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Universal imaginary-time critical dynamics on a quantum computer
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Quantum computers promise a highly efficient approach to investigate quantum phase transitions, which
describe abrupt changes between different ground states of many-body systems. At quantum critical points,
the divergent correlation length and entanglement entropy render the ground state preparation difficult. In this
work, we explore the imaginary-time evolution for probing the universal critical behavior as the universal
information of the ground state can be extracted in the early time relaxation process. We propose a systematic and
scalable scheme to probe the universal behaviors via imaginary-time critical dynamics on quantum computers
and demonstrate the validness of our approach by both numerical simulation and quantum hardware experiments.
With the full form of the universal scaling function in terms of imaginary time, system size, and circuit depth, we
successfully probe the universality by scaling analysis of the critical dynamics at an early time and with shallower
quantum circuit depth. Equipped with quantum error mitigation, we also confirm the expected scaling behavior
from experimental results on a superconducting quantum processor which stands as the first experimental
demonstration of universal imaginary-time quantum critical dynamics.
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I. INTRODUCTION

Quantum computing has been of great academic and in-
dustrial interest since Richard Feynman’s original vision of
using quantum systems to simulate nature. Recently, various
experimental platforms of noisy intermediate-scale quantum
(NISQ) [1] devices have been developed, with the long-term
vision for solving practical problems that a classical com-
puter cannot address efficiently [2,3]. Moreover, quantum
algorithms for quantum simulation of ground state, excited
state, and dynamical properties have expanded in recent years
[4–7]. Various quantum error mitigation (QEM) techniques
[8–14] have also been developed to alleviate the effect of
quantum noise on NISQ devices and yield reliable experi-
mental results. The rapid development of quantum hardware,
quantum algorithms, and quantum software provides far-
reaching platforms to investigate various exotic quantum
phases.

As the watershed of different ground states, the critical
points hold universal scaling behaviors, attracting extensive
investigations as one of the cornerstones of modern physics
[15]. Critical exponents are crucial to determine the univer-
sality class of the corresponding critical points, which is the
most important aspect of a quantum phase transition and is
the key to developing correct theoretical understanding for
these transitions. The routine method to explore the critical
properties in ground states is to identify ground states first
and then reveal the scaling properties of physical quanti-
ties defined on ground states. However, for critical systems,
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difficulties are encountered in obtaining the ground state with
quantum computers. Quantum circuits should be carefully
chosen to take into account the divergent entanglement which
in general requires a divergent depth of quantum circuits to
faithfully capture. In addition, the typical time scale to arrive
at the ground state in imaginary-time evolution is proportional
to Nz in which N is the system size and z is the dynamic
exponent. Therefore, for large systems, it takes an extremely
long time to obtain the ground state accurately via imaginary
time evolution.

In this work, we show that these disadvantages in prob-
ing quantum critical properties can be transformed into
advantages by exploring universal scaling behaviors in the
imaginary-time critical dynamics on quantum computers.
Firstly, we identify that critical exponents appearing in the
short-time dynamical scaling are the same as the static ones
in the ground state. We can circumvent the need to get ground
state based on this connection. Secondly, starting from a
product state, both the correlation length and entanglement
entropy are relatively small in the short-time stage. Therefore
we can infer the late-time (ground state) universal behavior
via the short-time scaling at the early time. Finally, even if
the shallow variational circuits fail to faithfully reflect the
imaginary-time dynamics, we can still extract the correct
universal scaling based on finite-depth scaling. In sum, the
universal properties of the critical point can be detected in an
efficient and scalable way with short imaginary time evolved
and shallow variational circuit required.

By using the powerful toolboxes for quantum simula-
tion on NISQ devices, including the variational quantum
eigensolver (VQE) [7,16–22], variational quantum dynamics
simulation [23–27], and quantum error mitigation, we reveal
the scaling form of imaginary-time critical dynamics on quan-
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tum computers in the one-dimensional quantum Ising model.
Our results not only experimentally demonstrate the universal
imaginary-time critical dynamics for the first time, but also
pave the way for future studies on novel critical systems via
imaginary-time dynamics on NISQ computers.

II. IMAGINARY-TIME CRITICAL DYNAMICS

There are two types of dynamical critical behaviors of-
ten discussed in the literature: one is the real-time annealing
dynamics characterized by the famous Kibble-Zurek mech-
anism and its generalizations [28–32], and the other one is
the short-time critical scaling in the imaginary-time quench
process. Note that the real-time unitary relaxation dynam-
ics after a sudden quench usually cannot reflect the scaling
properties of the quantum critical point at the ground state
[30,31]. The Kibble-Zurek dynamical critical scaling has been
extensively studied in various settings and shows its power in
different quantum platforms, such as D-Wave annealer [33],
Rydberg arrays [34], ultracold atoms [35,36] and trapped ions
[37], to assess the quality of the preparation of the putative
ground states. On the contrary, the imaginary-time short-
time dynamical critical behavior has never been explored
in experiments.

The imaginary-time evolution of a quantum system de-
scribed by a Hamiltonian H for a quantum state |ψ (t )〉 has
a formal solution as a nonunitary evolution e−τH on the initial
state |ψ (0)〉:

|ψ (τ )〉 = 1

Z
exp(−Hτ )|ψ (0)〉, (1)

where Z = 〈ψ (0)| exp(−2Hτ )|ψ (0)〉 is the normalization
factor.

When H is near its critical point, the universal scaling
behaviors emerge in the imaginary-time relaxation process
[38–42]. From a product initial state with an initial order
parameter M0, the general scaling transformation of a physical
quantity P follows [38]

P(τ, g, M0, N ) = bφP[b−zτ, b1/νg,U (b, M0), b−1N], (2)

in which b is the rescaling factor, g is the distance in Hamil-
tonian parameter deviating from the critical point, φ is the
scaling dimension of P, and U (b, M0) is a characteristic func-
tion [43]. For M0 = 1, we have the fixed point U (b, M0) = 1.

This scaling function (2) was first proposed in classical
critical dynamics [43–47] and then generalized to quantum
imaginary-time critical dynamics owing to the dissipative na-
ture of evolution in both cases [38,39]. The critical exponents
in Eq. (2) are the same as the equilibrium ones since they are
connected via τ → ∞ limit, when Eq. (2) should recover the
equilibrium scaling for ground states.

By extending to the finite circuit depth case [48,49], where
the static or dynamical states are prepared by a finite-depth
variational quantum circuit, we have

P(τ, g, M0, N, D) = bφP[b−zτ, b1/νg,

× U (b, M0), b−1N, b−αD], (3)

where D is the circuit depth and α is its scaling dimen-
sion. Previous work has revealed such finite-depth scaling

for ground state preparation on quantum computers and our
work explores the finite-depth scaling in dynamics for the
first time.

From a completely ordered initial state, for P = Mk , the
kth moment of the order parameter with φ = −kβ/ν, by
choosing b = N , one obtains the scaling form of Mk at g = 0
as

Mk (τ, N, D) = N−kβ/ν fM (τN−z ) (4)

and

Mk (τ, N, D) = N−kβ/ν fM (τN−z, DN−α ), (5)

with finite-depth consideration.
From a disordered initial state with the local order pa-

rameter distributed randomly and M0 = 0, an imaginary-time

correlator is defined as A ≡ (
∑N

i=1 Ms
i (0)Ms

i (τ ))s, where the
correlator is average over different initial spin configuration s
as well as qubit i. This correlator satisfies the dynamic scaling
form as

A = N−d+θz fA(τN−z ), (6)

in which θ is the critical initial slip exponent, unique to the
dynamical behavior.

III. VARIATIONAL IMAGINARY-TIME
DYNAMICS SIMULATION

There are two main proposals to enable the simulation
of nonunitary imaginary-time dynamics on quantum comput-
ers. The Trotterization-based approach [50], implements the
unitary approximation for each small Trotterized imaginary
time step progressively which requires a large circuit depth:
exponential with respect to the correlation length and linear
with respect to the evolved time. This method is thus not ready
for NISQ devices.

The ansatz-based approach, on the other hand, has a pre-
defined variational circuit ansatz U . Given a set of variational
circuit parameters �θ , the output quantum state from the ansatz
|φ(�θ (τ ))〉 = U (�θ )|0〉 is taken as the imaginary-time evolved
quantum state. For imaginary time τ , by determining the opti-
mal parameters �θ (τ ), we can obtain the quantum state |φ(τ )〉
and thus the dynamics. Therefore the problem of dynamics
simulation is reduced to determining the variational circuit
parameters �θ (τ ) at different τ [24,25,51,52].

The caveat of the ansatz-based approach is that the ex-
pressive power of the circuit ansatz limits the approximation
accuracy for the dynamics. However, we will utilize this as-
pect as finite circuit depth scaling which turns out to be helpful
instead of harmful in identifying universal properties.

The time evolution dynamics for the circuit parameters
under the Hamiltonian H can be derived from McLachlan’s
variational principle [25]:

∑

j

GR
i, j θ̇ j = −CR

i , (7)
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FIG. 1. The variational circuit ansatz for simulating imaginary
time evolved state under 1D TFIM Hamiltonian.

where θ is the parameters in the variational circuit and ·R is
for taking the real part. The matrix of G and the vector of C
are given by

Gi, j = ∂〈φ(�θ (τ ))|
∂θi

∂|φ(�θ (τ ))〉
∂θ j

, (8)

Ci = ∂〈φ(�θ (τ ))|
∂θi

H |φ(�θ (τ ))〉, (9)

respectively. The matrix elements can all be obtained from the
real quantum hardware [25]. The dynamics in Eq. (7) can be
solved as a set of ordinary differential equations using Runge-
Kutta method (see Appendix A).

Throughout the work, we use the one-dimensional (1D)
ferromagnetic coupled transverse field Ising model (TFIM)
with open boundary conditions as the testbed, whose Hamil-
tonian is

H =
N∑

i=1

hXi −
N−1∑

i=1

ZiZi+1, (10)

The quantum critical point is at h = ±1, and the critical ex-
ponents are β = 1/8, ν = 1, z = 1 and θ ≈ 0.373 [38]. The
local order parameter for this quantum spin model is defined
as M = ∑N

i 〈Zi〉 with M0 = M(τ = 0) the order parameter for
the initial states.

The variational circuit ansatz is given as the hardware
efficient ansatz:

U (θ ) =
D∏

d=1

Ud (θd ), (11)

where for each circuit block we have (two-qubit gates are in
ladder layout) as Fig. 1:

Ud (θd ) =
N∏

i=1

e−iθid4Yi e−iθid3Zi

N−1∏

i=1

e−iθid2ZiZi+1

N∏

i=1

e−iθid1Xi . (12)

The ansatz also shares similarities to the so-called Hamilto-
nian variational ansatz [53] which includes gates correspond-
ing to the Hamiltonian terms such as eiθX and eiθZZ in the
quantum Ising model case.

IV. NUMERICAL RESULTS

We carried out the numerical simulation using quantum
software TENSORCIRCUIT [54]. For detailed settings and hy-
perparameters, see Appendixes B, C, and D). At first, we
focus on the case for sufficiently large D such that the finite

(a)

(b)

FIG. 2. (a) Unscaled and (b) finite-size scaled data for variational
imaginary-time dynamics using variational circuits of different size
and depth D = N/2 + 1 starting from M0 = 1 initial state. The scal-
ing regime begins when τ � 0.1N . The critical exponent is estimated
as β/ν ≈ 0.124 ± 0.03 for the best collapse of rescaled data.

depth effects can be safely ignored. For the circuit ansatz and
the system size N under investigation, we observe that the
number of circuit blocks D > N/2 is sufficient to accurately
represent the imaginary dynamics with relatively small errors
(see Appendix E).

We study the imaginary-time critical dynamics starting
from |↑n〉 with M0 = 1 in the imaginary time range 0 � τ �
10. By rescaling the order parameter measured from varia-
tional circuit with D � N/2 as M2N2β/ν and imaginary time
τ as τ/N , we find that the rescaled curves collapse well as
shown in Fig. 2(b), verifying Eq. (4). The critical exponent is
estimated as β/ν ≈ 0.124 ± 0.03 for the best data collapse,
consistent with the exact value β/ν = 0.125. From Fig. 2, we
identify that scaling behaviors have already emerged at the
short-time stage when the system is far away from the ground
state, demonstrating that the critical properties can be detected
in the short-time relaxation stage using quantum computers.

Apart from the equilibrium critical exponents, the criti-
cal initial slip exponent θ unique to the dynamics can also
be detected in the imaginary-time relaxation process (see
Appendix F).
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Next, we explore and utilize the finite-depth effects in
imaginary-time critical dynamics. It was shown that circuit
depth D enters the scaling form as finite-depth scaling [48,49]
- a unique feature for simulation on quantum computers. In
the imaginary-time dynamics, we verify Eq. (5) directly and
estimate the value of circuit depth exponent α as well as the
critical exponent β/ν. We select several groups of data points
with sharing τN−1, i.e., fixing the first variable of Eq. (5). The
data points are from circuits of depth D from 2 to N/2 + 2
with system size N = 8, 10, 12. By rescaling D and M
as DN−α and MNβ/νz, we identify that for α ≈ 1.19 ± 0.03
and β/ν ≈ 0.126 ± 0.04, as shown in Fig. 3, confirming the
scaling behavior Eq. (5) (see Appendix G for details on the
procedure for data collapse). The extracted finite-depth ex-
ponent α is consistent with the exponent reported in [49] for
translational invariant infinite-size circuits on the same model.
Furthermore, the value of α is further verified directly via
the scaling form of the ground state by VQE simulation in
Appendix H, where different circuit ansatzes give the same
finite-depth exponent, demonstrating the universality of finite-
depth scaling.

Due to finite-depth and short-time scaling, to extract crit-
ical exponents, the variational circuit required does not even
need to faithfully reflect the critical dynamics. We can obtain
qualitatively correct estimations on these critical exponents
from data at very early times and with very shallow circuits
as detailed in Appendix I.

V. QUANTUM HARDWARE EXPERIMENTS

We also carried out experiments on a 20-qubit supercon-
ducting processor [55], and the variational imaginary-time
dynamics results for N = 6, 7, 8 as well as data collapse of
them according to short-time critical dynamics are shown in
Fig. 4. The quantum hardware specs are listed in Appendix J
while additional experimental results comparison is shown in
Appendix K. In experiments, we directly load the numerically
exact circuit parameters for different time τ and evaluate the
order parameter M = ∑N

i 〈Zi〉.
To accurately evaluate M from quantum computers, several

quantum error mitigation approaches [8] are utilized in our
experiment. We apply readout error mitigation on observable
expectation [56] and extended Clifford data regression [10,11]
to mitigate both readout error and quantum gate error, respec-
tively. The detailed error mitigation procedure is introduced
in Appendix L. The mitigated results with only the former
method are labeled as raw in Fig. 4 while the mitigated
results with both mitigation methods are labeled as mit in
Fig. 4. The accuracy for raw results is not sufficient to observe
universal imaginary-time dynamics due to the large quantum
noise present on the quantum chip while the accuracy for mit
results can be helpful in identifying the finite-size short-time
critical scaling as shown in Fig. 4(d). The result is the first
experimental demonstration of short-time critical dynamics.

VI. DISCUSSIONS

Identifying quantum critical dynamics in imaginary time
on quantum computers is not only of demonstration value but
also paves a new way to investigate universal behaviors of

FIG. 3. Imaginary-time dynamics data with several τ/N and dif-
ferent D (a) unscaled and (b) rescaled according to the short-time
finite-depth scaling. Points in the same color should fall into the same
curve with the rescaled axis according to the finite depth exponent.
(c) The data collapse quality for different guesses of finite-depth
exponent α and critical exponent β/ν. The best fit is estimated at
α = 1.19 ± 0.03 and β/ν = 0.126 ± 0.04. The grey contour indi-
cates the region where the data collapse quality is no worse than 5%
compared to the optimal estimation.

critical quantum systems. Previously, to study the universal
behavior of a critical system via variational quantum algo-
rithms, one utilizes VQE to approximate the ground state
at and near criticality to obtain the order parameter scaling
behaviors. However, the ground state of a critical quantum
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FIG. 4. Experimental demonstration of the universal short-time quantum critical dynamics in imaginary time: the experimental data are
collected from a programmable superconducting quantum processor. In (a), (b), and (c), we show experimental results with only readout error
mitigation (raw) and with extended Clifford data regression mitigation (mit) for N = 6, 7, 8 qubits and D = 3, 3, 4 variational circuit blocks,
respectively. The exact results (exact) and numerical simulation results (sim) for the variational imaginary time evolution algorithm are also
shown as lines for guidance. In (d), we apply data collapse on error mitigated data points to extract universal critical scaling from short-time
dynamics, and the results coincide well with the theory prediction.

system has a logarithmic law entanglement entropy S ∼ ln N ,
which requires a large circuit depth to fully capture. Instead,
via universal quantum imaginary-time dynamics, the scaling
behavior with the same sets of critical exponents can be re-
vealed at very early time τ � N with shallow circuits having
larger approximation errors. At that early stage, the half-
chain entanglement scaling is given by the universal behavior
S ∼ ln τ starting from zero, much less than the ground state
case. In addition, the depth of the variational circuit can be
further reduced as reaching entanglement of S ∼ ln τ is also
not necessary thanks to the finite-depth scaling. Therefore,
via the lens of universal imaginary-time critical dynamics,
much less quantum computational resources are sufficient
to investigate critical phenomena compared to ground state
simulation. Moreover, these benefits and potential quantum
advantages of the imaginary-time critical dynamics toolbox
can also manifest themselves in higher dimensional critical
systems where conventional classical methods fail.

It is also an interesting future direction to study the scal-
ing behavior of variational imaginary time dynamics with
intrinsically distinct circuit architectures such as multiscale
entanglement renormalization ansatz [57–60] or with dynam-
ical circuit structures via adaptive scheme [61] or architecture
search scheme [62–65].

In sum, we present the first experimental demonstra-
tion of imaginary-time short-time critical dynamics. Based
on such critical behaviors, we propose a new scalable and

NISQ-friendly approach with a unified scaling form of circuit
depth, evolved time, and system size to study quantum critical
behavior on quantum computers efficiently.
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APPENDIX A: IMAGINARY TIME DYNAMICS
ON QUANTUM COMPUTERS

There are two main proposals to enable the simulation of
nonunitary imaginary-time dynamics on quantum computers.
The Trotterization based approach, often called QITE [50],
implements the unitary approximation for each small Trotter-
ized imaginary time step on the circuit progressively which
requires an exponential large circuit depth with respect to the
correlation length and a linear large circuit depth with respect
to the evolved time. Therefore this method doesn’t scale well
with system size and is not ready for NISQ devices even with
only several qubits.
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The ansatz-based form, on the other hand, has a prede-
fined variational circuit ansatz U . Given a set of variational
circuit parameters �θ , the output quantum state from the ansatz
|φ(�θ (τ ))〉 = U (�θ )|0〉 is taken as the variational quantum state
under the imaginary time dynamics. For imaginary time τ , by
determining the optimal parameters �θ (τ ), we can obtain the
quantum state |φ(τ )〉 and thus the relevant observables from
the state. Therefore the problem of simulating the dynamics
of the quantum state is reduced to determining the dynamics
of the circuit parameters �θ (τ ).

There are two approaches to determine the circuit pa-
rameter dynamics. The first approach [24,25] utilizes the
philosophy of McLachlan’s variational principle [66]. The
circuit parameters are evolved by an ordinary differential
equation whose coefficients can be obtained given the knowl-
edge of the variational quantum state |φ(�θ )〉.

The second approach of the ansatz-based family, called
p-VQD [51,52], determines �θ (τ ) by constructing a varia-
tional optimization problem in each imaginary time step dτ .
In this approach, we tune �θ (τ ) to maximize the objective:
〈φ(�θ (τ ))|e−τH |φ(�θ (τ − dτ ))〉. The small step of nonunitary
evolution in between is easy to implement by embedding the
nonunitary into a Hilbert space with an extra qubit and apply-
ing only one bit of post-selection [67]. In the limit of dτ → 0,
p-VQD recovers the result of McLachlan’s variational prin-
ciple, assuming the optimization problem is perfectly solved
in each step. So the two approaches give identical circuit
parameter dynamics trajectory in the ideal case. Numerically,
p-VQD might be less stable than McLachlan’s variational
principle, as the former heavily relies on variational opti-
mization with potential local minimum issue while the latter
directly gives the exact formula for the circuit parameter
dynamics and avoids explicit optimization procedures. The
optimization requires gradient descent where circuit param-
eter gradients are obtained via parameter shift scheme in
experiments or more efficiently simulated classically via au-
tomatic differentiation.

The time evolution dynamics for the circuit parameters
under the Hamiltonian H can be derived from McLachlan’s
variational principle [25]:

∑

j

GR
i, j θ̇ j = −CR

i , (A1)

where θ is the parameters in the variational circuit and ·R is
for taking the real part. The matrix of G and the vector of C
are given by

Gi, j = ∂〈φ(�θ (τ ))|
∂θi

∂|φ(�θ (τ ))〉
∂θ j

, (A2)

Ci = ∂〈φ(�θ (τ ))|
∂θi

H |φ(�θ (τ ))〉, (A3)

respectively. The matrix elements can all be obtained from
the real quantum hardware [25]. In the numerical simulation,
the matrix G and the vector C can be much more efficiently
obtained via unique features including vectorized parallel
processing and automatic differentiation for Jacobians in TEN-
SORCIRCUIT [54].

It is worth noting that the assumption for Eq. (A2) is
the variational state is up to a fixed global phase. The more
general form of the variational dynamics gives

Gi j = ∂〈φ(�θ (τ ))|
∂θi

∂|φ(�θ (τ ))〉
∂θ j

− ∂〈φ(�θ (τ ))|
∂θi

|φ(�θ (τ ))〉〈φ(�θ (τ ))
∂|φ(�θ (τ ))〉

∂θ j
. (A4)

In terms of the one-dimensional quantum Ising model used
in our work, the two forms of G matrix yield quantitatively
similar results.

We can solve the dynamics Eq. (A1) by regarding it as a set
of ordinary differential equations with initial vector value θ0.
We use the ODE solver with Runge-Kutta method provided
by SCIPY [68] (scipy.integrate.odeint) to solve the dynamics
governed by Eq. (A1). This ODE approach is more reliable
and efficient compared to simple update given by discrete time
steps ε as �θ (τ + ε) = �θ (τ ) − εG−RCR.

APPENDIX B: INITIAL PARAMETERS
IN THE VARIATIONAL DYNAMICS SIMULATION

In this section, we show that with the circuit ansatz in the
main text and TFIM Hamiltonian, the variational dynamics
simulation is constrained and fails to reproduce the correct
quantum imaginary-time dynamics if the initial circuit param-
eters are all strictly zero at the beginning (starting from perfect
|↑N 〉 state).

Recall the time evolution dynamics for the circuit pa-
rameters under the Hamiltonian H based on McLachlan’s
variational principle in Eq. (A1). The matrix of G and the
vector of C are given as in Eqs. (A2) and (A3), respectively.

We consider the general case when only circuit parame-
ters of Ry gates are nonzero. If we can show that in this
case C are zero everywhere except at the Ry gates position,
we know that the circuit parameter can only evolve nontriv-
ially on Ry parameter subspace which fails to capture the
imaginary-time dynamics variationally. This failure is not due
to the low expressive power of the ansatz as the ansatz can
correctly express the evolved state given appropriate circuit
parameters. Instead, the failure is from the interplay between
the initial parameters and the Hamiltonian which we call the
phenomena variational dynamical constraint. Since we study
the system evolved from |0N 〉 (M = 1) initial state, all ini-
tial circuit parameters are zero in the given ansatz and fall
into the category of variational dynamical constraint failure.
Therefore, to correctly characterize the dynamics in the nu-
merical simulation, we perturb the initial circuit parameter
from zeros at the beginning, where the perturbation is small
enough to not affect the correctness of the dynamics and
large enough to avoid the variational dynamical constraint
failure.

Suppose we evaluate the ith element of C vector and
the ith parameter is binding to a Pauli operator P = ∏

i∈S Pi

as a rotation gate e−iθiP which is not Y (C elements
corresponding to Ry gate can have nonzero amplitude),
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we have

Ci = Re〈0|
N−1∏

i=0

ei(θi+θ ′
i )Yi H

N−1∏

i=0

e−iθ ′
i Yi · · · (−iP)

N−1∏

i=0

e−iθiYi |0〉

∝ Im〈φ|H
∏

i∈S

(Pie
−2iθ ′

i Yi )|φ〉, (B1)

where we have |φ〉 = e−i(θi+θ ′
i )Yi |0〉, 〈φ|Yi|φ〉 = 0. We can eas-

ily check that Ci in Eq. (B1) is zero for P = Xi, P = Zi and
P = ZiZi+1 which correspond gate types in the ansatz we use.
Therefore the dynamics can only evolve in the subspace of
Ry gate freedom if the initial condition is strictly zero for all
other gate parameters. And from the derivation, we clearly see
that the simulation failure is not from the symmetry argument,
instead, it is determined by the special interplay of several
factors: the form of the ansatz, the form of the Hamiltonian,
and the initial parameter choice.

APPENDIX C: QUANTUM SOFTWARE FRAMEWORK

All the high performance numerical simulations, as well
as the quantum hardware experiments in this work, are
conducted with TENSORCIRCUIT [54]: an open-source, high-
performance, full-featured quantum software framework for
the NISQ era. The long-term vision of TENSORCIRCUIT is
to unify the infrastructures and paradigms of quantum pro-
gramming by providing unified backends, unified devices,
unified providers, unified resources, unified interfaces, unified
engines, unified representations, and unified pipelines. The
software can simulate the quantum circuit with advanced ten-
sor network contraction engine and supports modern machine
learning engineering paradigms: automatic differentiation,
vectorized parallelism, just-in-time compilation, and GPU
compatibility. The software also supports CPU/GPU/QPU
hybrid deployment with an integrated quantum error miti-
gation toolbox for quantum hardware SDK. TENSORCIRCUIT

has been designed to interface with various quantum cloud
providers, which allows users to seamlessly access and utilize
different quantum computing platforms through the unified
interface.

APPENDIX D: HYPERPARAMETERS
IN NUMERICAL SIMULATION

For variational quantum dynamics simulation, all zero ini-
tial parameters are perturbed with a Gaussian distribution
with center zero and standard deviation 0.002 to avoid the
constraint on Hilbert space of only Ry rotation as discussed
before. The quantum Fisher information matrix in the param-
eter dynamics equation can have very bad condition numbers,
so we add 10−7I to the matrix before getting its inverse to
increase the numerical stability. We use RK45 ODE solver
in scipy (scipy.integrate.odeint) with default settings and a
relative tolerance rtol 10−4.

For variational quantum ground state simulation, we run
the gradient descent 10000 steps to ensure the convergence
with the Adam optimizer. We design a learning rate schedule
that exponentially decays from 0.02 with a decay step 2000
for a 60% drop. Namely the learning rate at iteration step i
is controlled by ε(i) = 0.02 × 0.6i/2000. The hyperparameter

FIG. 5. The absolute error in terms of M2 for N = 10 system
variational quantum dynamics simulation of different circuit ansatz
depth quenched from |↑n〉. The error is relatively small and saturates
when the circuit depth exceeds half of the system size N .

of the optimizer is tuned as such for better convergence speed
and accuracy. We run 64 sets of different random initialization
from a Gaussian distribution center at zero with a standard
deviation 0.1, among these converged results, the best one is
reported as the final converged value to avoid local minimum.

APPENDIX E: VARIATIONAL DYNAMICS ERROR
WITH DIFFERENT CIRCUIT DEPTHS D

Figure 5 shows the variational dynamics simulation error
in terms of δM2 compared to the analytic exact imaginary-
time dynamics results obtained by exact diagonalization. The
system Hamiltonian is 10-qubit 1D TFIM with open bound-
ary conditions. We conclude that the approximation is good
enough for the circuit depth D > N/2 at least in the system
size range that we explored in this work.

APPENDIX F: SCALING RESULTS OF IMAGINARY-
TIME CORRELATOR

We study imaginary-time-correlator A from a set of dis-
ordered initial state M0 = 0 via the variational quantum
imaginary-time dynamics simulation for system size from
N = 8, 10, 12 and circuit depth D = N/2 + 1 which is suf-
ficient to capture the exact imaginary-time dynamics. The
initial state is determined by randomly flipping (applying X
gates) on half of the qubits at the beginning of the circuit. The
results are consistent with the critical exponent θ = 0.373 for
1D TFIM from the data collapse according to Eq. (5) as shown
in Fig. 6.

APPENDIX G: FINITE SIZE SCALING
AND DATA COLLAPSE ANALYSIS

The scaling analysis procedure is similar to the approach
presented in Appendix A in [69]. We use the fit on data
in Fig. 3 in the main text as an example to showcase the
workflow, the fit on data in other figures is similar.

For a set of estimated exponents of β/ν and α, one can
define a cost function R(β/ν, α) and try to minimize the cost
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FIG. 6. Imaginary-time correlator A (a) unscaled and (b) finite-
size scaled. The imaginary-time dynamics related critical exponent
θ ≈ 0.373.

by searching optimal values for β/ν and α. First, we rescale
the data in each group (Di, Mi ) (fixed τ/N , different size N)
as xi = DN−α and yi = MNβ/ν , leading to a family of curves
yN (x), one curve for each system size N . The cost function R
is defined as the sum of the mean-squared deviations of each
curve from their mean, summed over all unique points xi in
the data set. In other words,

R =
∑

i,N

[yN (xi ) − ȳ(xi )]
2,

where yN (xi ) indicates the value of yN at the point xi. If
this value is not specified explicitly in the data, it can be
estimated by linear interpolation. Note that ȳ(x) is the mean
value of yN (x) over different system sizes N . For multiple
variable scaling fit such as Fig. 3 in the main text, we also
need to sum the cost function for each group of different
τ/N . The physical meaning is that we expect to identify the
suitable exponents such that data points of the same τ/N lie
on the same curve while points of different τ/N belong to
different curves.

Given the numerical data, we can locate the best guess on
critical exponents by extensive grid search since there are only
two variables. The grid search result is similar to Fig. 3(c)

in the main text and we can extract the optimal estimation
for the exponents as well as the error bar by specifying some
threshold on the cost function.

Specifically, for the data collapse of Fig. 2 in the main text,
we use imaginary time evolution data from N = 8, 10, 12
and circuit depth D = N/2 + 1 at 0.2 � τ � 10. We assume
a prior of z = 1 and fit the single exponent β/ν by grid search.

For the data collapse of Fig. 3, we also assume z = 1 as a
prior, and try to identify the best β/ν and finite depth exponent
α at the same time. We use the numerical results from seven
curves τ/N = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, with system
size N = 8, 10, 12 and circuit depth 2 � D � 8 to fit the
scaling behavior.

APPENDIX H: FINITE-DEPTH SCALING EXTRACTED
FROM GROUND STATE SIMULATION

To disentangle different scaling factors (imaginary time τ

and circuit depth D) and better understand them, we directly
utilize variational ground state simulation to extract the finite-
depth critical exponent. The ground state can be taken as the
limit of infinite time τ → ∞ in the context of imaginary time
evolution and we expect the scaling form as

M2(L, D) = N−2β/ν fM (N−αD). (H1)

To solve the ground state problem, the variational quantum
eigensolver (VQE) algorithm is utilized. In VQE, we directly
minimize E (θ ) = 〈0|U (�θ )†HU (�θ )|0〉 by tuning the parame-
ters θ based on gradient descent, i.e., θ = θ − ε ∂E (θ )

∂θ
, where

ε is the learning rate. These circuit parameter gradients can
be obtained via the parameter shift scheme in experiments
and be more efficiently simulated classically via automatic
differentiation integrated with TENSORCIRCUIT.

We use the same Hamiltonian model and circuit ansatz
as given in the main text to run the VQE. For each system
size N and circuit depth D, we run independent optimization
over 64 different random initialization parameters sampled
from Gaussian distribution with center 0 and standard de-
viation 0.1. The optimal final results of these 64 trials are
reported to avoid local minimum issues. We run the gradient
descent 10000 steps to ensure the convergence with the Adam
optimizer and an exponential decay learning rate schedule.
The hyperparameter of the optimizer is tuned for better con-
vergence speed and accuracy. The order parameter M2 of
the converged state with different sizes N and depth D are
shown in Fig. 7(a). And we can do a finite-size finite-depth
scaling on the data to extract critical exponent for depth α

according to Eq. (H1), see Fig. 7(b). The exponent is esti-
mated as α = 1.28 ± 0.06. This value is very similar to the
exponent reported in [49] where 1.21, 1.07 are estimated for
translational invariant infinite size circuit on 1D TFIM model
for entanglement entropy and order parameter, respectively.
To demonstrate such finite depth exponent is universal, we
apply VQE with very different circuit ansatz on the same
Hamiltonian, and the result on α is consistent as explained
below. The α estimated from VQE here is also very close
to the result in the main text extracted from the dynamics
simulation.

To demonstrate the universality of the finite-depth expo-
nent α, we also carry out VQE with different circuit ansatz.
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FIG. 7. (a) M2 of converged quantum state after VQE optimiza-
tion on quantum computers of different sizes N and depths D.
(b) Data collapse for the converged state on quantum computers of
different sizes and depths. We estimate the critical exponent for the
depth scaling as α = 1.28 ± 0.06.

The alternative ansatz has the brickwall two-qubit layout and
less density of single-qubit gates and hence less expressive
power with the same depth D. Specifically, the alternative
circuit structure (see Fig. 8) is composed of D blocks of Rx
gates and two-qubit gates eiθZiZi+1 are placed in an even-odd
brickwall fashion instead of the ladder layout in the main text.

FIG. 8. The alternative variational circuit ansatz for VQE to
demonstrate the universal finite-depth scaling. Each block is com-
posed of only one layer of Rx gates and one layer of Rzz gates in the
brickwall layout.

FIG. 9. (a) M2 of converged quantum state after VQE optimiza-
tion on quantum computers of different sizes N and depth D with
alternative ansatz. (b) Data collapse for the converged state on quan-
tum computers of different sizes and depths. The critical exponent
for the depth scaling is α = 1.28 ± 0.07, consistent with the circuit
ansatz in the main text.

Each block Ud can be expressed as

Ud (θd ) =
N∏

i∈odd

e−iθid2ZiZi+1

N∏

i∈even

e−iθid2ZiZi+1

N∏

i=1

e−iθid1Xi .

(H2)

The extracted depth critical exponent α in this case is con-
sistent with the former ansatz, implying a universal finite
depth exponent for VQE of TFIM Hamiltonian. The result is
summarized as Fig. 9.

APPENDIX I: SCALING ANALYSIS WITH DATA FROM
EVEN EARLIER TIMES AND SHALLOWER CIRCUITS

For the scaling analysis on data from Fig. 3, we note
that even if we only include data with short time and small
depth, we can still capture the qualitatively correct scaling
behavior. For example, if we only include data with τ/N =
0.1, 0.2, 0.3, 0.4 and circuit depth 2 � D � 5, we can
still obtain similar critical exponent estimation as shown in
Fig. 10. The estimated result deviates from the exact value
a little. However, considering how shallow the circuit is and
how short time we are using, the relatively reasonable esti-
mation we obtain demonstrates the key point of this work:
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FIG. 10. Data collapse quality grid search with variational imag-
inary time dynamics data of size N = 8, 10, 12, circuit depth
D = 2, 3, 4, 5, and time τ/N = 0.1, 0.2, 0.3, 0.4. The optimal
exponents estimate is α = 1.06 ± 0.03 and β/ν = 0.14 ± 0.05. The
grey contour indicates the boundary where the cost function is 10%
worse than the optimal estimate.

we can access the universal critical properties via finite-size,
short-time and finite-depth scaling. Via finite-size scaling, we
can probe the thermodynamic behavior via small size system;
via short-time scaling, we can probe the ground state behavior
at the early imaginary time stage; and via finite-depth scal-
ing, we can probe the exact imaginary-time dynamics with
shallower circuits and large approximation error. Putting these
scaling forms together, we can investigate universal properties
of interesting quantum systems on quantum computers in a
scalable and efficient way.

APPENDIX J: EXPERIMENTAL QUANTUM HARDWARE

All experiments were performed on the 20-qubit quantum
device. The same series of quantum processors have been
reported before in other experimental works [55,70]. The
topology of the device is a 10 × 2 grid, see Fig. 11. In the
experiment, we only utilize the second row of the qubits
(qubit 12-19 for 8-qubit experiment, qubit 13-19 for 7 qubit-
experiment, and qubit 14-19 for 6 qubit-experiment). Typical
mean error rates of qubit 12-19 are 1.6 × 10−2 for two-qubit
gates, 0.14 × 10−2 for single-qubit gates and 7 × 10−2 for
readout errors. Mean T1 and T2 time for qubit 12-19 are 24
and 5 µs, respectively.

APPENDIX K: COMPARISON OF EXPERIMENT RESULTS
BEFORE AND AFTER DATA COLLAPSE

The mitigated results from the quantum hardware experi-
ment are presented before and after the correct data collapse
(axis finite-size rescaling). See Fig. 12.

FIG. 11. The qubit layout and coupling map for the 20-qubit
device. The qubits with blue circles are used in the experiment of
this work.

APPENDIX L: QUANTUM ERROR MITIGATION SCHEME

To evaluate M, the sum of expectation of local Pauli Z
operators, from quantum computers, we utilize two methods
to mitigate the errors. We firstly apply scalable readout error
mitigation on observable expectation level natively assuming
local tensor product structure of the readout error [56]. This
approach works well in practice since the readout error on
the device is well approximated by local structures with very
little readout error correlation across qubits. We label the
experimental results with only readout error mitigation raw.
To apply such readout error mitigation on expectations, we use
the built-in readout error mitigator for observable expectations
in TENSORCIRCUIT [54]. The exact formula for the readout er-
ror mitigation in this case can be derived analytically. Suppose
the target observable is Pauli Z operator on qubit i as 〈Zi〉 and
the readout error rates for 0 to 1 and 1 to 0 are εi and ηi on
qubit i, respectively. Note that these local readout error rates
can be calibrated by simply running two benchmark circuits.
For each readout result of 0 state on qubit i, we count the
contribution to 〈Zi〉 as 1+εi−ηi

1−εi−ηi
instead of simply +1. Similarly,

for each readout result of 1 state on qubit i, we count the
contribution to 〈Zi〉 as − 1−εi+ηi

1−εi−ηi
instead of −1. Such a formula

is the direct consequence of Eq. (6) in Ref. [56].
The accuracy for raw results with only readout error mit-

igation is not sufficient to observe universal imaginary-time
dynamics due to the quantum noise on the quantum chip.
We further apply Clifford data regression (CDR) approach
[10,11] to mitigate quantum errors and obtain reliable ex-
pectation estimation for order parameter M. The basic idea
behind CDR is to firstly build several similar near Clifford
circuits close to the target circuit to be evaluated. We then
run each near Clifford circuit on both quantum hardware and
the classical simulator to obtain two sets of results Mnoisy and
Mideal for each near Clifford circuit instance. Via the data of
Mnoisy and Mideal, we can fit a linear regression relation by
the least square method, i.e., Mideal = aMnoisy + b where a, b
are learning parameters. Finally, by running our target circuit
on the quantum hardware with the results as Mnoisy, we can
recover Mideal for the target circuit via the linear regression
relation. In our experiment, we build several groups of circuit
samples with different ratios of non-Clifford gates, and train
them together to obtain the linear relation. We call this specific
method extended CDR. We believe training on data with mul-
tiple non-Clifford ratios can make CDR results more robust
and reliable. For each group i, we build ni circuits by uni-
formly replacing approximately 1 − ri ratio of non-Clifford
single-qubit gates to the closest Clifford gate (in terms of
Rz rotation angles). For small time scale τ < 1, the predic-
tion inaccuracy on the hardware is relatively small, so we
use n1 = 5, r1 = 0.6, n2 = 5, r2 = 0.7, n3 = 5, r3 = 0.8, and
n4 = 5, r4 = 0.9, four groups and 20 circuits in total to learn
the linear relation between the noisy prediction of M on the
chip and the ideal expectation of M simulated classically. For
larger τ , the true value of Mideal is smaller and the experiment
accuracy becomes worse, so we use n1 = 5, r1 = 0.8, n2 =
5, r2 = 0.9, n3 = 5, r3 = 0.95 three groups and 15 circuits to
learn the linear prior. The results obtained using this CDR
pipeline are labeled as mit. To apply CDR error mitigation
technique, we use the CDR method from Mitiq [71] with
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FIG. 12. (a) Experimental results from quantum computers via error mitigation. (b) The data collapse. All data points are expected to fall
into the same curve in the ideal case.

further customization on multiple non-Clifford ratio support
and TENSORCIRCUIT compatibility. It is worth noting that the
specific CDR approach we adopt here has a very high ratio
of ri on average indicating scalability issues. A high ratio of
non-Clifford gate can lead to a circuit data with similar M
as the original circuit which greatly improves the accuracy
for mit results in our experiment. In other words, a very low
ratio of non-Clifford gates such as r = 0.1 is not sufficient
to give stable and accurate mitigated experimental results
now due to the relatively large quantum noise, especially

cross-talk error present on the current generation quantum
chip. Such high ratios cannot be maintained for larger sys-
tem sizes when stabilizer circuit simulation formalism is
required where the simulation complexity is exponential with
the number of non-Clifford T gates. Our perspective is, that
with further development of the quantum hardware, the ex-
periment will be impacted by less quantum noise and the
corresponding non-Clifford ratio r in CDR can go down to the
classical simulatable regime even with larger system size in
the future.

[1] J. Preskill, Quantum computing in the NISQ era and beyond,
Quantum 2, 79 (2018).

[2] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R.
Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A.
Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W.
Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler et al.,
Quantum supremacy using a programmable superconducting
processor, Nature (London) 574, 505 (2019).

[3] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. van den Berg, S.
Rosenblatt, H. Nayfeh, Y. Wu, M. Zaletel, K. Temme, and A.
Kandala, Evidence for the utility of quantum computing before
fault tolerance, Nature (London) 618, 500 (2023).

[4] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-
Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T.
Menke, W.-K. Mok, S. Sim, L.-C. Kwek, and A. Aspuru-Guzik,
Noisy intermediate-scale quantum algorithms, Rev. Mod. Phys.
94, 015004 (2022).

[5] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo,
K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J.
Coles, Variational quantum algorithms, Nat. Rev. Phys. 3, 625
(2021).

[6] S. Endo, Z. Cai, S. C. Benjamin, and X. Yuan, Hybrid quantum-
classical algorithms and quantum error mitigation, J. Phys. Soc.
Jpn. 90, 032001 (2021).

[7] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant,
L. Wossnig, I. Rungger, G. H. Booth, and J. Tennyson, The

variational quantum eigensolver: A review of methods and best
practices, Phys. Rep. 986, 1 (2022).

[8] Z. Cai, R. Babbush, S. C. Benjamin, S. Endo, W. J. Huggins, Y.
Li, J. R. McClean, and T. E. O’Brien, Quantum error mitigation,
Rev. Mod. Phys. 95, 045005 (2023).

[9] K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation
for short-depth quantum circuits, Phys. Rev. Lett. 119, 180509
(2017).

[10] P. Czarnik, A. Arrasmith, P. J. Coles, and L. Cincio, Error
mitigation with Clifford quantum-circuit data, Quantum 5, 592
(2021).

[11] A. Lowe, M. H. Gordon, P. Czarnik, A. Arrasmith, P. J. Coles,
and L. Cincio, Unified approach to data-driven quantum error
mitigation, Phys. Rev. Res. 3, 033098 (2021).

[12] Y. Kim, C. J. Wood, T. J. Yoder, S. T. Merkel, J. M. Gambetta,
K. Temme, and A. Kandala, Scalable error mitigation for noisy
quantum circuits produces competitive expectation values, Nat.
Phys. 19, 752 (2023).

[13] A. Strikis, D. Qin, Y. Chen, S. C. Benjamin, and Y. Li, Learning-
based quantum error mitigation, PRX Quantum 2, 040330
(2021).

[14] S.-X. Zhang, Z.-Q. Wan, C.-Y. Hsieh, H. Yao, and S.
Zhang, Variational quantum-neural hybrid error mitigation,
Adv. Quantum Technol. 6, 202300147 (2023).

[15] S. Sachdev, Quantum Phase Transitions (Cambridge University
Press, Cambridge, 2011).

134309-11

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-023-06096-3
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.7566/JPSJ.90.032001
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1103/RevModPhys.95.045005
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.22331/q-2021-11-26-592
https://doi.org/10.1103/PhysRevResearch.3.033098
https://doi.org/10.1038/s41567-022-01914-3
https://doi.org/10.1103/PRXQuantum.2.040330
https://doi.org/10.1002/qute.202300147


SHI-XIN ZHANG AND SHUAI YIN PHYSICAL REVIEW B 109, 134309 (2024)

[16] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou,
P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, A varia-
tional eigenvalue solver on a photonic quantum processor, Nat.
Commun. 5, 4213 (2014).

[17] J.-G. Liu, Y.-H. Zhang, Y. Wan, and L. Wang, Variational quan-
tum eigensolver with fewer qubits, Phys. Rev. Res. 1, 023025
(2019).

[18] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X.
Yuan, Quantum computational chemistry, Rev. Mod. Phys. 92,
015003 (2020).

[19] S.-X. Zhang, Z.-Q. Wan, C.-K. Lee, C.-Y. Hsieh, S. Zhang, and
H. Yao, Variational quantum-neural hybrid eigensolver, Phys.
Rev. Lett. 128, 120502 (2022).

[20] S. Liu, S.-X. Zhang, C.-Y. Hsieh, S. Zhang, and H. Yao, Probing
many-body localization by excited-state variational quantum
eigensolver, Phys. Rev. B 107, 024204 (2023).

[21] J. Miao, C.-Y. Hsieh, and S.-X. Zhang, Neural-network-
encoded variational quantum algorithms, Phys. Rev. Appl. 21,
014053 (2024).

[22] S. Liu, S.-X. Zhang, S.-K. Jian, and H. Yao, Training variational
quantum algorithms with random gate activation, Phys. Rev.
Res. 5, L032040 (2023).

[23] Y. Li and S. C. Benjamin, Efficient variational quantum simu-
lator incorporating active error minimization, Phys. Rev. X 7,
021050 (2017).

[24] S. McArdle, T. Jones, S. Endo, Y. Li, S. C. Benjamin, and X.
Yuan, Variational ansatz-based quantum simulation of imagi-
nary time evolution, npj Quantum Inf. 5, 75 (2019).

[25] X. Yuan, S. Endo, Q. Zhao, Y. Li, and S. C. Benjamin, Theory
of variational quantum simulation, Quantum 3, 191 (2019).

[26] C. K. Lee, S.-X. Zhang, C.-Y. Hsieh, S. Zhang, and L. Shi,
Variational quantum simulations of finite-temperature dynam-
ical properties via thermofield dynamics, arXiv:2206.05517.

[27] Y.-M. Ding, Y.-C. Wang, S.-X. Zhang, and Z. Yan, Explor-
ing the topological sector optimization on quantum computers,
arXiv:2310.04291.

[28] T. W. B. Kibble, Topology of cosmic domains and strings,
J. Phys. A: Math. Gen. 9, 1387 (1976).

[29] W. H. Zurek, Cosmological experiments in superfluid helium?
Nature (London) 317, 505 (1985).

[30] J. Dziarmaga, Dynamics of a quantum phase transition and
relaxation to a steady state, Adv. Phys. 59, 1063 (2010).

[31] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,
Colloquium : Nonequilibrium dynamics of closed interacting
quantum systems, Rev. Mod. Phys. 83, 863 (2011).

[32] Y. Huang, S. Yin, B. Feng, and F. Zhong, Kibble-Zurek
mechanism and finite-time scaling, Phys. Rev. B 90, 134108
(2014).

[33] A. D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F.
Altomare, A. J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud,
E. Hoskinson, S. Huang, E. Ladizinsky, A. J. R. MacDonald,
G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis,
C. Rich et al., Quantum critical dynamics in a 5,000-qubit
programmable spin glass, Nature (London) 617, 61 (2023).

[34] A. Keesling, A. Omran, H. Levine, H. Bernien, H. Pichler,
S. Choi, R. Samajdar, S. Schwartz, P. Silvi, S. Sachdev, P.
Zoller, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin,
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