, i. e., x and y,
whereas the parallel-to-the-plane spin components are only
influenced by a single component of the fluctuating fields, i.e.,
the x spin projection is influenced only by the y component
of the field and vice versa. The argument has been further
generalized in Ref. [25] to the case of strongly separated
spin-orbit split Fermi surfaces. In this limit, the perpendicular-
to-the-plane spin-flip processes on scalar disorder potential
become fully suppressed. As a result, the perpendicular-to-
the-plane spin component becomes nearly conserved, which
results in a giant anisotropy of Gilbert damping in this
regime.

In magnetic systems that are, at the same time, conducting
there appears to be at least one additional energy scale �sd

that characterizes exchange coupling of conduction electron
spin to the average magnetic moment of localized electrons.
(In the case of s–d model description it is the magnetic ex-
change between the spin of conduction s electron and the
localized magnetic moment of d or f electron on an atom.)
This additional energy scale complicates the simple picture
of Eq. (4) especially in the case of an antiferromagnet. The
electron spin precession is now defined not only by spin-orbit
field but also by �sd. As the result the conditions �sτ � 1
and �sdτ � 1 may easily coexist. This dissolves the distinc-
tion between Elliot-Yafet and Dyakonov-Perel mechanisms of
spin relaxation. One may, therefore, say that both Elliot-Yafet
and Dyakonov-Perel mechanisms may act simultaneously in
a typical 2D metallic magnet with spin-orbit coupling. The
Gilbert damping computed from the microscopic model that

we formulate below will always contain both contributions to
spin relaxation.

II. MICROSCOPIC MODEL AND RESULTS

The microscopic model that we employ to calculate
Gilbert damping is the so-called s–d model that couples
localized magnetic momenta SA and SB and conducting
electron spins via the local magnetic exchange �sd. Our
effective low-energy Hamiltonian for conduction electrons
reads

H = v f p · � + λ

2
[σ × �]z − �sd n · σ 	z
z + V (r), (5)

where the vectors �, σ, and � denote the vectors of
Pauli matrices acting on sublattice, spin, and valley space,
respectively. We also introduce the Fermi velocity v f ,
Rashba-type spin-orbit interaction λ, and a random impurity
potential V (r).

The Hamiltonian of Eq. (5) can be viewed as the graphene
electronic model where conduction electrons have 2D Rashba
spin-orbit coupling and are also coupled to antiferromagneti-
cally ordered classical spins on the honeycomb lattice.

The coefficients α‖
m and α⊥

m are obtained using linear re-
sponse theory for the response of spin-density δs+ to the time
derivative of magnetization vector ∂t m. Impurity potential
V (r) is important for describing momentum relaxation to the
lattice. This is related to the angular momentum relaxation due
to spin-orbit coupling. The effect of random impurity potential
is treated perturbatively in the (diffusive) ladder approxima-
tion that involves a summation over diffusion ladder diagrams.
The details of the microscopic calculation can be found in the
Appendices.

Before presenting the disorder-averaged quantities α‖,⊥
m , it

is instructive to consider first the contribution to Gilbert damp-
ing originating from a small number of electron-impurity
collisions. This clarifies how the number of impurity scatter-
ing effects will affect the final result.

Let us annotate the Gilbert damping coefficients with an
additional superscript (l ) that denotes the number of scattering
events that are taken into account. This means, in the diagram-
matic language, that the corresponding quantity is obtained by
summing up the ladder diagrams with � l disorder lines. Each
disorder line corresponds to a quasiclassical scattering event
from a single impurity. The corresponding Gilbert damping
coefficient is, therefore, obtained in the approximation where
conduction electrons have scattered at most l number of times
before releasing their nonequilibrium magnetic moment into
a lattice.

To make final expressions compact we define the dimen-
sionless Gilbert damping coefficients ᾱ‖,⊥

m by extracting the
scaling factor

α‖,⊥
m = A�2

sd

π h̄2v2
f S

ᾱ‖,⊥
m , (6)

where A is the area of the unit cell, v f is the Fermi velocity
of the conducting electrons, and h̄ = h/2π is the Planck’s
constant. We also express the momentum scattering time τ

in inverse energy units, τ → h̄τ .
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Let us start by computing the coefficients ᾱ‖,⊥(l )
m in the

formal limit �sd → 0. We can start with the “bare bubble”
contribution, which describes spin relaxation without a single
scattering event. The corresponding results read

ᾱ
(0)
m,⊥ = ετ

1 − λ2/4ε2

1 + λ2τ 2
, (7a)

ᾱ
(0)
m,‖ = ετ

(
1 + λ2τ 2/2

1 + λ2τ 2
− λ2

8ε2

)
, (7b)

where ε denotes the Fermi energy, which we consider positive
(electron-doped system).

In all realistic cases, we have to consider λ/ε � 1, while
the parameter λτ may in principle be arbitrary. For λτ � 1 the
disorder-induced broadening of the electron Fermi surfaces
exceeds the spin-orbit-induced splitting. In this case one basi-
cally finds no anisotropy of “bare” damping, ᾱ

(0)
m,⊥ = ᾱ

(0)
m,‖. In

the opposite limit of substantial spin-orbit splitting one gets an
ultimately anisotropic damping ᾱ

(0)
m,⊥ � ᾱ

(0)
m,‖. This asymptotic

behavior can be summarized as

ᾱ
(0)
m,⊥ = ετ

{
1 λτ � 1,

(λτ )−2 λτ � 1,
(8a)

ᾱ
(0)
m,‖ = ετ

{
1 λτ � 1,

1
2 (1 + (λτ )−2) λτ � 1,

(8b)

where we have used that ε � λ.
The results of Eq. (8) modify by electron diffusion. By

taking into account up to l scattering events we obtain

ᾱ
(l )
m,⊥ = ετ

{
l + O(λ2τ 2) λτ � 1,

(1 + δl0)/(λτ )2 λτ � 1,
(9a)

ᾱ
(l )
m,‖ = ετ

{
l + O(λ2τ 2) λτ � 1,

1 − (1/2)l+1 + O((λτ )−2) λτ � 1,
(9b)

where we have used ε � λ again.
From Eq. (9) we see that the Gilbert damping for λτ � 1

gets an additional contribution of ετ from each scattering
event as illustrated numerically in Fig. 2. This leads to a
formal divergence of Gilbert damping in the limit λτ � 1.
While, at first glance, the divergence looks like a strong sensi-
tivity of damping to impurity scattering, in reality, it simply
reflects a diverging spin life-time. Once a nonequilibrium
magnetization m is created it becomes almost impossible to
relax it to the lattice in the limit of weak spin-orbit coupling.
The formal divergence of α⊥

m = α‖
m simply reflects the con-

servation law for electron spin polarization in the absence of
spin-orbit coupling such that the corresponding spin life-time
becomes arbitrarily large as compared to the momentum scat-
tering time τ .

By taking the limit l → ∞ (i. e., by summing up the entire
diffusion ladder) we obtain compact expressions

ᾱ⊥
m ≡ ᾱ

(∞)
m,⊥ = ετ

1

2λ2τ 2
, (10a)

ᾱ‖
m ≡ ᾱ

(∞)
m,‖ = ετ

1 + λ2τ 2

λ2τ 2
, (10b)

which assume ᾱ⊥
m � ᾱ‖

m for λτ � 1 and ᾱ⊥
m = ᾱ‖

m/2 for
λτ � 1. The factor of 2 difference that we observe when

0

1

2

3

4

ᾱ
(i

) ⊥
[ε

τ
]

ᾱ
(0)
⊥

ᾱ
(1)
⊥

ᾱ
(2)
⊥ ᾱ

(∞)
⊥

10−2 10−1 100 101

λτ

0

1

2

3

4

ᾱ
(i

)
[ε

τ
]

ᾱ
(0)

ᾱ
(1)

ᾱ
(2)

ᾱ
(∞)

FIG. 2. Gilbert damping in the limit �sd = 0. Dotted (green)
lines correspond to the results of the numerical evaluation of ᾱ

(l )
m,⊥,‖

for l = 0, 1, 2 as a function of the parameter λτ . The dashed
(orange) line corresponds to the diffusive (fully vertex corrected)
results for ᾱ⊥,‖.

m .

λτ � 1, corresponds to a difference in the electron spin life-
times τ⊥

s = τ ‖
s /2 that was discussed in the Introduction [32].

Strong spin-orbit coupling causes a strong out-of-plane
anisotropy of damping, ᾱ⊥

m � ᾱ‖
m, which corresponds to a

suppression of the perpendicular-to-the-plane damping com-
ponent. As a result, the spin-orbit interaction makes it much
easier to relax the magnitude of the mz component of magne-
tization than that of in-plane components.

Let us now turn to the dependence of ᾱm coefficients on
�sd that is illustrated numerically in Fig. 3. We consider first

10−3 10−2 10−1 100 10
λτ

10−1

101

103

105

ᾱ
m

,
,⊥

[ε
τ
]

Δsd/ε = 0.1

Δsd/ε = 0
ᾱm,

ᾱm,⊥

FIG. 3. Numerical results for the Gilbert damping components
in the diffusive limit (vertex corrected) as the function of the spin-
orbit coupling strength λ. The results correspond to ετ = 50 and
�sdτ = 0.1 and agree with the asymptotic expressions of Eq. (11).
Three different regimes can be distinguished for ᾱ‖

m: (i) spin-orbit-
independent damping ᾱ‖

m ∝ ε3τ/�2
sd for the exchange dominated

regime, λτ � �sd/ε, (ii) the damping ᾱ‖
m ∝ ε/λ2τ for Elliot-Yafet

relaxation regime, �sd/ε � λτ � 1, and (iii) the damping ᾱ‖
m ∝ ετ

for the Dyakonov-Perel relaxation regime, λτ � 1. The latter regime
is manifestly absent for ᾱ⊥

m in accordance with Eqs. (12) and (13).
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10−64 10−54 10−44 10−34 10−24 10−14

λτ

1

2

ᾱ
/ᾱ

⊥

n = 32

n = 64

n = 96

n = 128

FIG. 4. Numerical evaluation of Gilbert damping anisotropy in
the limit λ → 0. Isotropic damping tensor is restored only if λ =
0 with ultimate numerical precision. The factor of 2 anisotropy
emerges at any finite λ, no matter how small it is, and only depends
on the numerical precision n, i.e., the number of digits contained in
each variable during computation. The crossover from isotropic to
anisotropic damping can be understood only by considering finite,
though vanishingly small, magnon q vectors.

the case of absent spin-orbit coupling λ = 0. In this case,
the combination of spin-rotational and sublattice symmetry
(the equivalence of A and B sublattice) must make Gilbert
damping isotropic (see e.g., [25,41]). The direct calculation
for λ = 0 does, indeed, give rise to the isotropic result ᾱ⊥

m =
ᾱ‖

m = ετ (ε2 + �2
sd)/2�2

sd, which is, however, in contradiction
to the limit λ → 0 in Eq. (10).

At first glance, this contradiction suggests the existence
of a certain energy scale for λ over which the anisotropy
emerges. The numerical analysis illustrated in Fig. 4 reveals
that this scale does not depend on the values of 1/τ , �sd, or
ε. Instead, it is defined solely by numerical precision. In other
words, an isotropic Gilbert damping is obtained only when the
spin-orbit strength λ is set below the numerical precision in
our model. We should, therefore, conclude that the transition
from isotropic to anisotropic (factor of 2) damping occurs
exactly at λ = 0. Interestingly, the factor of 2 anisotropy is
absent in Eqs. (8) and emerges only in the diffusive limit.

We will see below that this paradox can only be resolved
by analyzing the Gilbert damping beyond the infinite wave-
length limit.

One can see from Fig. 3 that the main effect of finite �sd is
the regularization of the Gilbert damping divergency (λτ )−2

in the limit λτ � 1. Indeed, the limit of weak spin-orbit cou-
pling is nonperturbative for �sd/ε � λτ � 1, while, in the
opposite limit, λτ � �sd/ε � 1, the results of Eqs. (10) are
no longer valid. Assuming �sd/ε � 1 we obtain the asymp-
totic expressions for the results presented in Fig. 3 as

ᾱ⊥
m = 1

2
ετ

{
2
3

ε2+�2
sd

�2
sd

λτ � �sd/ε,

1
λ2τ 2 λτ � �sd/ε,

(11a)

ᾱ‖
m = ετ

{
2
3

ε2+�2
sd

�2
sd

λτ � �sd/ε,

1 + 1
λ2τ 2 λτ � �sd/ε,

(11b)

which suggest that ᾱ⊥
m /ᾱ‖

m = 2 for λτ � 1. In the opposite
limit, λτ � 1, the anisotropy of Gilbert damping grows as
ᾱ‖

m/ᾱ⊥
m = 2λ2τ 2.

The results of Eqs. (11) can also be discussed in terms of
the electron spin life-time, τ⊥(‖)

s = ᾱ⊥(‖)
m /ε. For the inverse

in-plane spin life-time we find

1

τ
‖
s

=

⎧⎪⎨
⎪⎩

3�2
sd/2ε2τ λτ � �sd/ε,

λ2τ �sd/ε � λτ � 1,

1/τ 1 � λτ,

(12)

that, for �sd = 0, is equivalent to the known result of Eq. (4).
Indeed, for �sd = 0, the magnetic exchange plays no role and
one observes the cross over from Elliot-Yafet (λτ � 1) to
Dyakonov-Perel (λτ � 1) spin relaxation.

This cross over is, however, absent in the relaxation of the
perpendicular spin component

1

τ⊥
s

= 2

{
3�2

sd/2ε2τ λτ � �sd/ε,

λ2τ �sd/ε � λτ,
(13)

where Elliot-Yafet-like relaxation extends to the regime
λτ � 1.

As mentioned above, the factor of two anisotropy in spin
relaxation of 2D systems, τ ‖

s = 2τ⊥
s , is known in the literature

[32] (see Refs. [36–38] as well). Unlimited growth of spin
life-time anisotropy, τ ‖

s /τ⊥
s = 2λ2τ 2, in the regime λτ � 1

has been described first in Ref. [25]. It can be qualitatively
explained by a strong suppression of spin-flip processes for
z spin component due to spin-orbit-induced splitting of Fermi
surfaces. The mechanism is effective only for scalar (nonmag-
netic) disorder. Even though such a mechanism is general for
any magnetic or nonmagnetic 2D material with Rashba-type
spin-orbit coupling, the effect of the spin life-time anisotropy
on Gilbert damping is much more relevant for antiferromag-
nets. Indeed, in an antiferromagnetic system the modulus of
m is, by no means, conserved, hence the variations of perpen-
dicular and parallel components of the magnetization vector
are no longer related.

In the regime, λτ � �sd/ε the spin life-time is defined by
exchange interaction and the distinction between Dyakonov-
Perel and Elliot-Yafet mechanisms of spin relaxation is no
longer relevant. In this regime, the spin-relaxation time is by
a factor (ε/�sd)2 larger than the momentum relaxation time.

Let us now return to the problem of emergency of the
factor of 2 anisotropy of Gilbert damping at λ = 0. We have
seen above (see Fig. 4) that, surprisingly, there exists no en-
ergy scale for the anisotropy to emerge. The transition from
the isotropic limit (λ = 0) to a finite anisotropy appeared to
take place exactly at λ = 0. We can, however, generalize the
concept of Gilbert damping by considering the spin density
response function at a finite wave vector q.

To generalize the Gilbert damping, we are seeking a re-
sponse of spin density at a point r, δs+(r) to a time derivative
of magnetization vectors ṁ‖ and ṁ⊥ at the point r′. The
Fourier transform with respect to r − r′ gives the Gilbert
damping for a magnon with the wave vector q.

The generalization to a finite-q vector shows that the limits
λ → 0 and q → 0 cannot be interchanged. When the limit
λ → 0 is taken before the limit q → 0 one finds an isotropic
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Gilbert damping, while for the opposite order of limits, it
becomes a factor of 2 anisotropic. In a realistic situation,
the value of q is limited from below by an inverse size of a
typical magnetic domain 1/Lm, while the spin-orbit coupling
is effective on the length scale Lλ = 2π h̄v f /λ. In this picture,
the isotropic Gilbert damping is characteristic for the case of
sufficiently small domain size Lm � Lλ, while the anisotropic
Gilbert damping corresponds to the case Lλ � Lm.

In the limit q � 1, where  = v f τ is the electron mean
free path, we can summarize our results as

ᾱ⊥
m = ετ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε2+�2
sd

2�2
sd

λτ � q � �sd/ε,

1
3

ε2+�2
sd

�2
sd

q � λτ � �sd/ε,

1
2λ2τ 2 λτ � �sd/ε,

, (14a)

ᾱ‖
m = ετ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε2+�2
sd

2�2
sd

λτ � q � �sd/ε,

2
3

ε2+�2
sd

�2
sd

q � λτ � �sd/ε,

1 + 1
λ2τ 2 λτ � �sd/ε,

(14b)

which represent a simple generalization of Eq. (11).
The results of Eq. (14) correspond to a simple behavior of

Gilbert damping anisotropy,

ᾱ‖
m/ᾱ⊥

m =
{

1 λτ � q,

2(1 + λ2τ 2) q � λτ,
(15)

where we still assume q � 1.

III. ANTIFERROMAGNETIC RESONANCE

The broadening of the antiferromagnet resonance peak is
one obvious quantity that is sensitive to Gilbert damping. The
broadening is, however, not solely defined by a particular
Gilbert damping component but depends also on both mag-
netic anisotropy and antiferromagnetic exchange.

To be more consistent we can use the model of Eq. (5) to
analyze the contribution of conduction electrons to an easy-
axis anisotropy. The latter is obtained by expanding the free
energy for electrons in the value of nz, which has a form
E = −Kn2

z /2. With the conditions ε/λ � 1 and ε/�sd � 1
we obtain the anisotropy constant as

K = A
2π h̄2v2

{
�2

sdλ 2�sd/λ � 1,

�sdλ
2/2 2�sd/λ � 1,

(16)

where A is the area of the unit cell. Here we assume both λ

and �sd positive, therefore, the model naturally gives rise to
an easy-axis anisotropy with K > 0. In real materials, there
exist other sources of easy-axis or easy-plane anisotropy. In-
plane magnetocrystalline anisotropy also plays an important
role. For example, Néel-type antiferromagnets with easy-axis
anisotropy are FePS3, FePSe3, or MnPS3, whereas those with
easy-plane and in-plane magnetocrystalline anisotropy are
NiPS3 and MnPSe3. Many of those materials are, however,
Mott insulators. Our qualitative theory may still apply to ma-
terials like MnPS3 monolayers at strong electron doping.

The transition from 2�sd/λ � 1 to 2�sd/λ � 1 in Eq. (16)
corresponds to the touching of two bands in the model of
Eq. (5) as illustrated in Fig. 5.

−2 0 2
k [a.u.]

−2.5

0.0

2.5

en
er

gy
[a

.u
.]

λ/Δsd = 4

−2 0 2
k [a.u.]

λ/Δsd = 2

−2 0 2
k [a.u.]

λ/Δsd = 1

FIG. 5. Band structure for the effective model of Eq. (5) in a
vicinity of K valley assuming nz = 1. Electron bands touch for λ =
2�sd. The regime λ � 2�sd corresponds to spin-orbit band inversion.
The band structure in the valley K′ is inverted. Our microscopic
analysis is performed in the electron-doped regime for the Fermi
energy above the gap as illustrated by the top dashed line. The bottom
dashed line denotes zero energy (half-filling).

Antiferromagnetic magnon frequency and life-time in the
limit q → 0 are readily obtained by linearizing the equa-
tions of motion

ṅ = −J n × m + K m × n⊥ + n × (α̂mṁ), (17a)

ṁ = K n × n⊥ + n × (α̂nṅ), (17b)

where we took into account easy-axis anisotropy K and dis-
regarded irrelevant terms m × (α̂nṅ) and m × (α̂mṁ). We
have also defined Gilbert damping tensors such as α̂mṁ =
α‖

mṁ‖ + α⊥
m ṁ⊥, α̂nṅ = α‖

n ṅ‖ + α⊥
n ṅ⊥.

In the case of easy-axis anisotropy we can use the lin-
earized modes n = ẑ + δn‖ eiωt , m = δm‖ eiωt , hence we get
the energy of q = 0 magnon as

ω = ω0 − i�/2, (18)

ω0 =
√

JK, � = Jα‖
n + Kα‖

m, (19)

where we took into account that K � J . The expression for
ω0 is well known due to Kittel and Keffer [42,43].

Using Ref. [25] we find out that α‖
n  α⊥

m (λ/ε)2 and α⊥
n 

α‖
m(λ/ε)2, hence

�  α‖
m

(
K + J/2

ε2/λ2 + ε2τ 2

)
, (20)

where we have simply used Eq. (10). Thus, one may often
ignore the contribution Jα‖

n as compared to Kα‖
m despite the

fact that K � J .
In the context of antiferromagnets, spin-pumping terms are

usually associated with the coefficients α‖
n in Eq. (3b) that

are not in the focus of the present study. Those coefficients
have been analyzed for example in Ref. [25]. In this paper
we simply use the known results for αn in Eqs. (17)–(19),
where we illustrate the effect of both spin-pumping coeffi-
cient αn and the direct Gilbert damping αm on the magnon
life-time. One can see from Eqs. (19) and (20) that the spin-
pumping contributions do also contribute, although indirectly,
to the magnon decay. The spin-pumping contributions become
more important in magnetic materials with small magnetic
anisotropy. The processes characterized by the coefficients
αn may also be interpreted in terms of angular momentum
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FIG. 6. Numerical evaluation of the inverse Gilbert damping
1/ᾱ‖

m as a function of the momentum relaxation time τ . The inverse
damping is peaked at τ ∝ 1/λ, which also corresponds to the maxi-
mum of the antiferromagnetic resonance quality factor in accordance
with Eq. (21).

transfer from one AFM sublattice to another. In that respect,
the spin pumping is specific to AFM, and is qualitatively
different from the direct Gilbert damping processes (αm) that
describe the direct momentum relaxation to the lattice.

As illustrated in Fig. 6 the quality factor of the antifer-
romagnetic resonance (for a metallic antiferromagnet with
easy-axis anisotropy) is given by

Q = ω0

�
 1

α
‖
m

√
J

K
. (21)

Interestingly, the quality factor defined by Eq. (21) is maxi-
mized for λτ  1, i.e., for the electron spin-orbit length being
of the order of the scattering mean free path.

The quantities 1/
√

K and 1/ᾱ‖
m are illustrated in Fig. 6

from the numerical analysis. As one would expect, the qual-
ity factor vanishes in both limits λ → 0 and λ → ∞. The
former limit corresponds to an overdamped regime hence no
resonance can be observed. The latter limit corresponds to a
constant α‖

m, but the resonance width � grows faster with λ

than ω0 does, hence the vanishing quality factor.
It is straightforward to check that the results of Eqs. (20)

and (21) remain consistent when considering systems with
either easy-plane or in-plane magnetocrystalline anisotropy.
Thus, the coefficient α⊥

m normally does not enter the magnon
damping, unless the system is brought into a vicinity of spin-
flop transition by a strong external field.

IV. CONCLUSIONS

In conclusion, we have analyzed the Gilbert damping ten-
sor in a model of a two-dimensional antiferromagnet on a
honeycomb lattice. We consider the damping mechanism that
is dominated by a finite electron spin life-time due to a
combination of spin-orbit coupling and impurity scattering of
conduction electrons. In the case of a 2D electron system with
Rashba spin-orbit coupling λ, the Gilbert damping tensor is
characterized by two components α‖

m and α⊥
m . We show that

the anisotropy of Gilbert damping depends crucially on the
parameter λτ , where τ is the transport scattering time for
conduction electrons. For λτ � 1 the anisotropy is set by a

geometric factor of 2, α‖
m = 2α⊥

m , while it becomes infinitely
large in the opposite limit, α‖

m = (λτ )2α⊥
m for λτ � 1. Gilbert

damping becomes isotropic exactly for λ = 0, or, strictly
speaking, for the case λ � h̄v f q, where q is the magnon wave
vector.

This factor of 2 is essentially universal, and is a geometric
effect: the z-component relaxation results from fluctuations
in two in-plane spin components, whereas in-plane relaxation
stems from fluctuations of the z component alone. This reflects
the subtleties of our microscopic model, where the mechanism
for damping is activated by the decay of conduction elec-
tron momenta, linked to spin-relaxation through spin-orbit
interactions.

We find that Gilbert damping is insensitive to magnetic
order for λ � �sd/ετ , where �sd is an effective exchange
coupling between spins of conduction and localized elec-
trons. In this case, the electron spin relaxation can be either
dominated by scattering (Dyakonov-Perel relaxation) or by
spin-orbit precession (Elliot-Yafet relaxation). We find that
the Gilbert damping component α⊥

m  ε/λ2τ is dominated
by Elliot-Yafet relaxation irrespective of the value of the
parameter λτ , while the other component crosses over from
α‖

m  ε/λ2τ (Elliot-Yafet relaxation) for λτ � 1, to α‖
m  ετ

(Dyakonov-Perel relaxation) for λτ � 1. For the case λ �
�sd/ετ the spin relaxation is dominated by interaction with
the exchange field.

Crucially, our results are not confined solely to the Néel
order on the honeycomb lattice: we anticipate a broader
applicability across various magnetic orders, including the
zigzag order. This universality stems from our focus on the
large magnon wavelength limit. The choice of the honeycomb
lattice arises from its unique ability to maintain isotropic
electronic spectra within the plane, coupled with the ability
to suppress anisotropy concerning in-plane spin rotations.
Strong anisotropic electronic spectra would naturally induce
strong anisotropic in-plane Gilbert damping, which are absent
in our results.

Finally, we show that the antiferromagnetic resonance
width is mostly defined by α‖

m and demonstrate that the
resonance quality factor is maximized for λτ ≈ 1. Our mi-
croscopic theory predictions may be tested for systems such
as MnPS3 monolayer on Pt and similar heterostructures.
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APPENDIX A: MICROSCOPIC FRAMEWORK

The microscopic model that we employ to calculate Gilbert
damping belongs to a class of so-called s–d models that de-
scribe the physical system in the form of a Heisenberg model
for localized spins and a tight-binding model for conduction
electrons that are weakly coupled by a local magnetic ex-
change interaction of the strength �sd.
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Our effective electron Hamiltonian for a metallic hexago-
nal antiferromagnet is given by [25]

H0 = v f p · � + λ

2
[σ × �]z − �sdn · σ 	z
z, (A1)

where the vectors �, σ, and � denote the vectors of Pauli
matrices acting on sublattice, spin, and valley space respec-
tively. We also introduce the Fermi velocity v f , Rashba-type
spin-orbit interaction λ.

To describe Gilbert damping of the localized field n we
have to add the relaxation mechanism. This is provided in our
model by adding a weak impurity potential H = H0 + V (r).
The momentum relaxation due to scattering on impurities
leads indirectly to the relaxation of Heisenberg spins due to
the presence of spin-orbit coupling and exchange couplings.

For modeling the impurity potential, we adopt a delta-
correlated random potential that corresponds to the point
scatter approximation, where the range of the impurity poten-
tial is much shorter than that of the mean-free path (see e.g.,
section 3.8 of Ref. [44]), i.e.,

〈V (r)V (r′)〉 = 2πα(h̄v f )2δ(r − r′), (A2)

where the dimensionless coefficient α � 1 characterizes the
disorder strength. The corresponding scattering time for elec-
trons is obtained as τ = h̄/παε, which is again similar to the
case of graphene.

The response of symmetric spin-polarization δs+ to the
time derivative of nonstaggered magnetization ∂t m is defined
by the linear relation

δs+
α =

∑
β

Rαβ

∣∣∣∣
ω=0

ṁβ, (A3)

where the response tensor is taken at zero frequency [25,45].
The linear response is defined generally by the tensor

Rαβ = A�2
sd

2πS

∫
d p

(2π h̄)2

〈
Tr

[
GR

ε,pσαGA
ε+h̄ω,pσβ

]〉
, (A4)

where GR(A)
ε,p are standing for retarded(advanced) Green’s

functions and the angular brackets denote averaging over dis-
order fluctuations.

The standard recipe for disorder averaging is the diffusive
approximation [46,47] that is realized by replacing the bare
Green’s functions in Eq. (A4) with disorder-averaged Green’s
functions and by replacing one of the vertex operators σx or
σy with the corresponding vertex-corrected operator that is
formally obtained by summing up ladder impurity diagrams
(diffusions).

In models with spin-orbit coupling, the controllable diffu-
sive approximation for nondissipative quantities may become,
however, more involved as was noted first in Ref. [48]. For
Gilbert damping it is, however, sufficient to consider the lad-
der diagram contributions only.

The disorder-averaged Green’s function is obtained by in-
cluding an imaginary part of the self-energy 	R (not to be
confused here with the Pauli matrix 	0,x,y,z) that is evaluated
in the first Born approximation

Im	R = 2παv2
f

∫
d p

(2π )2
Im

1

ε − H0 + i0
. (A5)

The real part of the self-energy leads to the renormalization of
the energy scales ε, λ, and �sd.

In the first Born approximation, the disorder-averaged
Green’s function is given by

GR
ε,p = 1

ε − H0 − iIm	R
. (A6)

The vertex corrections are computed in the diffusive approx-
imation. The latter involves replacing the vertex σα with the
vertex-corrected operator,

σ vc
α =

∞∑
l=0

σ (l )
α , (A7)

where the index l corresponds to the number of disorder lines
in the ladder.

The operators σ (l )
α can be defined recursively as

σ (l )
α = 2h̄v2

f

ετ

∫
d p

(2π )2
GR

ε,pσ
(l−1)
α GA

ε+h̄ω,p, (A8)

where σ (0)
α = σα .

The summation in Eq. (A7) can be computed in the full
operator basis, Bi={α,β,γ } = σα	β
γ , where each index α, β,
and γ takes on four possible values (with zero standing for
the unity matrix). We may always normalize TrBiBj = 2δi j

in an analogy to the Pauli matrices. The operators Bi are,
then, forming a finite-dimensional space for the recursion of
Eq. (A8).

The vertex-corrected operators Bvc
i are obtained by sum-

ming up the matrix geometric series

Bvc
i =

∑
j

(
1

1 − F

)
i j

B j, (A9)

where the entities of the matrix F are given by

Fi j = h̄v2
f

ετ

∫
d p

(2π )2
Tr

[
GR

ε,pBiG
A
ε+h̄ω,pBj

]
. (A10)

Our operators of interest σx and σy can always be decomposed
in the operator basis as

σα = 1

2

∑
i

Bi Tr(σαBi ), (A11)

hence the vertex-corrected spin operator is given by

σ vc
α = 1

2

∑
i j

Bvc
i Tr(σαBi ). (A12)

Moreover, the computation of the entire response tensor of
Eq. (A4) in the diffusive approximation can also be expressed
via the matrix F as

Rαβ = α0ετ

8h̄

∑
i j

[TrσαBi]

[ F
1 − F

]
i j

[TrσβBj], (A13)

where α0 = A�2
sd/π h̄2v2

f S is the coefficient used in Eq. (6) to
define the unit of the Gilbert damping.

It appears that one can always choose the basis of Bi

operators such that the computation of Eq. (A13) is closed
in a subspace of just three Bi operators with i = 1, 2, 3. This
enables us to make analytical computations of Eq. (A13).
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APPENDIX B: MAGNETIZATION DYNAMICS

The representation of the results can be made somewhat
simpler by choosing x axis in the direction of the in-plane
projection n‖ of the Néel vector, hence ny = 0. In this case,
one can represent the result as

δs+ = c1n‖ × (n‖ × ∂t m‖) + c2∂t m‖ + c3∂t m⊥ + c4n,

where n dependence of the coefficients ci may be parameter-
ized as

c1 = r11 − r22 − r31
(
1 − n2

z

)
/(nxnz )

1 − n2
z

, (B1a)

c2 = r11 − r31
(
1 − n2

z

)
/(nxnz ), (B1b)

c3 = r33, (B1c)

c4 = (r31/nz ) ∂t mz + ζ (∂t m) · n. (B1d)

The analytical results in the paper correspond to the evaluation
of δs± up to the second order in �sd using perturbative analy-
sis. Thus, zero approximation corresponds to setting �sd = 0
in Eqs. (A1) and (A5).

The equations of motion on n and m are given by Eq. (2),

∂t n = −J n × m + n × δs+ + m × δs−, (B2a)

∂t m = m × δs+ + n × δs−. (B2b)

It is easy to see that the following transformation leaves the
above equations invariant,

δs+ → δs+ − ξ n, δs− → δs− − ξ m, (B3)

for an arbitrary value of ξ .
Such a gauge transformation can be used to prove that the

coefficient c4 is irrelevant in Eqs. (B2).
In this paper, we compute δs± to the zeroth order in

|m|—the approximation, which is justified by the sublattice
symmetry in the antiferromagnet. A somewhat more general
model has been analyzed also in Ref. [25] to which we refer
the interested reader for more technical details.

APPENDIX C: ANISOTROPY CONSTANT

The anisotropy constant is obtained from the grand po-
tential energy � for conducting electrons. For the model of
Eq. (A1) the latter can be expressed as

� = −
∑
ς=±

1

β

∫
dε g(ε)νς (ε), (C1)

where β = 1/kBT is the inverse temperature, ς = ± is the
valley index (for the valleys K and K ′), GR

ς,p is the bare
retarded Green’s function with momentum p and in the valley
ς . We have also defined the function

g(ε) = ln (1 + exp[β(μ − ε)]), (C2)

where μ is the electron potential, and the electron density of
states in each of the valleys is given by

νς (ε) = 1

π

∫
dp

(2π h̄)2
ImTrGR

ς,p, (C3)

where the trace is taken only over spin and sublattice space,
In the metal regime considered, the chemical potential is

assumed to be placed in the upper electronic band. In this case,
the energy integration can be taken only for positive energies.
The two valence bands are always filled and can only add a
constant shift to the grand potential � that we disregard.

The evaluation of Eq. (C1) yields the following density of
states

ντ (ε) = 1

2π h̄2v2
f

⎧⎨
⎩

0 0 < ε < ε2

ε/2 + λ/4 ε2 < ε < ε1,

ε ε > ε1,

(C4)

where the energies ε1,2 correspond to the extremum points
(zero velocity) for the electronic bands. These energies, for
each of the valleys, are given by

ε1,ς = 1
2 (+λ +

√
4�2 + λ2 − 4ς�λnz ), (C5a)

ε2,ς = 1
2 (−λ +

√
4�2 + λ2 + 4ς�λnz ), (C5b)

where ς = ± is the valley index.
In the limit of zero temperature we can approximate

Eq. (C1) as

� = −
∑
ς=±

1

β

∫ ∞

0
dε (μ − ε)νς (ε). (C6)

Then, with the help of Eq. (C1) we find

� = − 1

24π h̄2v2
f

∑
ς=±

[(ε1,ς − μ)2(4ε1,ς − 3λ + 2μ)

+ (ε2,ς − μ)2(4ε2,ς + 3λ + 2μ)]. (C7)

By substituting the results of Eq. (C5) into the above equation
we obtain

� = − 1

24π h̄2v2
f

[(4�2 − 4nz�λ + λ2)2/3

+ (4�2 + 4nz�λ + λ2)2/3 − 24�μ + 8μ3]. (C8)

A careful analysis shows that the minimal energy corresponds
to nz = ±1 so that the conducting electrons prefer an easy-
axis magnetic anisotropy. By expanding in powers of n2

z

around nz = ±1 we obtain � = −Kn2
z /2, where

K = 1

2π h̄2v2

{
|�2λ| |λ/2�| � 1,

|�λ2|/2 |λ/2�| � 1.
(C9)

This provides us with the easy-axis anisotropy of Eq. (16).
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