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Current-controlled chirality dynamics in a mesoscopic magnetic domain wall
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Chirality as internal degree of freedom of a mesoscopic domain wall inside a quasi-one-dimensional fixture
can be controlled by spin-polarized current for ferro- as well as antiferromagnetic domain walls. We show that
the current density required for the chirality manipulation can be significantly reduced in the low-temperature
regime where the chirality dynamics exhibits quantum effects. In this quantum regime, weak currents can excite
Bloch oscillations of the domain wall angular rotation velocity, with the oscillation frequency proportional to the
current, modulated by a much higher magnon-range frequency. In addition to that, the Wannier-Stark localization
effects enable controlled switching between different chiral states, suppressing inertial effects characteristic for
the classical regime. We also show that for recently discovered novel class of magnetic materials — altermagnets
— chirality switching can be driven by the usual charge current (not spin polarized).
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I. INTRODUCTION

The last decade has witnessed great theoretical and exper-
imental progress in spintronics, significantly extending our
capabilities of generation, control, manipulation, and detec-
tion of spin textures by current (see, e.g., Refs. [1,2]). This
progress is in particular driven by rich possibilities offered
by effects of spin-orbit coupling [1,3] and fast magnetization
dynamics in antiferromagnets [2,4-8], with realization of all-
electric fast switching [9—11] bearing promise for nonvolatile
storage operating in terahertz domain. In altermagnets, a re-
cently discovered class of magnetic materials that combine
time-reversal symmetry breaking with collinear antiferro-
magnetic spin order, large nonrelativistic spin-momentum
coupling opens avenues to efficient spin current injection,
robust giant magnetoresistance and other nontrivial effects
[12-15].

As the physics of magnetic and spintronic devices ad-
vances towards ever smaller scales, spin textures, usually
considered as classical fields, can acquire quantum behavior.
Those quantum aspects received a good deal of attention
in the past, in the context of the quantum tunneling of
spin in magnetic nanoparticles [16], molecular clusters [17],
and topologically nontrivial magnetic textures [18]. Under-
standing the quantum dynamics of spin textures interacting
with spin or charge currents would provide a foundation for
merging and hybridizing quantum and classical computing
technologies.

In this paper, we focus on the study of a current-driven
dynamics of a magnetic domain wall localized inside a
nanosized quasi-one-dimensional structure (wire, stripe, con-
striction, etc), which has an internal degree of freedom,
chirality, characterizing the way of rotation of magnetization
inside the wall. Classically, two states with opposite chirality
are equivalent in energy, while quantum mechanically, there is
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a finite tunneling amplitude mixing the two states and lifting
the degeneracy. In the absence of current, such a macroscopic
quantum tunneling of magnetization inside a domain wall has
been studied in a number of works [19-23].

On the other hand, the interaction of current with such a
localized domain wall has been studied only at the classical
level. It has been shown that for domain walls in ferro-
magnets (FM) [24-27] and antiferromagnets (AF) [28,29],
spin-polarized current directly couples to the chirality degree
of freedom, and the corresponding torque can drive domain
wall rotation.

Here we revisit the problem of current-driven chirality
dynamics at the quantum level. We demonstrate that in AF and
in altermagnets (AM), in the low-temperature regime when
the chirality dynamics acquires quantum features, the current
density required for efficient manipulation of chirality can be
significantly reduced in comparison with the classical regime
realized at high temperatures. In particular, we show that weak
currents can trigger quantum Bloch oscillations modulated by
a much higher magnon-range frequency, a regime which is
very different from the classical rotation. Moreover, Zener
breakdown can be driven by currents below the classical
threshold, and the Wannier-Stark localization can be exploited
to switch chirality without inertial effects, unlike the classical
regime. In addition, we also show that in AM, in the contrast
to other magnets, chirality can be manipulated by the unpolar-
ized current.

The rest of the paper is structured as follows: in Sec. II,
we introduce the setup and provide a unified derivation of
effective Lagrangians describing interaction of current with
chirality for domain walls in FM, AF, and AM; in Sec. III
we focus on the peculiarities of the chirality dynamics in the
quantum regime, and discuss the feasibility of their experi-
mental observation; finally, Sec. IV provides a brief summary.

©2024 American Physical Society
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FIG. 1. Schematic picture of the mesoscopic domain wall in
a quasi-one-dimensional fixture. Arrows show the direction of the
magnetic order parameter (magnetization or the Néel vector).

II. MODEL: PINNED DOMAIN WALL IN A NANOWIRE

Consider a domain wall (DW) inside a magnetic nanowire
as shown in Fig. 1. We assume the DW is pinned by some
potential of the simplest quadratic form Uy, = Gzﬁ} /2, where
Zy 1s the position of the DW center. We will study ferro-
magnetic as well as antiferromagnetic DWs, denoting the
respective order parameter by the unit vector field n. It is con-
venient to use the standard spherical angles parametrization,
ny + iny, = sin 0e, n, = cos . The cross-section area C, of
the DW contains N; = C,a/Vy magnetic atoms, where a is
the magnetic lattice constant along the direction of the wire,
and Vj is the volume of magnetic unit cell.

There is exchange coupling J and a biaxial magnetic
anisotropy, with the anisotropy energy per unit cell

w, = S*(Kin} + Kony), (D

where S denotes the underlying spin of magnetic atoms, and
the anisotropy constants K; > K, > 0, so z is the easy axis
and x the hard axis. In what follows, we will assume that the
anisotropy is close to uniaxial, i.e., the rhombicity parameter

Under this latter assumption, one can approximately consider
that along the DW spins rotate in a plane with a constant
angle ¢, for both the FM and AF domain walls [19,21,22],
and describe the DW solution with the help of two collective
coordinates, the DW position z,, and its angle ¢,,:

cos6 = tanh((z — z»)/8), @ = ¢Pu, 3)
where § = av 2172 is the DW thickness. The static DW energy
is given by

Ey =28*/2JK,. (4)

Two lowest DW states with ¢, = 4+ /2 differ by the sense of
rotation of n inside the (yz) easy plane.

In what follows in this section, we discuss the effective
Lagrangians describing interaction of current with chirality
for pinned domain walls in FM, AF, and AM. Although the
results for FM and AF are well-documented in the literature,
we revisit them here for the benefit of the reader, to provide a
unified context for the respective derivation for AM; technical
details are relegated to the Appendix.

E, =N Ey(1 + (p/2)cos’ ¢u),

A. Domain wall in a ferromagnet

In the case of a FM, n is the unit vector of magnetization,
and the system is described by the Lagrangian (see, e.g.,

Ref. [30])

L= —(Nth/a)fdz(A - o) — Win] — Upiy,

N, S? Ja?
Win] = la /dz{%(azn)2+K1n§+Kzn§}. ®)

Here A is the vector potential of the Dirac monopole,
A(no, n) = (ng x n)/(1 + (no - n)). (6)

The direction of the “Dirac string” given by the unit vector ng
can be chosen arbitrarily, and equations of motion as well as
other physical quantities do not depend on the choice of ny. In
what follows, we choose ny = Z along the easy axis.
Electrons interacting with an inhomogeneous magnetiza-
tion texture experience a fictitious “gauge field” caused by
the texture gradients which couples to spin current [31-33].
Performing a unitary transformation rotating the spin quan-
tization axis of conduction electrons from its initial value
(assumed to be ng) to the local magnetization direction n
leads, to the first order in the magnetization space-time gra-
dients, to the following contribution to the Lagrangian (5):

L+ L—-19P,—TYPR, P, = /dzA(z,n) ~oun, (7)

where I® is the spin current magnitude, and 7 is the net
spin density of the electrons. For spin-polarized current, both
1 and T are proportional to the charge current /©:

1V =hmPI®)2e, T =19 /v, ®)
where P is the degree of spin polarization of the electric cur-
rent and vy is the effective electron velocity. The contribution
proportional to Py is merely a weak renormalization of the first
term in the Lagrangian (5), so in a FM it can be neglected. The
integral P, can be obtained (see the Appendix) as

P =2¢y. ©))

The effective Lagrangian for a ferromagnetic DW is thus
obtained in the following form:

AN KS d
M= Zw% — NLEo(1 + (p/2) cos® ¢y,)
—219¢,, — GZ2 /2. (10)

The corresponding Hamiltonian is

2

Py P2 ®
HFMZM"i_NLEO 1+§COS Gy | +20Y¢,, (11)

2N hS

2w is the canonical momentum, and

where Py =

M, = (2N, iS)*/Ga* (12)

plays the role of the effective moment of inertia of the DW. In
the absence of current, small oscillations around the equilib-
rium (given by z,, = 0, ¢, = £ /2) have the frequency

Qo = (N Eop/My)'"%. (13)
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B. Antiferromagnetic domain wall

For an AF, the dynamics of the unit Néel vector n is
described by the Lagrangian of the nonlinear sigma-model

L= LNLJSZa/dz (&n)* — Wln] — Upin, (14)
2¢2
where ¢ is the limiting velocity of spin waves. The spin-
transfer torque caused by the interaction of conduction
electrons with the AF spin texture can be derived in a way very
similar to the FM case [28,31,34,35], and the corresponding
contribution to the Lagrangian has the same form (7). It should
be remarked that nonadiabatic contributions to spin transfer
torque in an antiferromagnet have been shown [36] to lead to
the coupling of same form, albeit multiplied by a nonuniversal
factor. The effective Langangian for the antiferromagnetic

DW is
L _ NLE() & 2+82 d¢w :
AT e dt dt
— NLEo(1 + (p/2) cos” ¢y,) — Gz, /2

ddu
- 29, +2T%z, —Z :

s)

Note that in the AF case the contribution proportional to
T is the only source of coupling between the DW position
and angle [28] and thus cannot be written off as a small
correction to an existing term. However, for strong pinning,
when the characteristic frequency

Qpin = (Gc*/NLEo)'/ (16)
of z,, oscillations is much larger than the frequency

wo = (Eo/hS)/p, a7

of ¢,, oscillations around equilibrium points ¢,, = £ /2, the
DW coordinate can be treated as “slave” and integrated out,
7w >~ T /G)(d ¢, /dt), which leads just to a weak renor-
malization of the limiting velocity c.

Moreover, since the last term in Eq. (15) can be recast in the
equivalent form —27®¢,, %, it is easy to see that it contains
the additional parameter v;!(dz, /dt) compared to the last
but one term in the same expression. If the DW velocity is
much smaller than the effective electron velocity v, (which
is estimated to be in the range of 1 to 100 km/s [28]), this
coupling can be neglected. Thus, in contrast to the FM case,
for small rhombicity p < 1 the translational motion of the
AF domain wall (dynamics of z,,) is only weakly coupled to
its chirality (dynamics of ¢,,).

The Hamiltonian describing the ¢,, dynamics in an AF DW
can thus be written as

Py L ®)
HAF = _+NLE0 1+—pCOS ¢w +21 ¢w9 (18)
2m¢ 2

where py = my(d¢,,/dt) is the canonical momentum, and
my = N, Eo(8/c)* (19)

is the effective DW moment of inertia.

FIG. 2. Illustration of the toy model of altermagnet described by
Eq. (20). Arrows denote localized spins, and the dashed line indicates
the magnetic unit cell.

C. Domain wall in an altermagnet

The low-energy spin dynamics in an AM in the leading ap-
proximation is described by the same nonlinear sigma-model
as in the antiferromagnetic case (we neglect slight corrections
caused by the back action of the electron subsystem on the
magnetization). However, one can show that, in contrast to the
FM or AF, in an AM the gradient of the AF order parameter
couples not only to spin current, but to the charge current
as well. This can be easily seen in the simplest tight-binding
model of an AM [12], described by the Hamiltonian

H=Y (=ty/vr =¥/ -Su)yr +Hel,  (20)

)

where [ labels sites on a square lattice, ¢+ and ¢’ are the
amplitudes of spin-independent and spin-dependent hopping,
respectively, and localized spins §;; sit in the middle of the
links between nearest neighbor pairs (/I’), as shown in Fig. 2.
Although this toy model is just one of many possible realiza-
tions of an altermagnet, it allows us to capture the essential
physics of AMs, so we expect the final results to remain
qualitatively correct in the general case.

Introducing in each unit cell the magnetization m and the
Néel vector n in a standard way, and rotating the electron
quantization axes to the local Néel vector direction, one can
see that the spin-independent hopping again yields the cou-
pling of texture gradients to the spin current as given by
Eq. (A12), while the spin-dependent hopping leads to the
following contribution to the Lagrangian density in the con-
tinuum:

h ‘ ‘
—K A ) (I99n — 1'99,n), 21
- )

where k = t'/t is the relative strength of the spin-dependent
hopping, and I'“) is the charge current, see (A18) and the
corresponding derivation in the Appendix.

Thus, in the DW setup as considered above, with the
nanowire oriented along along one of the directions x or
y, with an electric current of the magnitude /¢© and spin-
polarization P flowing along the nanowire, one obtains the
Hamiltonian of the form (18), with the replacement

RI©
19— — (P +x). (22)
2e
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III. CLASSICAL AND QUANTUM CHIRALITY CONTROL

In all cases considered above the DW is described by the
effective Hamiltonian of the following form:

_ Pl
H = — 4+ —mw” cos ¢w + b¢wa (23)
2m 2
where the moment of inertia m and the frequency w are given
by m = My, w = Qo for FM, see Eqs. (12), (13), and m =
mgy, w = wo for AF/AM, see Eqgs. (19), (17). The Hamiltonian
(23) describes a planar rotator in a two-well potential. The two

wells are separated by the barrier of the height
U = mw?/2 = pEgN, /2. (24)

This planar rotator is driven by the torque b = y Al /e pro-
portional to the current ., with the coefficient y =P for
FM and AF, and y = P % « for AM. Applying a constant or
time-dependent torque, one can excite the DW chiral degree
of freedom in various ways.

The above effective model is considerably simplified, as it
omits effects of nonadiabaticity as well as dissipation. How-
ever, we think it represents an acceptable starting point for our
primary goal of exploring the quantum chirality dynamics. We
first give a brief overview of the classical dynamics that is well
studied in the literature, and then focus on the quantum regime
which, as we shall see, exhibits a number of novel features.

Classical chirality dynamics

The physics of this regime is essentially the same for FM,
AF, and AM, and has been well studied for FM [27] and AF
[29]. Classically, the DW is “stuck” in one of the wells, and
would be driven out only by a sufficiently large torque b > b,,
when the energy gain on traversing between wells becomes
comparable to the barrier height, b.m >~ U. The threshold
current density j©) = I9)/C |, necessary for such a switching,
is given by

ol ek
"~ 2mha?

and does not depend on the number of spins N, in the cross-
section. As U scales linearly with NV, , one can simultaneously
achieve low threshold current density and high barrier U >
T (which is necessary to make the quasiclassical “left” and
“right” states stable against thermal fluctuations).

In the absence of damping, a constant current above the
threshold leads to a precession of the DW angle, with a con-
stant acceleration. A finite damping leads to a rotation with
a stationary average angular velocity @ =~ b/hn, where the
dimensionless friction coefficient 1 can be expressed via the
Gilbert damping o as

o (25)

n =2N,Sag(§/a). (26)

Such a setup has been suggested for nano-oscillator applica-
tions [25-27,29,37]. Switching between two chiralities in this
way, however, is plagued by inertial effects [29]: applying a
pulse of current, one can kick the DW from one potential well,
but it would not immediately stop in the other well, continuing
the inertial rotation until damping makes it settle.

B. Quantum chirality dynamics

While classically, to excite the DW oscillations, one needs
to apply the current density above the threshold value (25),
quantum effects make it possible to excite the chirality dy-
namics by much lower currents (i.e., torques much smaller
than the barrier height, » << U). The key observation here
is that the physics of a torque-driven quantum rotator is
mathematically equivalent to that of a current-biased Joseph-
son junction, which, in turn, is related to the Wannier-Stark
problem for a charged particle in a periodic potential with
an applied electric field (see the comprehensive review in
Ref. [38]). Drawing on this analogy, we show below that in the
quantum regime the DW chirality dynamics can exhibit such
effects as Bloch oscillations (with additional high-frequency
modulation), Wannier-Stark localization, and Zener break-
down.

1. The Hamiltonian and the periodic gauge.

The quantized form of the Hamiltonian (23) is easily ob-
tained by promoting the conjugate momentum to operator
p = —ihd/d¢,. It is convenient to introduce the dimension-
less parameter

& =2mw/h, (27)

which determines the structure of the spectrum in the absence
of the torque (b = 0). For £ > 1, one has “deep wells”, with
the low-energy spectrum being essentially that of a tunnel-
split double harmonic oscillator with the level spacing fiw.
The lowest-level tunnel splitting A and the harmonic oscil-
lator level spacing %w can be related to the barrier height U
via the parameter & as follows [39]:

ho 4 A 2\,

UTE U =f&). [f@= 16(715) e, (28)
The above formula for f(£) is derived for for £ > 1 but
remains a good approximation for & 2 3. For energies consid-
erably above U, the spectrum approximately corresponds to
that of a free plane rotator. Decreasing & pushes levels up, so
that, e.g., for £ ~ 2.5 + 4 only two lowest levels correspond to
bound states inside the double well, and for & <« 1 the entire
spectrum is comprised by rotatorlike delocalized states.

To analyze the quantum chirality dynamics, it is convenient
to pass from the wave function W(¢,) to a unitary-
transformed one ¥ = % W with

sz(t):/ b(t"dt', (29)
0

which brings the Hamiltonian to the explicitly periodic, time-
dependent form (the so-called “periodic gauge”)

L | 8 o 30
_% <—l%— ([)) +ZCOS Dw (- (30

In this gauge one solves the time-dependent Schrodinger
equation 10,y = Hy with periodic boundary conditions
V($) =¥ (¢ + 2m).
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FIG. 3. The average angular velocity (d¢,,/dt) vs the dimen-
sionless time t = /it /2m for £ = 5, and bias (a) b =0.1A; (b) b=
0.6A. The ground state for b = 0 has been used as the initial state at
t = 0. The energies of the first four lowest-lying states at £ =5 in
units of ?/2m are Ey ~ 0.115, E; ~ 0.159, E, ~ 5.636, and E; ~
6.343. Bloch oscillations with the frequency 7 b/i are modulated with
the secondary frequency (E; — Ey)/h due to the excitation of the
third excited state.

2. Bloch oscillations with high-frequency modulation.

Consider first the case of a constant applied current, /ik =
bt. If the energy gain on traversing between the wells is suf-
ficiently small compared to the interband splitting, b < hw,
the single-band approximation can be used [40]. The angular
velocity (d¢,,/dt) should exhibit Bloch oscillations around
zero average value, with the frequency

wp = wb/h 31

and the amplitude @,, >~ w A/2k. The amplitude of the angle
oscillations is thus ¢n.x > A/b and can be sufficiently large.
While for short times ¢ < 1/wp the Bloch oscillation is indis-
tinguishable from the accelerated rotation, at larger time scale
they are very different as the average angular velocity for the
Bloch oscillation is zero.

The numerical solution of the time-dependent Schrodinger
equation indeed shows such Bloch oscillations. Remarkably,
we also observe a superimposed modulation with the fre-
quency of about w, see Fig. 3. This can be explained by the
fact that the matrix element (y3|p|yo) between the ground
state ¥y and the third excited state 3 (states at b = 0) is large,
so nonzero b leads to an efficient excitation of 13 mode. The

amplitude of this additional modulation grows with increasing
the current and gets more pronounced when the energy gain
becomes comparable with the lowest level tunnel splitting.

In the presence of a finite damping n, if the bias b is lower
than the threshold value bp = hino,, ~ nA, there is a steady
rotation with the angular velocity @ = b/hn, similar to the
classical regime. The angular velocity starts Bloch oscillation
for b > bg, and its average (steady) value drops as 1/b [38].

3. The Wannier-Stark localization and chirality switching.

In the regime of the energy gain not small compared to the
bandwidth, b > A, if the initial state is localized inside one
of the wells, the Wannier-Stark localization will keep the wave
function of the DW localized, preventing it from tunneling,
see Fig. 4(d). Applying two current pulses separated by one
half of the Rabi period 7/ A, one can flip the localized state
from one well to the other, see Fig. 5. Note that such a scheme
for switching does not suffer from inertial effects that occur
when trying to kick the DW from one well to the other in
the classical regime. Thus, one can manipulate the chirality
degree of freedom by the weak torque wb ~ A, which corre-
sponds to the operating current density

J*=jfE), (32)

which is considerably smaller than the classical switching
threshold (25) for & > 1. The speed of quantum chirality
switching is obviously limited by the tunnel splitting, with the
maximum “operating frequency” about A /7.

4. Zener breakdown.

Finally, for strong bias the chirality dynamics can ex-
hibit the Zener breakdown (interband tunneling) leading to
an accelerated rotation, see Fig. 6. The probability of the
Zener breakdown becomes sizable when the energy gain be-
comes comparable to the interband splitting, wb ~ fiw. A
finite damping would again change the dynamics to a steady
rotation, so this regime is hardly distinguishable from the
classical one. However, for £ > 1 the typical current den-
sity jZen ~ j°!(4/&) required to trigger the breakdown can be
much lower than the classical threshold j<.

C. Numerical estimates

To implement the quantum regime of chirality dynamics,
several conditions should be met. Quantum tunneling starts to
compete with thermal escape below the so-called “crossover”
temperature 7, which can be roughly estimated by equating
the quantum tunneling rate A and the thermal escape rate
hwe Y/T, which yields T, ~ U/In[4/(£ f(£))]. To observe
tunneling effects and Bloch oscillations, however, one needs
to satisfy a stronger requirement [40] of temperature being
small compared to the bandwidth (the lowest-levels tunnel
splitting), T < A < T.. Besides that, the Bloch oscillation
regime requires the bias to be over the damping-related thresh-
old b > nA.

The quantum reduction factor of the current necessary to
manipulate the DW chirality is given by j¢/j = AJU =
f(&). Thus, to achieve the quantum reduction of the current
necessary to manipulate the DW chirality, at the same time

134418-5
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FIG. 4. Chirality dynamics with the Wannier state localized in the right well used as the initial state at# = 0. Shown are: (a), (c) the average
angular velocity (d¢,,/dt), and (b), (d) the probability density |1/ |* as functions of the dimensionless time t = /it /2m for & = 5. The bias is

b =0.1Ain (a), (b), and b = 0.6A in (c), (d).

keeping the switching speed reasonably high, one has to work
in the regime of moderate values of £ ~ 3 — 6, so the number
of magnetic atoms in the cross section of the DW cannot be
much larger than N, ~ 100. To keep & moderate, the rhom-
bicity has to be small (nearly uniaxial anisotropy), but not too
small as it would drive down the crossover temperature. To
increase T, and A, it is favorable to have large exchange and
anisotropy constants J, K (although that simultaneously drives
up j.

Let us look at corresponding order-of-magnitude numeri-
cal estimates, assuming a nearly uniaxial material with p ~
1073, and taking typical values for the exchange constant J ~
500K, the anisotropy constant K ~ 5K, spin S = 1, and the
lattice constant @ ~ 3 A. The classical current density thresh-
old for the above parameters is j¢ ~ 10° A/cm?, independent
of the number of atoms N, in the DW cross section.

1. Antiferromagnets and altermagnets.

For an AF or AM, parameter £ takes the form

£ =2N.S./p,

which depends only on the rhombicity parameter p and not
on the overall magnitude of material constants (exchange cou-
pling J and magnetic anisotropy K).

For a DW in a nanowire with N, ~ 100, one has £ ~ 6.3
and the quantum reduction will bring the operation current
down by two orders of magnitude, j?/j ~ 1072, While

(33)

the crossover temperature is 7. ~ 2K, the bandwidth A ~
100 mK is rather low, limiting the experimental observation.
Assuming the Gilbert damping o ~ 1073, the friction coeffi-
cient can be estimated as n ~ 1, so the threshold for exciting
Bloch oscillations lies at about j ~ j9. Bloch oscillations ex-
cited by j ~ j? have the frequency of ~1 GHz, the maximum
switching frequency being roughly of the same value. Those
Bloch oscillations will be modulated by the much higher
frequency of about wy ~ 0.1 THz. As A is highly sensitive
to the value of &, a slight reduction of the DW cross sec-
tion to N| ~ 64 allows one to raise the bar on the observation
temperature and the operating frequency, while still retaining
a substantial quantum reduction: in that case, £ ~ 4, which
corresponds to A ~ 500 mK, operating frequency ~10 GHz
and the reduction factor j7/j ~ 0.1.

2. Ferromagnets.

For a domain wall in a FM, & = 4NJ3_/2(S/a)(,oEo/G)l/2
apparently scales as N 32 however in fact the scaling is linear
if one takes into account that the pinning constant G must
also scale linearly with NV, . Following [22], one can model the
pinning as caused by N, layers of impurities with an increased
anisotropy constant K’ > K and obtain the estimate G ~
N,N,K'/82, which yields & = 4N, S? %)'/2(%)1/4. Thus,
in FM £ is enhanced by the large factor (8/(1)(E0/NPK’)1/2
compared to the AF case (33), which makes it unfeasible to
observe Bloch oscillations and other quantum effects in a FM.

134418-6
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FIG. 5. Chirality switching with the Wannier state localized in
the right well used as the initial state at + = 0, under the action
of a pulse with the amplitude b = 0.5A and the duration of Az} =
27 /wg, followed by another pulse of the same amplitude after the
time interval of At, = w/i/A. Shown are: (a) the average angular
velocity (d¢,,/dt) and (b) the probability density |v/|* as functions
of the dimensionless time T = /it /2m for £ = 5.

IV. SUMMARY

We have studied different scenarios of manipulating the
internal degree of freedom (chirality) of a pinned mesoscopic
domain wall by means of applying external current, in several
types of magnetic materials. While one needs spin-polarized
current to control chirality in ferro- and antiferromagnets, it
turns out that in the emerging novel class of magnetic materi-
als known as altermagnets chirality can be manipulated by a
regular, nonpolarized charge current.

We have shown that in antiferromagnets or altermagnets
at very low temperatures, quantum tunneling effects open the
possibility for controlling the chirality dynamics by current
densities which can be an order of magnitude smaller than
those required to excite it classically. Those very weak cur-
rents can excite quantum Bloch oscillations of the domain
wall angular velocity with frequencies of the order of a few
GHz, modulated by oscillations at much higher frequencies in
the THz domain. Zener breakdown can be triggered by higher
currents that are still substantially lower than the classical
threshold. In addition to exciting the oscillations, in the quan-
tum regime it is possible to perform a controlled switching
between different chiral states, with inertial effects suppressed
by the Wannier-Stark localization, albeit with the payoff of a
limited switching speed.
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APPENDIX: CURRENT COUPLING TO THE ORDER
PARAMETER IN FERRO-, ANTIFERRO-
AND ALTERMAGNETS

The goal of this Appendix is to give a derivation of the
current coupling to the order parameter in altermagnets [12],
but we would like to provide the necessary context by giving
a brief overview of ferro- and antiferromagnetic cases first.

It is convenient to start from a tight-binding model for
conduction electrons described by the Hamiltonian

Hy=—1Y Wy, +he)—Ju Y ¥/ (@ - Sy, (Al

ary I

where [ numbers lattice sites, {; = (c;, cli)T is the two-
component spinor describing the conduction electrons (in the
frame with the quantization axis ng), ¢ is the hopping am-
plitude between nearest-neighbor site pairs (/I’), and J; is
the exchange coupling to localized spins S; which are treated
as classical vectors. The Lagrangian corresponding to this
tight-binding model can be written as

Ly =i(h/2) ) ([0, — 09/ —Ha.  (A2)
!

Ferromagnet. In a ferromagnet, S; = Sn;, where the unit
vector n can be assumed to vary smoothly across the lattice.
Performing local unitary transformation y; = U (n)x; with

_ ny—+n
T 21 4n-n))/?

which describes a 180° rotation about the direction e that
bisects the angle between n; and n(, we rotate the quantization
axis at each lattice site to m;, so that the interaction term
1//ZT(¢7 Sy = SXITO'ZXI is diagonalized in this twisted frame.
This twist modifies hopping as follows:

Un)=o0;,-€¢, e (A3)

e = (er-e)x o +iter-er) - (xjoxr). (A

One can pass to the continuum description, by setting /
r, ' = r + a, and perform the gradient expansion. Up to the
second order in gradients, the hopping term in Eq. (A1) takes
the form

ta* (Vo (Vo) = ta* (V' —ix"AD(Vx + iAax), (AS)

where the matrix gauge field A, = (A, - o) is defined via the
set of vector gauge fields
(ngp+n) x Vyn

Av=(exVee) = 5 am =5

(A6)

and we have used the shorthand notation V, = i(a -V).
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FIG. 6. Zener breakdown for a strong bias: (a), (c) the average angular velocity (d¢,/dt), and (b), (d) the probability density || as
functions of the dimensionless time v = /ir /2m for £ = 5. The bias is b = 1.5A in (a), (b), and b = 5A in (c), (d). The ground state for b = 0

has been used as the initial state at ¢t = 0.

The expression (A5) describes the kinetic energy of elec-
trons with the effective mass

my = %/ (2ta*)

coupled to SU(2) gauge field A. In Eq. (AS5), the term
quadratic in A can be recast as ta*(x " x)(Ve)* and leads to
a renormalization of the FM exchange energy in the presence
of a finite density of conduction electrons, so we will omit
it in what follows. The term linear in A yields the following
contribution to the Lagrangian density in the continuum ap-
proximation:

(AT)

—2j9. A, (A8)
where
+(s) lhz T ¥
= - (x'oVax — Vax'ox) (A9)

a 4m* V()

is the spin current density in the a direction (the components
of the vector jgf) are taken in the rotated frame), and V) is the
volume of the magnetic unit cell.

The first term in the Lagrangian (A2), after performing
the unitary twist, similarly yields another contribution to the
Lagrangian density

—219 . A,

where the gauge field Ay has the form (A6) with the replace-
ment V, > 9;, and 7% is the spin density of the conduction

(A10)

electrons in the locally rotated frame (i.e., with respect to the
order parameter):

™ = (1/2Vo)(x "o x).

Integrating Egs. (A8) and (A10) over the volume of the
nanowire, one gets the total current-induced contribution to
the Lagrangian of the form

(A11)

L+ L—2C, f dz (GO - A, + 19 A). (A12)
We assume that the exchange coupling between conduction
electrons and localized spins is strong enough so the electron
spin adiabatically follows the direction of the magnetization
[so the coupling (A12) corresponds to the adiabatic spin-
transfer torque]. Then in the locally rotated frame j© = j©2
and T = 12, so one can recast Eq. (A12) in the form of
Eq. (7), where I®) = jOC,, T® = 19C,.

While P, = [A - dn itself is not a well-defined quantity,
the difference of P, values for two domain walls with ¢ = ¢,
and ¢ = ¢, is uniquely defined [41], since it can be expressed
as the surface integral [ dS (n-rot,A) over the spherical
wedge of the n unit sphere, bounded by the semidisks ¢ =
¢1.2. In view of the identity n - rot,A = 1, this latter quantity
is just equal to the surface 2(¢; — ¢,) of the wedge. Thus,
up to an irrelevant constant, we can set P, = 2¢,,, obtaining
Eq. (9).

Antiferromagnet. In a two-sublattice antiferromagnet, §; =
S(m; + nin;), where n; takes alternating values £1 on two
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sublattices, and m and n correspond to the magnetization
and the Néel vector, respectively, satisfying the constraints
m-n =0 and m?> 4+ n? = 1. For smooth spin textures, the
magnetization m can be viewed as a “slave field” which is pro-
portional to space and time gradients of the order parameter n,
so typically |m| < |n|, and one can for our purposes neglect
m and view n as a unit vector. Performing the same unitary
transformation (A3) adjusts the electron quantization axes to
the local Néel vector direction and brings the interaction term
to its form for the homogeneous AF texture. The hopping
term produces [34] the gauge-field coupling (A8), while the
dynamic term in the Lagrangian produces [28] the gauge-field
couplings (A10), similar to the FM case. We remark that
our derivation here is kept simplified for the sake of clarity.
The more rigorous derivation [28,35] leads to the additional
overall factor (1 — ¢?) in front of both Egs. (A8) and (A10),
with ¢ o t/Jsy. Here we assume that ¢ < 1 and neglect this
additional factor.

Altermagnet. As a starting point, we take one of the min-
imal toy models of an altermagnet [12], described by the
Hamiltonian (20) and Fig. 2. In each unit cell we introduce
the magnetization m and the Néel vector n:

S10=8m; +n;), S =Sm —n). (A13)
In what follows, we assume that in the homogeneous unper-
turbed state m = 0, and Il = ng, and n is also the quantization
axis for electron spinors ;.

We again perform unitary transformation (A3) to rotate
the electron quantization axes to the local Néel vector di-
rection n;. The spin-independent term in the hopping will
again acquire the gauge-field modification (AS5), leading to
the contribution of the form (A8) coupling texture gradients
to the spin current. However, it is easy to show that the
spin-dependent hopping leads to another contribution which
couples not to the spin current, but to the charge current.
Indeed, the ¢’ term transforms as follows: w; (o-Sy)y =

x,TWufm, where

Wi = —iSir - (e; x ep) 1

+{ei(ey - Sy) +ep(er-Sy)— S - (e -ep)} - o.
(Al4)

Passing to the continuum description, [ + r, I’ — r + a, and
performing the gradient expansion, one can see that up to the
first order in gradients W takes the following form:

W =n,(ng-0)+ Le(e -m) —m) - o
+ nqale(n - V,e) + Vee(n -e)) - o

—ian - (e x Vye)l, (A15)

where 1, = x1 for a = X, and a =y, respectively. Similar to
the low-energy description of antiferromagnets, the magneti-
zation m is linear in gradients of the order parameter n. The
gradient-free term in W corresponds to the spin-dependent
hopping in the homogeneous AF order.

To the first order in gradients, there are two contributions
to W. One of them is a superposition of Pauli’s matrices, and
describes coupling of the electron spin density to the gradient
of the order parameter; in what follows, we will not be inter-
ested in that contribution as it does not involve currents. The
other term in W, which is purely imaginary and proportional
to the unit matrix, leads to the following contribution to the
Lagrangian density in the continuum approximation:

t'h (e
- Jna(n - AL, (A16)
ea:fc.y
where
© = Y~ Vax Al7
B 2m*V0(X aX W X' X) (A17)

is the density of the charge current in the direction a. Thus, in
an altermagnet the Néel vector gradient couples to the usual
electric current, in contrast to the FM or AF case, where
coupling is only to the spin-polarized current. Taking into
account Eq. (A6), the coupling (A16) can be recast as

—Kz—f’e > iAo, n) - Van, (A18)

a=z%j

where the Dirac monopole vector potential A (rg, n) is defined
in Eq. (6), and « = t'/t is the relative strength of the spin-
dependent hopping; this leads to Eq. (21).

Finally, the contribution from the dynamic part of the La-
grangian (A2) will result in the same coupling term (A10). If
the current is not spin-polarized, this contribution vanishes,
and the only surviving contribution is Eq. (A18).
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