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Thermal Hall conductivity of a valence bond solid phase in the square lattice J1-J2

antiferromagnet Heisenberg model with a Dzyaloshinskii-Moriya interaction
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We calculate the thermal Hall conductivity κxy for the columnar valence bond solid phase of a two-dimensional
frustrated antiferromagnet. In particular, we consider the square lattice spin-1/2 J1-J2 antiferromagnetic Heisen-
berg model with an additional Dzyaloshinskii-Moriya interaction between the spins and in the presence of
an external magnetic field. We concentrate on the intermediate parameter region of the J1-J2 model, where a
quantum paramagnetic phase is stable, and consider a Dzyaloshinskii-Moriya vector pattern associated with
the couplings between the spins in the CuO2 planes of the YBa2Cu3O6 compound. We describe the columnar
valence bond solid phase within the bond-operator formalism, which allows us to map the Heisenberg model into
an effective interacting boson model written in terms of triplet operators. The effective boson model is studied
within the harmonic approximation, and the triplon excitation bands of the columnar valence bond solid phase
are determined. We then calculate the Berry curvature and the Chern numbers of the triplon excitation bands and,
finally, determine the thermal Hall conductivity due to triplons as a function of the temperature. We find that the
Dzyaloshinskii-Moriya interaction yields a finite Berry curvature for the triplon bands, but the corresponding
Chern numbers vanish. Although the triplon excitations are topologically trivial, the thermal Hall conductivity
of the columnar valence bond solid phase in the square lattice antiferromagnet is finite at low temperatures. Our
results complement a previous study by Samajdar et al., Phys. Rev. B 99, 165126 (2019) concerning the thermal
Hall effect due to spinons of a spin-liquid phase on a square lattice. We also comment on the relations of our
results with a no-go condition for a thermal Hall effect previously derived for ordered magnets by Katsura et al.,
Phys. Rev. Lett. 104, 066403 (2010).
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I. INTRODUCTION

The topological properties of the elementary excitations of
insulating quantum magnets [1,2] have been receiving some
attention in recent years [3,4]. Long-range-ordered phases in
ferromagnets [5–10] and antiferromagnets (AFMs) [11–13]
with topologically nontrivial magnon excitations, in addi-
tion to valence bond solid (VBS) phases in AFMs [14–17]
with topologically nontrivial triplon excitations, have been re-
ported. Such systems, whose excitations bands have nonzero
Chern numbers, are the bosonic analogues of the Chern band
insulators: noninteracting fermionic systems whose electronic
bands are characterized by a finite Chern number [18–20].

Experimentally, the nontrivial topological properties of in-
sulating quantum magnets can be probed, for instance, via
measurements of the thermal Hall conductivity κxy [21–23].
Differently from Chern band insulators, whose nontrivial
topological properties yield an anomalous quantum Hall effect
(a quantized Hall conductance in the absence of an external
magnetic field) [24], magnons and triplons are charge-neutral
excitations, and therefore do not respond to an applied electric
field [4]. However, in the presence of a temperature gradi-
ent, magnons and triplons may induce a transverse (Hall)
heat current, in addition to the (usual) longitudinal one. In-
deed, a magnon thermal Hall effect has been described in
ferromagnets on honeycomb [6,8,9], Shastry-Sutherland [7],
pyrochlore [23,25], and perovskite [25] lattices, and in AFMs

on kagome [12], honeycomb [13], and square [26] lattices,
while a triplon thermal Hall effect has been predicted for
the Shastry-Sutherland compound SrCu2(BO3)2 [14,15]. One
should also mention the spin Nernst effect of magnons (the
analog of the spin Hall effect for electrons) in AFMs on
a honeycomb lattice [11,27], a thermal Hall effect due to
bosonic spinons [28,29] in spin-liquid phases, and the recent
proposal of a triplon thermal Hall effect induced by an electric
field [30]. Interestingly, although a series of studies has been
devoted to the magnon thermal Hall effect in insulating quan-
tum magnets, the triplon thermal Hall effect has received little
attention.

The magnon thermal Hall effect in insulating quantum
magnets was theoretically studied in Refs. [21–23]. Based on
linear spin-wave theory results, Katsura et al. [21] showed that
the lattice geometry may constrain the presence or absence
of a thermal Hall effect, namely, the thermal Hall conduc-
tivity should vanish (a no-go theorem) in quantum magnets
whose unit cells share edges, such as the ones realized in
triangular and square lattices. Moreover, starting from a Kubo
formula, it was shown that the thermal Hall conductivity is
finite for a ferromagnet on a (corner-sharing) kagome lattice
[21]. Performing a semiclassical analysis and using linear
response theory, Matsumoto and Murakami [22,23] determine
the thermal transport coefficients for a long-range magnetic
ordered phase in a ferromagnet and show that the thermal
Hall conductivity κxy can be written in terms of the Berry
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FIG. 1. Schematic representations: (a) The square lattice spin-1/2 J1-J2 AFM Heisenberg model (2). (b) The DM vectors Di j [Eq. (3)] for
the spins in the CuO2 planes of the YBCO compound; D1 = (D, 0, 0) and D2 = (0, −D, 0). (c) The columnar VBS ground state; the green
ellipses indicate that the spins S1 (open circle) and S2 (filled circle) form a singlet state; τ1 and τ2 [Eq. (11)] are the primitive vectors of the
dimerized lattice D defined by the (green) singlets. (d) Brillouin zones of the dimerized (solid red line) and the original square (dashed black
line) lattices; X = (π/2, 0), M = (π/2, π ), and Y = (0, π ) with the lattice spacing a of the original square lattice being set to 1.

curvatures of the magnon excitation bands. It was verified in
Refs. [5–8,10,11,14–17,25–27,31,32] that one important in-
gredient that may yield a finite Berry curvature for the bosonic
(magnon and triplon) excitation bands is the Dzyaloshinskii-
Moriya (DM) interaction [33–35], an interaction between
localized spins which is associated with the spin-orbit cou-
pling and therefore acts as a kind of pseudomagnetic field for
magnons and triplons. It should be mentioned that the formal-
ism [22,23] is indeed quite general, such that the expression
derived for the thermal Hall conductivity κxy can be applied to
any quantum magnet with bosonic elementary excitations.

Concerning the no-go condition [21] for the thermal Hall
effect in insulating quantum magnets, it is interesting that
some exceptions to this rule were reported [26,29]. Kawano
and Hotta [26] find a finite thermal Hall conductivity for a
canted AFM ordered phase realized in a noncentrosymmetric
square lattice AFM; interestingly, the presence/absence of
magnon edge modes is characterized here by a Z2 topological
invariant instead of a Chern number. Samajdar et al. [29]
studied a spin-liquid phase on a square lattice AFM with a
DM interaction term, whose DM vectors, i.e., a set of vectors
that characterizes a DM interaction (see Sec. II for details),
were chosen as the ones associated with the couplings be-
tween the spins in the CuO2 planes of the La2CuO4 and
YBa2Cu3O6 (YBCO) compounds [36–38]. The spin-liquid
phase is described within the Schwinger-boson formalism;
interestingly, they find that the thermal Hall conductivity is
finite only when DM vectors related to the YBCO compound
are considered, i.e., the symmetry-allowed DM interaction in
the CuO2 planes of the La2CuO4 compound does not yield
a finite thermal Hall response. Such results are in agreement
with a symmetry analysis that is also presented. Moreover,
although κxy is finite, the (bosonic) spinon excitations of the
spin-liquid phase are topologically trivial. It is important to
mention that such choices for the DM vector patterns were
motivated by previous measurements of the thermal Hall con-
ductivity in the pseudogap phase of cuprate superconductors
[39], which found a large negative thermal Hall conductivity
at low temperatures. Later, some evidence was found that
such a large thermal Hall conductivity in La2CuO4 is due to
phonons [40,41].

In this paper, we study the triplon thermal Hall effect,
in particular, we calculate the thermal Hall conductivity κxy

for a VBS phase realized in a square lattice frustrated AFM.
We consider the spin-1/2 J1-J2 AFM Heisenberg model on a

square lattice [Fig. 1(a)], with an additional DM interaction
between the nearest-neighbor spins [Fig. 1(b)] and in the
presence of an external magnetic field. We focus on the in-
termediate parameter region 0.4 J1 � J2 � 0.6 J1 of the J1-J2

model, where a quantum paramagnetic phase sets in, and, in
particular, consider the columnar VBS phase [Fig. 1(c)]. The
main purpose of this paper is to verify whether a DM interac-
tion in the square lattice AFM yields a columnar VBS phase
with topologically nontrivial triplon excitations and whether
the no-go theorem for the thermal Hall effect derived in
Ref. [21] for an ordered magnet also applies for a VBS phase.
Moreover, motivated by the results derived in Ref. [29], we
consider the DM vector pattern corresponding to the YBCO
compound. We would like to verify whether the finite thermal
Hall conductivity found for the spin-liquid phase on a square
lattice is a generic feature of quantum paramagnetic phases,
i.e., it is a feature displayed by both spin-liquid and VBS
phases on a square lattice. The idea is that our results should
complement the previous analysis reported in Ref. [29].

A. Overview of the results

We study a spin-1/2 frustrated AFM on a square lat-
tice with the aid of the bond-operator formalism [42]. We
show that the columnar VBS phase can be described by
an effective interacting boson model expressed in terms of
triplet operators. We consider the effective boson model in
the (lowest-order) harmonic approximation and determine the
triplon excitation bands. Moreover, we calculate the Berry
curvatures and Chern numbers of the triplon bands. Following
the lines of the formalism [22,23], which was previously ap-
plied in the study of the magnon thermal Hall effect, we finally
determine the thermal Hall conductivity κxy due to the triplons
as a function of the temperature. We find that the Berry cur-
vature of the triplon bands is finite in some regions of the first
(dimerized) Brillouin zone, but the triplons are topologically
trivial since the Chern numbers of the triplon bands vanish.
Our main find is indeed the determination of the dependence
of the thermal Hall conductivity κxy with the temperature T :
In spite of the fact that the triplon excitations are topologically
trivial, κxy is finite at low temperatures. Such a result agrees
with Ref. [29], where κxy is determined for a spin-liquid phase
realized in a two-dimensional AFM whose Heisenberg model
includes the same DM interaction considered in our paper,
but it is in disagreement with the no-go condition [21] for a
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thermal Hall effect due to magnons, previously determined
for long-range-ordered magnets.

B. Outline

Our paper is organized as follows. In Sec. II, we introduce
the Hamiltonian of the spin-1/2 frustrated AFM Heisenberg
model on a square lattice considered in our study. In Sec. III,
we briefly review the bond-operator representation [42] for
spin operators, a formalism which allows us to describe the
columnar VBS phase, and derive an effective interacting bo-
son model in terms of triplet operators. The effective boson
model is analyzed within the harmonic approximation in
Sec. IV and the region of stability of the columnar VBS
phase and the energy of the elementary triplon excitations
are determined. Section V is devoted to the calculation of the
Berry curvatures of the triplon excitation bands and the deter-
mination of the corresponding Chern numbers. The thermal
Hall conductivity κxy for the columnar VBS phase is discussed
in Sec. VI. Finally, a brief summary of our main findings is
provided in Sec. VII. Some further details about the effective
boson model and the analytical procedure employed in the
diagonalization of the effective boson model within the har-
monic approximation can be found in the three Appendices.

II. FRUSTRATED SQUARE-LATTICE
ANTIFERROMAGNET

Let us consider a frustrated spin-1/2 Heisenberg AFM on
a square lattice described by the Hamiltonian

H = HJ + HDM + HB, (1)

where HJ is the Hamiltonian of the J1-J2 square lattice AFM
Heisenberg model,

HJ = J1

∑
〈i j〉

Si · S j + J2

∑
〈〈i j〉〉

Si · S j, (2)

HDM is the DM interaction term [33–35],

HDM =
∑
〈i j〉

Di j · (Si × S j ), (3)

and HB is the Zeeman term that describes the coupling of the
spins with an external magnetic field B,

HB = −gμBB ·
∑

i

Si ≡ −h ·
∑

i

Si. (4)

Here, Si is a spin-1/2 operator at site i and J1 > 0 and
J2> 0 are, respectively, the nearest-neighbor and next-nearest-
neighbor exchange couplings, as illustrated in Fig. 1(a). Di j is
a DM vector that couples the spins Si and S j ; we consider, in
particular, the DM vector pattern shown in Fig. 1(b), which
corresponds to the symmetry-allowed couplings between the
spins in the CuO2 planes of the YBCO compound [36–38].
Finally, g is the electron g factor and μB is the Bohr magne-
ton. It should be mentioned that the AFM Heisenberg model
(1), without the next-nearest-neighbor exchange coupling J2

and an additional symmetric pseudodipolar interaction be-
tween the spins (� term), was previously considered in the
study of the cuprate superconductors, as discussed, e.g., in
Refs. [43–45].

The J1-J2 model (2) has been receiving a lot of at-
tention in the last few years and now its phase diagram
at temperature T = 0 is well established [42,46–103]: A
semiclassical Néel long-range-ordered phase with ordering
wave vector Q = (π, π ) sets in for J2 � 0.4 J1, a quantum
paramagnetic phase is stable in the intermediate parameter
region 0.4 J1 � J2 � 0.6 J1, and a stripe long-range-ordered
phase with Q = (π, 0) or (0, π ) is the ground state for J2 �
0.6 J1. Interestingly, the nature of the quantum paramagnetic
phase is still an open issue. Among the several proposals
that have been made for the ground state of the model (2)
within this intermediate parameter region, one should men-
tion the following: the (dimerized) columnar [59,60,90] and
staggered [83] VBSs, where both translational and rotational
lattice symmetries are broken; the (tetramerized) plaquette
VBS, where only the translational lattice symmetry is bro-
ken [58,61,63,65,72,75,84,85]; a mixed columnar-plaquette
VBS [71]; and gapless [62,64,79,80,86,91,92] and gapped
[76–78,89] spin-liquid ground states. More recently, it was
found that within the intermediate parameter region, a gapless
spin-liquid phase sets in for J2 � 0.53J1, while a VBS is
stable for J2 � 0.53J1 [87,93,98,99,101]. Such results qual-
itatively agree with previous density matrix renormalization
group (DMRG) calculations [85], which indicate a gapless
phase for 0.44 J1 < J2 < 0.50 J1 and a VBS one for 0.50 J1 <

J2 < 0.61 J1, although with a plaquette singlet pattern.
Although the J1-J2 model (2) has been extensively studied,

little attention has been devoted to the description of the
effects of an additional (anisotropic) DM interaction between
the spins. Exact diagonalization results [104] for the Heisen-
berg model (1), without an external magnetic field, found
that the extension of the quantum paramagnetic region of the
J1-J2 model (2) is affected by the presence of a finite DM
interaction. More recently, a Majorana fermion representation
for the spin operators was employed in order to describe a
chiral spin-liquid phase of the model (1) [105]. Based on a
mean-field approach, the stability of such a spin-liquid phase
was studied; exact diagonalization results were also reported.
In both studies ([104] and [105]), DM vectors associated with
cuprate superconductor compounds were considered.

In the following, we consider the AFM Heisen-
berg model (1) within the intermediate parameter region
0.4 J1 � J2 � 0.6 J1 for the next-nearest-neighbor exchange
coupling J2 and DM interaction D � 0.50 J1, where

D = |D1| = |D2|; (5)

see Fig. 1(b). In particular, we concentrate on the columnar
VBS phase illustrated in Fig. 1(c). Indeed, the region of sta-
bility of the columnar VBS phase for the J1-J2 model (2)
and the spectrum of the elementary (triplon) excitations were
determined by one of us within the bond-operator formalism
in Ref. [97].

A few remarks concerning the choice of the model (1)
to study a triplon thermal Hall effect are in order here: As
mentioned in Sec. I, one of the motivations for our study is the
results [29] concerning the thermal Hall effect due to spinons
of a spin-liquid phase on a square lattice. Recall that our idea
is to complement such previous study, but now focus on a
VBS phase on a square lattice. Although an AFM Heisenberg
model with only nearest-neighbor coupling J1 was considered
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in Ref. [29], one needs to consider the J1-J2 model since only
in the presence of a next-nearest-neighbor exchange coupling
J2 could a (columnar) VBS phase be obtained within a mean-
field approximation (see Sec. IV). The choice of DM vectors
associated with the YBCO compound is based on the fact
that only in this case does the spin-liquid phase discussed in
Ref. [29] display a finite thermal Hall conductivity. Recall that
the thermal Hall conductivity vanishes for the DM interaction
corresponding to the La2CuO4 compound. Finally, one needs
to introduce an external magnetic field in order to obtain
three well-separated triplon bands (see Sec. IV), and therefore
properly define a Chern number for each triplon band.

III. BOND OPERATOR FORMALISM

The bond-operator representation for spin operators in-
troduced by Sachdev and Bhatt [42] is a formalism that
allows us to describe a dimerized VBS phase. In this section,
this formalism is briefly summarized, following the lines of
Refs. [97,106].

Let us consider the Hilbert space of two S = 1/2 spins, S1

and S2, which is made out of a singlet |s〉 and three triplet |tα〉
states,

|s〉 = 1√
2

(|↑↓〉 − |↓↑〉), |tx〉 = 1√
2

(|↓↓〉 − |↑↑〉),

|ty〉 = i√
2

(|↑↑〉 + |↓↓〉), |tz〉 = 1√
2

(|↑↓〉 + |↓↑〉). (6)

Let us define a set of boson operators, s† and t†
α , with α = x, y,

z, which, respectively, creates the singlet and the three triplet
states out of a fictitious vacuum |0〉,

|s〉 = s†|0〉 and |tα〉 = t†
α |0〉. (7)

In order to remove unphysical states from the enlarged Hilbert
space, one should introduce the constraint

s†s +
∑

α

t†
αtα = 1. (8)

One then calculates the matrix elements of each component of
the spin operators S1 and S2 within the basis |s〉 and |tα〉, i.e.,
one determines 〈s|Sμ

α |s〉, 〈s|Sμ
α |tβ〉, and 〈tγ |Sμ

α |tβ〉, with μ = 1,
2 and α, β, γ = x, y, z. Based on the set of obtained results,
one easily concludes that the components of the spin operators
S1 and S2 can be expanded in terms of the boson operators s†

and t†
α as

S1,2
α = ± 1

2 (s†tα + t†
αs ∓ iεαβγ t†

βtγ ), (9)

where εαβγ is the completely antisymmetric tensor with
εxyz = 1 and the summation convention over repeated indices
is assumed. Adding a site index i to the singlet and triplet
operators, i.e., defining the boson operators s†

i and t†
i α , one

generalizes the bond-operator representation (9) for spin op-
erators Si on a given lattice.

One should mention that a generalization of the bond-
operator representation (9) for a tetramerized (plaquette)
VBS, which includes two singlet, nine triplet, and five quintet
boson operators, was introduced by one of us in Ref. [84].

Effective boson model

With the aid of the generalized bond-operator representa-
tion (9), we now map the AFM Heisenberg model (1) into an
effective boson model that is written in terms of the triplet
operators ti α . Such an effective model allows us to describe
the corresponding columnar VBS phase. In order to perform
the mapping, one needs to express the Hamiltonian (1) in
terms of the underline dimerized lattice D, which is defined
by the singlet (dimer) arrangement of the columnar VBS state;
see Fig. 1(c).

Let us first consider the J1-J2 model (2). In terms of the
underline dimerized lattice D, the Hamiltonian (2) assumes
the form

HJ =
∑
i∈D

J1
(
S1

i · S2
i + S1

i · S1
i+2 + S2

i · S2
i+2 + S2

i · S1
i+1

)
+ J2

(
S1

i · S2
i+2 + S2

i · S1
i+2

)
+ J2

(
S2

i · S1
i+1+2 + S2

i · S1
i+1−2

)
, (10)

where i is a site of the dimerized lattice D, S1
i and S2

i are the
two spins within each unit cell, and the (lower) index n = 1, 2
indicates the dimer nearest-neighbor vectors τn,

τ1 = 2ax̂, τ2 = aŷ, (11)

with a being the lattice spacing of the original square lattice;
see Fig. 1(c). In the following, we set a = 1. Substituting the
generalized bond-operator representation (9) into the Hamil-
tonian (10), one finds that [97]

HJ = HJ,0 + HJ,2 + HJ,3 + HJ,4, (12)

where each HJ,n term has n triplet operators, as shown in
Eq. (A1). Finally, the constraint (8) is treated on average via
a Lagrange multiplier μ: one then adds the following term to
the Hamiltonian (12):

−μ
∑

i

(s†
i si + t†

iαtiα − 1).

In the bond-operator formalism, a dimerized VBS ground
state, such as the columnar VBS one, can be viewed as a
condensate of the singlets si. One then sets

s†
i = si = 〈s†

i 〉 = 〈si〉 → √
N0 (13)

in the Hamiltonian (12) and, therefore, arrives at an effective
boson model expressed only in terms of the triplet boson
operators tiα . As discussed in Sec. IV, the constants N0 and
μ are self-consistently calculated for fixed values of the next-
nearest-neighbor exchange coupling J2, the DM interaction D,
and the external magnetic field h.

It is useful to write the Hamiltonian (12) in momen-
tum space. Considering the Fourier transform of the triplet
operators tiα ,

tiα = 1√
N ′

∑
k∈BZ

eik·Ri tkα, (14)

with Ri being a vector of the dimerized lattice D, N ′ = N/2
the number of dimers (N is the number of sites of the origi-
nal square lattice), and the momentum sum running over the
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(dimerized) first Brillouin zone [see Fig. 1(d)], one shows that
the four terms HJ,n of the Hamiltonian (12) assume the form

HJ,0 = − 3
8 J1NN0 − 1

2μN (N0 − 1), (15)

HJ,2 =
∑

k

[
Akt†

kαtkα + 1

2
Bk(t†

kαt†
−kα + H.c.)

]
, (16)

HJ,3 = 1

2
√

N ′ εαβλ

∑
p,k

ξk−p t†
k−pα

t†
pβtkλ + H.c., (17)

HJ,4 = 1

2N ′ εαβλεαμν

∑
q,p,k

γk t†
p+kβt†

q−kμtqνtpλ, (18)

with the coefficients Ak, Bk, ξk, and γk given by

Ak = 1
4 J1 − μ + Bk,

Bk = − 1
2 N0[J1 cos(2kx ) − 2(J1 − J2) cos(ky)

+ J2 cos(2kx + ky) + J2 cos(2kx − ky)],

ξk = − √
N0[J1 sin(2kx ) + J2 sin(2kx + ky)

+ J2 sin(2kx − ky)],

γk = − 1
2 [J1 cos(2kx ) + 2(J1 + J2) cos ky

+ J2 cos(2kx + ky) + J2 cos(2kx − ky)]. (19)

We should mention that the effective boson model (12) was
previously derived by one of us in Ref. [97]. For complete-
ness, we provide here all the details of the procedure that,
in the following, will be applied to the DM term (3) and the
Zeeman coupling (4).

In terms of the sites i of the underline dimerized lattice D,
the DM interaction (3) reads

HDM =
∑
i∈D

[
Di,i · (

S1
i × S2

i

) + Di,i+1 · (
S2

i × S1
i+1

)
+ Di,i+2 · (

S2
i × S2

i+2

) + Di,i+2 · (
S1

i × S1
i+2

)]
, (20)

where the DM vectors Di, j are given by [see Fig. 1(b)]

Di,i = Di,i+1 = D1 = (D, 0, 0),

Di,i+2 = D2 = (0,−D, 0). (21)

Again, substituting the bond-operator representation (9) gen-
eralized to the lattice case into the Hamiltonian (20), we
show that

HDM = HDM,1 + HDM,2 + HDM,3 + HDM,4, (22)

where the HDM,n term contains n triplet operators; see
Eq. (A4) for details. After replacing the singlet operators by its
average value (13), we perform a Fourier transform with the
aid of Eq. (14) and find the expressions of the HDM,n terms in
momentum space, namely,

HDM,2 = − i
∑

k

[
(Ck εyβγ + Dk εxβγ )t†

kβtkγ

+ 1

2
Ck εyβγ (t−kβtkγ − t†

kγ t†
−kβ )

+ 1

2
Dk εxβγ (t−kβtkγ − t†

kγ t†
−kβ )

]
, (23)

HDM,3 = + i
1

2
√

N ′ εxβγ εγμν

∑
k,p

ξDM
k−p ×

× (t†
k−pβt†

pμtkν − t†
kνtk−pβtpμ), (24)

HDM,4 = − i
1

2N ′ εβμνελμ′ν ′
∑

k

(
εxβλ γ DM

x,k − εyβλ γ DM
y,k

)
× t†

p+kμt†
q−kμ′tpνtqν ′ , (25)

where the coefficients Ck, Dk, ξDM
k , and γ DM

α,k are defined as

Ck = DN0 sin(ky), Dk = 1
2 DN0 sin(2kx ),

ξDM
k = D

√
N0 cos (2kx ),

γ DM
α,k = D

[
1
2δα,x sin (2kx ) + δα,y sin ky

]
. (26)

A few remarks about the linear term HDM,1 are in order
here: The linear term couples the singlet si and the triplet
tix operators, see Eq. (A4); it can be removed via a unitary
transformation performed in each site of the dimerized lattice
D; we follow the lines of Ref. [16] and consider a unitary
transformation up to first order in the parameter α = D/(2J1);
as described in details in Appendix B, one of the effects of
such a unitary transformation is to modify the coefficient Dk
of the quadratic Hamiltonian HDM,2, namely, Dk → Dk + D′

k,
with D′

k given by Eq. (B8); the new coefficient Dk (the one
considered in Sec. IV) then reads

Dk = DN0 sin(2kx ) + 1

2
DN0

J2

J1
[sin(2kx + ky)

+ sin(2kx − ky)]. (27)

Finally, one easily rewrites the Zeeman coupling (4) in
terms of the dimerized lattice D,

HB = −
∑
i∈D

hα

(
S1

iα + S2
iα

)
. (28)

With the aid of Eq. (9), one finds the expansion of the Hamil-
tonian (28) in terms of the triplet operators tiα [see Eq. (A5)]
and, after the Fourier transform (14), shows that

HB = iεαβγ

∑
k

hα t†
kβtkγ , (29)

where hα , with α = x, y, z, is the α component of the external
magnetic field h = gμBB.

IV. HARMONIC APPROXIMATION

In this section, the effective boson model defined by the
Hamiltonians (12), (22), and (29) is studied in the lowest-
order (harmonic) approximation. In this case, only terms up
to quadratic order in the triplet operators tkα are retained, i.e.,
one considers

H ≈ HJ,0 + HJ,2 + HDM,2 + HB. (30)

In order to diagonalize the quadratic Hamiltonian (30), it is
useful to rewrite it in matrix form,

H = E0 + 1

2

∑
k


†
kĤkk, (31)
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where

E0 = HJ,0 − 3

2

∑
k

Ak (32)

is a constant,


†
k = (t†

k,x t†
k,y t†

k,z t−k,x t−k,y t−k,z ) (33)

is a six-component vector, and

Ĥk =
(

Âk + ĤB B̂k

B̂k Âk − ĤB

)
(34)

is a 6 × 6 matrix with the 3 × 3 matrices Âk, B̂k, and ĤB

defined as

Âk =

⎛
⎜⎝

Ak 0 iCk

0 Ak −iDk

−iCk iDk Ak

⎞
⎟⎠,

B̂k =

⎛
⎜⎝

Bk 0 iCk

0 Bk −iDk

−iCk iDk Bk

⎞
⎟⎠, (35)

ĤB =

⎛
⎜⎝

0 ihz −ihy

−ihz 0 ihx

ihy −ihx 0

⎞
⎟⎠.

Here, the coefficients Ak and Bk are given by Eq. (19), while
the coefficients Ck and Dk are, respectively, given by Eqs. (26)
and (27). As mentioned in the previous section and discussed
in Appendix B, the expression (27) for the coefficient Dk
includes the effects of the linear term HDM,1 [Eq. (A4)] as-
sociated with the DM interaction (3). Finally, hα = gμBBα ,
with α = x, y, z, are the components of the external magnetic
field. In the following, we assume that B = Bẑ.

The diagonalization of the 6 × 6 problem defined by
Eqs. (31)–(34) is rather involved. It is then interesting to
employ the procedure described in Refs. [107,108]: Since we
are dealing with a bosonic Hamiltonian, instead of the matrix
(34), we should diagonalize

ÎBĤk with ÎB =
(

Î 0

0 −Î

)
, (36)

where Î is the 3 × 3 identity matrix. The positive eigenval-
ues ωα

k of the matrix (36), with α = x, y, z, are indeed the
roots of a cubic polynomial and are shown in Appendix C;
see Eq. (C3). After the diagonalization, the Hamiltonian (31)
assumes the form

H = EGS + 1

2

∑
k

�
†
kĤ ′

k�k, (37)

where

EGS = −3

8
J1N0N − 1

2
μN (N0 − 1) + 1

2

∑
k,α

(ωα
k − Ak ) (38)

is the ground-state energy,

�
†
k = (b†

k,x b†
k,y b†

k,z b−k,x b−k,y b−k,x ) (39)

is a six-component vector whose components are the new
boson (triplon) operators bk,α , and

Ĥ ′
k = diag

(
ωx

k, ω
y
k, ωz

k, ωx
k, ω

y
k, ωz

k

)
(40)

is a 6 × 6 diagonal matrix. The eigenvalues ωα
k are indeed the

energies of the triplon excitations above the VBS ground state.
Moreover, the relation between the triplet t and triplon b boson
operators reads

k = T̂k�k, (41)

where the 6 × 6 matrix T̂k assumes the form

T̂k =
(

Ûk Ŷk

V̂k X̂k

)
(42)

and obeys the condition [107,108]

T̂k ÎBT̂ †
k = ÎB, (43)

with the matrix ÎB defined in Eq. (36). Here, Ûk, V̂k, Ŷk, and
X̂k are 3 × 3 matrices whose expressions of the corresponding
matrix elements in terms of the coefficients Ak, Bk, Ck, and
Dk, the magnetic field hz, and the triplon energies ωα

k can be
found in Appendix C.

In order to determine the ground-state energy (38) and the
triplon dispersion relations ωα

k , we still need to determine
the parameters μ and N0. These two parameters follow from
the saddle-point conditions ∂EGS/∂N0 = 0 and ∂EGS/∂μ = 0,
which yield the two self-consistent equations

μ = −3

4
J1 + 1

2N ′
∑
k,α

(
∂ωα

k

∂N0
− Bk

N0

)
,

N0 = 1 + 1

2N ′
∑
k,α

(
∂ωα

k

∂μ
+ 1

)
. (44)

The above set of self-consistent equations is numerically
solved and therefore the parameters μ and N0 are determined
for fixed values of the next-nearest-neighbor exchange cou-
pling J2, the DM interaction D, and the external magnetic
field hz.

Region of stability of the columnar VBS phase
and the triplon excitations

Figures 2(a) and 2(b), respectively, show the parameters
N0 and μ as functions of the DM interaction D, for fixed
values of the next-nearest-neighbor exchange coupling J2 and
external magnetic field hz = 0.05 J1, both determined via a
numerical solution of the set of self-consistent equations (44).
One sees that the parameter N0 decreases with the increasing
of the DM interaction D, which indicates that the stability
of the columnar VBS phase decreases as the DM interaction
increases. Indeed, the region of stability of the columnar VBS
phase, i.e., the region of the parameter space where (numer-
ical) solutions for the self-consistent equations (44) can be
found, is indicated in Fig. 3. Notice the following: For D = 0,
the columnar VBS phase is stable within the intermediate
parameter region 0.30 J1 � J2 � 0.63 J1, which is larger than
the one (0.4 J1 � J2 � 0.6 J1) expected for the quantum para-
magnetic phase of the J1-J2 model, a feature of the harmonic
approximation found in our previous studies [84,97,106]; as
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FIG. 2. Parameters (a) N0 and (b) μ, (c) the ground-state energy EGS/(NJ1), (d) the triplon gap �/J1, and (e) the y-component Qy of the
momentum Q = (0, Qy ) associated with the triplon gap as functions of the DM interaction D/J1 for the columnar VBS ground state (harmonic
approximation). Next-nearest-neighbor exchange couplings J2 = 0.40 J1 (blue line), J2 = 0.48 J1 (black line), J2 = 0.52 J1 (green line), and
J2 = 0.56 J1 (blue line) and the external magnetic field hz = 0.05 J1.

the exchange coupling J2 increases, the Dmax below which the
VBS phase is stable decreases, i.e., the effect of the DM inter-
action on the VBS seems to be distinct for the small and large
J2 parameter regions; interestingly, such a distinct behavior
for J2 below and above J2 ∼ 0.5 J1 qualitatively agrees with
Refs. [85,87,93,98,99,101], whose results indicate that two
different phases may set in within the quantum paramagnetic
region of the J1-J2 model (see, also, Sec. II). Finally, it should
be mentioned that the region of stability of the columnar VBS
phase in the absence of the external magnetic field (not shown
here) is almost equal to the one found for hz = 0.05 J1.

0.3 0.35 0.4 0.45 0.5 0.55 0.6
J2/J1

0

0.1

0.2

0.3

0.4

0.5

D
/J

1

VBS

FIG. 3. Region of stability of the columnar VBS phase [Fig. 1(c)]
of the Heisenberg model (1) determined within the bond-operator
formalism at the harmonic approximation. The external magnetic
field hz = 0.05 J1.

The ground-state energy (38) in terms of the DM inter-
action D and for fixed values of the exchange coupling J2

is shown in Fig. 2(c). For all values of the coupling J2, we
find that the ground-state energy EGS decreases with the DM
interaction D. Moreover, for a fixed DM interaction, we no-
tice that EGS increases with the increasing of the exchange
coupling J2 up to J2 ∼ 0.57 J1 and then it decreases. Indeed,
for D = h = 0, a quite similar behavior was observed for the
ground-state energy, namely, a monotonical increasing of EGS

with J2 up to J2 = 0.57 J1 (see Fig. 3(a) from Ref. [97]).
Figures 4(a) and 4(c) show the energy ωα

k of the triplon
excitations for J2 = 0.48 J1 and D = 0.20 J1, with hz = 0
[Fig. 4(a)] and hz = 0.05 J1 [Fig. 4(c)] (solid lines), in ad-
dition to the triplon spectrum for D = h = 0 (dashed black
line), which is included here for comparison (see Fig. 4(a)
from Ref. [97]). As expected for a VBS phase, the triplon
excitation spectrum is gapped. One sees that the triple degen-
eracy of the triplon bands, a feature displayed by the J1-J2

model (2), is partially lifted by the DM interaction since the
triplon bands touch at the �, X, M, and Y points of the dimer-
ized first Brillouin zone [see Fig. 1(d)] for D �= 0 and h = 0
[Fig. 4(a)]. The three triplon bands are completely separated
only in the presence of both DM interaction and external
magnetic field [Fig. 4(c)]. Indeed, the DM interaction alone
may not completely lift the degeneracy of an excitation spec-
trum as found, e.g., for magnons in magnets with long-range
order [6,7,26] and triplons on a Shastry-Sutherland lattice
[14,15]. Moreover, the triplon gap � (the minimum of the ωx

k
triplon band) is associated with an incommensurate momen-
tum Q = (0, 1.7952), for hz = 0.05 J1; such a behavior should
be contrasted with the triplon spectrum for D = h = 0, whose
triplon gap is located at the (commensurate) Y point of the
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(c)  J2 = 0.48 J1
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(d)  J2 = 0.52 J1

FIG. 4. Triplon dispersion relations ωx
k (solid green line), ω

y
k (solid blue line), and ωz

k (solid red line) [see Eq. (C3)] of the columnar VBS
phase at the harmonic approximation along paths in the dimerized Brillouin zone [Fig. 1(d)]: (a) and (c) J2 = 0.48 J1 and D = 0.20 J1, and
(b) and (d) J2 = 0.52 J1 and D = 0.10 J1. The external magnetic field hz = 0 (upper panels) and hz = 0.05 J1 (lower panels). Dashed black
line: triplon dispersion relation for the model (1) in the absence of the DM and Zeeman terms (see Fig. 4 from Ref. [97]).

dimerized Brillouin zone. Similar considerations hold for the
triplon excitation spectrum for J2 = 0.52 J1 and D = 0.10 J1,
with hz = 0 [Fig. 4(b)] and hz = 0.05 J1 [Fig. 4(d)]. Here, the
triplon gap is also located at an incommensurate momentum
[Q = (0, 1.1669) for hz = 0.05 J1] while, for D = h = 0, the
triplon gap is at the center of the dimerized Brillouin zone,
the � point. In the following, one considers a finite external
magnetic field (hz = 0.05 J1) since one needs well-separated
triplon bands in order to properly define a Chern number and
determine the topological aspect of the triplon excitations.

The behavior of the triplon gap � in terms of the DM
interaction D for selected values of the exchange coupling
J2 is shown in Fig. 2(d). One sees that the triplon gap de-
creases with the DM interaction, regardless of the value of
the exchange coupling J2. The smallest value of the gap,
� ∼ 0.12 J1, corresponds to the parameter Dmax above which
numerical solutions for the self-consistent equations (44) are
no longer found. Moreover, as illustrated in Fig. 2(e), the
momentum Q associated with the triplon gap moves along the
�-Y line of the dimerized Brillouin zone. For J2 < 0.50 J1,
the momentum Q moves from the commensurate Y point to
an incommensurate value Q = (0, Qy) as the DM interaction
increases; for J2 > 0.50 J1, the momentum Q moves from
the commensurate � point to an incommensurate momentum
Q = (0, Qy) with the increasing of the parameter D. Such set
of results indicates that the black line in Fig. 3 may signal a
quantum phase transition from a VBS phase to a noncollinear

long-range-ordered magnetic phase with incommensurate or-
dering wave vector Q. Due to the behavior of the triplon
gap � at the border of the VBS region shown in Fig. 3, at
the moment, it is not clear whether such a quantum phase
transition is a first-order transition or a continuous one. Such
an issue, which needs some further study, is beyond the scope
of our paper.

Finally, it is interesting to compare our findings with the
ones determined by Merino and Ralko [105] for the Heisen-
berg model (1) in the absence of an external magnetic field
and considering DM vectors associated with cuprate super-
conductors (see, also, Sec. II). Based on a Majorana fermion
representation for the spin operators, the mean-field results
indicate some evidence for a VBS phase within the intermedi-
ate parameter region of the J1-J2 model, even in the presence
of a finite DM interaction, in agreement with our findings
summarized in Fig. 3. Moreover, a continuous quantum phase
transition from the VBS phase to a magnetic ordered phase is
observed as the DM coupling increases for a fixed value of the
next-nearest-neighbor exchange coupling J2 (see Fig. 3 from
Ref. [105]).

V. BERRY CURVATURES AND CHERN NUMBERS

In this section, we study the topological properties of the
triplon bands ωα

k . The main idea is to check whether the DM
interaction (3), with the DM vectors (21), yields a columnar
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FIG. 5. Berry curvatures �α (k) [Eq. (45)] of the triplon dispersion relations ωα
k shown in Fig. 4: (a) �x (k), (b) �y(k), and (c) �z(k) for

J2 = 0.48 J1 and D = 0.20 J1; (d) �x (k), (e) �y(k), and (f) �z(k) for J2 = 0.52 J1 and D = 0.10 J1. The external magnetic field hz = 0.05 J1.

VBS phase for the square lattice J1-J2 model (2) with topolog-
ically nontrivial triplons, as previously found for a Heisenberg
AFM on a Shastry-Sutherland lattice [14–16].

For quadratic bosonic Hamiltonians such as Eq. (31),
which includes the anomalous terms t−k,αtk,β and t†

−k,αt†
k,β ,

the Berry curvature �α (k) of the (triplon) excitation band ωα
k

is given by [109,110]

�α (k) = iεμν

[
ÎB

∂T̂ †
k

∂kμ

ÎB
∂T̂k

∂kν

]
αα

, (45)

with α = 1, 2, . . . , 6 and μ, ν = x, y. Here, ÎB and T̂k are,
respectively, the 6 × 6 matrices (36) and (42), εμν is the
completely antisymmetric tensor with εxy = 1, and [ ]αα

indicates the diagonal element of the corresponding square
matrix. Due to the form of the diagonal Hamiltonian
(40), the Berry curvatures of the ωx

k, ω
y
k, and ωz

k triplon
bands are given by �1(k) ≡ �x(k), �2(k) ≡ �y(k), and
�3(k) ≡ �z(k), respectively. We calculate the Berry cur-
vatures (45) of the triplon bands ωα

k using the analytical
expressions for the matrix elements of the T̂k matrix shown
in Appendix C.

Figures 5(a)–5(c) show the Berry curvatures (45), respec-
tively, for the triplon bands ωx

k, ω
y
k, and ωz

k displayed in
Fig. 4(c), which correspond to the parameters J2 = 0.48 J1,
D = 0.20 J1, and hz = 0.05 J1 of the model (1). For the three
triplon bands, one sees that the Berry curvatures vanish for
almost all points of the dimerized Brillouin zone [Fig. 1(d)],
except in the vicinity of the �, X, M, and Y points. One
notices that �x(k) � −�z(k), in addition to the fact that the
peak intensities for �x(k) and �z(k) are larger than the cor-
responding ones for �y(k). Importantly, one verifies that the
peak intensities of the Berry curvatures decrease as the DM
interaction D decreases and almost vanish for D = 10−3 J1

(the analytical expressions derived for the matrix elements
of the T̂k matrix are not suitable for the case D = 0, see
Appendix C for details). Such a feature indicates that the DM
interaction (3), with the DM vectors (21), indeed yields a finite

Berry curvature for the triplons. Similar qualitative features
are found for the three triplon bands shown in Fig. 4(d), which
are associated with the parameters J2 = 0.52 J1, D = 0.10 J1,
and hz = 0.05 J1; see Figs. 5(d)–5(f).

Once the Berry curvatures �α (k) of the triplon bands ωα
k

are determined, we can calculate the Chern number of each
triplon band, which is defined as the integral of the Berry cur-
vature over the dimerized Brillouin zone [109,110], namely,

Cα = 1

2π

∫
BZ

d2k �α (k). (46)

We determine the Chern numbers Cα via a numerical
integration of Eq. (46).

The Chern numbers of the triplon bands for exchange cou-
plings J2 = 0.48 and 0.52 J1 and DM interactions D = 0.10
and 0.20 J1 are displayed in Table I. One finds that regardless
the value of the exchange coupling J2 and the DM interaction
D, the Chern numbers of the three triplon bands vanish. Such
results are related to the symmetries of the Berry curvatures,
as exemplified in Fig. 5. Therefore, although the Berry cur-
vatures are finite in some regions of the dimerized Brillouin

TABLE I. Chern numbers of the ωx
k, ω

y
k, and ωz

k triplon bands
of the columnar VBS phase of the model (1) for J2 = 0.48 and
J2 = 0.52 J1 and the DM interaction D = 0.10 and 0.20 J1. The ex-
ternal magnetic field hz = 0.05 J1.

J2 = 0.48 J1 J2 = 0.52 J1

D α Cα Cα

0.10 x 0 0
0.10 y 0 0
0.10 z 0 0
0.20 x +2.08 × 10−4 +1.07 × 10−3

0.20 y +2.09 × 10−4 +0.88 × 10−3

0.20 z −4.18 × 10−4 −1.95 × 10−3
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FIG. 6. Thermal Hall conductivity κxy/(kBJ1/h̄) as a function of the temperature kBT/J1 for the columnar VBS phase of the Heisenberg
model (1). Next-nearest-neighbor exchange and DM couplings: (a) J2 = 0.48 J1 and D = 0.10 J1 (dashed blue line), J2 = 0.48 J1 and
D = 0.20 J1 (dashed red line), J2 = 0.52 J1 and D = 0.10 J1 (solid green line), and J2 = 0.52 J1 and D = 0.20 J1 (solid black line); (b) J2 =
0.50 J1 and D = 0.10 J1 (solid orange line) and J2 = 0.50 J1 and D = 0.20 J1 (dashed violet line). The external magnetic field hz = 0.05 J1.
The vertical dark-green dashed line indicates the temperature above which triplon-triplon interactions might be relevant; the vertical magenta
dashed line is an estimate for the critical temperature Tc above which the VBS phase is no longer stable (see text for details). Inset in (a):
Low-temperature behavior of the thermal Hall conductivity.

zone, the triplon excitations of the columnar VBS phase of
the Heisenberg model (1) are topologically trivial.

It should be mentioned that our findings are similar to the
ones obtained in Ref. [29] for a spin-liquid phase on a square
lattice. The Berry curvatures of the (bosonic) spinon bands
display finite values in some regions of the Brillouin zone
(see Figs. 7(e) and 7(f) from Ref. [29]), but the corresponding
Chern numbers vanish.

VI. THERMAL HALL CONDUCTIVITY

We now focus on the transport properties of the columnar
VBS phase of the Heisenberg model (1), in particular, we
determine the thermal Hall conductivity κxy due to triplons.
We follow the procedure proposed in Refs. [22,23], where the
thermal Hall conductivity κxy due to the magnon excitations

0 0.2 0.4 0.6 0.8
kBT/J1

0

0.2

0.4

0.6

0.8

1

N
tr

ip
lo

n/(
N

/2
)

J2 = 0.48 J1  D = 0.10 J1
J2 = 0.48 J1  D = 0.20 J1

FIG. 7. Number of triplons (50) as a function of the temperature
kBT/J1 for the columnar VBS phase of the Heisenberg model (1)
with J2 = 0.48 J1 and DM couplings D = 0.10 and 0.20 J1. The
external magnetic field hz = 0.05 J1. N/2 is the number of sites of
the dimerized lattice D, as illustrated in Fig. 1(c).

of a long-range-ordered ferromagnet was determined. Such a
formalism was also applied to study the triplon thermal Hall
effect in a AFM on a Shastry-Sutherland lattice [14,15].

For a system of noninteracting boson excitations, the ther-
mal Hall conductivity is given by [22,23]

κxy = −k2
BT

h̄V

∑
k,α

c2[ fB(ωα
k )]�α (k), (47)

where kB is the Boltzmann constant, T is the temperature,

fB(ε) = 1

eε/kBT − 1
(48)

is the Bose distribution function, and �α (k) is the Berry cur-
vature (45) of the (bosonic) triplon excitation band ωα

k , with
α = x, y, z. Moreover, the function c2(x) assumes the form

c2(x) =
∫ x

0
dt

(
ln

1 + t

t

)2

= (1 + x)

(
ln

1 + x

x

)2

− (ln x)2 − 2Li2(−x), (49)

where Li2(x) is the polylogarithm, which is defined as
Lin(z) = ∑∞

j=1 z j/ jn; one shows that c2(x) is a monotonic
function with c2(0) = 0 and c2(x → ∞) = π2/3. We con-
sider the Berry curvatures calculated in Sec. V and determine
κxy via a numerical integration of Eq. (47).

The behavior of the thermal Hall conductivity (47) as a
function of the temperature T for J2 = 0.48, 0.50, and 0.52 J1,
DM interaction D = 0.10 and 0.20 J1, and external magnetic
field hz = 0.05 J1 is shown in Fig. 6. One sees that regardless
of the values of the exchange coupling J2 and DM inter-
action D, the thermal Hall conductivities display a peak at
T ∼ 0.5 J1/kB, whose height increases with the DM interac-
tion for a fixed value of the exchange coupling J2. Moreover,
one notices that κxy vanishes in the low-temperature region,
a feature related to the existence of a finite triplon excita-
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tion gap; see Fig. 2(d). Interestingly, only for J2 = 0.48 J1,
κxy assumes negative values around T ∼ 0.1 J1/kB [see the
inset of Fig. 6(a)]. Indeed, for J2 < 0.50 J1, we find a sign
reversal of the thermal Hall conductivity as T varies in this
low-temperature region. Apart from the sign reversal in the
low-temperature region and the fact that the triplons are topo-
logically trivial, the behavior of κxy with the temperature T
qualitatively agrees with the phenomenological one discussed
in Ref. [111].

A few remarks about the temperature range below which
our results for the thermal Hall conductivity might be valid
are in order here: The number of triplons as a function of the
temperature is given by

Ntriplons =
∑
k,α

〈b†
k,αbk,α〉 =

∑
k,α

fB(ωα
k ), (50)

with fB(ε) being the Bose distribution function (48). Fig-
ure 7 shows the behavior of Ntriplons with the temperature T
for J2 = 0.48 J1, DM interaction D = 0.10 and 0.20 J1, and
external magnetic field hz = 0.05 J1; we find a quite similar
quantitative behavior for J2 = 0.50 and 0.52 J1. One expects
that for T � 0.35 kB/J1 (dark-green dashed line in Fig. 6), the
cubic terms (17) and (24) as well as the quartic terms (18)
and (25), which are neglected in our study, might be relevant
and therefore they could provide important corrections to the
thermal Hall conductivity. Furthermore, for T � 0.8 kB/J1,
one sees that the number of triplons, Ntriplons, is larger than the
number of sites, N ′ = N/2, of the dimerized lattice D; such a
feature indicates that for T ∼ 0.8 kB/J1 (magenta dashed line
in Fig. 6), the system might be close to the critical temperature
Tc above which the columnar VBS phase is no longer stable.
We intend to investigate the effects of the triplon-triplon inter-
action on the thermal Hall conductivity in a future publication.
Such a study will also be important for a proper determination
of the critical temperature Tc.

VII. SUMMARY AND DISCUSSION

In spite of the fact that the triplon excitations are topolog-
ically trivial, the columnar VBS phase of the square lattice
AFM Heisenberg model (1) is characterized by a finite ther-
mal Hall conductivity. Such a feature is indeed a thermal
effect: Due to the weight function c2(x) [Eq. (49)], the inte-
grand of Eq. (47) vanishes in the vicinity of the X point of the
dimerized Brillouin zone (not shown here), implying a finite
thermal Hall conductivity. Recall that the Berry curvatures of
the triplon bands are finite around the X point of the dimer-
ized Brillouin zone (see Fig. 5), an important contribution
that yields topologically trivial triplon excitations. As pointed
out in Ref. [29], a VBS phase with topologically nontrivial
triplons might be characterized by a thermal Hall conductiv-
ity qualitatively similar to the one found for the columnar
VBS phase of the model (1), but with a higher peak at low
temperatures.

The fact that the topological properties of the triplon bands
enhance the thermal Hall conductivity was indeed observed in
Refs. [14,15], where a Shastry-Sutherland AFM model rele-
vant for the SrCu2(BO3)2 compound is considered. Here, it is
found that for an external magnetic field |hz| < hz,c, the Chern
numbers of the triplon bands are finite. The behavior of the

thermal Hall conductivity as a function of the magnetic field
hz for a fixed temperature T indicates that the largest values
of κxy are within the interval |hz| < hz,c (see, e.g, Fig. 10
from Ref. [15]). Interestingly, the thermal Hall conductivity
is finite (although smaller) even for |hz| > hz,c, where the
triplon bands are topologically trivial. Concerning the AFM
Heisenberg model (1), a critical magnetic field hz,c, where the
gaps between the three triplon bands close and above which
the triplon bands are topologically nontrivial, is not observed.

The fact that a finite thermal Hall conductivity is found
for the columnar VBS phase of the square lattice AFM
Heisenberg model (1) indicates that the no-go condition [21],
which was determined for a long-range-ordered magnet and
is based on linear spin-wave theory results, does not apply
to the columnar VBS phase. In fact, as mentioned in Sec. I,
exceptions to the no-go condition [21] were previously re-
ported in Refs. [26,29]. Again, for the spin-liquid phase on
a square lattice discussed in Ref. [29], a finite thermal Hall
effect due to spinons was found when the DM vector pattern
associated with the YBCO compound was considered and,
in spite of the fact that κxy is finite, the spin-liquid phase is
characterized by topologically trivial (bosonic) spinon excita-
tions. One sees that the features found here for the columnar
VBS phase are quite similar to the ones observed for the
spin-liquid phase [29]. Therefore, it seems that the DM inter-
action corresponding to the YBCO compound yields square
lattice quantum paramagnetic phases, both spin-liquid and
VBS ones, characterized by a finite thermal Hall conductivity
κxy and topologically trivial elementary excitations. In order
to confirm such an issue, it would be interesting to deter-
mine the Chern numbers of the excitation bands and κxy for
the model (1), but now considering both gapless and gapped
spin-liquid phases proposed as ground-state candidates for the
J1-J2 model (see Sec. II for details). Indeed, it would also be
interesting to provide, in the near future, a discussion concern-
ing the general conditions for the observation of a thermal Hall
effect in quantum paramagnetic phases.

A sign reversal of the thermal Hall conductivity with the
increasing of the temperature T , from negative to positive
values as we found for J2 < 0.50 J1 in the low-temperature
region, was also observed for ordered ferromagnets on the
Shastry-Sutherland [7] and honeycomb [8] lattices. In partic-
ular, for a ferromagnet on the honeycomb lattice [8], it was
pointed out that such a sign change indicates a topological
phase transition since a gap closure between the upper and
lower magnon bands is also observed as T varies, an effect due
to magnon-magnon interactions. Such a similar gap closure is
not observed in our case. At the moment, the sign reversal
of κxy for the columnar VBS phase of the model (1) with
J2 < 0.50 J1 is not completely understood. Similarly to the
phase diagram shown in Fig. 3, the low-temperature behavior
of κxy seems to indicate a distinction between the parame-
ter regions J2 < 0.5 J1 and J2 > 0.5 J1 of the J1-J2 model,
which qualitatively agrees with Refs. [85,87,93,98,99,101]. It
is worth mentioning that one of us also find such a distinction
in the study [97] concerning many-triplon states in the colum-
nar VBS phase of the J1-J2 model.

In summary, in this paper, we studied the spin-1/2 J1-J2

AFM Heisenberg model on a square lattice with an additional
DM interaction between the spins and in the presence of an ex-
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ternal magnetic field. We focused on the columnar VBS phase,
which is stable within the intermediate parameter region of
the J1-J2 model. In particular, we discussed the topological
properties of the triplon excitations of the columnar VBS
phase, which is described via an effective interacting boson
model obtained with the aid of a bond-operator formalism
for the spin operators. We considered the interacting boson
model within a harmonic approximation and determined the
triplon excitation bands. We found that the DM interaction
provides a finite Berry curvature for the triplon bands, but the
corresponding Chern numbers vanish. Although the triplon
excitations are topologically trivial, we found that the thermal
Hall conductivity of the columnar VBS phase is indeed finite.

Finally, we hope that our results may motivate the search
for VBS phases in (dimerized) square lattice AFMs character-
ized by a finite triplon thermal Hall effect. Indeed, although a
thermal Hall effect due to triplons has been predicted for the
Shastry-Sutherland compound SrCu2(BO3)2 [14,15], some
recent measurements do not observe discernible values for the
thermal Hall conductivity within the experimental resolution
[112].
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APPENDIX A: EFFECTIVE BOSON MODEL
IN REAL SPACE

In this Appendix, we provide the expressions of the Hamil-
tonians (12), (22), and (28) in terms of the singlet si and triplet
tiα boson operators.

Let us first consider the J1-J2 AFM Heisenberg model (2).
After substituting the generalized bond-operator expansion
(9) of the spin operators in terms of the singlet and triplet
operators, one arrives at the Hamiltonian (12), where the HJ,n

terms read

HJ,0 = − 3

4
J1

∑
i

s†
i si,

HJ,2 = J1

4

∑
i

t†
iαtiα + 1

4

∑
i,τ

ζ2(τ )(sis
†
i+τ t†

iαti+τα + H.c.

+ s†
i s†

i+τ tiαti+τα + H.c.),

HJ,3 = i

4
εαβλ

∑
i,τ

ζ3(τ )[(s†
i tiα + t†

iαsi )t
†
i+τβti+τλ

− (i ↔ i + τ )],

HJ,4 = − 1

4
εαβλ εαμν

∑
i,τ

ζ4(τ )t†
iβt†

i+τμtiλti+τν . (A1)

Here the summation convention over repeated greek indices is
implied, the ζi(τ ) functions are defined as

ζ2(τ ) = 2(J1 − J2)δτ,2 − J1δτ,1 − J2(δτ,1+2 + δτ,1−2),

ζ3(τ ) = J1δτ,1 + J2(δτ,1+2 + δτ,1−2),

ζ4(τ ) = 2(J1 + J2)δτ,2 + J1δτ,1 + J2(δτ,1+2 + δτ,1−2),

and the index τ indicates the dimer nearest-neighbor vectors
τn [see Eq. (11)]. It should be mentioned that in order to derive
the Hamiltonian (12), it is convenient to consider the identity

S1 · S2 = −3

4
s†s + 1

4

∑
α

t†
αtα (A2)

for the local term J1(S1
i · S2

i ) of the Hamiltonian (10) and the
expansion (9) for the nonlocal ones.

Concerning the DM interaction (3), the local term of the
Hamiltonian (20), Di,i · (S1

i × S2
i ), can be easily treated with

the aid of the identity

D · (S1 × S2) = 1
2 iDαs†tα + H.c., (A3)

which can be obtained following the same procedure that
yields the identity (A2). Similarly to the J1-J2 model (2),
one employs the expansion (9) for the nonlocal terms of the
Hamiltonian (20) and shows that the four terms of the effective
boson model (22) assume the form

HDM,1 = 1

2
iDs†

i tix + H.c.,

HDM,2 = −1

4
D εxβγ

∑
i∈D

(s†
i+1sit

†
iβti+1,γ + H.c.

+ s†
i s†

i+1tiβti+1,γ + H.c.)

− 1

2
D εyβγ

∑
i∈D

(s†
i+2sit

†
iβti+2,γ + H.c.

+ s†
i s†

i+2tiβti+2,γ + H.c.),

HDM,3 = 1

4
iD εxβγ

∑
i∈D

εγμν (s†
i tiβ + t†

iβsi )t
†
i+1,μti+1,ν

− εβμν t†
iμtiν (s†

i+1ti+1,γ + t†
i+1,γ si+1),

HDM,4 = −D εβμνεγμ′ν ′
∑
i∈D

(
1

4
εxβγ t†

iμtiνt†
i+1,μ′ti+1,ν ′

− 1

2
εyβγ t†

iμtiνt†
i+2,μ′ti+2,ν ′

)
. (A4)

Finally, one easily shows that in terms of the singlet and
triplet operators, the Zeeman term (28) is given by

HB = iεαβγ

∑
i∈D

hα t†
iβtiγ , (A5)

where hα , with α = x, y, z, is the α-component of the external
magnetic field h = gμBB.

APPENDIX B: LINEAR TRIPLET TERM
OF THE EFFECTIVE BOSON MODEL

In this Appendix, we provide some details of the procedure
employed to treat the linear triplet term HDM,1 of the effective
boson model [see Eq. (A4)]. In particular, we adopted the
treatment described in Ref. [16].

As mentioned in Sec. III, the linear term HDM,1 can be
removed via a unitary transformation performed in each site
of the dimerized lattice D. Since HDM,1 couples the singlet si
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and the triplet tix operators, we consider the Hamiltonian

HL =HJ,0 + H′
J,2 + HDM,1

= J1

∑
i

(
−3

4
s†

i si + 1

4
t†
ixtix + i

D

2J1
s†

i tix + H.c.

)
, (B1)

which includes the local terms HJ,0 and H′
J,2 related to the

J1-J2 model [see Eq. (A1)] and the local one HDM,1 derived
from the DM interaction [see Eq. (A4)].

In matrix form, the Hamiltonian (B1) reads

HL = J1

∑
i∈D

(s†
i t†

ix )

(− 3
4 iα

−iα 1
4

)(
si

tix

)
, (B2)

with the parameter α = D/(2J1) defined in terms of the DM
interaction D and the nearest-neighbor exchange coupling J1.
It is quite easy to show that the Hamiltonian (B2) can be di-
agonalized by a unitary transformation defined by the unitary
matrix

U = 1√
2(b2 − b)

(
2α i(1 − b)

i(1 − b) 2α

)
, (B3)

with b = (1 + 4α2)1/2. Assuming that α � 1, one finds that
b2 − b ≈ 2α2 and 1 − b ≈ −2α2, and therefore, up to linear
order in the parameter α, the unitary matrix (B3) reads

U ≈
(

1 −iα
−iα 1

)
. (B4)

With the aid of Eq. (B4), one defines a new set of singlet s̃i

and triplet t̃iα boson operators,⎛
⎜⎜⎝

s̃i

t̃ix
t̃iy
t̃iz

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 −iα 0 0
−iα 1 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

si

tix
tiy
tiz

⎞
⎟⎟⎠, (B5)

and shows that the Hamiltonian (B1) assumes a diagonal form,
namely,

HL = J1

∑
i∈D

(
−3

4
s̃†

i s̃i + 1

4
t̃†
ixt̃ix

)
. (B6)

Substituting the inverse of the transformation (B5) in
Eqs. (A1), (A4), and (A5), one finds the expression of the
effective boson model in terms of the singlet s̃i and triplet t̃iα
boson operators. In particular, it is easy to show that up to
linear order in the parameter α, the quadratic terms HJ,2 and
HDM,2 assume the forms shown in Eqs. (A4) and (A5), respec-
tively, with the replacements si → s̃i and tiα → t̃iα . Moreover,

one also finds that up to linear order in the parameter α, the
cubic term HJ,3 yields an additional quadratic term, namely,

H = −iεxβγ

∑
k

D′
k

[
t̃†
kβ

t̃kγ + 1

2
(t̃−kβ t̃kγ − t̃†

−kβ
t̃†
kγ

)

]
, (B7)

with

D′
k = 1

2
DN0 sin(2kx ) + 1

2
DN0

J2

J1
[sin(2kx + ky)

+ sin(2kx − ky)]. (B8)

Therefore, the quadratic Hamiltonian (30), considered within
the harmonic approximation, assumes the form defined by
Eqs. (31)–(35), with the replacements tiα → t̃iα and Dk →
Dk + D′

k; see Eq. (27). In Sec. IV, after performing such
replacements, we restore the notation for the triplet operators,
i.e., t̃iα → tiα .

A few remarks about the Zeeman term (A5) are in order
here: In principle, the Zeeman term should also be included in
the Hamiltonian (B1); since we consider a very small external
magnetic field, hz = 0.05 J1, we neglect the contribution of the
Zeeman term to the (local) Hamiltonian (B1); importantly, the
results derived in Sec. IV within the harmonic approximation
for D < hz may need some further corrections.

APPENDIX C: DETAILS ABOUT THE DIAGONALIZATION
OF THE HARMONIC HAMILTONIAN

In this Appendix, we present the analytical expressions of
the triplon dispersion relations ωα

k , in addition to the matrix
elements of the T̂k matrix (42), which relates the triplet t and
triplon b boson operators; see Eq. (41). The analytical pro-
cedure employed here is based on Refs. [107,108] and it was
previously applied by one of us to diagonalize 4 × 4 and 6 × 6
boson Hamiltonians; see Refs. [113] and [84], respectively.

As mentioned in Sec. IV, instead of the Ĥk matrix (34),
one should diagonalize the ÎBĤk matrix (36). One finds that
the eigenvalues ωα

k are the roots of the polynomial,

(ωα
k )6 + a2,k(ωα

k )4 + a1,k(ωα
k )2 + a0,k = 0, (C1)

where the coefficients ai,k are written in terms of the coeffi-
cients Ak and Bk defined by Eq. (19), the coefficients Ck and
Dk, respectively, given by Eqs. (26) and (27), and the external
magnetic field hz:

a0,k =(Bk − Ak )
(
B2

k + h2
z − A2

k

)[
Bk

(
B2

k + h2
z − 4D2

k − 4C2
k

) + Ak
(
B2

k + h2
z + 4D2

k + 4C2
k

) − A2
k(Ak + Bk )

]
,

a1,k = h4
z + (Ak − Bk )2

[
3(Ak + Bk )2 − 4

(
C2

k + D2
k

)]
, (C2)

a2,k = − 3
(
A2

k − B2
k

) − 2h2
z .

Due to the form of Eq. (C1), one sees that the eigenvalues (ωα
k )2 are indeed the roots of a cubic polynomial which can be

written as

ω
x/y
k =

[
−1

3
a2,k − 1

2
(P1,k + P2,k ) ± i

√
3

2
(P1,k − P2,k )

]1/2

, ωz
k =

[
−1

3
a2,k + (P1,k + P2,k )

]1/2

, (C3)
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where

P1/2,k = (
Mk ± √

Nk
)1/3

, Nk = Q3
k + M2

k, Qk = 1

9

(
3a1,k − a2

2,k

)
, Mk = 1

54

(
9a2,ka1,k − 27a0,k − 2a3

2,k

)
. (C4)

In order to determine the matrix elements of the T̂k matrix (42), it is interesting to consider the two eigenvalue problems

ÎBĤ ′
kẐ i

1,k − ωi
kẐ i

1,k = 0 and ÎBĤ ′
kẐ i

2,k + ωi
kẐ i

2,k = 0, (C5)

with ωi
k > 0 and i = 1, 2, 3. Here the six-component vectors Ẑ i

1/2,k are defined as

Ẑ i
1,k = (

ui1
k ui2

k ui3
k vi1

k vi2
k vi3

k

)T
and Ẑ i

2,k = (
yi1

k yi2
k yi3

k xi1
k xi2

k xi3
k

)T
,

and one identifies ω1
k = ωx

k, ω2
k = ω

y
k, and ω3

k = ωz
k. Equation (C5) allows one to determine (i) the elements ui1

k , ui2
k , ui3

k , vi1
k , and

vi2
k in terms of the element vi3

k and (ii) the elements yi1
k , yi2

k , yi3
k , xi1

k , and xi2
k in terms of the element xi3

k , for i = 1, 2, 3. Moreover,
the condition (43) allows one to determine the elements vi3

k and xi3
k . Indeed, it is useful to write the matrix elements of the 3 × 3

matrices Ûk, V̂k, X̂k, and Ŷk in terms of the (auxiliary) elements ūi j,k, v̄i j,k, x̄i j,k, and ȳi j,k as

Ûk =

⎛
⎜⎜⎝

v31
k ū11,k v32

k ū42,k v33
k ū73,k

v31
k ū21,k v32

k ū52,k v33
k ū83,k

v31
k ū31,k v32

k ū62,k v33
k ū93,k

⎞
⎟⎟⎠, Ŷk =

⎛
⎜⎜⎝

x31
k ȳ11,k x32

k ȳ42,k x33
k ȳ73,k

x31
k ȳ21,k x32

k ȳ52,k x33
k ȳ83,k

x31
k ȳ31,k x32

k ȳ62,k x33
k ȳ93,k

⎞
⎟⎟⎠,

V̂k =

⎛
⎜⎜⎝

v31
k v̄11,k v32

k v̄42,k v33
k v̄73,k

v31
k v̄21,k v32

k v̄52,k v33
k v̄83,k

v31
k v32

k v33
k

⎞
⎟⎟⎠, X̂k =

⎛
⎜⎜⎝

x31
k x̄11,k x32

k x̄42,k x33
k x̄73,k

x31
k x̄21,k x32

k x̄52,k x33
k x̄83,k

x31
k x32

k x33
k

⎞
⎟⎟⎠. (C6)

With the aid of the condition (43), one then shows that

v
3, j
k =(|ū3 j−2,1,k|2 − |v̄3 j−2,1,k|2 + |ū3 j−1,1,k|2 − |v̄3 j−1,1,k|2 − 1 + |ū3 j,1,k|2)−1/2,

x3, j
k =(|x̄3 j−2,1,k|2 − |ȳ3 j−2,1,k|2 + |x̄3 j−1,1,k|2 − |ȳ3 j−1,1,k|2 + 1 − |ȳ3 j,1,k|2)−1/2, (C7)

for j = 1, 2, 3. The two eigenvalue problems (C5) allow one to determine the elements ūi j,k, v̄i j,k, x̄i j,k, and ȳi j,k. One then finds
that the elements ūi j,k assume the form

ūαβ,k = i
1

Fβ,k
(Bk + Rβ,k )

[
B3

kCk + B2
k(L4,k − CkSβ,k ) + (L4,k + CkRβ,k )

(
h2

z − S2
β,k

)
+ Bk

(
h2

zCk + 2L4,kω
β

k + CkRβ,kSβ,k
)]

for α = 1, 4, 7,

ūαβ,k = 1

Fβ,k

[
iL1,kL6,k(L5,k − DkL6,k ) + hz

(
2BkL4,k + 3B2

kCk + h2
zCk − 2AkL4,k − 4AkBkCk + A2

kCk
)
ω

β

k

− (
ih2

z Dk − 2iAkDkL6,k − hzCkL6,k
)
(ωβ

k )2 − hzCk(ωβ

k )3 + iDk(ωβ

k )4
]

for α = 2, 5, 8,

ūαβ,k = 1

Fβ,k

[
BkL1,k

(
2L2,k + A2

k − h2
z

) − L1,k
(
B3

k + 2AkL2,k
) − 2

(
B3

k + AkL2,k
)
(ωβ

k )2

+ Bk
(
h2

z + A2
k + L2,k

)
(ωβ

k )2 − Bk(ωβ

k )4
]

for α = 3, 6, 9; (C8)

the elements v̄i j,k are given by

v̄αβ,k = + i
1

Fα,k
(Bk + Rα,k )

[
B3

kCk + B2
k(CkRα,k − L4,k ) − i(hz + Rα,k )(hz + Rα,k )(+hzDk + iCkSα,k )

+ Bk
(
h2

zCk + 2L4,kω
α
k + CkRα,kSα,k

)]
for α = 1, 4, 7, (C9)

v̄αβ,k = − i
1

Fα,k
(Bk + Rα,k )

[
B3

kDk + B2
k(DkRα,k + L5,k ) − i(hz + Rα,k )(Rα,k − hz )(−hzCk + iDkSα,k )

+ Bk
(
h2

z Dk − 2L5,kω
α
k + DkRα,kSα,k

)]
for α = 2, 5, 8;
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the elements ȳαβ,k read

ȳαβ,k = 1

Gβ,k

{
+ iB4

kCk − B3
k(2iAkCk − hzDk ) − (hz + Rβ,k )(Rβ,k − hz )(−hzDk + iCkSβ,k )Sβ,k

+ Bk
(
h3

z Dk − 2ih2
zCkSβ,k − 2iAkCkRβ,kSβ,k

) − hzBkDk
[
A2

k − 4Akω
β

k − (ωβ

k )2
]

− hzB
2
kDk(Ak + 3ω

β

k ) − hzB
2
kL5,k

}
for α = 1, 4, 7,

ȳαβ,k = 1

Gβ,k

{
− iB4

kDk + B3
k(2iAkDk + hzCk ) + (hz + Rβ,k )(Rβ,k − hz )(+hzCk + iDkSβ,k )Sβ,k

+ Bk
(
h3

zCk + 2ih2
z DkSβ,k + 2iAkDkRβ,kSβ,k

) − hzBkCk
[
A2

k − 4Akω
β

k − (ωβ

k )2
]

− hzB
2
kCk(Ak + 3ω

β

k ) + hzB
2
kL4,k

}
for α = 2, 5, 8, (C10)

ȳαβ,k = 1

Gβ,k

[
BkL1,k

(
2L2,k + A2

k − h2
z

) − L1,k
(
B3

k + 2AkL2,k
) − 2(B3

k + AkL2,k )(ωβ

k )2

+ Bk
(
h2

z + A2
k + L2

)
(ωβ

k )2 − Bk(ωβ

k )4
]

for α = 3, 6, 9;

and the elements x̄i,k are given by

x̄αβ,k = + i
1

Gβ,k
(Bk − Sβ,k )

[
B3

kCk + (hz − Sβ,k )(hz + Sβ,k )(CkRβ,k − L4,k )

− B2
k(L4,k + CkSβ,k ) + Bk

(
h2

zCk − 2L4,kω
β

k + CkRβ,kSβ,k
)]

for α = 1, 4, 7, (C11)

x̄αβ,k = − i
1

Gβ,k
(Bk − Sβ,k )

[
B3

kDk + (hz − Sβ,k )(hz + Sβ,k )(DkRβ,k + L5,k )

+ B2
k(L5,k − DkSβ,k ) + Bk

(
h2

z Dk + 2L5,kω
β

k + DkRβ,kSβ,k
)]

for α = 2, 5, 8.

Here, the coefficients Li,k are defined as

L1,k = B2
k + h2

z − A2
k, L2,k = D2

k + C2
k, L3,k = B2

k − h2
z ,

L4,k = −ihzDk, L5,k = −ihzCk, L6,k = Bk − Ak, (C12)

the coefficients Oi,k read

O1,k = Ak
(
L1,k + A2

k + 2L2,k
) − 2BkL2,k − A3

k,

O2,k = Ak(L2,k + L3,k ) − BkL2,k − A3
k, (C13)

and, finally,

Rα
k = ωα

k − Ak, Sα
k = ωα

k + Ak,

Fα
k = L1,kO1,k − L2

1,kω
α
k + 2O2,k(ωα

k )2 + 2
(
A2

k − L3,k
)
(ωα

k )3 + Ak(ωα
k )4 − (ωα

k )5
,

Gα
k = L1,kO1,k + L2

1,kω
α
k + 2O2,k(ωα

k )2 + 2
(
L3,k − A2

k

)
(ωα

k )3 + Ak(ωα
k )4 + (ωα

k )5
, (C14)

with α = 1, 2, 3, the coefficients Ak and Bk given by Eq. (19), the coefficients Ck and Dk, respectively, given by Eqs. (26) and
(27), and hz being the external magnetic field.

Finally, it is important to mention that Eqs. (C7)–(C14) are not appropriated for DM interaction D = 0. In this case, we find
divergences for the Berry curvatures (45). For D = 10−3 J1, well-defined results for the Berry curvatures are found.
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