
PHYSICAL REVIEW B 109, 134415 (2024)

Keldysh theory of thermal transport in multiband Hamiltonians
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We establish a comprehensive theoretical framework for systems subjected to a static uniform temperature gra-
dient, employing the nonequilibrium Keldysh-Dyson formalism. This framework interprets the statistical force
due to the temperature gradient as a mechanical force, utilizing both Luttinger’s scalar and Moreno-Coleman-
Tatara’s vector potentials, which collectively emulate the gauge invariance stemming from the conservation of
energy. Our approach has the ability to treat heat current and heat magnetization on an equal footing, thereby
extending and generalizing previous formalisms. The derived result for the thermal conductivity is applied to
investigate the thermal characteristics of Weyl magnons in a stacked honeycomb ferromagnet featuring a trivial
insulator phase, a magnon Chern insulator phase, and three Weyl magnon phases. Against the expectation from
the Berry curvature, the magnon Chern insulator phase exhibits the highest transverse thermal conductivity.

DOI: 10.1103/PhysRevB.109.134415

I. INTRODUCTION

The theoretical description of quantum transport induced
by an electromagnetic stimulus is well established in con-
densed matter physics [1–5]. In the minimal coupling scheme,
the electromagnetic field is inserted into the Hamiltonian via
Peierl’s substitution [6] and the adoption of an appropriate
gauge (e.g., length, velocity, Landau) enables the study of
a wealth of phenomena [7–10]. In contrast, the theoretical
description of quantum transport under a temperature gradient
remains a challenging task due to the absence of a clear fun-
damental theory for this type of nonequilibrium force [11,12].
This hinders the progress of emergent fields of research aim-
ing at harvesting thermal transport, such as spin caloritronics
[13–17], topological magnonics [18–23], quantum heat trans-
port [24,25], and topological heat transport [12,26].

Unlike electromagnetic fields, a temperature gradient gives
rise to a statistical force that cannot be readily incorporated
into the Hamiltonian. Luttinger [11] introduced a “gravita-
tional” scalar potential which enables the study of thermally
induced transport of electrons [3,27–32], magnons [33–45],
and phonons [46,47]. However, this approach results in di-
verging thermal transport coefficients in the zero-temperature
limit for systems without time-reversal symmetry [33,36,48].
To address this issue, various attempts were made, includ-
ing the proposal in Ref. [29] to subtract the divergenceless
equilibrium magnetization currents from the thermal trans-
port coefficients calculated using Luttinger’s scalar potential.
However, the scaling law employed by this approach lacks a
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microscopic justification and cannot account for interaction
effects and disorder.

Shitade [49] presented a gauge-invariant theory of gravity
by imposing local space-time translation symmetry, based on
scalar and vector gauge fields. The scalar gauge field was
identified to correspond to Luttinger’s scalar potential, while
the vector gauge field gives rise to tortional electric and mag-
netic fields. The author utilized this formalism to compute
the thermal conductivity as a response to the tortional electric
field and the heat magnetization as a response to the tortional
magnetic field. However, the assumption of local space-time
translation symmetry was not explicitly addressed in the con-
text of a temperature gradient. Relying on the Cartan and
Keldysh approaches in curved spacetime, the formalism also
often exhibits technical complexity and lacks intuitive clarity.

Moreno and Coleman [50] represented a temperature gra-
dient by a vector potential rather than a scalar potential.
This approach was later adopted by Tatara [51,52] to ad-
dress the issue of diverging thermal transport coefficients.
It was argued that the vector potential, also known as the
thermal vector potential, in conjunction with the magnetic
vector potential that represents electromagnetic fields, can
provide accurate thermal transport coefficients by considering
diamagnetic heat currents. Nonetheless, the approach proved
insufficient to fully address the issue of diverging thermal
transport coefficients in systems without time-reversal sym-
metry due to the distinct nature of thermal transport. The
heat current, which quantifies entropy changes, must incor-
porate a component arising from the magnetization because
the thermodynamic expression for heat inherently includes
this component [53–56]. The magnetization also influences
electrically insulating excitations such as phonons (lattice
vibrations) and magnons (elementary magnetic excitations).
Typically, such excitations possess nonzero orbital mag-
netic moments. In the presence of a temperature gradient,
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these orbital magnetic moments induce magnetization cur-
rents, contributing to the physical currents. Consequently, an
accurate description of thermal transport necessitates the con-
sideration of both conventional heat currents, proportional to
the temperature gradient, and magnetization currents, propor-
tional to the magnetization gradient.

The experimental discovery of a magnon-mediated Hall ef-
fect [57] has spurred extensive research into understanding the
magnon transport in the presence of a temperature gradient.
Systems featuring Dzyaloshinskii-Moriya interaction [58,59]
exhibit various intriguing transport phenomena, including
the magnon spin-momentum locking [60], magnon thermal
Hall effect in both ferromagnetic [33,36,38,61] and anti-
ferromagnetic [37,41,62–67] materials, magnon spin Nernst
effect [42,68–74], magnonic magnetization torque [68,75,76],
and magnonic Edelstein effect [43]. Additionally, topological
phenomena were proposed, such as magnon topological insu-
lators [18,38,39,77–82] and Dirac [83], Floquet [84,85], and
Weyl [86–88] magnons. Developing a thorough theoretical
framework for describing the magnon transport in the pres-
ence of a temperature gradient is of the utmost importance
to unlock the potential of magnonics in next-generation spin-
tronic devices [20].

Unfortunately, most theoretical formulations of magnon
transport rely on Luttinger’s scalar potential. The widely used
thermal conductivity formula of Matsumoto et al. [33] at-
tempts to address the divergence of the thermal transport
coefficients by incorporating a correction factor resembling
orbital magnetization, proportional to r × v. However, this
formula contains a position operator that is not well defined
for extended systems. Furthermore, it primarily focuses on
the contribution of the Berry curvature, neglecting other po-
tential contributions, and is only applicable to noninteracting
magnons. Given the recent surge of research on interacting
magnons [89,90], a comprehensive theory based on Green’s
functions to account for interaction effects is necessary.

The Baym-Kadanoff [91] or Keldysh-Dyson [92,93] for-
malism is a powerful tool for studying nonequilibrium
systems. Its extension to temperature gradient perturbations
will enable the calculation of both heat current and heat mag-
netization in both fermionic and bosonic systems. A Green’s
function formalism is also readily adaptable to multiband
Hamiltonians and effects related to the Berry curvature of
multiband Bloch states. This will enable a more accurate de-
scription of the thermal transport in interacting and disordered
systems, and pave the way for the design and optimization of
magnonic devices.

This study presents a theoretical framework to calculate
linear and nonlinear responses to a steady and uniform tem-
perature gradient. The temperature gradient is described by
both Luttinger’s scalar and thermal vector potentials, which
together result in thermal electric and magnetic fields. Just
as the charge current is proportional to the applied electric
field, the heat current is proportional to the thermal electric
field; and the heat magnetization is related to the thermal
magnetic field. The response function is then computed within
the Keldysh-Dyson formalism in the stationary case.

The present approach has major advantages over previ-
ous approaches [29,33–37,40,49]. First, the use of a vector
potential to represent the temperature gradient eliminates

previously neglected diamagnetic heat currents. Second, the
heat currents can be expressed in terms of Fermi or Bose
distribution functions, enabling the separation of intrinsic
and extrinsic contributions to the thermal transport coeffi-
cients. Third, the formalism is readily applicable to multiband
systems, providing a versatile tool for investigating thermal
transport in magnets with multiple magnetic sublattices as
well as in magnetic heterostructures. Fourth, the formalism
can be extended to other transport quantities (e.g., parti-
cle transport, nonequilibrium densities) and time-dependent
nonuniform problems.

This paper is structured as follows: Section II introduces
the thermal vector potential, its associated Hamiltonian, and
the thermal electromagnetic field. Section III develops a
Keldysh-Dyson formalism for nonequilibrium Green’s func-
tions, expanding them in terms of the thermal electromagnetic
field tensor and establishing a linear response theory. Sec-
tion IV derives the thermal conductivity, obtaining the heat
current as a response to the thermal electric field and the heat
magnetization as a response to the thermal magnetic field. It
is shown that in the clean limit, the result is equivalent to the
formula of Matsumoto et al. [33–37,40]. Section V focuses
on the thermal properties of Weyl magnons in a honeycomb
ferromagnet. Section VI provides a summary and discussion
of the findings.

II. HEAT TRANSPORT AND THERMAL VECTOR
POTENTIAL

The thermal vector potential AT (t, r) is related to Lut-
tinger’s scalar potential φ(t, r) and the temperature gradient
as [51]

∂t AT (t, r) = ∇φ(t, r) = ∇T

T
, (1)

with ∂t ≡ ∂/∂t . Unlike the electromagnetic theory, where the
magnetic vector potential possesses U(1) gauge symmetry,
AT (t, r) does not possess gauge symmetry in the formal
sense because the energy conservation arises from the global
translation symmetry with respect to time. However, it can be
shown that it couples to the energy in minimal form, i.e., p →
p − AT εk, where p is the canonical momentum and εk is the
energy in momentum space [51]. In real space-time operator
form, this relation becomes p → p − ih̄AT ∂t . The minimal
form can be attributed to a “gauge invariance” resulting from
the energy conservation law. In fact, one can attribute a part
of the temperature gradient to Luttinger’s scalar potential and
the other part to the thermal vector potential as

∇T

T
= ∇φ(t, r) + ∂t AT (t, r). (2)

Consequently, similar to the electromagnetic theory, we obtain
gauge invariance under the transformations φ → φ + dχ/dt
and AT → AT − ∇χ , where χ is a scalar field [51]. To elevate
the thermal theory to the level of the electromagnetic theory,
we define a thermal electric field,

ET (t, r) ≡ −∂t AT (t, r) − ∇φ(t, r), (3)

and a thermal magnetic field,

BT (t, r) ≡ ∇ × AT (t, r). (4)
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ET (t, r) gives rise to the mechanical force due to the temper-
ature gradient. The heat current density can be defined as the
quantum expectation value,

JQ(t, r) = ±iTr[ĴQ(t, r)Ĝ<
ET

(t, r)]. (5)

Here and in the following, the upper sign is for bosons and the
lower sign is for fermions. ĴQ(t, r) is the heat current density
operator defined as the product of the velocity operator and
time derivative [49] and Ĝ<

ET
(t, r) is the lesser component

of the Green’s function [proportional to ET (t, r)]. The hat
sign indicates the matrix of operators in the internal degrees
of freedom. Moreover, a thermodynamical definition can be
constructed for the heat magnetization MQ by noticing that
the thermal vector potential couples to the heat current density
[94],

MQ = −
(

∂�

∂BT

)
μ,T

. (6)

� = E − T S − μN is the free energy with E , S, μ, and N
denoting the internal energy, entropy, chemical potential, and
particle number, respectively.

III. KELDYSH-DYSON FORMALISM FOR THE THERMAL
VECTOR POTENTIAL

We start by defining a general unperturbed Hamiltonian for
bosons or fermions as

Ĥ0 =
∫

dr�†(r)[ĥ0(p) + V̂ (r)]�(r), (7)

where ĥ0(p) = (−ih̄∇)2/2m is the noninteracting kinetic part,
V̂ (r) is a general one-particle potential, and �†(r) and �(r)
are the creation and annihilation field operators, respectively.

Moving forward, we adopt a four-vector notation: Time
and space coordinates are represented as x ≡ xμ = (t, r) and
xμ = (−t, r), derivatives are represented as ∂xμ = (∂t ,∇) and
∂xμ

= (−∂t ,∇), and potentials are represented as Aμ
T (x) =

[φ(x), AT (x)] and (AT )μ(x) = [−φ(x), AT (x)]. We proceed
by applying a temperature gradient via the thermal electro-
magnetic tensor,

Fμν
T (x) = ∂xμ

Aν
T (x) − ∂xν

Aμ
T (x). (8)

A “gauge-invariant” Hamiltonian that incorporates both Lut-
tinger’s scalar and thermal vector potentials is formulated as

Ĥ (t ) =
∫

dr�†(x)[ĥ0(p − ih̄AT ∂t ) + V̂ (r)]�(x)

+ ih̄
∫

drφ(x)�†(x)∂t�(x). (9)

The second term is Luttinger’s Hamiltonian [11]. While Ĥ (t )
does not include interactions such as the particle-particle in-
teraction, the following formalism still applies even when
these interactions are present. However, a self-energy correc-
tion according to the Feynman rule is necessary.

A. Green’s functions

The nonequilibrium Green’s functions are defined on the
Keldysh contour C as [4]

G(x1, x2) = −i〈TC[�(x1)�†(x2)]〉. (10)

TC is the time-ordering operator. The Dyson equations are

[ih̄Dt1 − ĥ0(−ih̄Dx1 )]G(x1, x2)

−
∫

dx3	(x1, x3)G(x3, x2) = δ(x1 − x2), (11a)

G(x1, x2)[−ih̄Dt2 − ĥ0(ih̄Dx2 )]

−
∫

dx3G(x1, x3)	(x3, x2) = δ(x1 − x2), (11b)

where we define a gauge-covariant derivative analogous to the
electromagnetic theory as

D(xn )μ = ∂(xn )μ + Aμ
T (xn)∂tn . (12)

In real-time representation, both the Green’s function G and
the self-energy 	 have three independent components,

G(x1, x2) =
(

ĜR(x1, x2) 2Ĝ<(x1, x2)
0 ĜA(x1, x2)

)
, (13a)

	(x1, x2) =
(

	̂R(x1, x2) 2	̂<(x1, x2)
0 	̂A(x1, x2)

)
. (13b)

The lesser, advanced, and retarded Green’s functions are de-
fined as

Ĝ<(x1, x2) = ∓i〈�†(x2)�(x1)〉,
ĜA(x1, x2) = +iθ (t2 − t1)〈[�(x1), �†(x2)]∓〉,
ĜR(x1, x2) = −iθ (t1 − t2)〈[�(x1), �†(x2)]∓〉. (14)

The lesser component is directly connected to the density
matrix and can be used to calculate expectation values of the
operators.

In a compact form, the Dyson equations (11a) and (11b)
read

{[(G (0) )−1 − 	] � G}(x1, x2) = δ(x1 − x2), (15a)

{G � [(G (0))−1 − 	]}(x1, x2) = δ(x1 − x2), (15b)

with the convolution star product defined as

(A � B)(x1, x2) =
∫

dx3A(x1, x3)B(x3, x2) (16)

and

(G (0) )−1(x1, x2) = [ih̄Dt1 − ĥ0(−ih̄Dx1 )]δ(x1 − x2)

= [−ih̄Dt2 − ĥ0(ih̄Dx2 )]δ(x1 − x2). (17)

We transform the (x1, x2) coordinates into the relative
microscopic x and center-of-mass macroscopic X ≡ X μ co-
ordinates using the Wigner representation (X, x) = [1/2(x1 +
x2), x1 − x2]. We continue to the (X, p) coordinates by Fourier
transforming xμ and xμ to pμ ≡ (ε, p) and pμ ≡ (−ε, p),
respectively. It is known that in the Wigner representation, the
convolution star product becomes the Moyal product [95],

(A � B)(X, p) = A(X, p)eih̄/2(∂Xμ ∂pμ−∂pμ∂Xμ )B(X, p). (18)
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To write the Dyson equations in the (X, p) coordinates, we
calculate (G (0) )−1(X, p) by defining

πμ(x1, x2) = −ih̄Dxμ
1
δ(x1 − x2) = ih̄Dxμ

2
δ(x1 − x2) (19)

and Fourier transforming

πμ(X, p) =
∫

dxe−ipμxμ/h̄πμ(X, x)

= pμ − ε(AT )μ(X, 0) + ih̄[∂t (AT )μ(X, t )]t=0.

(20)

The last term is neglected, as we are interested in the behavior
of the system for t > 0. πμ(X, p) is the mechanical momen-
tum (which is different from the canonical momentum pμ).

Finally, we have, in (X, p) coordinates,

(G (0) )−1[π (X, p)] = π0 − ĥ∗
0(π), (21)

where ĥ∗
0(π) is the generalization of ĥ0(p) in the presence of

Luttinger’s scalar and thermal vector potentials. It is obtained

by replacing all direct products by star products [5]. The final
form of the Dyson equations in terms of the Moyal product is

{[(G (0))−1 − 	] � G}(X, p) = 1, (22a)

{G � [(G (0) )−1 − 	]}(X, p) = 1. (22b)

B. Static uniform thermal field

The off-diagonal elements of Fμν
T are the compo-

nents of the thermal electric and magnetic fields. We
decompose Aμ

T (X, 0) into Ãμ
T (X, 0), which covers the

static uniform parts of the thermal electric and mag-
netic fields (F̃μν

T = ∂Xμ
Ãν

T − ∂Xν
Ãμ

T = const) and δAμ
T (X, 0) =

Aμ
T (X, 0) − Ãμ

T (X, 0), which covers the dynamic and the
nonuniform parts. Similarly, the static uniform mechan-
ical momentum is π̃μ(X, p) = pμ − εÃμ

T (X, 0). Changing
the variables of the Moyal product (18) and Dyson equa-
tions (22a) and (22b) from the canonical momentum p to the
static uniform kinetic momentum π̃ yields

(A � B)(X, π̃ ) = A(X, π̃ )eih̄/2(∂Xμ ∂π̃μ −∂π̃μ ∂Xμ +π̃0F̃μν
T ∂π̃μ ∂π̃ν )B(X, π̃ ), (23a)

{π̃0 − εδφ(X, 0) − ĥ0∗ [π̃ − εδAT (X, 0)] − 	(X, π̃ )} � G(X, π̃ ) = 1, (23b)

G(X, π̃ ) � {π̃0 − εδφ(X, 0) − ĥ0∗ [π̃ − εδAT (X, 0)] − 	(X, π̃ )} = 1. (23c)

In the following, we address only static uniform thermal electromagnetic fields, i.e., δAT (X, 0) = 0, meaning that we do not
need to distinguish between π and π̃ . Furthermore, we restrict ourselves to steady-state thermal electromagnetic fields, which
simplifies (23a), (23b), and (23c) to

(A � B)(π ) = A(π )e(ih̄/2)π0Fμν
T ∂πμ ∂πν B(π ), (24a)

[π0 − ĥ0(π) − 	(π )] � G(π ) = 1, (24b)

G(π ) � [π0 − ĥ0(π) − 	(π )] = 1. (24c)

From now on, all quantities are functions of π , unless otherwise stated.

C. Expansion of the Dyson equations

While often the Dyson equations (24b) and (24c) cannot be solved exactly, we can perturbatively expand them using the Moyal

product (24a), applying the Green’s function G0 = [π0 − ĥ0(π) − 	0]
−1

from the left (right) to the first (second) equation, and
using the identity G−1

0 G0 = G0G−1
0 = 1,

G = G0

{
1 + (	 − 	0)G −

∞∑
n=1

1

n!
[π0 − ĥ0(π) − 	]

(
n∏

i=1

ih̄π0

2
Fμiνi

T ∂πμi ∂πνi

)
G
}

, (25a)

G =
{

1 + G(	 − 	0) −
∞∑

n=1

1

n!
G
(

n∏
i=1

ih̄π0

2
Fμiνi

T ∂πμi ∂πνi

)
[π0 − ĥ0(π) − 	]

}
G0. (25b)

Here and in the following, the subscript 0 in the Green’s
functions and self-energies indicates that the quantity is taken
in the absence of external fields. To expand Eqs. (25a) and
(25b) in powers of h̄Fμν

T /2, we aim for solutions of the form

G = G0 +
∞∑

n=1

1

n!

(
n∏

i=1

h̄

2
Fμiνi

T

)
Gμ1ν1,...,μnνn , (26a)

	 = 	0 +
∞∑

n=1

1

n!

(
n∏

i=1

h̄

2
Fμiνi

T

)
	μ1ν1,...,μnνn . (26b)

We find Gμ1ν1,...,μnνn by inserting these equations into
Eqs. (25a) or (25b) and comparing the left- and right-hand
sides. We can calculate, by Eq. (13), the retarded, advanced,
and lesser Green’s functions up to any power of h̄Fμν

T /2. Be-
low, we explicitly give the zeroth-order (equilibrium Green’s
function theory) and first-order (linear response theory) re-
sults.

The equilibrium Green’s function theory is derived from
the equilibrium Dyson equation,

[ε − ĥ0(p) − 	0(p)]G0(p) = 1, (27)
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as

GR(A)
0 (p) = [

ε − ĥ0(p) − 	
R(A)
0 (p)

]−1
, (28a)

G<
0 (p) = ∓[

GA
0 (p) − GR

0 (p)
]

f∓, (28b)

	<
0 (p) = ∓[

	A
0 (p) − 	R

0 (p)
]

f∓, (28c)

where f∓(ε) = (eβε ∓ 1)
−1

denotes the Bose and Fermi dis-
tribution functions.

The linear response theory is derived by linearizing
Eq. (25a) or (25b) in h̄Fμν

T /2,

Gμν = G0	μνG0 + iπ0G0
(
∂πμG−1

0

)
G0

(
∂πνG−1

0

)
G0. (29)

Gμν is antisymmetric under the exchange of μ and ν be-
cause Fμν

T is antisymmetric under this exchange. By rewriting
Eq. (29) as

Gμν = G0	μνG0 + iπ0

2
G0

(
∂πμG−1

0

)
G0

(
∂πνG−1

0

)
G0

− iπ0

2
G0

(
∂πνG−1

0

)
G0

(
∂πμG−1

0

)
G0, (30)

we obtain the thermal electric and magnetic Green’s functions,

GET = G0	ET G0 + iπ0

2
G0

(
∂π0G−1

0

)
G0

(∇πG−1
0

)
G0

− iπ0

2
G0

(∇πG−1
0

)
G0

(
∂π0G−1

0

)
G0, (31a)

GBT = G0

{
	BT + iπ0

2

[∇πG−1
0 ×G0

(∇πG−1
0

)]}
G0. (31b)

We can decompose these matrix Green’s functions into their
components using the fact that for a product G = G1G2 · · ·Gn

of matrix Green’s function, the retarded, advanced, and lesser
components are

ĜR(A) = ĜR(A)
1 ĜR(A)

2 · · · ĜR(A)
n ,

Ĝ< = Ĝ<
1 ĜA

2 · · · ĜA
n + ĜR

1 Ĝ<
2 · · · ĜA

n + · · · + ĜR
1 ĜR

2 · · · Ĝ<
n .

(32)

Employing the relations

∇πĜR
0 = − ĜR

0 ∇π

(
ĜR

0

)−1
ĜR

0 ,

∂π0 ĜR
0 = − ĜR

0 ∂π0

(
ĜR

0

)−1
ĜR

0 , (33)

we obtain

ĜR(A)
ET

= ĜR(A)
0

{
	̂

R(A)
ET

+ iπ0

2

[
∂π0

(
ĜR(A)

0

)−1
ĜR(A)

0 ∇π

(
ĜR(A)

0

)−1 − ∇π

(
ĜR(A)

0

)−1
ĜR(A)

0 ∂π0

(
ĜR(A)

0

)−1
]}

ĜR(A)
0 , (34a)

ĜR(A)
BT

= ĜR(A)
0

{
	̂

R(A)
BT

+ iπ0

2

[
∇π

(
ĜR(A)

0

)−1 × ĜR(A)
0 ∇π

(
ĜR(A)

0

)−1
]}

ĜR(A)
0 , (34b)

Ĝ<
ET

= ∓(
ĜA

ET
− ĜR

ET

)
f∓ + ĜR

0

[
	̂<

ET
± (

	̂A
ET

− 	̂R
ET

)
f∓

]
ĜA

0

± iπ0

2
ĜR

0

[(
	̂A

0 − 	̂R
0

)
ĜA

0 ∇π

(
ĜA

0

)−1 − ∇π

(
ĜR

0

)−1
ĜR

0

(
	̂A

0 − 	̂R
0

)]
ĜA

0 f ′
∓, (34c)

Ĝ<
BT

= ∓(
ĜA

BT
− ĜR

BT

)
f∓ + ĜR

0

[
	̂<

BT
± (

	̂A
BT

− 	̂R
BT

)
f∓

]
ĜA

0 , (34d)

with the abbreviations f∓ ≡ f∓(π0) and f ′
∓ ≡ ∂π0 f∓. These

equations have solutions of the form

Ĝ<
ET

= Ĝ<
ET ,I f∓ + Ĝ<

ET ,II f ′
∓, (35a)

	̂<
ET

= 	̂<
ET ,I f∓ + 	̂<

ET ,II f ′
∓, (35b)

Ĝ<
BT

= Ĝ<
BT ,I f∓ + Ĝ<

BT ,II f ′
∓, (35c)

	̂<
BT

= 	̂<
BT ,I f∓ + 	̂<

BT ,II f ′
∓. (35d)

The first and second terms always represent the interband
and intraband contributions, respectively [5]. By inserting the
solutions into Eqs. (34a)–(34d) and comparing the left- and
right-hand sides, we find

Ĝ<
E,I = ∓(

ĜA
ET

− ĜR
ET

)
, (36a)

Ĝ<
ET ,II = ĜR

0 	̂<
ET ,IIĜ

A
0 ∓ iπ0

2
∇π

(
ĜR

0 + ĜA
0

)
±iπ0ĜR

0 ∇π

[
ĥ0(π) + 1

2

(
	̂R

0 + 	̂A
0

)]
ĜA

0 , (36b)

	̂<
E,I = ∓(

	̂A
ET

− 	̂R
ET

)
, (36c)

Ĝ<
BT ,I = ∓(

ĜA
BT

− ĜR
BT

)
, (36d)

Ĝ<
BT ,II = 	̂<

BT ,II = 0, (36e)

	̂<
BT ,I = ∓(

	̂A
BT

− 	̂R
BT

)
. (36f)

Equations (34a), (34b), (35a)–(35d), and (36a)–(36f) provide
a complete description.

IV. HEAT TRANSPORT

The thermal conductivity tensor is defined as [29]

κi j = κ̃i j + 2

T
εi jkMk

Q, (37)

where κ̃i j is the contribution from heat current density, Mk
Q is

the kth component of MQ, and εi jk is the Levi-Civita tensor.
In the Wigner representation, Eq. (5) becomes [49]

JQ = ±iTr
∫

dπ0

2π
(π0v̂G)<,

= ±ih̄Tr
∫

dπ0

2π
π0v̂(Ĝ<

ET ,I f∓ + Ĝ<
ET ,II f ′

∓)ET . (38)
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FIG. 1. (a) Lattice representation of the stacked honeycomb fer-
romagnet with the spins oriented along the z direction. Within a layer,
the nearest and next-nearest neighbors are separated by the vectors
d(1)

β and d(2)
β , respectively. The distance between two honeycomb

lattice sites A and B is a and the distance between adjacent layers
is c. We set a = c = 1. The intralayer Heisenberg interaction be-
tween nearest neighbors is J . The interlayer Heisenberg interaction
between sites A and B in adjacent layers is JA and JB, respectively.
(b) The Dzyaloshinskii-Moriya interaction D, represented by black
dots, acts perpendicularly to the layers and involves next-nearest
neighbors.

Its contribution to κi j is

κ̃i j = ± ih̄

T
Tr

∫
dπ0

2π
π0v̂i(Ĝ

<
ET ,I f∓ + Ĝ<

ET ,II f ′
∓) j, (39)

where v̂i is the velocity operator in direction i, the tempera-
ture gradient points in direction j, and i, j = x, y, z. Before
calculating the contribution of the heat magnetization to κi j

by Eq. (6), it is common practice [29,49] to calculate the
auxiliary heat magnetization M̃Q = −(∂K/∂BT )T,μ, where
K = E − μN is the grand canonical energy. We obtain M̃Q =
β−1∂ (β2MQ)/∂β and have, in the Wigner representation,

K = ±iTr
∫

dπ0

2π
(π0G)<, (40)

resulting in

M̃Q = ∓ih̄Tr
∫

dπ0

2π
π0Ĝ<

BT ,I f∓. (41)

By integration with respect to β, we arrive at

MQ = ∓ ih̄

β2
Tr

∫ β

∞
dβ

∫
dπ0

2π
π0Ĝ<

BT ,Iβ f∓ (42)

FIG. 2. Phase diagram of the stacked honeycomb ferromagnet in
the (K−, J−) plane. The black dots mark the points chosen to analyze
the behavior of the Chern number and thermal conductivity in phases
1 to 5.

and

κi j = ± ih̄

T
Tr

∫
dπ0

2π
π0

[
v̂i(Ĝ

<
ET ,I ) j f∓ + v̂i(Ĝ

<
ET ,II ) j f ′

∓

− εi jk
2

β2

∫ β

∞
dβ(Ĝ<

BT ,I )kβ f∓

]
. (43)

Together with Eqs. (34) and (36), this equation provides an
accurate description of the thermal transport properties in
multiband systems and is the central result of this work.

To prove that our approach is consistent with the litera-
ture, we consider the clean limit 	̂ = 0. We have ĜA(R)

0 =
(π0 − ĥ0 ∓ iη)−1, where η is a small positive real number and
∇p(ĜR(A)

0 )−1 = −v̂. Using the eigenbasis of ĥ0, ĥ0|n〉 = εn|n〉,
to evaluate the trace and the residue theorem to perform the π0

integration, we find

κ̃i j = 1

h̄T
εi jk

∑
n

[
mk

nεn f∓(εn) − �k
nε

2
n f∓(εn)

]
, (44)

Mk
Q = 1

2h̄

∑
n

[
2�k

n

∫ εn

∞
dεε f∓(ε) − mk

nεn f∓(εn)

]
. (45)

The magnetic moment reads

mk
n = −2εi jk h̄2Im

∑
m

〈n|v̂i|m〉〈m|v̂ j |n〉
(εn − εm)

(46)

and the Berry curvature reads

�k
n = −2εi jk h̄2Im

∑
m

〈n|v̂i|m〉〈m|v̂ j |n〉
(εn − εm)2

. (47)
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FIG. 3. (a) Band structure and (b) Berry curvature of the lower magnon band in the kxkz plane at ky = 0. WM nodes are evident in phases
3 to 5. The Berry curvature vector is indicated by arrows. The color represents the divergence of the Berry curvature, with blue indicating
negative values and red indicating positive values.

By combining Eqs. (44) and (45), we arrive at

κi j = − 1

h̄T
εi jk

∑
n

�k
n

[
ε2

n f∓(εn) − 2
∫ εn

∞
dεε f∓(ε)

]

= − 1

h̄β2T
εi jk

∑
n

�k
nc2( f∓), (48)

where

c2( f∓) = −
∫ ∞

εn

dε(βε)2 f ′
∓(ε). (49)

This is the expression derived in Refs. [29,33–37,40,49].

V. THERMAL HALL EFFECT OF WEYL MAGNONS
IN A STACKED HONEYCOMB FERROMAGNET

A. Model

The thermal Hall effects in two-dimensional ferromagnetic
and antiferromagnetic magnonic systems (induced by spin-
orbit coupling) were extensively studied [33,36–38,41,61–
67], while less attention was given to three-dimensional
magnonic systems. In analogy to electrons, magnons can ex-
hibit nontrivial topological properties. One example is the
Weyl magnons (WMs) in three-dimensional magnets [86–88].
To study the impact of WMs on κi j , we address the toy
model of the stacked honeycomb ferromagnet shown in Fig. 1,
whose topological properties were determined in Ref. [96].
The Hamiltonian reads

H = − J
∑
〈i, j〉,n

Si,n · S j,n +
∑

〈〈i, j〉〉,n
D · (Si,n × S j,n)

−
∑
i,n

Ki
(
Sz

i,n

)2 −
∑

i,〈n,m〉
JiSi,n · Si,m, (50)

where 〈· · · 〉 and 〈〈· · · 〉〉 represent the nearest-neighbor and
next-nearest-neighbor sites, respectively, and Si,n represents
the spin at site i (A or B) of layer n. The first term is the

symmetric Heisenberg interaction with J > 0 and the second
term is the antisymmetric Dzyaloshinskii-Moriya interaction
with Dzyaloshinskii-Moriya vector D. Only the perpendicular
component Dνi j (with νi j alternating between −1 and 1 on
consecutive intralayer bonds) of D survives [58,59]. The third
term is the anisotropy energy and the last term is the inter-
layer interaction. A slightly different model with third-nearest
neighbors was proposed in Ref. [97]. However, this model
has only either WM phases or magnon Chern insulator phases
with bands of Chern number either −2 or 1, while our aim is
to compare κi j of different phases, including a trivial insulator
phase with bands of Chern number 0.

We start our analysis of H with the standard linear spin-
wave method [98,99]. Focusing solely on the lowest order in
the magnon creation (γ †

i,n) and annihilation (γi,n) operators, we
utilize the Holstein-Primakoff transformation [100],

S+
i,n =Sx

i,n + iSy
i,n = √

2Si,n

√
1 − γ

†
i,nγi,n

2Si,n
γi,n,

S−
i,n =Sx

i,n − iSy
i,n = √

2Si,nγ
†
i,n

√
1 − γ

†
i,nγi,n

2Si,n
,

Sz
i,n =(Si,n − γ

†
i,nγi,n). (51)

Keeping only the quadratic terms, we then perform a Fourier
transformation using the relation

γ
(†)

i,n = 1√
L

∑
k

e(−)iri,n·kγ (†)
k , (52)

where L denotes the number of unit cells, γ
†
k,n and γk,n denote

the magnon operators in momentum space, and ri,n denotes
the position vector. We obtain

H =
∑

k

�
†
kh(k)�k, (53)
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FIG. 4. Berry curvature of the lower magnon band: (a) �x
1 at kx = 0, (b) �

y
1 at ky = π/3, and (c) �z

1 at kz = π . Blue color indicates negative
values and red color indicates positive values.

with the basis vectors �k, and

h(k) =
∑

α = 0,x,y,z

hα (k)σα, (54)

where σ0 is the identity matrix, σx, σy, and σz are the Pauli
matrices, and

h0(k) = 3JS + K+S + J+S[1 − cos(kzc)],

hx(k) = −JS
3∑

β=1

cos
(
k · d(1)

β

)
,

hy(k) = −JS
3∑

β=1

sin
(
k · d(1)

β

)
,

hx(k) = 2DS
3∑

β=1

sin
(
k · d(2)

β

) + K−S + J−S[1 − cos(kzc)],

(55)

with K± = KA ± KB and J± = JA ± JB. The vectors d(1)
β

between nearest-neighbor sites and d(2)
β between next-nearest-

neighbor sites are shown in Fig. 1.
The phase diagram in the (K−, J−) plane is constructed

for D = 0.2J, K+ = 12D, and J+ = 2D (following Ref. [96]).
The phase boundaries are obtained by evaluating hx(k) =
hy(k) = hz(k) = 0 to determine the parameters at which the
bands cross each other. This gives rise to four boundaries,
K− = ±3

√
3D and K− = −2J− ± 3

√
3D, and generates one

gapped trivial insulator phase (phase 1), one gapped magnon
Chern insulator phase (phase 2), and three gapless WM
phases (phases 3 to 5), as shown in Fig. 2. Phase 3 has
a pair of WM nodes at [−4π/3

√
3, 0,± cos−1(K−/J− +

1 − 3
√

3D/J−)], phase 4 has a pair of WM nodes at
[−4π/3

√
3, 0,± cos−1(K−/J− + 1 + 3

√
3D/J−)], and phase

5 combines the two pairs.
To analyze the phases, we consider the points (K−, J−)

marked in Fig. 2: (4
√

3, 3
√

3)D for phase 1, (
√

3,−√
3)D

for phase 2, (2
√

3, 3
√

3)D for phase 3, (−2
√

3,−3
√

3)D for
phase 4, and (−4

√
3, 4

√
3)D for phase 5. The band structure

and Berry curvature of the lower magnon band in the kxkz

134415-8
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FIG. 5. Berry curvature (z component) of the lower magnon band for (a) phase 2 and (b) phase 3 at different values of kz. The maxima
transfer from the K point (white square) to the K ′ point (black square) as kz changes from 0 to π . In phase 3, the maxima become minima
abruptly as kz passes through the WM node at kz = cos−1(K−/J− + 1 − 3

√
3D/J−) ≈ 0.2677π . Blue color indicates negative values and red

color indicates positive values.

plane at ky = 0 are addressed in Fig. 3. Monopoles of the
Berry curvature are present at the WM nodes in phases 3
to 5.

B. Chern number and thermal conductivity

We decompose the three-dimensional Hamiltonian into
two-dimensional Hamiltonians indexed by kz,

h(k) =
∑

kz

hkx,ky (kz ), (56)

and calculate the Chern number of the nth magnon band (n =
1 or 2) in the traditional way as

Cn(kz ) = 1

2π

∫
dky

∫
dkx�

z
n(kz ). (57)

Similarly, Eq. (48) implies, for the three-dimensional thermal
conductivity,

κ3D
i j =

∫
dkz

2π
κ2D

i j (kz ), (58)

where

κ2D
i j (kz ) = − 1

h̄β2T

∑
n

∫
dky

∫
dkx�

k
n(kz )c2( f+) (59)

is the two-dimensional thermal conductivity.
WM nodes appear in pairs with opposite chirality for

planes not orthogonal to the kz axis, resulting in zero net
Berry curvature, as illustrated in Figs. 4(a) and 4(b) for the
kykz and kxkz planes. As a consequence, κ3D

yz and κ3D
zx are

zero. On the other hand, for planes perpendicular to the kz

axis [see Fig. 4(c) for the kxky plane], the net Berry cur-
vature is nonzero, leading to nonzero κ3D

xy . Focusing on the

kxky plane, we examine how the z component of the Berry
curvature, �z

n, behaves at different values of kz to understand
the contribution of the WM nodes to κ3D

xy . Note that in the
WM phases, most contributions are due to the lower magnon
band (n = 1) because of the Bose distribution. It turns out
that �z

1 is minimal at kz = ±π and maximal at kz = 0 in
phase 1. It is an even function of kz in phase 2 with maxima
that are roughly 10 times higher than in phase 1. Moreover,
in phase 2, the maxima transfer from the K point to the K ′
point as kz changes from 0 to π ; see Fig. 5(a). In all of the
WM phases, the maxima of �z

1 abruptly become minima as kz

passes through a WM node; see Fig. 5(b) for the WM node at
kz = cos−1(K−/J− + 1 − 3

√
3D/J−) ≈ 0.2677π in phase 3.

This results in a smaller �z
1 than that of phase 2, leading to a

smaller κ3D
xy .

Figure 6 presents C1 and κ2D
xy as functions of kz for all

five phases. Phase 1 (trivial insulator) has C1 = 0 and phase 2
(magnon Chern insulator) has C1 = 1. C1 of the WM phases
changes between 0 and 1 as kz passes through WM nodes. κ2D

xy
remains almost constant in phases 1 and 2, being significantly
larger for the magnon Chern insulator, while it is significantly
influenced by C1 in the WM phases. Phases 3 and 4 show
the same values because of identical |K−| and |J−|. Figure 7
presents C1 and κ2D

xy at T = 100 K in the (K−, J−) plane. κ2D
xy

gradually transitions near the topological boundaries, which
can be attributed to the emergence of chiral edge states, a
characteristic feature of two-dimensional magnon Chern insu-
lators. As T increases, resulting in a higher magnon density,
the transition at the topological boundaries becomes more
pronounced.

Figure 8 presents κ3D
xy as a function of T and at T = 100 K

in the (K−, J−) plane. The absolute value increases for in-
creasing T in all of the phases. The highest absolute values
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SALEEM, SCHWINGENSCHLÖGL, AND MANCHON PHYSICAL REVIEW B 109, 134415 (2024)

FIG. 6. Two-dimensional thermal conductivity (xy component)
for (a) phase 1 (trivial insulator), (b) phase 2 (magnon Chern insula-
tor), (c) WM phases 3 and 4, and (d) WM phase 5. The Chern number
of the lower magnon band is indicated by white (C1 = 0) and gray
(C1 = 1) colors.

are observed for the magnon Chern insulator, which is not
surprising because, in this phase, unlike the WM phases, �z

1
maintains its sign throughout the kxky plane, as shown in
Fig. 5(a).

VI. SUMMARY AND DISCUSSION

We presented a theoretical framework for investigating the
response of heat currents to a temperature gradient using the
Keldysh-Dyson formalism. The core of this approach is an
expansion of the Dyson equations through the Moyal product
within the Wigner representation. The temperature gradient
is described using both Luttinger’s scalar potential (φ) and
Moreno-Coleman-Tatara’s vector potential (AT ). While the
thermal field does not arise from a formal gauge symmetry,
we can achieve “gauge invariance” under the transformations
φ → φ + dχ

dt and AT → AT − ∇χ by assigning a portion
of the temperature gradient to φ and the remainder to AT .
This establishes a one-to-one correspondence between the
responses induced by an electromagnetic field and by a tem-
perature gradient.

We derived the thermal conductivity tensor in the linear
response regime, encompassing contributions from the heat
current and heat magnetization and applicable to general
multiband Hamiltonians. Our formalism treats the heat current
and heat magnetization on equal footing, mirroring the usage
of the method of Ref. [5] for calculating the electric current
density and subsequently calculating the orbital magnetization
[101]. Our result for the clean limit reduces to the well-
established expression [29,33–37,40,49].

The introduced approach has several advantages over pre-
vious formalisms. First, it readily accounts for diamagnetic
currents by replacing the canonical momentum with the ki-
netic momentum. Second, it can be applied to interacting
and/or disordered systems. Third, its ability to address nonlin-
ear responses extends beyond the scope of formalisms based
on the Kubo formula. Fourth, it can be extended to other
transport quantities (e.g., particle transport, nonequilibrium
densities) and time-dependent nonuniform problems.

Using the derived formula for the thermal conductivity in
the clean limit, the thermal properties of a stacked honey-
comb ferromagnet were analyzed for all its phases (trivial

FIG. 7. (a) Chern number of the lower magnon band and (b) two-dimensional thermal conductivity (xy component) at T = 100 K in the
(K−, J−) plane for different values of kz.
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FIG. 8. Three-dimensional thermal conductivity (xy compo-
nent): (a) as a function of T and (b) at T = 100 K in the (K−, J−)
plane.

insulator, magnon Chern insulator, and three WM phases
with WM nodes at different points in the momentum space).
Decomposing the three-dimensional Hamiltonian into two-
dimensional Hamiltonians indexed by kz, we observed that
the Chern number remains constant for all values of kz for the
trivial and magnon Chern insulator phases, while it changes
abruptly from 0 to 1 as kz passes through WM nodes. Ac-
cordingly, in the trivial and magnon Chern insulator phases,
the xy component of the two-dimensional thermal conduc-
tivity exhibits only minor variations as a function of kz,
while it significantly changes as kz passes through WM nodes
in the WM phases. The primary contributions to the three-
dimensional thermal conductivity in the WM phases are due to
the WM nodes (monopoles of the Berry curvature). While one
might expect the absolute value of the xy component of the

three-dimensional thermal conductivity to be higher in the
WM phases than in the other two phases, interestingly, the
magnon Chern insulator exhibits the highest absolute values,
which can be understood by noting that in the WM phases, the
Berry curvature changes sign as kz passes through WM nodes.

Recently, a thermal transport theory based on the thermal
vector potential has been developed using a quantum kinetic
approach in Ref. [102]. This theory also accounts for the
effects of impurity potential by employing the Born approxi-
mation. In Ref. [102], the thermoelectric conductivity tensor
was successfully reproduced and extended to the second order
in the temperature gradient. This theory has been used to
study the linear and nonlinear thermal Hall effects [103–105]
by adding the semiclassical definition of heat magnetization
[106]. Although this theory utilizes covariant derivatives to
include the thermal vector potential, there are three main
differences between our approach and theirs. First, they incor-
porate the thermal vector potential by generalizing the Wigner
distribution function, while in our work, the thermal vector
potential is coupled to the energy in a minimal form. Second,
instead of using the semiclassical heat magnetization defini-
tion, we calculate the heat magnetization on an equal footing
with the heat current using full quantum Green’s functions.
Third, they account for the effects of impurity potential by
averaging the density matrix before computing the expecta-
tion values of any observable using this density matrix. In our
approach, the disorder effects can be taken into account by the
self-energy of the Green’s functions and the associated vertex
correction.

Our theory distinguishes between contributions propor-
tional to the (Fermi-Dirac or Boson-Einstein) distribution,
f∓, and its energy derivative, f ′

∓, associated with interband
and intraband effects in the weak-disorder limit. In such sce-
narios, interband and intraband contributions are associated
with intrinsic and extrinsic effects, respectively. However, for
general disorder, one cannot explicitly separate interband and
intraband contributions. In this study, our theory is specifically
tailored for scenarios involving steady and uniform tempera-
ture gradients, with the requirement that quasiparticles be well
defined, either as fermions or bosons. This implies that inter-
actions be accounted for through self-energy, thus demanding
that interactions be described via perturbation theory.
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