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Pulse-driven depinning of magnetic gap modes in ferromagnetic films
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The manipulation of magnons in artificial magnonic crystals (MCs) leads to fascinating nonlinear wave
phenomena such as the generation of gap solitons, which has been mostly limited to one-dimensional systems.
Here, we propose a model system for the magnetization in two-dimensional MCs subjected to a periodic external
magnetic field, describing the dynamics of magnetic gap solitons (MGSs) formed by nonlinear self-trapping. We
show the formation, stability, and dynamics for various two-dimensional gap modes, including gap solitons and
vortical ones. Their existence regions depend on the anisotropic axis orientation of the ferromagnetic film. The
Bloch oscillation and depinning propagation of MGSs under constant spin-current injections are discovered
and characterized. We design a scheme of pulse-current injection to achieve the distortionless propagation of
MGSs. These findings show that the two-dimensional magnonic crystals can be viewed as a building block
for MGS-based storage and transmission, where the propagation and localization are variously controlled and
reconfigurable.
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I. INTRODUCTION

Periodic lattice modulation, enabling the generation of re-
configurable band structures, is recognized as a versatile and
convenient tool for manipulating wave dispersion, offering
novel avenues for wave control within various nonlinear sys-
tems [1–5]. This mechanism holds great significance both for
its achievable applications such as light deceleration [6] and
signal storage-recovery [7] and for its importance in funda-
mental research in nonlinear physics [8]. Various interesting
localization phenomena, such as gap solitons and truncated
Bloch waves, can occur due to the interplay between the band
structure and nonlinear interactions [9–13].

Among various artificial crystal systems, magnonic crys-
tals (MCs) attract growing attention [14–17]. This arises from
the wide-range methods for creating periodic magnetic struc-
tures, including macroscopic metallic stripes or dots, etched
grooves or pits, periodic external magnetic fields, and periodic
saturation magnetization by ion implantation [18–20]. Such
a rich external potential structure and the possibility for the
fast dynamic control of magnons via the spin-transfer torque
(STT) and spin-orbit torque (SOT) effects [21–25] make MCs
promising candidates for fundamental studies as well as for
magnetic storage and transfer applications. It has also been
shown that the shape and strength of the pinning potential
and the driving force can strongly affect the soliton dynamics
[26]. In general, designs from periodic structures, by taking
advantage of the material nature or external electromagnetic
fields, can be abstracted as the introduced external potentials
into the systems. These additional potentials are expected to
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manipulate the transport behavior of quasiparticles or wave-
mode transport, and are able to provide essential artificial
pinning for the precise control of gap soliton positions.

Furthermore, considerable theoretical and experimental ef-
forts have been devoted to investigate different localization
modes in MCs [27–29]. Up to now, a large part of the inves-
tigations into the localization modes in MCs is concentrated
on one-dimensional systems [28–33], while a few reports on
two-dimensional (2D) MCs are limited to the experimental
detection of spin-wave dispersion curves and the design of
diverse band structures [34–37]. However, some exciting two-
dimensional localized gap modes were predicted and observed
in optical and cold atomic systems [2,38]. Therefore, the
magnetic localization modes in higher-dimensional lattices
are expected to present qualitatively distinct features since the
symmetry and dimensionality of the lattice begin to play a cru-
cial role in the formation and characteristics of band structures
and their corresponding nonlinear modes [39]. Many fun-
damental characteristics are anticipated to emerge in higher
dimensions, such as lattice vortex solitons and gap solitons
carrying angular momentum, analogous to those that occur
in photonic lattices and Bose-Einstein condensates [2,40–42].
As for 2D MCs, the existence, stability, and dynamics of
localized gap modes have yet to be unveiled. In addition,
investigating the driving effect of STTs on MGSs is also
demanding in the context of magnetic storage applications.

In this paper, we propose an effective model for the mag-
netization in two-dimensional MCs subjected to a periodic
external magnetic field, describing the dynamics of 2D self-
trapping magnetic gap modes. Our investigation unveils that
these 2D localized gap modes manifest as magnetic gap
solitons and magnetic vortices, residing exclusively within
the band gaps. The existence region of these magnetic gap
solitons depends entirely on the anisotropic axis of the
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FIG. 1. Sketch of the 2D MCs and corresponding band struc-
ture. (a) Ferromagnetic film under periodic external magnetic field
Heff . (b) Density plot of the square external magnetic field Heff =
H0[sin(πx/a)2 + sin(πy/a)2]. (c) Dispersion surfaces of the linear
Eq. (4) at H0 = 8. (d) The first reduced Brillouin zone of the high-
symmetry points in reciprocal lattice space. (e) Band-gap structure
for Bloch waves with different H0. The gray area and white area
respectively represent the energy band and the band gap, and the
letters A, B,C, D mark the band edges at H0 = 8. (f) The dispersion
spectrum at H0 = 8.

ferromagnetic film. By employing a combination of linear-
stability analysis and direct numerical simulations, the
stability regions of MGSs are determined. Under a constant
spin-current excitation, we show the MGSs undergo spatial
oscillations within the initial lattice. This behavior can be
understood as Bloch oscillation in the effective potential well.
Upon elevated spin-current injection, MGSs commence de-
pinning, manifesting deformation during diffusion. We finally
introduce a scheme of pulse-current injection to overcome
such distortion and achieve the distortionless propagation of
MGSs. These findings underscore the potential for generating
and controlling GSs within 2D MCs.

II. MODELING

A uniaxial anisotropic magnetic thin film under an exter-
nal magnetic field Hext is considered as shown in Fig. 1(a).
The dynamics of magnetization M(x, y, t ) is governed by the
Landau-Lifshitz-Gilbert (LLG) equation [22,43,44]

∂M
∂t

= −γ M × Heff + α

Ms

(
M × ∂M

∂t

)
+ τb, (1)

where Ms is the saturation magnetization, and γ and α are
the gyromagnetic constant and the Gilbert damping parameter,
respectively. The effective field Heff is given by Heff = Hext +
2A
M2

s
∇2M + 2Ku

Ms
(M · n)n, where Hext denotes the external mag-

netic field, A is the exchange constant, Ku is the anisotropy
constant, and n = (0, 0, 1) is the unit vector directed along
the anisotropy axis. The ferromagnetic films are referred to as
easy-axis magnets when Ku > 0, and as easy-plane magnets
when Ku < 0 [22,45]. The last term τb on the right-hand side
of Eq. (1) represents some applied torques such as STT and
SOT. We now consider a spin-current injection along the x
direction, therefore the corresponding adiabatic STT can be
written as τb = − bJ

M2
s
M × (M × ∂M

∂x ). Here, we have defined
the effective driving velocity bJ = P jeμB/eMs, in which P is
the spin polarization of the current, je is the electric current
density, μB is the Bohr magneton, and e is the magnitude of
electron charge [22]. For simplicity, it is necessary to find a
convenient representation for an approximate analysis. Taking
into account the fact that M2 = M2

s , we introduce a complex
variable �(x, y, t ) = (Mx + iMy)/Ms. Similar to the model
assumptions by Kosevich et al. [46–49], two approximations
are made in our following derivation. The first is a small-
amplitude approximation. Considering a small deviation of
magnetization from the equilibrium direction, corresponding
to |�|2 � 1, and employing a Taylor expansion, it is possible
to obtain Mz/Ms ≈ 1 − |�|2/2. To this order of approxima-
tion, Eq. (1) becomes a nonlinear equation of �. The second
approximation is the slowly varying envelope approximation,
which assumes that the wave envelope varies slowly on the
space and timescale set by the linear magnon. This approx-
imation allows us to keep only the cubic nonlinear term of
the order of the magnitude of |�|2�. The above assumptions
have also been widely used in a theoretical description of two-
dimensional propagating spin-wave envelope solitons [50,51].
Using these two restrictions, neglecting damping, and further
introducing a gauge transformation � → e2iKu�, we finally
obtain the effective magnetization dynamical equation in the
presence of STT:

i
∂�

∂t
= 2A∇2� + Ku|�|2� − Hext� + ibJ�. (2)

This equation is also known as the two-dimensional nonlin-
ear Schrödinger equation (see Refs. [50,51] and references
therein). Herein the external magnetic field Hext can be re-
garded as an equivalent external potential, while the sign of
Ku determines distinct nonlinear types. We consider a square
magnetic trap [whose contour plot is shown in Fig. 1(b)] in
the form

Hext = H0[sin(πx/a)2 + sin(πy/a)2], (3)

where H0 and a characterize the modulation amplitude and
period of the magnetic lattice.

III. RESULTS

A. Bloch modes and band structure

To investigate the existence of 2D nonlinear localized gap
modes, it is essential to explore the band structure that holds
a pivotal significance within a periodic medium. For the
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FIG. 2. Stability property of 2D localized gap modes denoted as the polarization energy E vs propagation constant ω. (a) Upper panel:
Existence curves of fundamental MGSs (black solid line) and dipole MGSs (blue dashed line). Bottom panel: Maximum real part of linear
spectrum for fundamental MGSs. Characteristic shapes of MGSs at different propagation constant ω: (b) ω = 3.9; (c) ω = 4.2; (d) ω = 9.5;
(e) ω = 7.55. (f), (g) Characteristic shape and phase distribution of the gap vortex soliton.

linearized model of Eq. (2), the steady solitary solutions are
shown in the form �(x, y, t ) = ψ (x, y)e−iωt , with ω being the
magnetization energy of the system. It thus becomes

ωψ − 2A∇2ψ + Hextψ − ibJψ = 0. (4)

The stationary solutions are found by applying Bloch’s the-
orem, which states that the wave function has the form
ψ (x, y) = eikxx+ikyyφ(x, y), with kx and ky being wave numbers
in the first Brillouin zone −1 � kx, ky � 1. The functions
φ(x, y) are periodic in the x direction and y direction of period
a, i.e., φ(x + a, y) = φ(x, y + a) = φ(x, y).

For the given sinusoidal square magnetic lattice, the guided
Bloch modes and dispersion relation can be computed effec-
tively by a Fourier collocation method [52]. As a result, the 2D
band structure (dispersion surfaces) with H0 = 8 and a = 4
is shown in Fig. 1(c). From the illustration, it is evident that
two wide band gaps appear between the three lowest disper-
sion surfaces. Figure 1(d) depicts the first Brillouin zone and
high-symmetry points of the reciprocal lattice space. At other
values of the magnetic field strength H0, we have summarized
the dispersion diagram of Eq. (4) in Fig. 1(e). This plot reveals
the emergence of finite band gaps at nonzero magnetic field
strength H0, with both the number and width of these band
gaps expanding as H0 increases. Figure 1(f) shows the band
structure at a magnetic field strength H0 = 8. Particularly, the
edges of the Bloch bands are respectively marked in Fig. 1(e)
by red open circles and labeled with the letters A, B, C, and D,
in alignment with the annotations in Fig. 1(f).

B. Families of localized gap modes and corresponding stability

After successfully identifying the finite band gaps within
the linear spectrum of the model (2), we now turn to explore
the formation of 2D nonlinear localized gap modes. Generally
these gap modes emerge as a consequence of the interplay
between the given periodic magnetic lattice and cubic non-
linearities. Hence, their characteristics and existence regions
are intimately tied to the sign of the nonlinear terms, which,
in turn, correspond to two distinct anisotropy types of the
ferromagnetic thin film. The steady state of a gap soliton
in both the easy-axis and easy-plane regime [Eq. (4)] are

numerically solved by the Newton conjugate-gradient
method. The initial wave packet of ψ (x, y) is assumed as a 2D
Gaussian wave packet ψ (x, y) = βe−(x2+y2 )/2σ 2

with an ampli-
tude β and width σ on the scale of several lattice constants. We
note that spin-current injection is not taken into consideration
here, and its effect will be discussed in the next section. Our
numerical results are shown in Fig. 2. Among the interesting
features of this phase diagram is that the existence regions of
MGSs are completely separated by the first energy band. In
the case of an easy-plane ferromagnetic thin film (Ku < 0),
MGSs only reside within the semi-infinite band gap, which
corresponds to the left portion of Fig. 2(a). In contrast, for
easy-axis ferromagnetic thin films, MGSs corresponding to
these films exclusively reside in the first and second band
gaps [right portion of Fig. 2(a)]. In both existence regions,
two classes of soliton families including fundamental, dipole
MGSs and vortex solitons are identified. The polarization
curve of the MGS families are displayed on Fig. 2(a), denoted
by the black solid and blue dashed lines. Here, the polarization
energy is defined as E = ∫∫

ψdxdy.
Our calculation unveils various families of interesting 2D

gap modes and here we showcase some categories. Fig-
ures 2(b)–2(d) depict three characteristic fundamental MGSs
with a single main peak, located in the first and second band
gaps, corresponding to magnetization energies of ω = 3.9,
4.5, and 9.5, respectively. By comparing the profiles of fun-
damental MGSs within the same family, it can be observed
that as ω moves away from the edge of the first energy
band, the amplitudes or total polarizations of the MGSs grad-
ually increase, accompanied by the emergence of nearby
modulation structures. The profile of a double-peak MGS is
depicted in Fig. 2(e), residing on the first band gap. Apart
from the double-peak gap solitons, we can effortlessly utilize
gap solitons to “draw” various patterns (see Supplemental
Material [53]). This also opens up possibilities for the con-
trolled modulation of spin-wave propagation. Figures 2(f) and
2(g) present the profile and phase of a gap vortexlike mode.
It is noteworthy that this phase map characterizes the phase
of the � composed of Mx and My components, reflecting
the rotation information of the configuration in the xy plane.
From the temporal evolution of the phase, we can further
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compute the rotation speed of the vortexlike texture. This
phenomenon can be explained as the formation of localized
states due to magnon interactions, without altering the topo-
logical properties of the texture. We also note that, based on
the small-amplitude approximation, the obtained vortexlike
magnetic texture shown in Fig. 2(f) is a topologically trivial
state (whose topological charge Q = 0). From the phase dis-
tribution of �, it can be observed that this vortexlike texture
carries a nonzero angular momentum. Therefore, when this
configuration moves perpendicular to the axis of rotation, the
observation of a vortex Hall effect might be possible (some
preliminary results are shown in the Supplemental Material
[53]). Another point worth noting is that under an external
periodic magnetic field, we did not observe stable dark gap
solitons. This might be associated with the necessity for a flat
background for dark solitons.

While the periodic external “effective potential” aids in
stabilizing two-dimensional solitons, the stability of these 2D
gap solitons remains an important issue to be determined. We
employ a linear-stability analysis of the Lyapunov method
[54] and perturbation propagation techniques to validate the
stability of fundamental gap solitons in the semi-infinite
band, and those within the first and second band gaps.
To analyze the linear stability of this solitary wave, we
consider it is perturbed by normal modes as ψ̃ = {ψ +
[v(x, y) + w(x, y)]eλt + [v∗(x, y) − w∗(x, y)]eλ∗t }eiωτ , where
ψ = ψ (x, y) represents the unperturbed wave function of
Eq. (4), and v(x, y) and w(x, y) are small perturbations for a
given eigenvalue λ. Substituting this perturbed solution into
Eq. (4) and linearizing thereafter, we obtain the following
linear-stability eigenvalue problem,(

G0 ∇2 + G1

∇2 + G2 −G0

)(
v

w

)
= −iλ

(
v

w

)
, (5)

with G0 = Ku(ψ∗2 − ψ2)/2 − ibJ , G1 = −ω − 2Ku|ψ |2 +
Ku(ψ2 + ψ∗2)/2 + Hext, G2 = −ω − 2Ku|ψ |2 − Ku(ψ2 +
ψ∗2)/2 + Hext. In general, the above eigenvalue problem can
be efficiently solved using the Fourier collocation method,
allowing us to obtain the corresponding eigenvalues λ and
assess the stability conditions of the perturbed 2D gap soliton.

The numerical results are presented in the bottom panel of
Fig. 2(a) by the Re(λ) ∼ ω curve. Each point on the curve
represents the maximum real part of the linear spectrum for
the corresponding MGS. From the curve, it reveals that all
MGSs within the semi-infinite bands are linearly stable, cor-
responding to the easy-plane regime (where Ku < 0). In the
easy-axis regime (Ku > 0), parts of the MGSs in the first
band gap are linearly stable, indicated by the light blue region
in the figure. As the magnetization energy of the MGSs in
this band gap increases, their total polarization also increases,
and instability begins to emerge. The total polarization in the
second band gap continues to rise, and at this point, all MGSs
are unstable.

The representative profiles, eigenvalues, and perturbed
evolutions of both stable and unstable modes are shown in
Fig. 3. We show the vector magnetization distribution of
the stable MGS in Fig. 3(a), corresponding to point c in
Fig. 2(a). The linear eigenvalue spectrum is present in the
upper-right-hand corner of Fig. 3(a), exactly matching the

FIG. 3. Characteristic stability property of a stable MGS and
an unstable MGS. (a) Magnetization vector distribution of stable
MGS at propagation constant ω = 4.5. Perturbed evolution and the
corresponding whole stability spectrum. (b) Magnetization vector
distribution of unstable MGS at propagation constant ω = 6.8. Per-
turbed evolution and the corresponding whole stability spectrum.

direct perturbation evolution in Fig. 3(c). Similarly, Figs. 3(b)
and 3(d) present stability tests for the unstable MGS at point
d in the second band gap of Fig. 2(a). The direct perturbation
evolution in Fig. 3(d) indicates weak instability near t = 100
under the influence of small perturbations, accompanied by
rapid changes in the global configuration. This result also
consists with predictions from the related linear eigenvalue
spectrum.

C. Pinning-depinning transition for a current-driven gap soliton

To achieve reliable control of the soliton position in
spintronic devices, external torques are often introduced by
spin-current injections. It has been show that the adiabatic
spin-transfer torque can be utilized to depin the domain wall
(DW). In this section, we will show the driven motion of
the MGS under the influence of STT. First, let us adopt a
small spin-current injection with drive parameter bJ = 1. In
this case, the MGS cannot overcome the effective magnetic
potential barrier in the initial Wigner-Seitz (WS) cell. The
Bloch oscillation of MGS is consequently excited. Figure 4(a)
shows the oscillatory behavior of the MGS within the WS
cell, with an oscillation period of approximately t = 1.3. It
is conceivable that as the spin current increases, the MGS will
accumulate enough energy to enable it to traverse the equiv-
alent magnetic potential barrier, achieving intercell transport.
We also present the snapshots of MGS dynamics for a large
drive parameter bJ = 5 in Fig. 4(b). For such drives above a
critical value, the oscillating solution is no longer possible,
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FIG. 4. (a) Snapshots of Bloch oscillation of MGS under low constant spin-current excitation bJ = 1. (b) Snapshots of diffuse propagation
of MGS under high constant spin-current excitation bJ = 8. (c) Movements of the magnetic center of MGSs under three intensities of spin
currents. (d) Magnetization center motion of MGS in the initial Wigner-Seitz cell under different spin currents. (e) Evolution of the maximum
position of MGS under different spin currents.

and the MGS is entirely activated, evolving dynamically to an
adjacent “equivalent potential well” at constant drive.

To quantitatively measure the motion of MGS under the
influence of different spin currents, we introduce a magneti-
zation center (or equivalent centroid), which is calculated as

Xc =
∫∫ +∞

−∞ x ψdxdy∫∫ +∞
−∞ ψdxdy

, Yc =
∫∫ +∞

−∞ y ψdxdy∫∫ +∞
−∞ ψdxdy

, (6)

where Xc and Yc represent the components of the magnetic
center in the x and y directions, respectively. Through the
magnetic center, we can effectively characterize the transi-
tion of MGSs from pinning to depinning as the external spin
current increases. Figure 4(c) illustrates the movement of the
magnetic center of MGSs under different spin currents. It is
worth noting that the spin current is applied along the x axis,
hence the MGSs are subjected to a “driving force” solely in
the x-axis direction. As seen in the subfigures, there are no
transversal movements in the center of the MGS. For a small
driving parameter bJ = 0.5, the MGS undergoes minor oscil-
lations within the initial WS cell. As the driving parameter bJ

increases to 2, the MGS remains unable to overcome the mag-
netic potential barrier, resulting in periodic oscillations with
a significant increase in oscillation displacement amplitude.
When the driving parameter bJ is set to 5, the MGS depins
and is driven in the positive x-axis direction.

Two additional effective pinning parameters are intro-
duced to investigate the transitional region: (i) the coordinates
of the magnetization center in the initial WS cell, calcu-
lated by XWS = (

∫∫ +a/2
−a/2 x ψdxdy)/(

∫∫ +a/2
−a/2 ψdxdy), YWS =

(
∫∫ +a/2

−a/2 y ψdxdy)/(
∫∫ +a/2

−a/2 ψdxdy); and (ii) the position of
the MGS’s maximum amplitude Xm and Ym, which aids
in characterizing the trajectory of the MGS as it moves,

excluding the dispersed impurity waves. All these quantities
are numerically calculated from the simulations. The pinning
parameters versus time with various current densities are plot-
ted in Figs. 4(d) and 4(e), from which the pinning-depinning
transition region can be simply determined. From the results it
is evident that when the spin-current density bJ < 3, the MGS
remains pinned within the initial cell, while the MGS resides
in the depinning region when the spin-current density bJ > 4.
Above the transition region, the magnetization center of the
initial WS cell rapidly decays to nearly zero, indicating they
are in the depinning state. The evolution of the maximum po-
sition of the MGS is shown in Fig. 4(d), which also confirms
the pinning-depinning transition.

D. Spin-current pulse-driven perfect migration

An important observation from the above driven motion
is that, in the presence of a large constant driving current,
MGSs undergo deformation during their transport across po-
tential barriers. This can be understood by the differential
response of the magnetization spin configurations with vary-
ing orientations to the spin current, resulting in a diffuse
propagation of the MGS along the direction of the spin cur-
rent. Such a dispersion process is detrimental to applications
in information storage based on MGSs. To achieve an overall
migration of MGSs between potential wells, we introduce a
relaxation time after crossing the “effective potential barriers.”
The perfect overall migration precession of the MGS under a
spin-current pulse is given in Fig. 5. As shown in the top panel,
the square pulse’s intensity is configured with bJ = 8 and a
pulse width of �t = 0.5. Consequently, the MGS precisely
shifts to the next “effective potential well” upon receiving
each spin-current pulse. The time gap between the two pulses
is �t = 2.5, ensuring that the MGS has sufficient time to
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FIG. 5. Snapshots of the distortionless propagation of MGS
achieved by the pulse-current scheme.

recover to its initial profile. The snapshots of MGS dynamics
at t = 0, 3, 6, and 9 are shown in the bottom four panels of
Fig. 5.

IV. DISCUSSION AND CONCLUSION

In conclusion, we propose a quantitative and numer-
ical study of the formation, stability, and dynamics for
two-dimensional gap modes in ferromagnetic films. In the
presence of a two-dimensional periodic external magnetic
field, an effective model is derived to describe the MGS
dynamics. The linear band structure is obtained from the
Bloch approach. We predicted the existence of MGSs in both
easy-axis and easy-plane ferromagnetic films. It is of interest
to find a clear distinction in the regions where MGSs exist
in easy-axis and easy-plane ferromagnetic films. They are

respectively located within the band gaps on either side of
the first energy band. Combining a linear-stability analysis
with direct perturbed simulations of the dynamical equations,
we have determined the stable and unstable regions for all
localized gap modes.

Considering the spin-current injection, we investigate the
MGS pinning dynamics at different current densities. Both
the numerical simulation and analytical theory show that the
adiabatic STT acts as a driving force on the MGS. The Bloch
oscillation and depinning propagation of MGS under con-
stant spin-current injections are discovered and characterized.
In the scenario of large spin-current injection, MGSs un-
dergo deformation and even fragmentation while being driven,
attributed to the asynchrony in the velocities of different
magnetizations crossing the equivalent barriers. We propose
a scheme of pulse-current injection to achieve distortionless
propagation of MGSs. These results provide insight into a
fundamental micromagnetic process that could be useful for
current-driven magnetic storage and magnonic devices based
on MGSs. In addition, by making suitable modifications to
the configuration of the two-dimensional magnonic crystal,
such as changing the lattice type to a honeycomb hexagonal
lattice or introducing the moiré lattice formed by two sets of
magnonic crystals with a twist angle, one can explore some
potentially two-dimensional lattice effects.
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