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Transitions between quantum spin liquids (QSLs) are fundamental problems lying beyond the Landau
paradigm and requiring a deep understanding of the entanglement structures of QSLs called topological orders.
The novel concept of anyon condensation has been proposed as a theoretical mechanism, predicting various
possible transitions between topological orders, but it has long been elusive to confirm the mechanism in
quantum spin systems. Here, we introduce a concrete spin model that incarnates the mechanism of the anyon
condensation transition. Our model harbors two topological QSLs in different parameter regions, a non-Abelian
Kitaev spin liquid (KSL) bilayer state and a resonating valence bond (RVB) state. The bilayer-KSL-to-RVB
transition indeed occurs by the mechanism of anyon condensation, which we identify by using parton theories
and exact diagonalization studies. Moreover, we observe “anyon confinement” phenomena in our numerical
results, akin to the quark confinement in high-energy physics. Namely, non-Abelian Ising anyons of the bilayer
KSL are confined in the transition to the RVB state. Implications and extensions of this study are discussed in
various aspects such as (i) anyon-condensed multilayer construction of Kitaev’s 16-fold way of anyon theories,
(ii) an additional vison condensation transition from the RVB to a valence bond solid in the Kitaev bilayer system,
(iii) dynamical anyon condensation in a non-Hermitian Kitaev bilayer, (iv) generalizations of our model to other
lattice geometries, and (v) experimental realizations. This work puts together the two fascinating QSLs that
are extensively studied in modern condensed matter and quantum physics into a concrete spin model, offering a
comprehensive picture that unifies the anyon physics of the Kitaev spin liquids and the resonating valence bonds.
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I. INTRODUCTION

Anyons are exotic particles that exhibit fractional statistics
beyond conventional bosons and fermions [1]. Such nontrivial
particles can emerge in topological phases with long-range en-
tanglement such as fractional quantum Hall liquids [2,3] and
quantum spin liquids (QSLs) [2–15]. Recently, various QSLs
and anyons have been active subjects of research due to po-
tential applications in quantum technologies such as quantum
memories and quantum computations [16–37]. Kitaev’s spin
liquid states of the toric code and the honeycomb spin model
[5,6,38–41] and resonating valence bond states of quantum
dimer models [42–47] are promising examples. Both have not
only exact solutions but also available experimental platforms
such as the quantum magnet α-RuCl3 [13–16] and various
quantum processors based on superconducting qubits, trapped
ions, and reconfigurable Rydberg atom arrays [17–23].

Transitions between QSLs with anyons are less studied
yet outstanding problems in modern condensed matter and
quantum physics that promise a profound understanding of
quantum entanglement and anyons. A theoretical mechanism
for such topological transitions has been formulated using
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the concept of anyon condensation in their seminal work by
Bais and Slingerland [48]. In this mechanism, anyon con-
densation reconstructs many-body quantum entanglement and
anyons leading to a new topological phase and new anyons,
where the braiding statistics with the condensed anyon plays
a key role for the determination of the fate of each anyon,
i.e., “confined” versus “deconfined.” The anyon condensation
mechanism predicts a variety of transitions among topologi-
cal phases with anyons, providing global insights on a wide
class of topological quantum matter [48–66]. In the field of
quantum information, anyon condensation has been an im-
portant concept that underlies designing and manipulating
topological quantum codes for fault-tolerant quantum compu-
tations [67–71]. Unfortunately, it has been elusive to confirm
the mechanism in quantum spin systems, i.e., QSL-to-QSL
transitions by anyon condensation, because of the scarcity
of appropriate microscopic models and the difficulty with
defining an order parameter for anyon condensation in terms
of local spin operators.

In quantum magnetism, studies of anyon physics have
been focused on symmetry-breaking transitions from QSLs
to long-range order in frustrated magnets including kagome
and triangular lattice antiferromagnets. Z2 spin liquids such
as short-ranged resonating valence bonds and the toric code
may be the simplest cases, described by Z2 gauge theories and
four types of anyon excitations: the trivial boson with no frac-
tionalization (1), bosonic spinon (e), bosonic vison (m), and
fermionic spinon (ε = e × m) [5,72–101]. Mutual statistics
exist between different anyon species. The bosonic spinon car-
ries a spin-1/2 quantum number; thus condensing the bosonic
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FIG. 1. Bilayer spin model. (a) Honeycomb lattice bilayer with
the AA stacking. Pauli spins, σ and τ , reside on the upper and lower
layers coupled by the intralayer Kitaev interactions (Kσ and Kτ )
and the four-spin interlayer interactions (G). The x, y, z bonds are
denoted by different colors of red, green, and blue. The figure depicts
the (24 + 24)-site bilayer cluster used in the numerical exact diag-
onalization. (b) Illustration of the four-spin interlayer interactions.
(c) Phase diagram of the model. The KSL × KSL and RVB states
are connected by a continuous transition at θc � 0.26π , indicated by
a small peak in the derivative of the ground state energy, −∂2Egs/∂θ2.

spinon leads to a long-range magnetic order [73,77,87,94].
Unlike the spinon, the vison is a spin-0 excitation, preserv-
ing time-reversal symmetry. Vison condensation breaks lattice
symmetries yielding a crystalline order of spin-singlet dimers,
i.e., a valence bond solid (VBS) [43,84,90,93,97–100]. In
such transitions to VBS orders (or magnetic orders), the sys-
tem becomes trivial in the sense that every nontrivial anyon
gets either condensed or confined. Essential features of the
transitions can be summarized as follows:{

Z2 spin liquid

1, e, m, ε

}
〈m〉�=0���⇒

{
VBS

1

}
:

symmetry

breaking

In this paper, we extend the scope of anyon condensation
physics to quantum phase transitions between QSLs. Espe-
cially, we construct a spin model that establishes a transition
from a QSL (having non-Abelian anyons) to another QSL
(having only Abelian anyons) via anyon condensation. We
find such a topological transition in a bilayer system of Ki-
taev spin liquids. To be specific, our spin model harbors a
non-Abelian Kitaev spin liquid (KSL) bilayer state and a
resonating valence bond (RVB) state in different parameter
regions. The RVB state is induced by entangling the KSL
bilayer with bond-dependent interlayer interactions similar to
the Kitaev interactions (Fig. 1).

The nature of the transition between the KSL bilayer state
and the RVB state is identified by computing the condensed
anyon and order parameters. In the KSL bilayer state, each
layer supports three different anyons: the trivial boson (1),
non-Abelian Ising anyon (σ ), and fermion (ψ). There is non-
trivial braiding between σ and ψ ; a ψ particle sees a σ

particle as a Z2 flux. In the bilayer-KSL-to-RVB transition,

the fermion pair (ψI � ψII) between layer I and layer II is con-
densed by interlayer interactions. The anyon physics realized
by our spin model is outlined as follows:{

KSLI

1I, σI, ψI

}
�

{
KSLII

1II, σII, ψII

}

〈ψI�ψII〉�=0������⇒
{

RVB

1, e, m, ε

}
:

symmetry

preserved

The two points, (i) ψI � ψII is the condensed anyon and (ii)
nontrivial braiding exists between ψ and σ in each layer,
are the key elements to understand the anyon physics of the
bilayer-KSL-to-RVB transition as we shall see in Sec. VI.

Remarkably, our model allows us to study the phenom-
ena of “anyon confinement” akin to the quark confinement
in high-energy physics. Namely, non-Abelian Ising anyons
(σI and σII) of the KSL bilayer get confined; i.e., they cannot
be directly observed in the low-energy physics of the RVB
state. We confirm the confinement physics by our numerical
exact diagonalization calculations (Fig. 2).

Unlike transitions from Z2 spin liquids to VBS orders, the
bilayer-KSL-to-RVB transition does not break any symme-
tries of the system. The anyon condensation only reconstructs
the underlying entanglement structure and supported anyons
(i.e., topological order).

Our main results are displayed in Figs. 1, 2, and 9. Figure 1
shows the phase diagram of the model obtained by numerical
exact diagonalization. In particular, Fig. 2 highlights the con-
finement of Ising anyons in the RVB state by demonstrating
extremely large energy costs for the excitations. In Fig. 9,
we provide numerical evidence on the existence of the anyon
condensation transition.

This work builds a bridge between the two intriguing QSLs
extensively studied over the fields of topological quantum
matter, quantum magnetism, and quantum information, and
offers a comprehensive picture unifying the anyon physics of
the Kitaev spin liquids and the resonating valence bonds.

A. Outline of the paper

The paper is organized as follows. In Sec. II, we introduce
the bilayer spin model with an emphasis on the conserved
quantities. The RVB state and the KSL × KSL state arise
in the strong-coupling limit and the weak-coupling limit of
interlayer interactions, respectively. In Sec. III, an effective
quantum dimer model is developed for the RVB state by
conducting a sixth-order degenerate perturbation theory. We
introduce a dimer representation for the original spin model
and the hard-core dimer constraint defining the dimer Hilbert
space, which plays a crucial role in understanding the anyon
condensation and anyon confinement phenomena from our
numerical results later. In Sec. IV, we construct a Majorana
mean-field theory for the KSL × KSL state and show that
time reversal can be spontaneously broken in each layer due
to interlayer interactions. It is shown that both layers have
finite energy gaps and nonzero Chern numbers with opposite
signs, keeping the whole system achiral. In Sec. V, we inves-
tigate the full phase diagram of the model by numerical exact
diagonalization methods on a (24 + 24)-site bilayer cluster.
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FIG. 2. Confinement of the Ising anyons. (a)–(d), (g)–(j) Visualizations of eight different flux patterns (patterns 1,2,3,4,5,6,7,8). Colored
disks denote the fluxes with W = −1 or Z = −1. The dumbbell-shaped disks highlight the paired fluxes between the two layers located at
the same positions (Wp = Zp = −1). (e), (f) The lowest excitation energy profiles in the eight flux patterns. The inset of panel (f) shows the
excitation energies in a log scale. In the RVB phase, the paired fluxes (σI � σII) have vanishingly small excitation energies (∝ K6

σ /G5) whereas
the unpaired fluxes (σI and σII) have extremely large energy costs (∝G).

The RVB state and the KSL × KSL state are characterized
and distinguished by computing various quantities includ-
ing entanglement entropy, the hard-core dimer constraint, the
chirality structure factor, and topological degeneracy. Impor-
tantly, we find that the numerical results are all consistent with
the effective theories in Secs. III and IV.

Section VI is the most important part, where we discuss
our main results on anyon condensation and anyon confine-
ment. We start by articulating the non-Abelian Ising × Ising
topological order of the KSL × KSL state and the Abelian Z2

toric code topological order of the RVB state. We review the
anyon condensation mechanism for the transition between the
two topological orders. Then, we present numerical evidences
for the anyon condensation transition in our model. We clar-
ify the condensed anyon by explicitly calculating associated
order parameters. Furthermore, we elucidate the confinement
phenomena of Ising anyons by numerically investigating exci-
tation energies of Ising anyons. We will show a simple picture
that enables to intuitively understand the anyon confinement
from the condensed anyon.

In Sec. VII, we explore generic parameter regimes of the
model and show that the emergence of the RVB state or Z2

spin liquid is determined by the sign structure of the coupling
constants of the model.

Section VIII is another important part, where we discuss
implications of this work and promising future directions.
To name a few, we will discuss (i) Kitaev’s 16-fold way of
anyon theories in the perspective of anyon condensation, (ii)
an additional vison condensation transition from the RVB
state to a VBS state in our Kitaev bilayer system, (iii) a non-
Hermitian Kitaev bilayer and dynamical anyon condensation,
(iv) generalizations of our model to other lattice geometries,
and (v) experimental realizations.

Appendices A and B provide details of the sixth-order
degenerate perturbation theory and the quantum dimer model
for the RVB state.

II. BILAYER MODEL

We place two copies of the Kitaev honeycomb model [6] on
a bilayer geometry of AA stacking as illustrated in Fig. 1(a).
In this bilayer setup, our model Hamiltonian consists of three
parts:

H = Kσ

upper layer∑
〈 jk〉γ

σ
γ
j σ

γ

k + Kτ

lower layer∑
〈 jk〉γ

τ
γ
j τ

γ

k

+ G
inter-layer∑

〈 jk〉γ
σ

γ
j σ

γ

k τ
γ
j τ

γ

k , (1)
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FIG. 3. Dimer mapping to the dual kagome lattice. (a) Mapping
from the honeycomb lattice to the kagome lattice. Different colors
denote the three bond characters, x (red), y (green), and z (blue).
The numbers (1–6) indicate the site convention within a hexagon
plaquette p. (b), (c) Illustrations of several dimer states. The four
local states {|s〉, |tx〉, |ty〉, |tz〉} and the dimer mapping are defined in
the bottom table.

where σγ and τ γ (γ = x, y, z) are Pauli spins on the upper
and lower layers coupled by the bond-dependent Kitaev inter-
actions (Kσ , Kτ ) and also the interlayer interactions (G). We
label upper and lower layer spins with same site indices ( j, k),
and the interlayer interactions are nothing but the products
of adjacent upper-layer and lower-layer Kitaev interactions,
σ

γ

j σ
γ

k × τ
γ

j τ
γ

k [Fig. 1(b)]. The Hamiltonian commutes with
the hexagon plaquette operators defined on the upper and
lower layers,

Ŵp = σ z
1σ

y
2 σ x

3 σ z
4σ

y
5 σ x

6 and Ẑp = τ z
1τ

y
2 τ x

3 τ z
4τ

y
5 τ x

6 , (2)

i.e., [H,Ŵp] = [H, Ẑp] = [Ŵp, Ẑp′ ] = 0; see Fig. 3(a) for the
site convention within a hexagon plaquette p.

In this paper, we mainly focus on the parameter region

Kσ = −Kτ = cos θ and G = sin θ, (3)

where 0 � θ � π/2. The model allows two different topo-
logical QSLs: (i) the KSL × KSL bilayer state in the
weak-coupling limit, |Kσ,τ | 
 G (θ ≈ 0), and (ii) the RVB
state in the strong-coupling limit, |Kσ,τ | � G (θ ≈ π/2). We
obtain insights on the QSLs by developing analytical theories
first for the two limits.

III. RVB STATE: STRONG-COUPLING LIMIT

To understand the strong-coupling limit in an intuitive way,
we employ a dimer mapping to a dual kagome lattice. Using
the dimer mapping, we derive an effective quantum dimer
model and the RVB state.

A. Dimer mapping to a dual kagome lattice

The bilayer model can be regarded as a single-layer hon-
eycomb model with four states per site. Each site may have
either spin-singlet state |s〉 or spin-triplet state |tx,y,z〉 as shown
in the table of Fig. 3. We take a mapping from the honeycomb
lattice to a dual kagome lattice. In Fig. 3(a), the dual kagome
lattice is constructed by connecting the midpoints of the bonds
of the honeycomb lattice. Sites of the honeycomb lattice are
now replaced by triangles of the kagome lattice. Interest-
ingly, the kagome lattice has three different bond directions,
which are perpendicular to the x, y, z-bond directions of the
honeycomb lattice. By using this property, we assign a bond
character (x, y, z) to each bond of the kagome lattice [denoted
by different colors in Fig. 3(a)]. In this mapping, the four
local states {|s〉, |tx〉, |ty〉, |tz〉} on the honeycomb lattice are
represented by four dimer states {| 〉, | 〉, | 〉, | 〉 on
the dual kagome lattice. The state |s〉 is the no-dimer state
at the corresponding local triangle of the kagome lattice while
the state |tγ 〉 is the dimer state occupying the γ bond of the
local triangle; see examples shown in Figs. 3(b) and 3(c). This
kind of dimer mapping was introduced in a recent study of a
spin-3/2 transverse field Ising model [47].

By this dimer mapping, spin operators take the following
representations:

σz = |s tz| + |tz s| − i|tx ty| + i|ty tx|
= | | + | | − i| | + i| |. (4)

τz = −|s tz| − |tz s| − i|tx ty| + i|ty tx|
= −| | − | | − i| | + i| |. (5)

Other spin operators are obtained by cyclic permutations of
(x, y, z) in the above. In this dimer picture, σγ and τ γ spin
operators do monomer pair-creation/annihilation or monomer
hopping at the γ bond of the kagome lattice (γ = x, y, z).

B. Emergence of a quantum dimer model
and resonating valence bonds

We develop a degenerate perturbation theory for the strong-
coupling limit of H . In this case, the unperturbed Hamiltonian
is the interlayer interaction part,

H0 = G
∑
〈 jk〉γ

φ
γ
j φ

γ

k . (6)

Here we employed the composite spin operator,

φ
γ
j ≡ σ

γ
j τ

γ
j , (7)

which is Z2-valued [(φγ
j )2 = 1] and satisfies the commutation

relation, [φγ
j , φ

λ
k ] = 0, and the local constraint, φx

j φ
y
jφ

z
j = −1.

Interestingly, the four states {|s〉, |tx〉, |ty〉, |tz〉} are the
eigenstates of the composite spin operators (φx, φy, φz) as
summarized in the table of Fig. 3. Hence, the composite spin
operators are diagonalized in the dimer representation, e.g.,

φz = −|s s| + |tx tx| + |ty ty| − |tz tz|
= −| | + | | + | | − | |. (8)
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Note that −φz measures the dimer parity across the x, y bonds,
and similarly for −φx,y.

The unperturbed Hamiltonian H0 is readily diagonalized in
the dimer representation. We find that the ground state mani-
fold of H0 is extensively degenerate satisfying the condition

φ
γ
j φ

γ

k = −1 (9)

at every bond 〈 jk〉γ of the honeycomb lattice. This condition
implies the “hard-core dimer” constraint on the kagome
lattice; i.e., each site of the kagome lattice is occupied by
a single dimer. Specifically, the condition φ

γ

j φ
γ

k = −1 only
allows the eight configurations

, (10)

in every adjacent two triangles. The central site is always
occupied by a single dimer because the condition φ

γ
j φ

γ

k = −1
requires the odd dimer parity over the four bonds connected
to the central site. Hence, the ground state manifold of
H0 consists of the dimer states that respect the hard-core
dimer constraint at every site. The ground state energy
is E0 = − 3N

2 |G|, where N is the number of sites of the
honeycomb lattice, and the degeneracy is given by 2N/2−1

in periodic boundary conditions. It must be noted that the
ground state manifold of H0 satisfies the flux condition,

WpZp =
∏

〈 jk〉γ ∈p

φ
γ
j φ

γ

k = +1, i.e., Wp = Zp. (11)

The Kitaev terms in H − H0 generate quantum dimer mo-
tions in the ground state manifold of H0. By conducting
perturbative expansions within the manifold, we obtain the
effective Hamiltonian

Heff (G 
 K ) = −λ
∑

p

Ŵp, (12)

where Ŵp is the hexagon plaquette operator in Eq. (2), and λ ∝
K6

σ /G5 (Appendix A). It is straightforward to find the ground
state of Heff (G 
 K ),

|
〉 = N
∏

p

1 + Ŵp

2
|�〉, (13)

where N is a normalization constant and |�〉 is an arbitrary
state in the ground state manifold of H0. This state is mas-
sively quantum superposed with the uniform zero-flux (Wp =
Zp = +1). Also, it has the property 〈σγ

j σ
γ

k 〉 = 〈τ γ
j τ

γ

k 〉 = 0,
because the Kitaev terms violate the hard-core dimer con-
straint, Eq. (9); see Fig. 13.

The ground state |
〉 is nothing but a resonating valence
bond state on the kagome lattice. To see this, one should
understand the effects of Ŵp in the dimer language. Acting
on hard-core dimer states, Ŵp gives rise to dimer resonance
motions within the 12-site star of David:

Ŵp = f( )| ¯ | + H.c.

= | | − | | + · · · .
(14)

The full list of dimer motions and the associated sign factor,
f (D) = ±1, are provided in Table III (also see Appendix B).
We note that the above description (apart from the sign factor)
is identical to the quantum dimer model by Misguich, Serban,
and Pasquier [44]. In Eq. (13), all possible 2N/2−1 hard-core
dimer configurations are generated by the plaquette operators,
and superposed with equal weight. Therefore, in the strong-
coupling limit of H , we have an effective quantum dimer
model Heff (G 
 K ), and the ground state |
〉 is a resonating
valence bond state whose anyon properties are characterized
by the Z2 toric code topological order (discussed later).

IV. KSL × KSL STATE: WEAK-COUPLING LIMIT

We construct a degenerate perturbation theory for the
weak-coupling limit of H . Second-order perturbations create
effective spin interactions that lead to spontaneous symmetry
breaking of time reversal in the KSL × KSL state. We show
this by a Majorana mean-field theory.

A. Effective Hamiltonian

To construct an effective theory for the weak-coupling
limit, we arrange the Hamiltonian into the form H =
H0 + H1 (where H0 = ∑

〈 jk〉γ Kσ σ
γ
j σ

γ

k + Kτ τ
γ
j τ

γ

k and H1 =
G

∑
〈 jk〉γ σ

γ
j σ

γ

k τ
γ
j τ

γ

k ), and conduct a second-order degenerate
perturbation theory. The resulting effective Hamiltonian is
given by

Heff (G � K ) = H0 + H1 − 1

�E
H1H1, (15)

where �E (∝ |Kσ |) means the energy difference between the
ground state and an intermediate excited state of H0. Nontriv-
ial effects are generated by the second-order term,

− 1

�E
H1H1 ∝ − G2

|Kσ |
∑
〈i j〉α

σ α
i σα

j τα
i τα

j

∑
〈kl〉γ

σ
γ

k σ
γ

l τ
γ

k τ
γ

l . (16)

Among the various combinations of spin operators, we are
particularly interested in the combinations that are defined on
connected two bonds—for instance, (σ x

1 σ x
2 τ x

1 τ x
2 )(σ y

2 σ
y
3 τ

y
2 τ

y
3 )

on adjacent two bonds, 〈12〉x and 〈23〉y. This eight-spin op-
erator can be simplified to a six-spin operator:(

σ x
1 σ x

2 τ x
1 τ x

2

)(
σ

y
2 σ

y
3 τ

y
2 τ

y
3

) = (
σ x

1 σ x
2 σ

y
2︸ ︷︷ ︸

iσ z
2

σ
y
3

)(
τ x

1 τ x
2 τ

y
2︸︷︷︸

iτ z
2

τ
y
3

)

= −(
σ x

1 σ z
2σ

y
3

)(
τ x

1 τ z
2τ

y
3

)
. (17)

By collecting these kinds of terms, we arrange the effective
Hamiltonian into the following form,

Heff (G � K ) = H0 + η
∑

〈i j〉α〈 jk〉γ
σ α

i σ
β
j σ

γ

k τα
i τ

β
j τ

γ

k + · · · ,

(18)
where η (∝ G2/|Kσ |) is a positive constant, the summation is
for all connected two bonds {〈i j〉α〈 jk〉γ }, and the three spin
indices are all different (α �= β �= γ ).
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B. Majorana mean-field theory

The effective Hamiltonian is solved by a mean-field theory.
To the six-spin operators, we apply the mean-field decoupling,

σα
i σ

β
j σ

γ

k τα
i τ

β
j τ

γ

k → σα
i σ

β
j σ

γ

k

〈
τα

i τ
β
j τ

γ

k

〉 + 〈
σα

i σ
β
j σ

γ

k

〉
τα

i τ
β
j τ

γ

k

− 〈
σα

i σ
β
j σ

γ

k

〉〈
τα

i τ
β
j τ

γ

k

〉
. (19)

Similar mean-field decoupling schemes may be applied to the
other terms that are not explicitly shown in Eq. (18). Yet,
those terms merely renormalize the Kitaev term H0. Hence,
we ignore those terms and just focus on the mean-field Hamil-
tonian,

HMF = H0 + η
∑

〈i j〉α〈 jk〉γ

[
σα

i σ
β
j σ

γ

k

〈
τα

i τ
β
j τ

γ

k

〉
+ 〈

σα
i σ

β
j σ

γ

k

〉
τα

i τ
β
j τ

γ

k − 〈
σα

i σ
β
j σ

γ

k

〉〈
τα

i τ
β
j τ

γ

k

〉]
. (20)

The three-spin terms, σα
i σ

β
j σ

γ

k and τα
i τ

β
j τ

γ

k , break time-
reversal symmetry and create a finite energy gap in the
fermion excitations of the Kitaev spin liquid state on each
layer [6].

This can be shown by using the Majorana representation
for the spin-1/2 operator,

σα
i = ibα

I,icI,i and τα
i = ibα

II,icII,i, (21)

where the subscript (I, II) means the upper/lower layer. This
representation leads to the Majorana mean-field Hamiltonian,

HMF =
∑
〈i j〉

[(−Kσ )icI,icI, j + (−Kτ )icII,icII, j] +
∑
〈〈ik〉〉

[(ηMII )

× icI,icI,k + (ηMI )icII,icII,k − ηMIMII], (22)

where we have chosen the simplest gauge for the uniform
zero flux (uI,i j = ibα

I,ib
α
I, j = +1 and uII,i j = ibα

II,ib
α
II, j = +1

with site i in the A sublattice and j in the B sublattice), and
introduced the mean-field parameters,

MI = 〈icI,icI,k〉 and MII = 〈icII,icII,k〉. (23)

In this mean-field theory, the two layers are coupled only by
the mean-field parameters, MI and MII.

Figure 4 shows the result of the self-consistent mean-field
calculations. We find that the mean-field parameters have the
same magnitude but opposite signs (MI = −MII). This implies
that the KSL state of each layer has a finite energy gap (�) and
a nonzero Chern number (ν) [6]:

�I = 6
√

3|ηMII| and νI = sgn(ηMII ), (24)

�II = 6
√

3|ηMI| and νII = sgn(ηMI ). (25)

More importantly, the two layers have opposite signs for
the Chern number (e.g., νI = +1 and νII = −1). This the-
ory indicates that the KSL × KSL state has the non-Abelian
Ising × Ising topological order [6,31,55].

On the time-reversal symmetry breaking in the KSL ×
KSL state, we provide further evidence from our numerical
calculations shown in the next section. We will discuss the
spontaneous symmetry breaking and the gap-opening problem
more carefully by comparing our results with a field theory
argument about gapless Dirac fermions in Sec. VIII.

FIG. 4. Result of the Majorana mean-field theory. The mean-
field parameters (MI,II) are obtained by solving Eq. (23) self-
consistently. The Kitaev term is fixed by |Kσ | = |Kτ | = 1. The result
does not depend on the relative sign of the coupling constants.

V. EXACT DIAGONALIZATION

Now we investigate the phase diagram of H by exact
diagonalization (ED) on the (24 + 24)-site bilayer cluster in
Fig. 1(a). We impose periodic boundary conditions and utilize
the flux quantum numbers, Wp = ±1 and Zp = ±1, to reduce
the size of the Hilbert space in our ED calculations.

Figure 1(c) displays the resulting phase diagram. We find
that the ground state appears in the uniform zero-flux sector
(Wp = Zp = +1). The KSL × KSL and RVB states, which
we considered in the weak- and strong-coupling limits, are
stabilized over large regions separated by a single transition
at θc � 0.26π (shown by a small peak in the derivative of
the ground state energy, −∂2Egs/∂θ2). We characterize the
two QSL states by investigating entanglement entropy, the
chirality structure factor, the hard-core dimer constraint, and
topological degeneracy below.

A. Entanglement entropy

Quantum entanglement between the two layers can be mea-
sured by the entanglement entropy,

Slayer = − ln
(
Tr{σ }ρ2

layer

)
, (26)

where ρlayer = Tr{τ }|
gs〉〈
gs| is the reduced density matrix
obtained by tracing out τ spins in the ground state wave
function |
gs〉. We find that the KSL × KSL state has neg-
ligible entanglement (Slayer ≈ 0), indicating that it is basically
a product state of two layers of KSL. By contrast, the RVB
state shows strong interlayer entanglement and the dimension
of the dimer Hilbert space manifests through the entangle-
ment entropy Slayer = ln(2N/2−1) in the strong-coupling limit
[Fig. 5(a)].

B. Chirality order

Time-reversal symmetry breaking and the opposite Chern
numbers discussed in our mean-field theory for the KSL ×
KSL state can be checked in our ED via the chirality structure
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FIG. 5. Entanglement entropy and four-spin correlator for the
hard-core dimer constraint. (a) The entanglement entropy Slayer .
Dashed line marks the value of ln(2N/2−1), where N = 24. (b) Four-
spin correlators to check the hard-core dimer constraint. Black:
−〈φγ

j φ
γ

k 〉. Red: −〈φγ

j φ
γ

k 〉 + 〈σ γ

j σ
γ

k 〉〈τ γ

j τ
γ

k 〉.

factor,

χ IJ (k) = 1

N/2

∑
p,q

〈
χ̂ I

pχ̂
J
q

〉
eik·(rp−rq ), (27)

where I, J (= σ, τ ) are layer indices and p, q are plaquette
indices. The chiral spin operators, χ̂σ

p and χ̂ τ
p , are defined at

each plaquette p as

χ̂ σ
p =

∑
〈i j〉α〈 jk〉γ

σ α
i σ

β
j σ

γ

k and χ̂ τ
p =

∑
〈i j〉α〈 jk〉γ

τ α
i τ

β
j τ

γ

k (28)

with α �= β �= γ . To be specific, the chiral spin operators can
be written as

χ̂ σ
p = σ x

1 σ
y
2 σ z

3 + σ z
2σ x

3 σ
y
4 + σ

y
3 σ z

4σ x
5

+ σ x
4 σ

y
5 σ z

6 + σ z
5σ x

6 σ
y
1 + σ

y
6 σ z

1σ x
2 , (29)

χ̂ τ
p = τ x

1 τ
y
2 τ z

3 + τ z
2τ

x
3 τ

y
4 + τ

y
3 τ z

4τ
x
5

+ τ x
4 τ

y
5 τ z

6 + τ z
5τ

x
6 τ

y
1 + τ

y
6 τ z

1τ
x
2 , (30)

where we followed the site convention shown in Fig. 3(a).
The operators χ̂ σ

p and χ̂ τ
p are nothing but the (time-reversal

odd) gap-opening terms considered by Kitaev [6], which we
already have seen in Eq. (20).

Figure 6 presents the calculated χ IJ (k). The two QSLs
show distinguished behaviors. First, the RVB state shows
broad features rather than sharp peaks, implying no long-
range order in the chirality 〈χ̂〉. At θ = π/2, one can exactly
show that 〈

χ̂ I
pχ̂

J
q

〉 = ±6δp,q and χ IJ (k) = ±6, (31)

where the sign is positive (negative) when I = J (I �= J). Flat
structure factors shown in the RVB state indicate short-ranged
correlations but essentially no long-range order in the chiral-
ity. See Figs. 6(c), 6(d), 6(g), and 6(h).

In sharp contrast, the KSL × KSL state exhibits a sharp
peak at k = 0, indicating a long-range order in the chirality.

FIG. 6. Chirality structure factor. (a), (b), (c), (d) The upper panels depict χσσ (k) = χττ (k) at four representative points of the phase
diagram (θ/π = 0.1, 0.2, 0.3, 0.4). (e), (f), (g), (h) The lower panels illustrate −χστ (k) for the same parameters (θ/π = 0.1, 0.2, 0.3, 0.4). In
each case, the chirality structure factor is depicted in two different fashions, a 3D plot (purple surface) and a 2D plot (color map at the bottom).
The center of the xy plane corresponds to the zero momentum point (k = 0). The KSL × KSL state exhibits a well-defined peak at k = 0,
suggesting a long-range order in the chirality in the thermodynamic limit [(a), (b), (e), (f)]. The RVB state has short-ranged correlations in the
chirality as shown by relatively flat chirality structure factors [(c), (d), (g), (h)].

134412-7



KYUSUNG HWANG PHYSICAL REVIEW B 109, 134412 (2024)

TABLE I. Similarities of the chirality and spin correlations in
detecting phases of broken time reversal.

KSL × KSL RVB

Chirality correlation 〈χ̂ I
pχ̂

J
q 〉 Long-ranged Short-ranged

Time reversal Broken in each layer Unbroken

Magnetic order Spin liquid

Spin correlation 〈σ i · σ j〉 Long-ranged Short-ranged
Time reversal Broken Unbroken

The chirality order is characterized by

χσσ (0) = χττ (0) > 0 : intralayer ferro-chirality,

χστ (0) < 0 : interlayer antiferro-chirality.

Namely, in thermodynamics limit, the σ and τ layers have a
k = 0 order of opposite chiralities, e.g., 〈χ̂σ 〉 > 0 and 〈χ̂ τ 〉 <

0. See Figs. 6(a), 6(b), 6(e), and 6(f).
This result, together with the entanglement entropy in

Fig. 5(a), suggests that in the thermodynamic limit the two
layers of the KSL × KSL state can be individually described
by the effective Hamiltonians [102]

Hσ
eff = Kσ

∑
〈 jk〉γ

σ
γ

j σ
γ

k − λσ

∑
p

χ̂ σ
p + · · · , (32)

Hτ
eff = Kτ

∑
〈 jk〉γ

τ
γ
j τ

γ

k − λτ

∑
p

χ̂ τ
p + · · · , (33)

where the coupling constants λσ and λτ have the opposite
signs (λσλτ < 0) as required by the interlayer antiferro-
chirality. Notice that the above effective Hamiltonians are
exactly the same as what we have derived in our Majorana
mean-field theory [Eq. (20)]. Therefore, time-reversal symme-
try breaking in the KSL × KSL state is unequivocally shown
not only from the mean-field theory but also from the numer-
ical calculations of the chirality structure factor.

Our approach of using the chirality-chirality correlation to
detect the broken time reversal in the KSL × KSL state is
analogous to the conventional approach of using the spin-spin
correlation to distinguish between magnetic orders and spin
liquids (see Table I).

C. Hard-core dimer constraint

The hard-core dimer constraint in Eq. (9) is another
good measure to distinguish between the KSL × KSL and
RVB states. Based on our analytical approaches, the two
states are expected to show distinct behaviors: 〈φγ

j φ
γ

k 〉 ≈
〈σγ

j σ
γ

k 〉〈τ γ

j τ
γ

k 〉 in the KSL × KSL state near θ = 0 and
〈φγ

j φ
γ

k 〉 ≈ −1 in the RVB state around θ = π/2. We confirm
the distinct behaviors,

−〈
φ

γ
j φ

γ

k

〉 + 〈
σ

γ
j σ

γ

k

〉〈
τ

γ
j τ

γ

k

〉 ≈
{

0 (KSL × KSL),
1 (RVB), (34)

in our ED results [Fig. 5(b)].

D. Topological degeneracy

Topological degeneracy, i.e., the ground state degeneracy
on torus geometry, is a useful probe to detect a topological or-
der in the system. Namely, topological degeneracy tells about
the number of anyon types allowed in the system [103,104].
We identify “ninefold” degeneracy in the KSL × KSL state
and “fourfold” degeneracy in the RVB state (see Fig. 7).

For the analysis of topological degeneracy, we employ four
Wilson loop operators, {Wσ

x ,Wσ
y ,Wτ

x ,Wτ
y }, commuting with

the Hamiltonian H . The Hilbert space can then be partitioned
into 16 topological sectors distinguished by the eigenvalues of
the Wilson loop operators (Wσ,τ

x,y = ±1).
The Wilson loop operators are defined by generalizing

the hexagon plaquette operators (Ŵp, Ẑp) to non-contractible
loops of the system. Figure 8(a) shows the cluster used in
our exact diagonalization. Periodic boundary conditions are
imposed at the cluster boundary (gray hexagon). Along the
non-contractible loop in Fig. 8(b), we define the Wilson oper-
ator Wσ

x as follows:

Wσ
x = (

σ z
12σ

z
5

)(
σ x

5 σ x
6

)(
σ

y
6 σ

y
7

)(
σ x

7 σ x
8

)
× (

σ z
8σ z

2

)(
σ x

2 σ x
3

)(
σ

y
3 σ

y
4

)(
σ x

4 σ x
12

)
= −σ

y
12σ

y
5 σ z

6σ z
7σ

y
8 σ

y
2 σ z

3σ z
4 . (35)

This is nothing but the product of the Kitaev terms of σ spins
along the non-contractible loop. Repeating for other possible
non-contractible loops [Figs. 8(c) and 8(d)], we can define
other Wilson loop operators:

Wσ
y = −σ z

0σ z
1σ x

2 σ x
8 σ z

9σ z
10σ

x
11σ

x
18, (36)

Wσ
z = −σ

y
1 σ

y
0 σ x

6 σ x
7 σ

y
14σ

y
13σ

x
19σ

x
20. (37)

Note that the three operators satisfy the relationship
Wσ

x Wσ
y Wσ

z = +1 in the ground state manifold due to the uni-
form zero-flux property (Wp = Zp = +1). Among the three
operators, we use Wσ

x and Wσ
y . Similarly, we repeat the same

procedure for τ spins and obtain the following Wilson loop
operators:

Wτ
x = −τ

y
12τ

y
5 τ z

6τ
z
7τ

y
8 τ

y
2 τ z

3τ
z
4 , (38)

Wτ
y = −τ z

0τ
z
1τ

x
2 τ x

8 τ z
9τ

z
10τ

x
11τ

x
18, (39)

Wτ
z = −τ

y
1 τ

y
0 τ x

6 τ x
7 τ

y
14τ

y
13τ

x
19τ

x
20. (40)

Again, we have the relationship Wτ
x Wτ

y Wτ
z = +1 and

only use Wτ
x and Wτ

y . The Wilson loop operators,
{Wσ

x ,Wσ
y ,Wτ

x ,Wτ
y }, commute with themselves, all the

hexagon plaquette operators, and the Hamiltonian H . The 16
topological sectors of the Wilson loop operators are specified
in the table of Fig. 7.

In the KSL × KSL state, the ground states appear in the
topological sectors having −1 in two of Wσ

x,y,z and also in two
of Wτ

x,y,z (ninefold degeneracy). In the RVB state, the ground
states stay in the topological sectors satisfying the condition
Wσ

l = Wτ
l (l = x, y, z) (fourfold degeneracy).

VI. TOPOLOGICAL TRANSITION BY ANYON
CONDENSATION AND CONFINEMENT

The topological degeneracies provide useful hints about
the underlying topological orders of the two QSLs. The
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FIG. 7. Topological degeneracy. Energy spectrum in the zero-flux sector (Wp = Zp = 1) where the ground state appears. The 16 panels
represent different topological sectors defined by the four Wilson loop fluxes, {Wσ

x = ±1,Wσ
y = ±1,Wτ

x = ±1,Wτ
y = ±1}. The table lists

the flux values of the 16 topological sectors. In each topological sector, only the lowest energy level is displayed to avoid complication.
The KSL × KSL state exhibits ninefold degeneracy in sectors 1,2,3,5,6,7,9,10,11 (marked by blue arrows). The RVB state shows fourfold
degeneracy in sectors 1,6,11,16 (marked by red arrows).

ninefold degeneracy in the KSL × KSL state is consistent
with the Ising × Ising topological order with the nine different
anyon pairs, {1I, σI, ψI} � {1II, σII, ψII}. Here the subscript
means the layer index (I: upper layer, II: lower layer), and each
layer has the three anyon sectors: the trivial boson (1), Ising
anyon (σ ), and fermion (ψ). Note that there is nontrivial braid-
ing between σ and ψ ; moving a ψ particle around a σ particle
changes the overall sign of the wave function (|
〉 → eiπ |
〉).
These anyons satisfy the fusion rules,

ψ × ψ = 1, σ × ψ = σ, σ × σ = 1 + ψ, (41)

where the fusion outcome of two σ particles has two possi-
bilities due to the non-Abelian nature of the Ising anyon σ

(quantum dimension:
√

2) [6,26,29,31,32]. This Ising anyon
topological order emerges in each layer of the KSL × KSL
state; hence the Ising × Ising topological order for the whole
system (bar indicates that the two layers are time-reversal
partners) [6,31,32,48,55].

On the other hand, the fourfold degeneracy in the RVB
state implies the Z2 toric code topological order with the
four different anyons, {1, e, m, ε}; the e and m particles are
self-bosons with mutual statistics, and the ε particle is a self-
fermion composed of the e and m particles. All these particles

are Abelian anyons satisfying the fusion rules,

e × e = m × m = ε × ε = 1, e × m = ε, (42)

which define the Z2 toric code topological order [5,6].
The transition between the non-Abelian Ising × Ising topo-

logical order and the Abelian Z2 topological order can
be understood by the mechanism of anyon condensation
transition [48,51,52,55]. Suppose we condense the fermion
pair ψI � ψII. Then, ψI � 1II and 1I � ψII become indistin-
guishable and identified as a same type of anyons in the
condensed phase: ψI � 1II = 1I � ψII. Moreover, anyons hav-
ing nontrivial braiding with the fermion pair are confined;
thus only ψI � 1II, 1I � ψII, and σI � σII remain deconfined.
The following table highlights the identical anyons (colored)
and the confined anyons (crossed) resulting from the anyon
condensation:

1II σII ψII

1I 1I 1II 1I σII 1I ψII

σI σI 1II σI σII σI ψII

ψI ψI 1II ψI σII ψI ψII

(43)

FIG. 8. Wilson loop operators on the 24-site cluster. (a) The 24-site cluster with four states per site and periodic boundary conditions. (b),
(c), (d) Visualizations of the Wilson loop operators, Wσ,τ

x , Wσ,τ
y , Wσ,τ

z .
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FIG. 9. Condensation of the fermion pair. (a) The expectation
values of the loop operators, 〈W 〉 and 〈L〉. In the RVB state, the sub-
stantially large values of 〈L〉 indicate the condensation of the fermion
pair, ψI � ψII. (b), (c) Visualizations of the W and L operators.

We note that

(σI � σII ) × (σI � σII ) = (1I � 1II ) + (ψI � 1II )

+ (1I � ψII ) + (ψI � ψII ), (44)

where we have two trivial bosons (1I � 1II, ψI � ψII) and
two fermions (ψI � 1II, 1I � ψII). In order to reproduce the
Abelian Z2 topological order in the condensed phase, σI � σII

(which has the quantum dimension 2) should be split into two
Abelian anyons. Therefore, we may assume that

1I � 1II = ψI � ψII = 1,

ψI � 1II = 1I � ψII = ε,

σI � σII = e + m. (45)

Then, Eq. (44) becomes identical to the toric code’s fusion
rules shown in Eq. (42) [32,48,55].

A. Anyon condensation

Now we confirm the mechanism of the anyon condensation
induced transition in our microscopic model. First, we check
whether ψI � 1II and 1I � ψII become indeed indistinguish-
able identical anyons (ψI � 1II = 1I � ψII). To this end, we
consider two different loop operators. The first one is the usual
hexagon plaquette operator,

W = (
σ

y
1 σ

y
6

)(
σ z

6σ z
5

)(
σ x

5 σ x
4

)(
σ

y
4 σ

y
3

)(
σ z

3σ z
2

)(
σ x

2 σ x
1

)
, (46)

which is defined within a single layer [Fig. 9(b)]. If we ap-
ply the Majorana representation, σ

γ

j σ
γ

k = −u jk (ic jck ) where
u jk = ibγ

j bγ

k , the action of W is to create a pair of c fermions,
move one of the fermions along the hexagon, and finally
annihilate the fermion pair [6]. Notice that the c fermions
correspond to ψI fermions. The second one is defined over
the two layers:

L = −(
τ

y
1 τ

y
6

)(
τ z

6τ
z
5

)(
τ x

5 τ x
4

)(
σ

y
4 σ

y
3

)
(σ z

3σ z
2

)(
σ x

2 σ x
1

)
. (47)

This operator moves a fermion (ψI) around an upper “half”
hexagon, and moves another fermion (ψII) around a lower
“half” hexagon [Fig. 9(c)]. This type of loop operator has been
considered in a recent study on anyon condensation in kagome
quantum spin liquids [61].

Figure 9(a) shows the expectation value 〈L〉. We find that
〈L〉 is small in the KSL × KSL phase (close to zero near θ =
0), meaning that ψI and ψII cannot move across the two layers
because they are distinct anyons supported on different layers.
By contrast, substantially large values of 〈L〉 are observed in
the RVB phase (reaching one at θ = π/2). This implies that
ψI and ψII become identical particles; thus the fermions (ψI =
ψII) can complete the hexagon loop motion. It is only possible
when we have the condensation of ψI � ψII. Therefore, 〈L〉
plays a role of an order parameter for the anyon condensation.

B. Anyon confinement

Next, we investigate the confinement of the Ising anyons,
σI � 1II (= σI � ψII ) and 1I � σII (= ψI � σII ). To allow Ising
anyon excitations, we consider flux sectors with W = −1 or
Z = −1. Under broken time-reversal symmetry, flux excita-
tions with W = −1 or Z = −1 trap localized Majorana zero
modes, behaving as the non-Abelian Ising anyons [6,31,36].
By comparing energy costs of different flux patterns, we can
identify in which flux patterns the confinement occurs.

Figure 2 shows the lowest excitation energy profiles in
various flux patterns. Depending on the phase, flux excitations
have different behaviors in the energy cost. In the KSL × KSL
phase, the excitation energy with respect to the (zero-flux)
ground state is roughly proportional to the number of excited
fluxes. In sharp contrast, in the RVB phase, such simple count-
ing does not work. To be specific, when fluxes are excited only
on a single layer, the excitation energy dramatically increases
across the transition point θc � 0.26π [see flux pattern 1 in
Figs. 2(a) and 2(e)]. In general, flux excitation energy sig-
nificantly increases if any flux mismatch (i.e., unpaired flux)
exists between the upper layer and lower layer as shown in
flux patterns 1, 3, and 4 [Figs. 2(a), 2(c), 2(d), and 2(e)].
However, if fluxes are all paired up between the two layers at
same locations (Wp = Zp = −1), the energy cost vanishingly
decreases. See flux pattern 2 in Figs. 2(b) and 2(e) and flux
patterns 5–8 in Figs. 2(f)–2(j).

The large energy costs due to unpaired fluxes, shown in
flux patterns 1, 3, and 4, can be explained by the hard-core
dimer constraint of the RVB phase (〈φγ

j φ
γ

k 〉 ≈ −1). Any un-
paired flux (WpZp = −1) necessarily violates the hard-core
dimer constraint leading to an energy increase in the order
of G. In contrast, paired fluxes between the two layers at the
same locations (Wp = Zp = −1) can be consistent with the
hard-core dimer constraint. The lowest excitations of such
paired fluxes are captured by the effective quantum dimer
model which we derived in the large-G limit [Eq. (12)].
Notice that the excitation energy scale is λ (∝ K6

σ /G5 =
cos6 θ/ sin5 θ ), which explains the vanishingly decreasing ex-
citation energies of flux patterns 2 and 5–8 [Figs. 2(e) and
2(f)]. Remarkably, unpaired fluxes occur at an extremely high
energy scale (G) compared to paired fluxes described by the
quantum dimer model (λ). In the low-energy physics of the
RVB phase, unpaired fluxes never appear, essentially confined
due to the extremely large energy cost.

The paired fluxes in Figs. 2(b) and 2(g)–2(j) correspond
to the paired Ising anyons, σI � σII. The unpaired fluxes in
Figs. 2(a), 2(c), and 2(d) correspond to the Ising anyons,
σI � 1II and 1I � σII. The energy profiles in Figs. 2(e) and 2(f)
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TABLE II. Possible sign structures of the coupling constants
{G, Kσ , Kτ } and the emergence of an RVB-type Z2 spin liquid state.

Case G Kσ Kτ Z2 spin liquid

1 + + − �
2 + + +
3 + − −
4 − + −
5 − + + �
6 − − − �

elucidate the confinement of σI � 1II and 1I � σII and reveal
the explicit form of σI � σII in our model (flux pair at the same
location).

The fact that only paired fluxes appear as deconfined
anyons in the RVB phase can be understood in a more intuitive
way. In order for ψI and ψII to be identical particles, ψI and
ψII have to see the same flux pattern on the upper and lower
layers. Otherwise, ψI and ψII cannot be identical. This simple
fact results in the confinement of unpaired fluxes (σI and σII),
only allowing paired fluxes (σI � σII) as deconfined anyons.

C. Topological degeneracy revisited

The fourfold topological degeneracy of the RVB state is
also easily understood by the same picture. Fermions ψI and
ψII must see the same pattern of Wilson loop fluxes on the
upper and lower layers. In other words, the topological sectors
allowed by the ψI � ψII condensation must satisfy the condi-
tion Wσ

l = Wτ
l (l = x, y, z), which leads to exactly the four

sectors (sectors 1,6,11,16) in Fig. 7.

VII. GENERAL CASES

We investigate other parameter regions of the model be-
yond Eq. (3). We still constrain ourselves to the cases of
|Kσ | = |Kτ | since more generic cases can be easily under-
stood from our discussion here. We find that the signs of the
coupling constants {G, Kσ , Kτ } determine the emergence of
an RVB-type Z2 spin liquid. Table II lists six possible cases
for the sign structure. Three cases (cases 1,5,6) stabilize a Z2

spin liquid (Z2SL) whereas the other three cases do not. Case
1 corresponds to the parameter choice in Eq. (3).

Here we discuss cases 5 and 6 (G < 0, Kσ = Kτ ). Fig-
ure 10 shows ED results for the two cases with the
parametrization

G = − sin θ and Kσ = Kτ =
{+ cos θ (case 5),
− cos θ (case 6). (48)

The results are almost the same as in case 1 in terms of the
ground state energy Egs, the topological degeneracy, the en-
tanglement entropy Slayer, and the four-spin correlator 〈φγ

j φ
γ

k 〉.
Yet, there is a difference between cases 5, 6 and case 1 in
the sign of 〈φγ

j φ
γ

k 〉, which is positive in the former cases
but negative in the latter case. In the strong-coupling limit
(|G| 
 |Kσ,τ |), we see distinct behaviors in the associated Z2

spin liquids:

〈φγ
j φ

γ

k 〉 →
{+1 (cases 5, 6),
−1 (case 1). (49)

The property φ
γ
j φ

γ

k = −1 of case 1 allows us to construct the
effective quantum dimer model on the dual kagome lattice as
we have seen in Sec. III. However, the property φ

γ
j φ

γ

k = +1
of cases 5 and 6 leads to states violating the hard-core dimer
constraint, so the dimer representation is no longer useful for
the two cases.

Instead, a Z2 gauge theory can be more conveniently con-
structed on the honeycomb lattice for the strong-coupling
limits of the cases 5 and 6. Utilizing the property φ

γ
j φ

γ

k = +1
at each bond 〈 jk〉γ , we may define a Z2 link variable,

Xjk = sgn
(
φ

γ

j

) = sgn
(
φ

γ

k

) = ±1. (50)

Such X variables are subject to the Gauss law constraint,

XjkXjl Xjm = −1, (51)

which is simply the product of X variables on the three links
sharing site j. The Gauss law constraint arises as a combined
effect of (i) the property φ

γ

j φ
γ

k = +1 at each bond 〈 jk〉γ and
(ii) the constraint φx

j φ
y
jφ

z
j = −1 at each site j. In other words,

the property φ
γ
j φ

γ

k = +1 defines the Hilbert space of the Z2

link variables {Xjk} subject to the Gauss law constraint.

FIG. 10. ED results for the cases 5 and 6. (a) Phase diagram of the model. The KSL × KSL and Z2SL states are connected by a
continuous transition at θc � 0.26π as indicated by a small peak in the derivative of the ground state energy, −∂2Egs/∂θ2. The numbers
in the parentheses indicate topological degeneracies. (b) The entanglement entropy Slayer . The dashed line marks the value of ln(2N/2−1), where
N = 24. (c) The four-spin correlators, 〈φγ

j φ
γ

k 〉 (black) and 〈φγ

j φ
γ

k 〉 − 〈σ γ

j σ
γ

k 〉〈τ γ

j τ
γ

k 〉 (red). Exactly the same results of Egs, Slayer , 〈φγ

j φ
γ

k 〉,
〈φγ

j φ
γ

k 〉 − 〈σ γ

j σ
γ

k 〉〈τ γ

j τ
γ

k 〉 are obtained for both cases 5 and 6.
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We repeat a sixth-order degenerate perturbation theory for
the cases 5 and 6 and obtain an effective Hamiltonian that is
exactly in the same form of Eq. (12):

Heff = −λ
∑

p

Ŵp where Ŵp ∝
∏
jk∈p

Z jk . (52)

The plaquette operator Ŵp flips the signs of X variables at
plaquette p as denoted by the Pauli Z operators in the above.
Here we see a Z2 gauge theory on the honeycomb lattice.

In the other cases (cases 2,3,4), the effects of the Kσ,τ terms
completely cancel each other, failing to create any Z2 spin
liquid state in the strong-coupling limit. For instance, in the
cases 2 and 3 (G > 0 and Kσ = Kτ ), we have the relationship

σ
γ
j σ

γ

k |�〉 = −τ
γ
j τ

γ

k |�〉, (53)

where |�〉 is an arbitrary ground state (φγ
j φ

γ

k = −1) of the
interlayer interactions. Then, one can easily see that(

Kσ σ
γ
j σ

γ

k + Kτ τ
γ
j τ

γ

k

)|�〉 = (Kσ − Kτ )σγ
j σ

γ

k |�〉 = 0. (54)

Due to this cancellation, the Kitaev interactions do not create
any effect on the dimer Hilbert space and any Z2 spin liquid.

VIII. DISCUSSION AND OUTLOOK

The anyon condensation transition between the non-
Abelian KSL × KSL state and the RVB state was identified
in our model via the loop operator L. Interestingly, there is an
intimate relationship between the anyon condensation and the
hard-core dimer constraint [Eq. (9)]. To see this, we consider
the constraint in a slightly different fashion: σ

γ
j σ

γ

k = −τ
γ
j τ

γ

k .
This tells us that moving the fermions ψI and ψII has the
same effect, meaning that the RVB state does not distinguish
between ψI and ψII; they are essentially the same particles. To
be more precise, if we apply the hard-core dimer constraint to
Eq. (47), we obtain the relationship L = W = Z . Therefore,
the hard-core dimer constraint itself means the ψI � ψII anyon
condensation.

We emphasize that the interlayer interactions
(σγ

j σ
γ

k τ
γ
j τ

γ

k = φ
γ
j φ

γ

k ) are crucial for realizing the two
topological spin liquids in the bilayer system and also for
understanding the anyon condensation transition. In the
weak-coupling regime, a chirality order is developed in each
layer due to the interlayer interactions, yielding the non-
Abelian KSL × KSL state. In the strong-coupling regime, the
interlayer interactions construct the Hilbert space of hard-core
dimers for the RVB state. The hard-core dimer constraint
established by the interlayer interactions plays the role of
an order parameter for the anyon condensation transition
between the two topological spin liquids. Furthermore, it was
due to the interlayer interactions conserving the flux quantum
number that we could easily trace the Ising anyons and their
confinement across the transition (Fig. 2).

This work demonstrates an anyon-condensed multilayer
construction for Kitaev’s 16-fold way of anyon theories. In
his original work, Kitaev provided a simple idea to construct
16 different topological orders [6]. Namely, in the system
of Majorana fermions coupled with Z2 fluxes, the spectral
Chern number (ν) of the Majorana fermions determines the
anyon properties of the Z2 fluxes. Changing the Chern number

FIG. 11. Anyon-condensed multilayer constructions of Kitaev’s
16-fold way of anyon theories. Upper: Creation of the toric code
topological order (ν = 0) by attaching two layers of Ising topological
orders (ν = ±1) with the glue of anyon condensation (〈ψI � ψII〉 �=
0). Lower: Consecutive anyon condensation transitions from four
layers of ν = +1 topological order, to two layers of ν = +2 topo-
logical order, finally to a single layer of ν = +4 topological order.

results in 16 distinct types of topological orders determined
by ν mod 16. Such 16-fold way constructions have been dis-
cussed in several solvable models recently [105–108]. Here
we discuss a different approach using anyon condensation in
multilayer systems. First, we note that the non-Abelian KSL
with ν = 1 realizes the Ising anyon topological order. Then,
the bilayer system of KSLs with the opposite Chern numbers
νI = +1 and νII = −1 (having zero for the net Chern number:
ν = νI + νII = 0) may construct the Z2 toric code topological
order. Our bilayer model demonstrates this via the RVB state
that emerges from the KSL × KSL state by anyon condensa-
tion. Generalizing this idea, all the 16 topological orders could
be constructed by stacking non-Abelian KSLs with ν = ±1
and inducing anyon condensation over the multilayers, i.e.,
anyon-condensed multilayer constructions of Kitaev’s 16-fold
way (Fig. 11).

In our study, the KSL × KSL state was shown to open a
finite energy gap by developing the chirality order that breaks
time-reversal symmetry. From renormalization group analyses
for interacting Dirac fermions, any short-ranged four-fermion
interaction is, however, perturbatively irrelevant in the sys-
tems with time-reversal and lattice symmetries. Hence, the
gaplessness of the Dirac fermions is maintained until some
finite strengths of four-fermion interactions [109]. The same
physics applies to the Kitaev spin liquid where the low-energy
physics is described by the Majorana version of the field the-
ory. Such gaplessness is expected around the weak-coupling
limit of our system since the interlayer interactions are essen-
tially four-fermion interactions in the Majorana representation
[σγ

j σ
γ

k τ
γ
j τ

γ

k = uI, jkuII, jk (icI, jcI,k )(icII, jcII,k ), where I and II
are layer indices]. Nonetheless, our mean-field theory and
finite-size ED calculations suggest that the bilayer system can
spontaneously break time-reversal symmetry and open a finite
energy gap before the transition to the RVB state. Combining
our results with the field theory argument, we anticipate that
in the thermodynamic limit the bilayer system has a gapless
region from the θ = 0 point, then opens up a gap at some
finite value θgap, and finally undergoes the anyon condensation
transition to the RVB state at θc (0 < θgap < θc).
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Low-energy field theory for the anyon condensation tran-
sition (at θc) is an interesting problem lying beyond the
Landau-Ginzburg-Wilson paradigm. To our best knowledge, a
general framework for such transitions is currently unknown.
Nonetheless, the 3D Ising universality has been proposed
for the ψI � ψII condensate induced transition between the
Ising × Ising and Z2 topological orders by Burnell, Simon,
and Slingerland [51,52]. Our system is expected to be in the
same 3D Ising universality class.

We compare our work with the recent spin-3/2 transverse
field Ising model by Verresen and Vishwanath [47]. Both
cases lead to emergent quantum dimer models with simi-
lar structures. The hard-core dimer constraint for the dimer
Hilbert space is energetically implemented, and the dimer
resonance is induced by anyon fluctuations—by the Kitaev
interactions in our case, and by the transverse field in their
case. Despite the similarities, the two works have different
interests. Reference [47] focuses on the possible quantum
liquids induced by different types of anyon fluctuations. In
our study, we are mainly interested in the anyon condensation
transition and its identification.

Another anyon condensation transition can be generated in
our bilayer system if we add the interactions

D
∑

〈i j〉α〈 jk〉β
φ

γ

i φ
γ

k , (55)

where next-nearest-neighbor composite spins are coupled in
a bond-dependent way. If the composite spins are connected
by α and β bonds, then only the γ components are coupled
(α �= γ �= β). In the dimer Hilbert space (appearing in large-G
limit), such interactions become the dimer interactions,

D
∑

p

V̂p, where V̂p =
∑

D

ED|D〉〈D|, (56)

and the values of the energy coefficient ED are listed in Ta-
ble III. The emergence of the dimer interactions implies that
there should be a transition from the RVB state to a valence
bond solid (VBS) state, i.e., a crystalline order of dimers.
The RVB-to-VBS transition is driven by the condensation of
m particles (or visons) of the RVB state [89,90]. By the vi-
son condensation transition, the topological spin liquid (RVB
state) becomes trivial losing all nontrivial anyons. Namely, e
and ε particles are confined due to their nontrival braiding
with m particles. An anticipated phase diagram is schemati-
cally drawn in Fig. 12.

Our model can be generalized to other tricoordinated lat-
tices beyond the honeycomb lattice as in the original Kitaev
model [110],

In particular, the star lattice (left figure) would be an interest-
ing case where the pure Kitaev model itself allows a chiral
spin liquid state as shown by Yao and Kivelson [111]. Such
spontaneous time-reversal breaking may have some novel

FIG. 12. A schematic phase diagram of the bilayer model
[Eq. (1)] extended by the interactions in Eq. (55). Here we assume
Kσ = 1 and Kτ = −1. In large-G limit, it is expected that the RVB-
to-VBS transition occurs around D ∼ λ (∝ K6

σ /G5) and the resulting
VBS state is the 12-site pinwheel VBS state that is well known from
kagome antiferromagnetism [9,12].

effects on the RVB side and the supported anyon types. Gen-
eralization of our work to other lattice geometries would be
an interesting direction for future studies.

The bilayer model has an interesting connection to a
non-Hermitian Kitaev system. Motivated by inevitable en-
vironment effects such as decoherence and dissipation on
quantum many-body states prepared in quantum devices, there
has been growing interest in open quantum systems recently
[112–117]. Such environment effects can be investigated by
using the so called Choi-Jamiołkowski isomorphism, which
transforms the system’s density matrix (ρ̂) into a doubled state
vector (|ρ〉〉) that is governed by a non-Hermitian Schrödinger
equation:

ρ̂ =
∑
m,n

ρmn|m〉〈n| ⇒ |ρ〉〉 =
∑
m,n

ρmn|m〉 ⊗ |n〉. (57)

The problem of a Kitaev spin liquid coupled to an en-
vironment becomes identical to a bilayer Kitaev system
featured with non-Hermitian interlayer interactions, i.e., a
non-Hermitian analog of our bilayer model [117]. More inter-
estingly, anyon condensation phenomena dynamically occur
in the non-Hermitian Kitaev system by the non-Hermitian
interlayer interactions [117]. Quantum spin liquids coupled to
environments (open quantum spin liquids) are an interesting
setup which allows novel anyon physics via nonunitary dy-
namics.

Lastly, we comment on experimental realizations of our
system. There have been several concrete proposals upon
realizing Kitaev’s honeycomb model and toric code model
by using ultracold atoms or Rydberg atoms together with
Floquet engineering [118–122]. Moreover, non-Abelian topo-
logical orders and anyons have been successfully simulated
in superconducting-qubit and trapped-ion quantum processors
recently [19–21]. We expect that such quantum simulators
with high controllability, especially the reconfigurable atom
arrays [23], could realize and further extend the rich anyon
physics of our bilayer system in the future.
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FIG. 13. A sixth-order perturbation. The signs indicate the
value of φ

γ

j φ
γ

k (= ±1) at each bond. (a) An initial ground state
|�′〉. (b) The intermediate state |ν〉 = (Kσ σ x

1 σ x
2 + Kτ τ

x
1 τ x

2 )|�′〉 =
2Kσ σ x

1 σ x
2 |�′〉. (c) The next intermediate state |μ〉 = (Kσ σ

y
3 σ

y
4 +

Kτ τ
y
3 τ

y
4 )|ν〉 = 2Kσ σ

y
3 σ

y
4 |ν〉. Similarly for other intermediate states

|ρ〉, |β〉, |α〉 in (d), (e), (f). After all the Kitaev interactions around
the plaquette p, the state comes back to some other ground state |�〉.
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APPENDIX A: PERTURBATION THEORY FOR THE
STRONG-COUPLING LIMIT

To investigate the strong-coupling limit, we separate
the Hamiltonian into two parts, H = H0 + H ′, where H0 =∑

〈 jk〉γ Gφ
γ

j φ
γ

k and H ′ = ∑
〈 jk〉γ Kσ σ

γ

j σ
γ

k + Kτ τ
γ

j τ
γ

k . Re-
member that we focus on the parameter region of G > 0 and
Kτ = −Kσ . The ground state manifold of H0 is extensively
degenerate and characterized by the constraint φ

γ

j φ
γ

k = −1
at each bond. Note that the eigenstates of the composite spin
operators {φγ

j } are automatically the energy eigenstates of H0.
In this basis, we find that the action of each Kitaev term of H ′
is determined by the value of φ

γ

j φ
γ

k :

(
Kσ σ

γ
j σ

γ

k + Kτ τ
γ
j τ

γ

k

)|�〉

=
{

2Kσ σ
γ

j σ
γ

k |�〉 (when φ
γ

j φ
γ

k = −1),

0 (when φ
γ

j φ
γ

k = +1),
(A1)

where |�〉 is an arbitrary state of {φγ
j }.

The effective Hamiltonian Heff for the ground state mani-
fold is constructed by a degenerate perturbation theory [123].
Nontrivial interaction terms (other than constant energy shifts)
arise at the sixth-order perturbations:

〈�|Heff |�′〉 = 1

2

∑
α,β,ρ,μ,ν

〈�|H ′|α〉〈α|H ′|β〉〈β|H ′|ρ〉〈ρ|H ′|μ〉〈μ|H ′|ν〉〈ν|H ′|�′〉(
E (0)

� − E (0)
α

)(
E (0)

� − E (0)
β

)(
E (0)

� − E (0)
ρ

)(
E (0)

� − E (0)
μ

)(
E (0)

� − E (0)
ν

)

+ 1

2

∑
α,β,ρ,μ,ν

〈�|H ′|α〉〈α|H ′|β〉〈β|H ′|ρ〉〈ρ|H ′|μ〉〈μ|H ′|ν〉〈ν|H ′|�′〉(
E (0)

�′ − E (0)
α

)(
E (0)

�′ − E (0)
β

)(
E (0)

�′ − E (0)
ρ

)(
E (0)

�′ − E (0)
μ

)(
E (0)

�′ − E (0)
ν

) , (A2)

where |�〉 and |�′〉 are states in the ground state manifold, H0|�〉 = E (0)
� |�〉, H0|�′〉 = E (0)

�′ |�′〉, and similarly for the
intermediate states, |α〉, |β〉, |ρ〉, |μ〉, |ν〉. Figure 13 illustrates one example (among various possible sixth-order processes): we
act the Kitaev terms, Kσ σ

γ

j σ
γ

k + Kτ τ
γ

j τ
γ

k , along a plaquette p using Eq. (A1). Its contribution to Heff is given by the expression

(2Kσ )6〈�|σ y
1 σ

y
6 |α〉〈α|σ x

4 σ x
5 |β〉〈β|σ z

2σ z
3 |ρ〉〈ρ|σ z

5σ z
6 |μ〉〈μ|σ y

3 σ
y
4 |ν〉〈ν|σ x

1 σ x
2 |�′〉

(−4G)(−6G)(−6G)(−6G)(−4G)
= − 1

54

K6
σ

G5
〈�|Ŵp|�′〉. (A3)

Collecting all the sixth-order contributions, we obtain the effective Hamiltonian,

Heff = −λ
∑

p

Ŵp, (A4)

where λ ∝ K6
σ /G5.

APPENDIX B: QUANTUM DIMER MODEL

In the dimer representation, the effective Hamiltonian Heff has the interpretation of dimer resonance motions. The dimer
Hilbert space is provided by the ground states of H0 respecting the hard-core dimer constraint. Acting on the hard-core dimer
states, a plaquette operator Ŵp generates dimer motions along closed paths around the plaquette p. For example, pinwheel dimers
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TABLE III. Dimer motion graphs and dimer interaction energies. Top row: Each graph depicts a dimer state (red) and the closed path (light
blue) of the dimer motion by Ŵp. Middle row: The sign factor f (D) in Eq. (14). Bottom row: The energy coefficient ED of V̂p [Eq. (56)]. Other
cases related by symmetry are dropped for simplicity.

Dimer state |
& motion graph

f( ) 1 1 1 1 -1 -1 -1 -1
E 6 -2 6 -2 -6 2 2 -6

are moved along the path of the 12-site star of David:

= |tx〉1 ⊗ |tz〉2 ⊗ |ty〉3 ⊗ |tx〉4 ⊗ |tz〉5 ⊗ |ty〉6

Ŵp−→ σ z
1 |tx〉1 ⊗ σ

y
2 |tz〉2 ⊗ σ x

3 |ty〉3 ⊗ σ z
4 |tx〉4 ⊗ σ

y
5 |tz〉5 ⊗ σ x

6 |ty〉6

= i|ty〉1 ⊗ i|tx〉2 ⊗ i|tz〉3 ⊗ i|ty〉4 ⊗ i|tx〉5 ⊗ i|tz〉6 = (−1) (B1)

Notice that the resulting dimer state is accompanied with an extra minus sign. On the other hand, hexagon dimers are shifted
along the path of a six-site hexagon:

= |tz〉1 ⊗ |s〉2 ⊗ |tx〉3 ⊗ |s〉4 ⊗ |ty〉5 ⊗ |s〉6

Ŵp−→ σ z
1 |tz〉1 ⊗ σ

y
2 |s〉2 ⊗ σ x

3 |tx〉3 ⊗ σ z
4 |s〉4 ⊗ σ

y
5 |ty〉5 ⊗ σ x

6 |s〉6

= |s〉1 ⊗ |ty〉2 ⊗ |s〉3 ⊗ |tz〉4 ⊗ |s〉5 ⊗ |tx〉6 = (B2)

In this case, there is no sign change. Repeating the same calculations for other dimer configurations, we obtain the dimer model,

Ŵp =
∑

D

f (D)|D〉〈D̄| + H.c., (B3)

where D runs over 32 distinct dimer configurations around the local plaquette p, and |D̄〉 means the conjugate dimer configuration
of |D〉 connected by Ŵp. The full list of the dimer motions and the associated sign factor f (D) are described in Table III.
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