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Motivated by recent experimental and numerical evidence of deconfined quantum critical points and quantum
spin liquid states in the spin-1/2 Heisenberg model on the Shastry-Sutherland lattice, we studied possible
symmetric spin liquid states and their proximate ordered states under Schwinger boson formalism. We found
a symmetric gapped Z2 spin liquid state for intermediate model parameter 0.66 < J1/J2 < 0.71 under the mean-
field approximation. The Schwinger boson mean-field picture is partially supported by exact-diagonalization and
self-consistent spin wave theory results.
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I. INTRODUCTION

Recently the quasi-two-dimensional materials S = 1/2
quantum magnets SrCu2(BO3)2 [1–4] have attracted much
research interest, as they are one of the most promising re-
alizations of the deconfined quantum critical point (DQCP)
[5–8] or spin liquid states [9]. The in-plane antiferromagnetic
(AFM) Heisenberg interactions between the copper atoms of
SrCu2(BO3)2 make it a potential realization of the Shastry-
Sutherland model [10] shown in Fig. 1(a). Depending on the
values of the nearest-neighbor couplings J1 and the second-
neighbor couplings J2, the Shastry-Sutherland model can host
a dimer valence bond solid ground state in the J2/J1 � 1
limit, or a Néel state in the J1/J2 � 1 limit. The issue is
the intermediate phase [11–14] between the Néel phase and
dimer-singlet (DS) phase [also called the orthogonal dimer
(OD) phase in some literature]. There is a variety of pre-
dictions of the intermediate phase by difference theories and
numerics: a direct transition from the dimer-singlet phase to
Néel phase [15,16], a helical order [17,18], columnar dimers
[19], or plaquette-singlet [12,16,18] intermediate phases. Re-
cently there has been experimental [2–4] and numerical
[14,20–23] evidence of the existence of the plaquette-singlet
(PS) phase [also called the plaquette singlet solid (PSS) or
plaquette valence bond solid (PVBS) in some literature]. The
phase transition between the Néel and plaquette-singlet phase
may be described by a DQCP with emergent O(4) symmetry
[13,20] and deconfined spinon excitations. And evidence of a
proximate DQCP was found on the boundary of plaquette-
singlet phase and Néel AFM phase in an NMR study of
SrCu2(BO3)2 under external magnetic field [1].

Some recent numerical studies including density-matrix
renormalization group (DMRG) [24], exact diagonalization
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(ED) [25], and pseudofermion functional renormalization
group [26] also suggest the existence of a spin liquid (SL)
phase in a narrow range of coupling parameter J1/J2 be-
tween the PS phase and Néel phase without magnetic field.
This intriguing possibility has not been thoroughly studied
theoretically, especially using the traditional slave particle
language for spin liquids [27]. With this motivation we study
the possible symmetric spin liquid states and their proximate
ordered states on the Shastry-Sutherland lattice under the
Schwinger boson formalism [28] in this paper. The goal of
our work is not to accurately determine the phase diagram of
the Shastry-Sutherland model, but to explore the possibilities
of quantum spin liquids compatible with this lattice, which
might be realized in related models and materials.

In this paper, we focus on the Schwinger boson [29] de-
scription of quantum spin liquids. This formalism and its
large-N generalization [30] are convenient to describe the
transition between gapped Z2 spin liquid phases and mag-
netic ordered phases [28], and have been successful in studies
of several quantum magnets [31]. By projective symmetry
group (PSG) [32,33], we find 6 possible algebraic Z2 PSG
solutions and 4 gauge-inequivalent Ansätze. Comparing the
mean-field energies of these Ansätze, we get the mean-field
phase diagram, which is shown in Fig. 1. We find a symmetric
gapped Z2 spin liquid for the intermediate model parameter
0.66 < J1/J2 < 0.71 under the mean-field approximation. A
dimer-singlet phase forms in J1/J2 < 0.66 while a Néel AFM
state forms in J1/J2 > 0.71, where the Schwinger boson con-
densation happens. To further investigate the PS state, we also
study Ansätze with PS order, and find that these PS Ansätze
have higher ground state energy compared with the symmetric
spin liquids in the mean-field level.

We also study the spin correlations of the ground state wave
function and structure factor of the spin liquid states and Néel
state by the Schwinger boson mean-field theory (SBMFT),
and compare them with the results of exact-diagonalization
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FIG. 1. The phase diagram of Schwinger boson mean-field the-
ory for Shastry-Sutherland model. The phase boundaries at physical
condition κ = 2S = 1 are J1/J2 = 0.66 and J1/J2 = 0.71. In the
mean-field level, the phase transition from DS to SL is continuous
while the phase transition from SL to Néel is first order.

and spin wave theory. We find that the spin correlations
in SBMFT have similar behavior compared with the result
of the exact-diagonalization method. The structure factor in
the Néel phase can also be calculated by the spin wave
theory. However, the linear spin wave theory breaks down
near J1/J2 ∼ 1, which is far from the Néel phase bound-
ary. To investigate the Néel phase in the J1/J2 < 1 region,
we use a self-consistent spin wave theory, which pushes the
Néel phase boundary down to J1/J2 ≈ 0.65. With the self-
consistent spin wave theory, we get qualitatively consistent
dynamical spin correlations with Schwinger boson mean-field
theory.

This paper is organized as follows. In Sec. II, we introduce
the Shastry-Sutherland model and Schwinger boson mean-
field theory. We then introduce the PSG classification and
show the results of algebraic PSG. In Sec. III, we show the
mean-field results and properties of the 4 gauge-inequivalent
symmetric spin liquid states, and briefly discuss the two PS
states. In Sec. IV, we present the mean-field phase diagram
with a gapped Z2 spin liquid state in the intermediate parame-
ter 0.66 < J1/J2 < 0.71. In Sec. V, we compare the structure
factors for the spin liquid and Néel states by SBMFT and
self-consistent spin wave theory, and compare some of the
ground state properties by SBMFT and exact diagonalization.
Section VI contains further discussion and a summary of
results. The technical and numerical details are presented in
the appendices.

II. PROJECTIVE SYMMETRY GROUP OF
SHASTRY-SUTHERLAND LATTICE SCHWINGER

BOSON STATES

The Shastry-Sutherland model Hamiltonian is

H = J1

∑
〈i j〉

Si · S j + J2

∑
〈〈i j〉〉′

Si · S j, (1)

where Si are S = 1/2 spin operators and 〈i j〉 are the nearest-
neighbor (n.n.) [blue in Fig. 2(a)] bonds, while 〈〈i j〉〉′ are
some of the next-nearest-neighbor (n.n.n.) [red in Fig. 2(a)]

FIG. 2. (a) is the Shastry-Sutherland lattice. The Heisenberg cou-
plings in blue and red bonds are J1 and J2, respectively. The black
dashed line in (b) is the first Brillouin zone of Shastry-Sutherland
lattice, and the blue dotted line is the first Brillouin zone of square
lattice without J2 bonds. The red arrows are the plot paths (K →
M → � → K → �′) in this paper.

bonds. Here we study this Hamiltonian by the Schwinger
boson mean-field theory. The spin operator is expressed by
the Schwinger bosons as

Si = 1

2

∑
α,β=↑,↓

b†
iασαβbiβ, (2)

with the constraints at every site∑
σ

b†
iσ biσ = κ = 2S, (3)

for a spin system with spin S. For the convenience of analysis,
κ is usually regarded as a continuous parameter. Using the
Schwinger boson representation, the Heisenberg interaction
can be rewritten as

Si · S j =: B̂†
i j B̂i j : −Â†

i j Âi j, (4)

where :: is normal ordering and boson pairing operator Â and
hopping operator B̂ are defined as

B̂i j = 1

2

∑
σ

b†
iσ b jσ , (5)

Âi j = 1

2

∑
σ,σ ′

εσσ ′biσ b jσ ′ . (6)

After decoupling the quartic terms by the Hubbard-
Stratonovich transformation, we get the mean-field Hamilto-
nian:

HMF =
∑

i j

Ji j (−A∗
i j Âi j + B∗

i j B̂i j + H.c.)

+
∑

i j

Ji j (|Ai j |2 − |Bi j |2) − μi

∑
i

(n̂i − κ ), (7)

where the complex numbers Ai j = 〈Âi j〉 = −Aji and Bi j =
〈B̂i j〉 = B∗

ji are the mean-field Ansätze. μi are the real La-
grangian multipliers to enforce the constraints of Eq. (3),
which are usually site independent, namely μi = μ. This
mean-field description has emergent U (1) gauge redundancy,
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FIG. 3. The coordinate system and space group generators Tx ,
Ty, C4, σ of the Shastry-Sutherland lattice. These generators are
translation Tx along êx by 2 units, translation Ty along êy by 2 units, a
reflection σ about x = −y and the 90◦ rotation C4 around (1/2, 1/2).

namely that the following U (1) gauge transformation,

b jσ → eiφ( j)b jσ , (8a)

Ai j → ei[φ(i)+φ( j)]Ai j, (8b)

Bi j → ei[−φ(i)+φ( j)]Bi j, (8c)

will not change the physical spin states. Therefore the mean-
field solutions should be classified by projective symmetry
group (PSG) [32,33]. In the remainder of this section, we
briefly show the details of PSG classification of the symmetric
spin liquid on the Shastry-Sutherland lattice.

As mentioned above, the Schwinger boson mean-field the-
ory has an emergent U (1) gauge symmetry. After the local
gauge transformation of Eq. (8), the mean-field Hamiltonian
is invariant and all physical observables are unchanged, as the
wave function is the same after projected to physical condi-
tion. Because of the existence of emergent gauge symmetry,
for different spin liquids with the same symmetry, the An-
sätze are invariant under symmetry transformations followed
by gauge transformations, b̂r,s → exp[iφg(gr)]b̂gr,s, for space
group element g. Therefore, the spin liquid states should be
classified by the projective representation of the space group.
The Ansätze are invariant under operations of projective sym-
metry group (PSG). Different PSGs characterize different
kinds of spin liquid states with the same symmetries.

We set up a Cartesian coordinate system and repre-
sent the site coordinate by (x, y) = xêx + yêy with x, y ∈ Z.
For the convenience of discussion, the site coordinate can
also be expressed by cell-sublattice index, (X,Y, s), where
X,Y ∈ Z and s ∈ Z4 (s = 0, 1, 2, 3), which means Cartesian
(2X + xs, 2Y + ys) with (x0, y0) = (0, 0), (x1, y1) = (1, 0),
(x2, y2) = (1, 1), (x3, y3) = (0, 1). The sublattice labeling
is shown in Fig. 3. With these two coordinate systems,
the nearest-neighbor (n.n.) bonds are (x, y) − (x + 1, y) and
(x, y) − (x, y + 1) while the next-nearest-neighbor (n.n.n.)
bonds are (X,Y, 0) − (X,Y − 1, 2) and (X,Y, 1) − (X +
1,Y, 3).

The space group of the square lattice is generated by trans-
lation Tx along êx by 2 units, translation Ty along êy by 2 units,

a reflection σ along x = −y, and the 90◦ rotation C4 around
(1/2, 1/2), which are also shown in Fig. 3. The action of these
generators on the Shastry-Sutherland lattice reads

TX : (x, y) �→ (x + 2, y), (9a)

TY : (x, y) �→ (x, y + 2), (9b)

C4 : (x, y) �→ (−y + 1, x), (9c)

σ : (x, y) �→ (−y,−x). (9d)

Note that the glide-reflection generators (Gx and Gy) can be
generated by these four generators, which can be written as

Gx = C4σ : (x, y) �→ (x + 1,−y), (10)

Gy = TyσC4 : (x, y) �→ (−x, y + 1), (11)

and are not used in solving PSGs.
These 4 generators in Eq. (9) have the following commuta-

tive relations,

T −1
X TY TX T −1

Y = 1, (12)

T −1
Y T −1

X C4TXC−1
4 = 1, (13)

T −1
X C4T −1

Y C−1
4 = 1, (14)

C4
4 = 1, (15)

T −1
X σ T −1

Y σ−1 = 1, (16)

T −1
Y σ T −1

X σ−1 = 1, (17)

σ 2 = 1, (18)

T −1
X C4σC4σ

−1 = 1. (19)

We have solved the algebraic PSG in Appendix A and we
only show the results here,

φTX
(X,Y, s) = 0, (20)

φTY
(X,Y, s) = 0, (21)

φC4
(X,Y, s) = p2π · Y + p4π · δs,0, (22)

φσ (X,Y, s) = p7π

2
+ p2π · xsys + p4π · δs,0, (23)

with three remaining free Z2 integer parameters p2, p4, p7 = 0
or 1 (mod 2). Therefore, there are at most 8 kinds of PSGs.

Then we need to consider the constraints on PSG
by Ansätze. The n.n. bond poses no constraint, because
there is no nontrivial space group element that maps one
n.n. bond to itself or its reverse. For the n.n.n. bond,
if An.n.n. �= 0, consider (0, 0, 0) − (0,−1, 2), which is in-
variant under σ ; then φσ (0, 0, 0) + φσ (0,−1, 2) = p7π +
p2π + p4π = 0, namely p2 + p4 + p7 = 0; if Bn.n.n. �=
0, consider (0, 0, 0) − (0,−1, 2), which is invariant un-
der σ ; then φσ (0, 0, 0) − φσ (0,−1, 2) = −p2π − p4π = 0,
namely p2 + p4 = 0; this is incompatible with An.n.n. �= 0;
consider (−1, 0, 1) − (0, 0, 3), which is reverted by σ ; then
φσ (−1, 0, 1) − φσ (0, 0, 3) = 0; then if Bn.n.n. �= 0, it must be
real. If we only consider the condition where at least one of
next-nearest-neighbor Ansätze An.n.n. and Bn.n.n. is not zero,
there are at most 6 kinds of PSGs with these constraints. If
we assume the nearest-neighbor Ansatz A1 is nonzero, these
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6 states can be classified by two gauge-invariant phases �1

and �2, which are defined on empty-square plaquettes and
J2-square plaquettes, respectively,

Ai j (−A∗
jk )Akl (−A∗

li ) = |A1|4ei�. (24)

The gauge-invariant “flux” values �1 and �2 in the empty
squares and J2 squares, respectively, are defined as the com-
plex phase of the product of nearest-neighbor boson pairing
Ansätze Ai j (−A∗

jk )Akl (−A∗
li ) around a plaquette [34]. Due to

time-reversal symmetry, �1 and �2 can only be 0 or π , and
the four different combinations of (�1,�2) correspond to the
4 gauge-inequivalent Ansätze solved by PSG. Therefore, the
6 PSG states only have 4 gauge-inequivalent Ansätze which
are named as (π, π )-, (0, π )-, (π, 0)-, and (0,0)-flux states
according to their gauge flux distribution. The configuration
details of these states are shown in Appendix A.

III. MEAN-FIELD STATES

In this section we will show the properties of these four
gauge-inequivalent spin liquid states, including the Ansatz
amplitudes, spinon dispersions, and the static and dynamic
spin structure factors.

In the Schwinger boson mean-field theory, the structure
factor can be expressed by the imaginary part of “bubble”
Feynman diagrams. Note that the anomalous Green’s func-
tion of the spinons also takes important parts. The static and
dynamic spin structure factor can be measured experimentally
by neutron scattering. In the following we will show the
mean-field results of the four gauge-inequivalent symmetric
spin liquid states. To consider the existence of the PS phase,
we also briefly discuss the PS states in the open square and
J2 square, which are not included in the symmetric spin liquid
states because they break the glide symmetry generated by Gx

and Gy.
All these mean-field Ansätze have the four-site unit cell

depicted in Fig. 3 and the Ansatz configurations are shown
in the figures in Appendix A. After Fourier transformation
bsk = 1√

Nc

∑
r e−ik·rbrs, where r = (X,Y ) labels the unit cell

and Nc is the number of unit cells, the mean-field Hamiltonian
in Eq. (7) can be formally written as

HMF =
∑

k

�
†
kDk�k + Nc[μ + μκ + 8J1(|A1|2 − |B1|2)

+ 2J2(|A2|2 − |B2|2)], (25)

where we have used the Nambu spinor �k =
(b0k↑, b1k↑, b2k↑, b3k↑, b†

0−k↓, b†
1−k↓, b†

2−k↓, b†
3−k↓)T . A1

and B1 are boson pairing and hopping Ansatz amplitudes on
n.n. bonds, respectively, and A2 and B2 are Ansätze on n.n.n.
bonds. The 8 × 8 matrix Dk satisfies

Dk = −μ1 +
(

Bk Ak

A†
k BT

−k

)
, (26)

where 1 is the 8 × 8 identity matrix. The 4 × 4 matrices Ak
and Bk have different expression in the 4 gauge-inequivalent
states. After a Bogoliubov transformation, the mean-field

Hamiltonian can be diagonalized as

HMF =
∑

ks

ωsk(γ †
sk↑γsk↑ + γ

†
sk↓γsk↓ + 1) + Nc[μ + μκ

+ 8J1(|A1|2 − |B1|2) + 2J2(|A2|2 − |B2|2)], (27)

where ωsk are the spinon dispersions, and s = 0, 1, 2, 3. The
self-consistent equations for symmetric spin liquid states are

16J1A1 = −
∑

s

∫
BZ

∂ωsk

∂A1
d2k, if A1 �= 0, (28a)

4J2A2 = −
∑

s

∫
BZ

∂ωsk

∂A2
d2k, if A2 �= 0, (28b)

16J1B1 =
∑

s

∫
BZ

∂ωsk

∂B1
d2k, if B1 �= 0, (28c)

4J2B2 =
∑

s

∫
BZ

∂ωsk

∂B2
d2k, if B2 �= 0, (28d)

1 + κ = −
∑

s

∫
BZ

∂ωsk

∂μ
d2k, (28e)

where the integral is over the first Brillouin zone (BZ). With
these self-consistent equations, the mean-field Ansatz can be
solved.

A. (0,0)-flux state

In the (0,0)-flux state, only A1 and B2 are nonzero and
the configuration is shown in Fig. 15 in Appendix A 2. The
Ak and Bk of this state are shown in Appendix B 1. After a
Bogoliubov transformation, we get the spinon dispersion ωsk.
Then the mean-field Ansatz is solved with the self-consistent
equations in Eq. (28). The spinon dispersion at κc and the
mean-field Ansatz amplitudes are shown in Fig. 4.

As shown in Fig. 4(a), the minima of the spinon dispersion
is located at Q = (π, π ), and the gap vanishes at κ = κc.
When κ is larger than κc, the spinon will condense and form
a Néel magnetic order. The details of the formation of the
magnetic order are discussed in Appendix C. The spinon
condenses at the white area in Figs. 4(b) and 4(c), and the
contours of the Ansatz amplitudes indicate the critical κc. We
find that κc is always smaller than 1 with the change of J1/J2.
Therefore, the (0,0)-flux state contributes to the magnetically
ordered state in the physical condition. In the condition κ <

κc, the invariant gauge group of this state is U (1), and this
state cannot exist stably and always confines.

B. (0, π)-flux state

In the (0, π )-flux state, the Ansatz amplitudes A1, A2, and
B1 are nonzero. The configuration of this state is shown in
Fig. 13 in Appendix A 1, and the Ak and Bk are shown in
Appendix B 2. Diagonalizing the mean-field Hamiltonian by
Bogoliubov transformation and solving these self-consistent
equations in Eq. (28) we have get the Ansatz amplitudes,
which are shown in Fig. 5.

With these Ansatz values, the spinon dispersion and the
structure factor can be obtained, which are shown in Fig. 6.
We find the bottom branch of the spinon dispersion is flat;
therefore, the critical spinon density κc is large in this state.
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FIG. 4. (a) is the spinon dispersion at κ = κc and J1 = J2 = 1 of (0,0)-flux state. The plot path is shown in Fig. 2(b). (b) and (c) are the
Ansatz A1 and B2 value, respectively. A2 and B1 are always zero in these two conditions. The spinon condenses at the white area in (b) and (c).

C. (π, 0)-flux state

In the (π, 0)-flux state, only the Ansatz amplitudes A1 and
B2 are nonzero, and the configuration is shown in Fig. 16 in
Appendix A 2. and the Ak and Bk are shown in Appendix B 3.
With these self-consistent equations in Eq. (28), the mean-
field Ansatz can be solved. The spinon dispersion at physical
condition κ = 1 and the Ansatz amplitudes are shown in
Fig. 7.

D. (π,π)-flux state

In the (π, π )-flux state, the Ansatz amplitudes A1, A2, and
B1 are nonzero. The configuration of this state is shown in
Fig. 14 in Appendix A 1, and the Ak and Bk are shown in
Appendix B 4. Solving the self-consistent equations in
Eq. (28) we get the Ansatz amplitudes, which are shown in
Fig. 8.

With these Ansatz values, the spinon dispersion and the
structure factor can be obtained, which are shown in Fig. 9.

As shown in Fig. 9(a), the minimum of the spinon disper-
sion is located at Q = (0, 0), and magnetic order will form
when κ > κc; the details are discussed in Appendix D.

E. Plaquette-singlet states

To study the PS phase, we have tried different Ansatz con-
figurations which break glide symmetries. After solving the
self-consistent equations, we find two plaquette-singlet state
solutions depicted in Fig. 17. These PS mean-field Ansätze
have nonzero A, B amplitudes only in the empty squares or J2

squares.

First we consider the plaquette-singlet state in the empty
square. The mean-field Hamiltonian can be written as

HMF = −NcJ1

∑
s

A1Âs,s+1 + H.c.

+ 4NcJ1

∑
s

|A1|2 − 4Ncμ(n̂ − κ ), (29)

where the summation is only for the sites in one unit cell,
because the mean-field Ansatz is decoupled into disconnected
empty squares. The s = 0, 1, 2, 3 in this summation is the
atom index in the unit cell shown in Fig. 3. After Bogoliubov
transformation, the mean-field Hamiltonian is diagonalized as

HMF = Nc

∑
s

ωs(γ
†
s↑γs↑ + γ

†
s↓γs↓ + 1)

+ Nc[μ + μκ + 4J1|A1|2], (30)

where the spinon dispersions ωs are

ω0 = ω1 = |μ|, (31)

ω2 = ω3 =
√

μ2 − |J1A1|2. (32)

The self-consistent equations are

8J1A1 = −
∑

s

∂ωs

∂A1
, (33)

1 + κ = −
∑

s

∂ωs

∂μ
. (34)

FIG. 5. The Ansatz value (a) A1, (b) A2, and (c) B1 of (0, π ) flux. A1 is finite at J1 is large and A2 is large at J1 is large. B1 is finite only
when A1 and A2 are both finite. B2 is always zero in this condition.
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FIG. 6. (a) is the spinon dispersion, (b) is the dynamic structure factor, and (c) is the static structure factor of (0, π )-flux state (J1/J2 = 0.7).
The plot path of (a) and (b) is shown in Fig. 2(b).

FIG. 7. (a) is the spinon dispersion at κ = κc and J1 = J2 = 1 of (π, 0) flux. The plot path is shown in Fig. 2(b). (b) and (c) are the Ansatz
A1 and B2 value, respectively. A2 and B1 are always zero in this condition.

FIG. 8. The Ansatz value (a) A1, (b) A2, and (c) B1 of (π, π ) flux. A1 is finite at J1 is large and A2 is large at J1 is large. B1 is finite only
when A1 and A2 are both finite. B2 is always zero in this condition.

FIG. 9. (a) is the spinon dispersion, (b) is the dynamic structure factor, and (c) is the static structure factor of (π, π )-flux state (J1/J2 = 0.7).
The plot path of (a) and (b) is shown in Fig. 2(b).
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Then we consider the plaquette-singlet state in the J2

square. The mean-field Hamiltonian can be written as

HMF = −NcJ1

∑
〈ss′〉

A1Âs,s′ + NcJ2B2B̂2 + H.c.

+ 4NcJ1

∑
s

|A1|2 − NcJ2|B2|2 − 4Ncμ(n̂ − κ ), (35)

where s is the index of the sites in the J2 square and s′ is
the nearest-neighbor site of the s site in the J2 square. After
Bogoliubov transformation, the mean-field Hamiltonian is di-
agonalized as

HMF = Nc

∑
s

ωs(γ
†
s↑γs↑ + γ

†
s↓γs↓ + 1) + Nc[μ + μκ

+ 4J1|A1|2 − J2|B2|2], (36)

where the spinon dispersions are

ω0 = |μ|, (37)

ω1 =
∣∣∣∣12 J2B2 − μ

∣∣∣∣, (38)

ω2 =
√(

1

4
J2B2 + μ

)2

− |J1A1|2 + J2B2

4
, (39)

ω3 =
√(

1

4
J2B2 + μ

)2

− |J1A1|2 − J2B2

4
, (40)

and the self-consistent equations are

8J1A1 = −
∑

s

∂ωs

∂A1
, (41)

2J2B2 =
∑

s

∂ωs

∂B2
, (42)

1 + κ = −
∑

s

∂ωs

∂μ
. (43)

IV. MEAN-FIELD PHASE DIAGRAM

In the last section we showed the details and results of the
four symmetric spin liquid states. The (π, π )- and (0,0)-flux
states are called π flux and zero flux hereafter. Comparing the
mean-field ground state energies of the 4 gauge-inequivalent
symmetric Ansätze with the change of J1/J2 and κ , we get
a mean-field phase diagram of the Heisenberg model in the
Shastry-Sutherland lattice, which is shown in Fig. 1(c). We
find only two Ansätze with zero or π flux in each plaquette
as mean-field ground states under physical condition (κ = 1).
The Ansatz configurations of these two state are shown in
Figs. 10(a) and 10(b).

The zero-flux state is the mean-field ground state for large
J1 (J1/J2 > 0.71 at κ = 1). The emergent gauge field for
the zero-flux state is a staggered U (1) gauge field, and the
spinons are either confined (possibly forming valence bond
solid) when κ is small [35] or condensed when κ is large. For
physical κ = 1 the spinons of the zero-flux state condense and
form the Néel AFM order. The zero-flux Schwinger boson
state and related phases have been discussed before in the
context of square lattice antiferromagnets [30].

FIG. 10. (a) and (b) are the Ansätze Ai j of the zero-flux and π -
flux states, respectively. An arrow from site i to j means Ai j > 0 and
Ai j in dashed lines are zero. The different arrows represent different
amplitudes of Ai j . (c) is the ground state energies of the 4 gauge-
inequivalent symmetric spin liquid Ansätze and two valence bound
solid (DS and PS) states for κ = 1. The inset in (c) is the details in
0.65 < J1/J2 < 0.75. It shows that only the DS state and (π, π )-flux
and (0,0)-flux SL states appear as mean-field ground states for κ = 1.

The π -flux state is the mean-field ground state for small J1

(J1/J2 < 0.71 at κ = 1). For intermediate J1 (0.66 < J1/J2 <

0.71 at κ = 1) this state has Z2 gauge field. For physical κ = 1
the spinons of this state are gapped and form a gapped Z2 spin
liquid. For very high κ (κ � 2.5 for J1/J2 ∼ 0.7) the bosons
will condense and likely form a 4-sublattice antiferromagnetic
order similar to the π -flux Schwinger boson state of square
lattice antiferromagnets [36].

In the lowest J1 region (J1/J2 < 0.66 at κ = 1) the π -flux
state reduces to the confined dimer-singlet state with only
next-nearest-neighbor boson pairing A2 �= 0.

Therefore, there are three distinct phases with the change of
J1/J2 for physical κ = 1 under the mean-field approximation:
the dimer-singlet phase for J1/J2 < 0.66, π -flux Z2 spin liquid
state for 0.66 < J1/J2 < 0.71, and Néel phase for J1/J2 >

0.71. We note that the ground state energy of the (0, π )-flux
state is slightly higher than the energy of π flux [(π, π ) flux]
as shown in the inset of Fig. 10(c). Therefore, the (0, π )-flux
state is not shown in the phase diagram in Fig. 1. However,
the energy difference of the (π, π )- and (0, π )-flux states is
very small. Therefore, this state may also exist beyond the
mean-field level.

The dynamic and static structure factors of the π -flux spin
liquid state are also calculated by the Schwinger boson mean-
field theory and shown in Figs. 9(b) and 9(c), respectively,
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FIG. 11. (a) is the magnon velocity near the Goldstone mode
calculated by linear spin wave and self-consistent spin wave the-
ory (see Appendix E). The magnon velocity of linear spin wave
vanishes at J1/J2 = 1, where the magnon dispersion becomes ∝ k2

and linear spin wave theory breaks down. (b) is the Néel order
parameter computed by self-consistent spin wave theory and linear
spin wave theory, which vanishes at J1/J2 ≈ 0.65 and J1/J2 ≈ 1.05,
respectively. (c) and (d) are the dynamic structure factor calculated
by self-consistent spin wave theory and Schwinger boson mean-field
theory in Néel phase. The parameters are J1 = 0.9, J2 = 1.

which may be used as numerical and experimental signatures
of this spin liquid state. In particular the dominant short-
range spin correlation in this π -flux SL state is related to a
4-sublattice AFM order (see Appendix D).

To further investigate the PS phase, we also study mean-
field Ansätze with plaquette-singlet order. There are two kinds
of plaquette-singlet states for the two kinds of plaquettes in
the Shastry-Sutherland lattice. Only the mean-field energy of
the plaquette-singlet state in the “empty” square is plotted
in Fig. 10(c), because it has lower ground state energy (see
Fig. 18 in Appendix A 3). We find that the ground state energy
of this state is always higher comparing with the minimum
energy of π - and zero-flux SL states with the change of param-
eter J1/J2, which is shown in Fig. 10(c). However, the energy
differences are small near the intermediate region of param-
eter J1/J2 with the π -flux SL ground state. Therefore, the
PS state may emerge after considering the gauge fluctuations
and projecting the mean-field wave function by Gutzwiller
projection, which is beyond the scope of the current work.
Because of the absence of the PS state in the mean-field
level, the possible DQCP [13,20] cannot be studied by the
Schwinger boson mean-field theory.

V. COMPARISON TO SELF-CONSISTENT SPIN WAVE
THEORY AND ED

The Néel phase can also be studied by the spin wave theory.
However, as shown in Figs. 11(a) and 11(b), the linear spin
wave theory breaks down at J1/J2 = 1 because the spin wave
dispersion becomes εk ∝ k2 under the linear spin wave at
J1/J2 = 1, and the magnetic order parameter for the spin-1/2
model vanishes at J1/J2 = 1.05, which is much larger than
the Néel phase boundary by other theories and numerics.
The details of the spin wave dispersion can be referred to

Appendix E. Near the Néel phase boundary, the magnon in-
teractions play important roles and need to be considered.
However, the conventional nonlinear spin wave theory by
1/S expansion also breaks down near J1/J2 = 1 because the
interaction correction depends on the linear spin wave Hamil-
tonian. Therefore, we use the self-consistent spin wave theory
[37,38] to incorporate the effects of magnon interactions. The
idea of the self-consistent spin wave theory is to decouple the
quartic terms of Holstein-Primakoff bosons into all possible
quadratic terms, and compute these corrections to the linear
spin wave Hamiltonian self-consistently. The details of the
self-consistent spin wave theory are given in Appendix E.
The magnetic order parameter vanishes at J1/J2 ≈ 0.65 by
self-consistent spin wave theory as shown in Fig. 11(b), which
yields a more accurate Néel phase boundary.

The dynamic structure factors in the Néel phase are cal-
culated to compare the self-consistent spin wave theory and
the Schwinger boson mean-field theory. Figures 11(c) and
11(d) are the dynamic structure factors at J1/J2 = 0.9 calcu-
lated by these two theories. In the Néel phase, the Schwinger
boson condenses and yields sharp magnon peaks in the
dynamic structure factor, while the noncondensing spinons
contribute to the continuum. Although the magnon interac-
tion is considered in the self-consistent spin wave theory,
the magnon damping channel is not included. Therefore, the
magnon peaks are always sharp and there is no continuum
in the dynamic structure factor calculated by self-consistent
spin wave theory. The dynamic structure factor calculated by
self-consistent spin wave theory is more consistent with the
Schwinger boson mean-field theory than the linear spin wave
theory. We note that the energy scales of dynamic structure
factors are different in the Schwinger boson mean-field theory
and spin wave theory, and they should become identical in the
large-S limit.

We also compare the ground state properties computed by
SBMFT and exact diagonalization (see Appendix G). The
results are shown in Fig. 12. The ground state from 32-site ex-
act diagonalization is the exact dimer-single state for J1/J2 <

0.68, which is consistent with previous exact-diagonalization
studies [11,39] and very close to the SBMFT phase bound-
ary J1/J2 ∼ 0.66 for the DS phase. The nearest-neighbor and
next-nearest-neighbor spin correlations also show similar be-
havior in SBMFT and exact diagonalization. Note that the
〈Si · S j〉n.n.n. in Fig. 12(e) is −1.25, which is less than −3/4
(the minimal possible value for spin-1/2) in the DS phase.
This is due to the spin size (boson number) fluctuation in the
mean-field approximation [33].

VI. DISCUSSION AND CONCLUSION

We studied the Shastry-Sutherland model by the
Schwinger boson mean-field theory. Using the projective
symmetry group method, we find two kinds of possible
symmetric Ansätze. Comparing the energy of the two Ansätze
with the change of J1/J2 and κ , we get the Schwinger
boson mean-field phase diagram of the Shastry-Sutherland
model. We find a π -flux gapped Z2 spin liquid state for the
intermediate parameter 0.66 < J1/J2 < 0.71 between the
dimer-singlet phase and the Néel AFM phase. This π -flux
spin liquid state is continuously connected to the DS phase,
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FIG. 12. (a), (c), (e) and (b), (d), (f) are observables calculated
by Schwinger boson mean-field theory and 32-site exact diagonal-
ization, respectively. (a) and (b) are the ground state energy per unit
cell. (c) and (d) are the nearest-neighbor (n.n.) spin correlation. (e)
and (f) are the next-nearest-neighbor (n.n.n.) spin correlation. The
Shastry-Sutherland lattice has three inequivalent n.n.n. bonds, which
are J2 bond, bond crossing J2 bond, and empty bond. The dashed
lines in (b), (d), and (f) are J1/J2 = 0.68. The discontinuity of spin
correlation functions and slope of ground state energies at J1/J2 =
0.71 in (a), (c), (e) indicate that the transition from π -flux spin
liquid to Néel order is first order under mean-field approximation,
while the transition from DS to π -flux spin liquid at J1/J2 = 0.66
seems continuous. Note that in (e) 〈Si · S j〉n.n.n. is less than −3/4 (the
minimal possible value for spin-1/2) in some parameter range; this
is due to the spin size (boson number) fluctuation in the mean-field
approximation [33].

but has a first-order transition to the Néel AFM phase upon
increasing J1/J2, which can be seen from the discontinuity of
spin correlation functions and slope of ground state energies
in the Schwinger boson mean-field results in Fig. 12. The
continuous transition between the spin liquid and DS phases
is an example of the confinement transition of the Ising gauge
field [40], which can be described by the condensation of
gauge flux excitations (“visons”) and should be dual to an 3D
Ising transition. The short-range spin correlation in the π -flux
state is closely related to a 4-sublattice AFM order instead of
Néel AFM order. We expect that ring-exchange coupling with
opposite sign to that derived from the Hubbard model would
further stabilize this π -flux spin liquid state [33].

To investigate the possibility of the plaquette-singlet state
[12,14,16,18,20–22], we studied PS-ordered Ansätze which
break the glide symmetry. We found that the ground state
energy of these PS-ordered Ansätze are higher compared with
the symmetric spin liquid Ansätze under the mean-field ap-
proximation. Therefore, the PS phase does not exist in our
mean-field phase diagram. However, the energy difference

between the PS phase and spin liquids is small in the spin
liquid phase. So it is possible that the PS phase may emerge
after considering gauge fluctuations and Gutzwiller projection
of mean-field wave functions, which we leave for future stud-
ies.

To further investigate the Néel AFM phase, we used
a self-consistent spin wave theory because the linear spin
wave theory breaks down for J1/J2 < 1. The self-consistent
spin wave theory renormalizes the magnon dispersion by
the magnon interactions, and further stabilizes the magnetic
order down to J1/J2 ∼ 0.65. The dynamic structure factor
calculated by this theory is more consistent with the results
of Schwinger boson mean-field theory except for an overall
energy scale.

We have also performed exact diagonalization of the
Shastry-Sutherland model with 32 sites. The results indi-
cate that the phase boundary of the dimer-singlet phase is
J1/J2 ∼ 0.68, which is roughly consistent with the Schwinger
boson mean-field result and previous exact-diagonalization
studies of larger system sizes [39]. The behavior of spin
correlation functions from the exact-diagonalization results is
similar to those of the Schwinger boson mean-field theory,
which provides partial support of our mean-field picture of
the Shastry-Sutherland model.

Some previous numerical studies [24–26] suggest that the
spin liquid phase in the Shastry-Sutherland model is gapless
and possibly described by fermionic spinons with Dirac-cone
dispersions similar to the DQCP [20]. This gapless spin liquid
phase cannot be captured by our Schwinger boson mean-field
theory. The possible transition from gapless U (1) spin liquids
to gapped Z2 spin liquids may be studied in controlled large-N
approximation [41]. The resulting gapped Z2 fermionic spinon
spin liquid is likely a dual description of the Schwinger boson
symmetric Z2 spin liquids considered here [42], and may be
an interesting direction for future theoretical and numerical
studies. However it should be noted that the “π flux” for
Abrikosov fermion hoppings in this U (1) spin liquid [20] is
not directly related to the “π flux” of boson pairing terms in
our Schwinger boson formalism. In our honest opinion, our
Schwinger boson formalism as well as other slave particle
formalism are just “phenomenological” low-energy effective
theories for quantum spin liquids, that may or may not be
realized in a particular model, and should be justified by
further numerical and experimental studies.
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APPENDIX A: SOLUTIONS OF THE ALGEBRAIC PSG

In the following we will solve the algebraic PSGs by using
these algebraic constraints on the generators of the Shastry-
Sutherland lattice space group.

We only consider the condition where the invariant gauge
group (IGG) is Z2. For a space ground element g, the
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Schwinger boson operators are transformed as

b̂r,s → exp[iφg(gr)]b̂gr,s. (A1)

For a defining relation g1g2 · · · gk = 1, we have

φg1g2·gk (g1g2 · gkr) + φg2·gk (g2 · gkr) + · · · + φgk (gkr)

= (an IGG element) = pπ, p ∈ Z2. (A2)

Note that all these equations about φs are implicitly modulo
2π .

We consider a gauge transformation b̂r,s = exp[iφ(r)]b̂′
r,s;

then the generators of PSG are transformed as

φ′
g(gr) = φg(gr) + φ(gr) − φ(r). (A3)

With this relation, by choosing φ(X,Y, s) for all X �= 0, we
can make φ′

TX
(X,Y, s) = 0 for all X,Y, s; then by choosing

φ(X = 0,Y, s), we can make φ′
TY

(X = 0,Y, s) = 0 for all Y, s.

We are still left three gauge freedoms. The first one is the
global constant phase,

φ(X,Y, s)1 = φs; (A4)

this does not change φTX
and φTY

, but will change φC4
and φσ

as

φ′
C4

(X,Y, s) = φC4
(X,Y, s) + φs − φs−1, (A5)

φ′
σ (X,Y, s) = φσ (X,Y, s) + φs − φ−s. (A6)

The second gauge freedom is

φ(X,Y, s)2 = π · X, (A7)

which also does not change φTX
and φTY

modulo IGG, but will
change φC4

and φσ as

φ′
C4

(X,Y, s) = φC4
(X,Y, s) + π · (X − Y ), (A8)

φ′
σ (X,Y, s) = φσ (X,Y, s) + π · (X − Y − x−s). (A9)

The third gauge freedom is

φ(X,Y, s)3 = π · (X + Y ), (A10)

which does not change φTX
and φTY

and φC4
modulo IGG, but

will change φσ as

φ′
σ (X,Y, s) = φσ (X,Y, s) − π · (x−s + y−s)

= φσ (X,Y, s) + π · s. (A11)

We then consider the relation of the generators of the space
group. From the relation of Eq. (12), the algebraic constraint
is (φTX

omitted hereafter),

φTY
(X + 1,Y, s) − φTY

(X,Y, s) = p1π ; (A12)

then the solution is

φTY
(X,Y, s) = p1π · X. (A13)

The algebraic constraint from the relation of Eq. (13) is

−φTY
(X,Y + 1, s) + φC4

(X + 1,Y + 1, s) − φC4
(X,Y, s)

= p2π ; (A14)

then we have

φC4
(X + 1,Y + 1, s) − φC4

(X,Y, s) = p2π + p1π · X.

(A15)

From the relation of Eq. (14), we have

φC4
(X + 1,Y, s) − φTY

(Y,−X, s − 1) − φC4
(X,Y, s)

= p3π, (A16)

which yields

φC4
(X + 1,Y, s) − φC4

(X,Y, s) = p3π + p1π · Y. (A17)

Combining with Eq. (A15), the solution is

φC4
(X,Y, s) = φC4

(X,Y, s) + p2π · Y + p3π · (X − Y )

+ p1π · [XY − 1
2Y (Y + 1)

]
. (A18)

Note that we can use the gauge freedom φ2 to set p3 = 0.
From the relation of Eq. (15), the algebraic constraint is

φC4
(X,Y, s) + φC4

(Y,−X, s + 3) + φC4
(−X,−Y, s + 2)

+φC4
(−Y, X, s + 1) = p4π, (A19)

from which we have∑
s

φC4
(0, 0, s) + p1π · (X 2 + Y 2) = p4π. (A20)

Therefore we must have p1 = 0; then φTY
(X,Y, s) = 0. For

simplicity, we define φC4,s
= φC4

(0, 0, s); then we have the
solution

φC4
(X,Y, s) = p2π · Y + φC4,s

, (A21)

with
∑

s φC4,s
= p4π .

The relation of Eq. (16) yields

φσ (X + 1,Y, s) − φTY
(−Y + x−s,−X + y−s,−s)

−φσ (X,Y, s) = p5π ; (A22)

then we have

φσ (X + 1,Y, s) − φσ (X,Y, s) = p5π. (A23)

Then we consider the relation of Eq. (17), which yields

−φTY
(X,Y + 1, s) + φσ (X,Y + 1, s) − φσ (X,Y, s) = p6π ;

(A24)

then we have

φσ (X,Y + 1, s) − φσ (X,Y, s) = p6π. (A25)

Combined with Eq. (A23), we get the solution

φσ (X,Y, s) = φσ (0, 0, s) + p5π · X + p6π · Y. (A26)

Finally, we consider the relations of Eq. (18) and Eq. (19).
The algebraic constraint of Eq. (18) is

φσ (X,Y, s) − φσ (−Y − ys,−X − xs,−s) = p7π. (A27)

Substituting Eq. (A26) to this equation, we get

φσ (0, 0, s) + φσ (0, 0,−s) + (p5 − p6)π · (X − Y )

−p5πys − pyπxs = p7π ; (A28)
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then we must have p5 = p6. For simplicity, we define
φσ ,s = φσ (0, 0, s); then φσ (X,Y, s) = p5π · (X + Y ) + φσ ,s,
and φσ ,s + φσ ,−s = p7π + p5π · s. The relation Eq. (19)
yields

φC4
(X + 1,Y, s) + φσ (Y,−X − 1, s − 1) + φC4

(X + xs,

− Y − ys, 1 − s) − φσ (X,Y, s) = p8π. (A29)

Substituting Eq. (A21) and (A26), we have

φC4,s
+ φC4,1−s + p2π · (−ys) + φσ ,s−1 − φσ ,s − p5π=p8π,

(A30)

which yields the following 4 equations by setting the value of
s,

φC4,0
+ φC4,1

+ φσ ,3 − φσ ,0 = p8π + p5π, (A31)

φC4,1
+ φC4,0

+ φσ ,0 − φσ ,1 = p8π + p5π, (A32)

φC4,2
+ φC4,3

+ φσ ,1 − φσ ,2 = p8π + p5π + p2π, (A33)

φC4,3
+ φC4,2

+ φσ ,2 − φσ ,3 = p8π + p5π + p2π. (A34)

With Eqs. (A31) and (A32), we get (φσ ,3 + φσ ,1) − 2φσ ,0 =
p5π = 0; then we have p5 = 0. Then we can set p8 = 0 by
using gauge freedom φ3. With the gauge freedom φ1, we can
also set φC4,1

= φC4,2
= φC4,3

= 0; then we have φC4,0
= p4π .

To conclude, the solutions to φσ ,s are (modulo IGG)

φσ ,0 = p7π

2
+ p4π, (A35)

φσ ,3 = p7π

2
, (A36)

φσ ,1 = p7π

2
, (A37)

φσ ,2 = p7π

2
+ p2π. (A38)

Finally, we get the final solution to algebraic PSG:

φTX
(X,Y, s) = 0, (A39)

φTY
(X,Y, s) = 0, (A40)

φC4
(X,Y, s) = p2π · Y + p4π · δs,0, (A41)

φσ (X,Y, s) = p7π

2
+ p2π · xsys + p4π · δs,0, (A42)

with three remaining free Z2 integer parameters p2, p4, p7.
Therefore, there are at most 8 kinds of PSGs.

Then we need to consider the constraints on PSG
by Ansätze. The n.n. bond poses no constraint, because
there is no nontrivial space group element that maps one
n.n. bond to itself or its reverse. For the n.n.n. bond,
if An.n.n. �= 0, consider (0, 0, 0) − (0,−1, 2), which is in-
variant under σ ; then φσ (0, 0, 0) + φσ (0,−1, 2) = p7π +
p2π + p4π = 0, namely p2 + p4 + p7 = 0; if Bn.n.n. �=
0, consider (0, 0, 0) − (0,−1, 2), which is invariant un-
der σ ; then φσ (0, 0, 0) − φσ (0,−1, 2) = −p2π − p4π = 0,
namely p2 + p4 = 0; this is incompatible with An.n.n. �= 0;
consider (−1, 0, 1) − (0, 0, 3), which is reverted by σ ; then
φσ (−1, 0, 1) − φσ (0, 0, 3) = 0; then if Bn.n.n. �= 0, it must be

FIG. 13. (a) A. (b) B. The Ansätze in dashed lines are 0. The
Ansätze B are all real and in solid and dotted lines have opposite
sign. It is 0 flux in empty squares and π flux in J2 squares.

real. If we only consider the condition where at least one
of An.n.n. and Bn.n.n. is not zero, there are at most 6 kinds
of PSGs with these constraints. If we assume the nearest-
neighbor Ansatz A1 is nonzero, these 6 states can be classified
by two gauge-invariant phases �1 and �2, which are de-
fined on empty square plaquettes and J2 square plaquettes,
respectively,

Ai j (−A∗
jk )Akl (−A∗

li ) = |A1|4ei�. (A43)

We find that these Ansätze with same gauge flux (�1,�2)
are gauge equivalent; therefore, we have 4 gauge-inequivalent
Ansätze. We will show the Ansätze and the properties of these
6 kinds of PSGs in the following.

1. An.n.n. �= 0 and Bn.n.n. = 0

In this condition, p2 + p4 = 1 and p7 = 1, and there are
two possible Ansätze.

For the (p2, p4, p7) = (1, 0, 1) condition, we have the PSG
solution,

φTx (X,Y, s) = 0, (A44)

φTy (X,Y, s) = 0, (A45)

φC4 (X,Y, s) = π · Y, (A46)

φσ (X,Y, s) = π

2
+ xsysπ, (A47)

FIG. 14. (a) A. (b) B. The Ansätze in dashed lines are 0. The
Ansätze B are all real and in solid and dotted lines have opposite
sign. It is π flux in empty squares and π flux in J2 squares.
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FIG. 15. (a) A of (p2, p4, p7) = (0, 0, 0). (b) A of (p2, p4, p7) =
(0, 0, 1). The Ansätze in dashed lines are 0. The two Ansätze are
gauge equivalent. It is 0 flux in empty squares and 0 flux in J2

squares. Bn.n. = 0 and Bn.n.n. are real and uniform.

from which we get the (0, π )-flux Ansatz in this condition,
which is shown in Fig. 13. Therefore, after considering the
fluctuation of the gauge field and Gutzwiller projection, the
(0, π ) flux may also exist in the phase diagram.

For the (p2, p4, p7) = (0, 1, 1) condition, we have

φTx (X,Y, s) = 0, (A48)

φTy (X,Y, s) = 0, (A49)

φC4 (X,Y, s) = δs,0π, (A50)

φσ (X,Y, s) = π

2
+ δs,0π. (A51)

The Ansätze are the (π, π ) flux, which is shown in Fig. 14.

2. An.n.n. = 0 and Bn.n.n. �= 0

In this condition, p2 + p4 = 0 and there are no constraints
on p7. Therefore, there are four types of possible Ansätze.

First we consider the p2 = p4 = 0 condition. For the
(p2, p4, p7) = (0, 0, 0) condition, the PSG solution is

φC4 (X,Y, s) = 0, (A52)

φσ (X,Y, s) = 0, (A53)

FIG. 16. (a) A of (p2, p4, p7) = (1, 1, 0). (b) A of (p2, p4, p7) =
(1, 1, 1). The Ansätze in dashed lines are 0. The two Ansätze are
gauge equivalent. It is π flux in empty squares and 0 flux in J2

squares. Bn.n. = 0 and Bn.n.n. are real and uniform.

FIG. 17. The Ansätze A of plaquette-singlet state in (a) empty
squares and (b) J2 squares. B of the PS state in empty squares is
always zero. For the B of the PS state in J2 squares, only the B2 in
the J2 bonds of the J2 squares is nonzero. Ansätze A in dashed bonds
are vanishing in the self-consistent solution.

while (p2, p4, p7) = (0, 0, 1) is

φC4 (X,Y, s) = 0, (A54)

φσ (X,Y, s) = π

2
. (A55)

The Ansätze of these two conditions are both (0,0) flux and
gauge equivalent, which are shown in Fig. 15.

Then we consider the p2 = p4 = 1 condition. For the
(p2, p4, p7) = (1, 1, 0) condition, the PSG solution is

φC4 (X,Y, s) = Y π + δs,0, (A56)

φσ (X,Y, s) = xsysπ + δs,0π, (A57)

while (p2, p4, p7) = (1, 1, 1) is

φC4 (X,Y, s) = Y π + δs,0, (A58)

φσ (X,Y, s) = π

2
+ xsysπ + δs,0π. (A59)

FIG. 18. The mean-field ground state energies in the physical
condition κ = 1. The ground state energy of plaquette-singlet (PS) in
the J2-square is much larger than that in the empty-square condition
because of the existence of B2.
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The Ansätze are both (π, 0) flux and also gauge equivalent,
which are shown in Fig. 16.

3. Plaquette-singlet state

Now we consider the plaquette-singlet states, which break
the glide symmetry and are out of the algebraic PSG
solutions. After self-consistent calculation, we find only
the zero-flux plaquette-singlet Ansätze can be solved self-
consistently, and the self-consistent solutions are such that
only the Ansätze (A and B) within the selected plaquettes
are nonzero. Because there are two inequivalent plaquettes
(empty square and J2 square) in the Shastry-Sutherland lattice,
only two inequivalent plaquette-singlet Ansätze exist, which

are shown in Fig. 17. Calculating the self-consistent equa-
tions in Sec. III E, we get the ground state energy with the
change of J1/J2. The energies of these two PS states and (0,0)
and (π, π ) states in physical condition κ = 1 are shown in
Fig. 18.

APPENDIX B: DETAILS OF SCHWINGER BOSON
MEAN-FIELD HAMILTONIAN

In the previous section, we showed the mean-field Ansatz
configurations of the 6 PSGs, which can classified by 4 gauge-
inequivalent solutions. We also showed the configurations of
2 PS states. In this section, we show the Hamiltonian details
of the 4 symmetric spin liquid states and 2 PS states.

1. (0,0)-flux state

After Fourier transformation, the mean-field Hamiltonian of the symmetric spin liquids are formally written as Eq. (26).
The mean-field configurations of the (0, π )-flux state are shown in Fig. 15. Because the two configurations in Fig. 15 are
gauge equivalent and have the same physical properties, we just need to consider one of the configurations. If we consider the
configuration of Fig. 15(a), the 4 × 4 matrices Ak and Bk of the (0,0)-flux state are

Ak =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1

2 J1A1(−1 + e−ik1 ) 0 1
2 J1A1(1 − e−ik2 )

1
2 J1A1(1 − eik1 ) 0 1

2 J1A1(−1 + e−ik2 ) 0

0 1
2 J1A1(1 − eik2 ) 0 1

2 J1A1(−1 + eik1 )
1
2 J1A1(−1 + eik2 ) 0 1

2 J1A1(1 − e−ik1 ) 0

⎞⎟⎟⎟⎟⎟⎟⎠, (B1)

Bk =

⎛⎜⎜⎜⎜⎜⎝
0 0 1

2 J2B2e−ik2 0

0 0 0 1
2 J2B2eik1

1
2 J2B2eik2 0 0 0

0 1
2 J2B2e−ik1 0 0

⎞⎟⎟⎟⎟⎟⎠. (B2)

2. (0, π)-flux state

The mean-field configurations of the (0, π )-flux state are shown in Fig. 13. The Ak and Bk of the (0,0)-flux state are

Ak =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1

2 J1A1(−1 − e−ik1 ) − 1
2 J2A2e−ik2 1

2 J1A1(1 + e−ik2 )
1
2 J1A1(1 + eik1 ) 0 1

2 J1A1(−1 + e−ik2 ) − 1
2 J2A2eik1

1
2 J2A2eik2 1

2 J1A1(1 − eik2 ) 0 1
2 J1A1(−1 + eik1 )

1
2 J1A1(−1 − eik2 ) 1

2 J2A2e−ik1 1
2 J1A1(1 − e−ik1 ) 0

⎞⎟⎟⎟⎟⎟⎟⎠, (B3)

Bk =

⎛⎜⎜⎜⎜⎜⎝
0 1

2 B1(−1 − e−ik1 ) 0 1
2 B1(−1 − e−ik2 )

1
2 B1(−1 − eik1 ) 0 1

2 B1(−1 + e−ik2 ) 0

0 1
2 B1(−1 + eik2 ) 0 1

2 B1(−1 + eik1 )
1
2 B1(−1 − eik2 ) 0 1

2 B1(−1 + e−ik1 ) 0

⎞⎟⎟⎟⎟⎟⎠. (B4)

3. (π, 0)-flux state

The mean-field configurations of the (π, 0)-flux state are shown in Fig. 16. Because the two configurations in Fig. 16 are
gauge equivalent and have the same physical properties, we just need to consider one of the configurations. If we consider the
configuration of Fig. 16(a), the Ak and Bk of the (π, 0)-flux state are
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Ak =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1

2 J1A1(−1 − e−ik1 ) 0 1
2 J1A1(−1 − e−ik2 )

1
2 J1A1(1 + eik1 ) 0 1

2 J1A1(−1 + e−ik2 ) 0

0 1
2 J1A1(1 − eik2 ) 0 1

2 J1A1(−1 + eik1 )
1
2 J1A1(1 + eik2 ) 0 1

2 J1A1(1 − e−ik1 ) 0

⎞⎟⎟⎟⎟⎟⎟⎠, (B5)

Bk =

⎛⎜⎜⎜⎜⎜⎝
0 0 1

2 J2B2e−ik2 0

0 0 0 1
2 J2B2eik1

1
2 J2B2eik2 0 0 0

0 1
2 J2B2e−ik1 0 0

⎞⎟⎟⎟⎟⎟⎠. (B6)

4. (π,π)-flux state

The mean-field configurations of the (π, π )-flux state are shown in Fig. 14. The Ak and Bk of the (π, π )-flux state are

Ak =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1

2 J1A1(−1 − e−ik1 ) − 1
2 J2A2e−ik2 1

2 J1A1(−1 − e−ik2 )
1
2 J1A1(1 + eik1 ) 0 1

2 J1A1(−1 − e−ik2 ) − 1
2 J2A2eik1

1
2 J2A2eik2 1

2 J1A1(1 + eik2 ) 0 1
2 J1A1(−1 − eik1 )

1
2 J1A1(1 + eik2 ) 1

2 J2A2e−ik1 1
2 J1A1(1 + e−ik1 ) 0

⎞⎟⎟⎟⎟⎟⎟⎠, (B7)

Bk =

⎛⎜⎜⎜⎜⎜⎝
0 1

2 B1(1 + e−ik1 ) 0 1
2 B1(−1 − e−ik2 )

1
2 B1(1 + eik1 ) 0 1

2 B1(1 + e−ik2 ) 0

0 1
2 B1(1 + eik2 ) 0 1

2 B1(1 + eik1 )
1
2 B1(−1 − eik2 ) 0 1

2 B1(1 + e−ik1 ) 0

⎞⎟⎟⎟⎟⎟⎠. (B8)

5. Plaquette-singlet states

The mean-field configurations of the plaquette-singlet states are shown in Fig. 17. It shows that the mean-field Ansätze are de-
coupled into disconnected empty or J2 squares. In the Nambu spinor �k = (b0k↑, b1k↑, b2k↑, b3k↑, b†

0−k↓, b†
1−k↓, b†

2−k↓, b†
3−k↓)T ,

the Hamiltonian matrices of the PS states of the open square and J2 square are

Hopen square =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μ 0 0 0 0 − 1
2 J1A1 0 − 1

2 J1A1

0 −μ 0 0 1
2 J1A1 0 − 1

2 J1A1 0

0 0 −μ 0 0 1
2 J1A1 0 1

2 J1A1

0 0 0 −μ 1
2 J1A1 0 − 1

2 J1A1 0

0 1
2 J1A1 0 1

2 J1A1 −μ 0 0 0

− 1
2 J1A1 0 1

2 J1A1 0 0 −μ 0 0

0 − 1
2 J1A1 0 − 1

2 J1A1 0 0 −μ 0

− 1
2 J1A1 0 1

2 J1A1 0 0 0 0 −μ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (B9)

HJ2 square =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μ 0 0 0 0 − 1
2 J1A1 0 − 1

2 J1A1

0 −μ 0 1
2 J2B2

1
2 J1A1 0 − 1

2 J1A1 0

0 0 −μ 0 0 1
2 J1A1 0 1

2 J1A1

0 1
2 J2B2 0 −μ 1

2 J1A1 0 − 1
2 J1A1 0

0 1
2 J1A1 0 1

2 J1A1 −μ 0 0 0

− 1
2 J1A1 0 1

2 J1A1 0 0 −μ 0 1
2 J2B2

0 − 1
2 J1A1 0 − 1

2 J1A1 0 0 −μ 0

− 1
2 J1A1 0 1

2 J1A1 0 0 1
2 J2B2 0 −μ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B10)

Note that we choose the the J2 square as the unit cell of HJ2 square to get the decoupled Hamiltonian.

134409-14



SCHWINGER BOSON SYMMETRIC SPIN LIQUIDS OF … PHYSICAL REVIEW B 109, 134409 (2024)

APPENDIX C: MAGNETIC ORDER FROM THE ZERO-FLUX STATE

In the Schwinger boson formalism, the magnetic order is formed by the condensation of the Schwinger bosons. When the
density of the boson is larger than the critical κc, the dispersion of the spinon will become zero at several Q points, and the
spinon will condense at these Q points and develop magnetic orders.

For the Shastry-Sutherland model, the Néel phase is formed by the condensation of the zero-flux [(0,0)-flux] state. As shown
in Fig. 4(a), the dispersion of spinons becomes zero at Q = (π, π ). Note that Q = −Q. If we choose the empty square as the
unit cell, after Fourier transformation br = 1√

Nc

∑
r e−ik·rbk, the mean-field Hamiltonian becomes

HMF =
∑

k

�
†
kDk�k + Nc[μ + μκ + 8J1|A1|2 − 2J2|B2|2], (C1)

where we have used the Nambu spinor �k = (b0k↑, b1k↑, b2k↑, b3k↑, b†
0−k↓, b†

1−k↓, b†
2−k↓, b†

3−k↓)T . The subscript s = 0, 1, 2, 3
in bskσ is the atom index in the unit cell, which is shown in Fig. 3. The 8 × 8 matrix Dk at Q is

DQ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μ 0 J2B2 0 0 J1A1 0 J1A1

0 −μ 0 J2B2 −J1A1 0 −J1A1 0

J2B2 0 −μ 0 0 J1A1 0 J1A1

0 J2B2 0 −μ −J1A1 0 −J1A1 0

0 −J1A1 0 −J1A1 −μ 0 J2B2 0

J1A1 0 J1A1 0 0 −μ 0 J2B2

0 −J1A1 0 −J1A1 J2B2 0 −μ 0

J1A1 0 J1A1 0 0 J2B2 0 −μ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (C2)

In the critical density κc, it satisfies

−μ + J2B2 − 2A1 = 0. (C3)

At this point, DQ has two eigenvectors with zero eigenvalue,

�1 = 1√
2

(0 1 0 1 1 0 1 0)T ,

�2 = 1√
2

(−1 0 −1 0 0 1 0 1)T . (C4)

Therefore, the condensation at Q is 〈�Q〉 = c1�1 + c2�2,
where c1,2 are two complex numbers. We define xs ≡
(〈b(X,Y,s)↑〉, 〈b(X,Y,s)↓〉)T ; then condensation on site (X,Y, s) is
given by

x0 = x2 = (−1)X+Y

√
2

(−c2

c∗
1

)
,

x1 = x3 = (−1)X+Y

√
2

(
c1

c∗
2

)
, (C5)

and the ordered magnetic momentum is then S(X,Y, s) =
1
2 x†

s σxs. Thus we have

S(X,Y, 0) = S(X,Y, 2) = n, (C6)

S(X,Y, 1) = S(X,Y, 3) = −n, (C7)

where n is the SO(3) vector corresponding with the SU (2)
vector (−c2, c∗

1 )T . This gives the Néel magnetic order mo-
mentum,

S(r) = (−1)rn. (C8)

APPENDIX D: MAGNETIC ORDER FROM THE π-FLUX
STATE

In the large-κ limit, the spinon in the π -flux spin liquid
phase will also condense and form magnetic order. In this
section, we discuss the magnetic order from the π -flux state.

The mean-field Hamiltonian of the (π, π )-flux state is

HMF =
∑

k

�
†
kDk�k + Nc[μ + μκ

+ 8J1(|A1|2 − |B1|2) + 2J2|A2|2], (D1)

where the expression Dk is shown in Eq. (26), and the Ak and
Bk are shown in Eq. (B5) and Eq. (B6), respectively.

For simplicity, we only discuss the large-J1 condition,
where only A1 is finite. In the mean-field level, the Shastry-
Sutherland lattice is equivalent to the square lattice in this
condition where A2 and B2 vanish. The magnetic order of this
condition is

S(X,Y, 0) = n1 + n2 + n3, (D2)

S(X,Y, 1) = −n1 + n2 − n3, (D3)

S(X,Y, 2) = −n1 − n2 + n3, (D4)

S(X,Y, 3) = n1 − n2 − n3, (D5)

which is discussed in Ref. [36], and n2
1 + n2

2 + n2
3 = n2. The

details of the calculation can be referred to Appendix C in
Ref. [36].

APPENDIX E: SELF-CONSISTENT SPIN WAVE THEORY

In this section, we introduce the self-consistent spin wave
theory in detail. Near the phase boundary of the Néel phase,
the quantum fluctuation is significant and the interaction of
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magnons takes an important role. For the Shastry-Sutherland
model, the linear spin wave Hamiltonian is not positive or
semipositive definite in J1/J2 < 1, and the linear spin wave
theory breaks down in this region. The nonlinear spin wave
theory also breaks down because the correction of the magnon
interaction depends on the magnon wave function of linear
spin wave theory. Therefore, we need to use a self-consistent
spin wave theory to study the Néel phase of the Shastry-
Sutherland model in J1/J2 < 1.

Spin wave theory is to describe the ordered phase in terms
of small fluctuations of the spins about their expectation val-
ues, which can be regarded as the classical ground state of the
Hamiltonian. For the Shastry-Sutherland model, the magnetic
ordered state is a Néel state, and the classical ground state
is the Néel antiferromagnetic state. With the classical ground

state, the spin Hamiltonian can be expressed by the boson
operators by the Holstein-Primakoff transformation [43]. Ex-
panding the Hamiltonian by 1/S as we regarding S as a large
number, the Hamiltonian is transformed to

H = H0 + H2 + H4 + H6 + · · · , (E1)

where the linear term H1 vanishes if the classical ground
state is proper. Keeping up to quadratic terms H2, one obtains
the noninteracting spin wave Hamiltonian. The higher-order
terms H4 + H6 + · · · introduce the interactions of magnons.
For the Shastry-Sutherland model, if we choose the “J2

square” as the unit cell, the linear spin wave Hamiltonian H2

in the momentum space can be written as

H2 =
∑

k

(a†
k b†

k c†
k d†

k a−k b−k c−k d−k)Hk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ak

bk

ck

dk

a†
−k

b†
−k

c†
−k

d†
−k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
; (E2)

here a, b, c, d are the Holstein-Primakoff bosons for the unit cell that has 4 sites. The Hk satisfies

Hk =
(

Bk Ak

A†
k BT

−k

)
, (E3)

Ak =

⎛⎜⎜⎜⎜⎜⎝
0 1

2 J1(1 + eik1 ) 0 1
2 J1(1 + eik2 )

1
2 J1(1 + e−ik1 ) 0 1

2 J1(1 + eik2 ) 0

0 1
2 J1(1 + e−ik2 ) 0 1

2 J1(1 + e−ik1 )
1
2 J1(1 + e−ik2 ) 0 1

2 J1(1 + eik1 ) 0

⎞⎟⎟⎟⎟⎟⎠, (E4)

Bk =

⎛⎜⎜⎜⎜⎜⎜⎝
2J1 − 1

2 J2 0 0 0

0 2J1 − 1
2 J2 0 1

2 J2ei(k1−k2)

0 0 2J1 − 1
2 J2 0

0 1
2 J2ei(−k1+k2) 0 2J1 − 1

2 J2

⎞⎟⎟⎟⎟⎟⎟⎠. (E5)

Using Bogoliubov transformation to diagonalize the Hk, we will get the linear spin wave dispersion and wave functions, which
break down at J1/J2 < 1. The self-consistent spin wave theory is to use the boson-pair expectation values to decouple the quartic
terms. We use a specific term for example:

∑
k,p,q

V (k, p, q)a†
kb†

paqbk+p−q ≈
∑

k

⎡⎣∑
p,q

V (k, p, k)〈b†
pbp〉

⎤⎦a†
kak + · · ·

=
∑

k

f (k)a†
kak + · · · . (E6)
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Here a and b are the boson operators of different flavors, and
we set

∑
k f (k) ≡ ∑

p,q V (k, p, k)〈b†
pbp〉. The symbol (· · · )

represents the other decoupling types. Therefore, the Hamil-
tonian is transformed into

H = H2 + H4 + · · ·
= H2 + H̃2 + H4 − H̃2 + · · ·
= H ′

2 + H ′
4, (E7)

and H ′
4 = 0 in the mean-field level. We call this theory a

self-consistent spin wave theory because the decoupled quar-
tic term H̃2 needs to be calculated self-consistently. The
effects of magnon interaction are considered in this the-
ory. When H2 is not positive or semipositive definite, this
method may also work because we only need to keep H ′

2
to be positive and semipositive definite. For the Shastry-
Sutherland model, the self-consistent spin wave theory works
in the J1/J2 > 0.65, where the magnetic order parameter
vanishes, which indicates the phase boundary of the Néel
state.

APPENDIX F: CONTINUUM LIMIT OF LINEAR SPIN
WAVE ON SHASTRY-SUTHERLAND MODEL

In this section, we follow the prescription in Refs. [44] to
derive the continuum field theory of the linear spin wave on
the Shastry-Sutherland model. The magnon velocity can be
obtained from this continuum field theory.

We assume the Néel order is along the z direction,

〈Si〉 = (−1)sSẑ; (F1)

here s = 0, 1, 2, 3, which is the sublattice label shown in
Fig. 3. The lattice vectors are 2x̂ and 2ŷ. The site position
in the Shastry-Sutherland lattice is expressed by (r, s), where
r is the unit cell position and s is the sublattice label. Af-
ter Holstein-Primakoff transformation, the linear spin wave

Hamiltonian is

HLSW = S
∑

r

{
(4J1 − J2)

∑
s

b†
srbsr

+ J2(b†
1rb3r+x̂+ŷ + b†

0rb2r+x̂−ŷ + H.c.)

− J1[b0r(b1r+x̂ + b1r−x̂ + b3r+ŷ + b3r−ŷ)

+ b2r(b1r+ŷ + b1r−ŷ + b3r+x̂ + b3r−x̂) + H.c.]

}
. (F2)

In the imaginary-time path-integral formalism, the bosonic bsr

operators become complex fields. For later convenience, the
operators are transformed to complex fields as

b0r → φ0(r), (F3)

b1r → φ∗
1 (r), (F4)

b2r → φ2(r), (F5)

b3r → φ∗
3 (r). (F6)

The gradient expansion is used to get the continuum field
theory from the linear spin wave Hamiltonian in Eq. (F2),

φ∗
s (r)φs′ (r + a)

= φ∗
s (r)

[
φs′ (r) + a · ∇rφs′ (r) + 1

2 (a · ∇r)2φs′ (r) + · · · ].
(F7)

Substituting the gradient expansion to the linear spin wave
Hamiltonian and keeping up to the 2nd order, we obtain the
Hamiltonian density,

H = H0 + H1 + H2; (F8)

here H0 has no gradient, H0 has the 1st-order gradient terms,
and H2 has the 2nd-order gradient terms. The expression of
H0 is

H0 = (φ∗
0 (r) φ∗

1 (r) φ∗
2 (r) φ∗

3 (r))

⎛⎜⎜⎜⎜⎜⎝
4J1 − J2 −2J1 J2 −2J1

−2J1 4J1 − J2 −2J1 J2

J2 −2J1 4J1 − J2 −2J1

−2J1 J2 −2J1 4J1 − J2

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
φ0(r)

φ1(r)

φ2(r)

φ3(r)

⎞⎟⎟⎟⎟⎟⎠, (F9)

and the eigenvalues and eigenvectors of H0 are

0, �0 =

⎛⎜⎜⎜⎜⎜⎝
1/2

1/2

1/2

1/2

⎞⎟⎟⎟⎟⎟⎠; 8J1S, �1 =

⎛⎜⎜⎜⎜⎜⎝
1/2

−1/2

1/2

−1/2

⎞⎟⎟⎟⎟⎟⎠;

(4J1 − 2J2)S, �2 =

⎛⎜⎜⎜⎜⎜⎝
1/2

1/2

−1/2

−1/2

⎞⎟⎟⎟⎟⎟⎠; (4J1 − 2J2)S, �3 =

⎛⎜⎜⎜⎜⎜⎝
1/2

−1/2

−1/2

1/2

⎞⎟⎟⎟⎟⎟⎠. (F10)
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The eigenvector �0 with zero eigenvalue is the Goldstone mode. Then the H0 is diagonalized as

H0 = 8SJ1�
∗
1 �1 + S(4J1 − 2J2)(�∗

2 �2 + �∗
3 �3). (F11)

For later convenience, we set φ ≡ (φ0(r) φ1(r) φ2(r) φ3(r))T and � ≡ (�0(r) �1(r) �2(r) �3(r))T . The expression of H1 is

H1 = SJ2[φ1(∂x + ∂y)φ∗
3 + φ∗

0 (∂x − ∂y)φ2 − φ3(∂x + ∂y)φ∗
1 − φ∗

2 (∂x − ∂y)φ0]

= SJ2

⎡⎢⎢⎢⎢⎣φ∗

⎛⎜⎜⎜⎜⎝
0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

⎞⎟⎟⎟⎟⎠∂xφ + φ∗

⎛⎜⎜⎜⎜⎝
0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

⎞⎟⎟⎟⎟⎠∂yφ

⎤⎥⎥⎥⎥⎦

= SJ2

⎡⎢⎢⎢⎢⎣�∗

⎛⎜⎜⎜⎜⎝
0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0

⎞⎟⎟⎟⎟⎠∂x� + �∗

⎛⎜⎜⎜⎜⎝
0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

⎞⎟⎟⎟⎟⎠∂y�

⎤⎥⎥⎥⎥⎦. (F12)

Now we consider the 2nd-order gradient terms H2, whose
expression is

H2 = 1
2 SJ2[φ1(∂x + ∂y)2φ∗

3 + φ0(∂x − ∂y)2φ∗
2

+φ3(∂x + ∂y)2φ∗
1 + φ2(∂x − ∂y)2φ∗

0 ]

− SJ1
[
φ0
(
∂2

x φ∗
1 + ∂2

y φ∗
3

) + φ2
(
∂2

y φ∗
1 + ∂2

x φ∗
3

) + c.c.
]
.

(F13)

In the continuum limit, the low-energy effective theory is only
contributed by the Goldstone mode �0. Therefore, we need to
integrate the high-energy modes �1, �2, and �3 to get the
effective field theory of �0. For this purpose, we only keep
the �∗

0 (· · · )�0 terms in H2 because the other terms in H2 do
not contribute the effective field theory of �0 up to 2nd-order

FIG. 19. The 32-site Shastry-Sutherland lattice used in the ED
study. Open circles indicate distinct sites under periodic boundary
condition. J2 and J1 bonds are depicted as thick and thin solid lines,
respectively.

gradient terms. Then we just need to replace φs by 1
2�0,

H2
∼= 1

4 SJ2[�0(∂x + ∂y)2�∗
0 + �0(∂x − ∂y)2�∗

0 ]

− 1
2 SJ1

[
�0

(
∂2

x + ∂2
y

)
�∗

0 + �∗
0

(
∂2

x + ∂2
y

)
�0

] + · · ·
= S

(
J1 − 1

2 J2
)
[(∂x�

∗
0 )(∂x�0) + (∂y�

∗
0 )(∂y�0)]. (F14)

The Lagrangian density of the linear spin wave theory is

L = φ∗
0∂τφ0 − φ∗

1∂τφ1 + φ∗
2∂τφ2 − φ∗

3∂τφ3 − H
= �∗

0 ∂τ�1 + �∗
1 ∂τ�0 + �∗

2 ∂τ�3 + �∗
3 ∂τ�2 − H. (F15)

By integrating the high-energy modes by the Gaussian part of
their action in H, we get the effective action for �0, whose
Lagrangian density is

Leff = 1

8SJ1
(∂τ�

∗
0 )(∂τ�0) + S

[
J1 − J2

2
− J2

2

4J1 − 2J2

]
× [(∂x�

∗
0 )(∂x�0) + (∂y�

∗
0 )(∂y�0)], (F16)

which yields the dispersion relation

1

8SJ1
ω2 = S

[
J1 − J2

2
− J2

2

4J1 − 2J2

]
k2. (F17)

FIG. 20. Expectation values of 4-site ring exchange operators
around “J2 square” and “empty square” calculated by (a) exact di-
agonalization and (b) Schwinger boson mean-field theory.
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TABLE I. Magnon velocities and magnetic moment sizes from self-consistent spin wave (SCSW) and linear spin wave (LSW). The unit
of the velocities is J2a, where a is the square lattice constant. The magnetic moment is calculated by 1/2 − 〈nm〉, where 〈nm〉 is the average
magnon density. “n.a.” means not applicable.

J1/J2 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.13 1.35 1.4
vSCSW 0.470 0.585 0.695 0.802 0.905 1.005 1.103 1.199 1.294 1.387 1.478 1.569 1.659 1.748 1.836
vLSW n.a. n.a. n.a. n.a. n.a. n.a. 0 0.447 0.635 0.781 0.907 1.021 1.126 1.225 1.320
mSCSW 0.032 0.069 0.096 0.116 0.130 0.143 0.153 0.160 0.166 0.171 0.176 0.180 0.183 0.186 0.188
mLSW n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.067 0.109 0.136 0.156 0.171 0.183 0.193

Finally, we get the magnon velocity vsw of linear spin wave
theory,

vsw = 4SJ1

√
J1 − J2

2J1 − J2
, (F18)

which vanishes at J1 = J2, where the linear spin wave theory
breaks down. For the magnon velocity of the self-consistent
spin wave theory, it can only be calculated numerically. The
magnon velocities and magnetic moment sizes calculated
by self-consistent and linear spin wave theory are shown in
Table I.

APPENDIX G: EXACT DIAGONALIZATION OF 32-SITE
SHASTRY-SUTHERLAND MODEL

We study the ground state properties of the Shastry-
Sutherland model [see Eq. (1)] by exact diagonalization, on a
finite-size (2

√
2 × 2

√
2 × 4) lattice with 32 sites (see Fig. 19).

With periodic boundary conditions this preserves the full lat-
tice symmetries of the Shastry-Sutherland model.

The ground state energies and wave functions are obtained
by the Lanczos method. The following lattice symmetries

are exploited to reduce the Hilbert space sizes: (a) lattice
translations (with respect to 4-site unit cell), and (b) four-
fold rotation C4 around the center of an empty square, in
the translation trivial sector. The ground states are found in
the sector with trivial translations and C4 eigenvalue (+1).
The reduced Hilbert space size is 18 788 230 for this 32-site
lattice.

We consider antiferromagnetic J1 and J2 couplings and
set J2 = 1. The ground state energy and some of the ground
state spin-spin correlation functions are shown in Fig. 12. We
note that for J1/J2 � 0.67578125 the exact ground state is
the dimer-singlet state, and a level crossing happens for J1/J2

between 0.67578125 and 0.677734375. This level crossing
point is consistent with previous exact-diagonalization studies
[25].

Here we also present the ground state expectation val-
ues of the 4-site ring exchange operators around “J2

square” and “empty square” from the exact diagonaliza-
tion, and compare them to the Schwinger boson mean-field
theory results (see Fig. 20). This operator cyclically per-
mutes spins on the four sites involved; namely it is∑

{si}(|s1, s2, s3, s4〉〈s2, s3, s4, s1| + H.c.).
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