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Surface and volume modes of polarization waves in ferroelectric films
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We investigate the characteristic modes of polarization waves in ferroelectric films. This is motivated by
the recent surge of interest in the excitations of the ferroelectric order inspired by the duality between electric
dipoles in ferroelectrics and magnetic dipoles in ferromagnets that has led to the introduction of the area of
ferronics by analogy to magnonics. We report that a ferroelectric film supports surface and volume modes of
polarization waves, analogous to the surface and volume magnetostatic spin-wave modes in a ferromagnetic film.
However, while in ferromagnets each type of mode has only one (positive) frequency band, in a ferroelectric film
the surface and volume modes have two frequency bands each. We present the dependence of the frequencies
on the wave vector for both modes for the parameters of the classic ferroelectric LiNbO3, with polarization
either parallel or perpendicular to the film. The frequencies lie in the low terahertz band that is experimentally
accessible.
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I. INTRODUCTION

In recent years there has been a growing interest in stud-
ies of polarization waves in ferroelectric materials, whose
quanta have been called ferrons [1–13]. Predicted properties,
such as polarization transport by thermal gradients or ferronic
Seebeck effect [2,6], analogous to the spin Seebeck effect
[14–21], have yet to be unequivocally observed. Among the
motivations for the recent surge in interest in polarization
waves are the analogies with the well-studied spin waves, or
magnons, in ferromagnets. While in ferromagnets a spin wave
consists of magnetic dipoles precessing about an equilibrium
direction [20] with a phase that varies in space, in ferro-
electrics a polarization wave consists of oscillating electric
dipoles with a finite wave vector [2,3].

In ferromagnets, the most important interaction between
neighboring spins arises from the exchange energy. In most
parts of the Brillouin zone, this interaction dominates the
frequency versus wave number relation of the spin waves,
called a dispersion relation [20]. However, for very small
wave numbers k, neighboring spins are essentially parallel
to each other, so that the exchange interaction has no influ-
ence on the frequency. In this case, for spin excitations with
wavelength λ = 2π/k comparable to the sample dimensions,
the frequencies and mode configurations are determined by
the long-range dipolar interactions between the magnetic mo-
ments subject to boundary conditions at the sample surfaces.
These so-called magnetostatic waves obey ∇ × �H = 0, where
�H is the associated magnetic stray field and are governed by
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the Walker equation for the magnetic potential [22]. They have
been extensively studied in samples of various shapes, both
theoretically and experimentally, since their frequencies lie in
convenient microwave ranges [20,22–39].

The fact that magnetism and ferroelectricity break, respec-
tively, time-reversal and space-inversion symmetry [40–43],
leads to analogies as well as differences of dynamic phe-
nomena in the two areas [2,9,13]. In magnets (ferroelectrics)
magnetic (electric) dipoles order below some critical tem-
perature in the ordered phase spin (polarization) waves [2,3,
6–13]. However, while in magnets there are no controversies
regarding the nature of the excitations, in the case of fer-
roelectrics the situation is not so clear cut because in most
ferroelectrics the excitation of the electric dipoles necessarily
involves lattice vibrations.

Here we present the results of an investigation of polariza-
tion waves in ferroelectric films. We show that a ferroelectric
film supports surface and volume modes, analogous to the sur-
face and volume magnetostatic spin-wave modes in ferromag-
netic films. In ferromagnets each type of mode has only one
frequency band. However, in a ferroelectric film, polarized
either parallel or perpendicular to the plane, the surface and
volumes modes have two frequency bands each. Calculations
of the dispersion relations for both modes for the parameters
of the classic ferroelectric LiNbO3 show frequencies in the
low terahertz range that await experimental observation.

After a general discussion of the electrodynamics of ex-
cited ferroelectric films in Sec. II, we discuss films with
in-plane equilibrium polarization in Secs. III (surface waves)
and IV (bulk waves) as well as those with perpendicular po-
larization in Sec. V, followed by an assessment of the results
in Sec. VI.

2469-9950/2024/109(13)/134307(7) 134307-1 ©2024 American Physical Society

https://orcid.org/0000-0002-8663-1318
https://orcid.org/0009-0003-5881-9553
https://orcid.org/0000-0003-2533-0156
https://orcid.org/0000-0001-7020-2204
https://orcid.org/0000-0002-3615-8673
https://orcid.org/0000-0002-3806-411X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.134307&domain=pdf&date_stamp=2024-04-19
https://doi.org/10.1103/PhysRevB.109.134307


R. L. RODRÍGUEZ-SUÁREZ et al. PHYSICAL REVIEW B 109, 134307 (2024)

II. THE ELECTRIC POTENTIAL IN FERROELECTRICS

We wish to study polarization waves with wave number k
in the range ω/c � k � 1/a (c is the speed of light and a
is the lattice parameter), which is small enough to make the
boundary conditions in the film important but is larger than
the photon wave number, such that we can disregard the ac
magnetic field and polariton effects [3,13]. The electric field
�E and the displacement field �D obey Maxwell’s equations in
the electrostatic limit, viz.,

∇ · �D = 0, ∇ × �E = 0. (1)

In order to solve Eqs. (1), we need a constitutive relation
between the field �E and the polarization �P. Considering a
cubic ferroelectric material polarized in the y direction, the
linearized relations between the components of the polariza-
tion vector and the electric field read [7]

(1/�p)2 ∂2Px

∂t2
+ K⊥Px = ε0Ex, (2a)

(1/�p)2 ∂2Py

∂t2
+ K‖Py = ε0Ey, (2b)

(1/�p)2 ∂2Pz

∂t2
+ K⊥Pz = ε0Ez, (2c)

where �p is the ionic plasma frequency,

K⊥ = ε0λ and K‖ = ε0(α + 3βP0) (3)

parameterize the stiffness of the transverse and longitudinal
fluctuations, ε0 is the vacuum permittivity, λ, α, and β are pa-
rameters of the Landau free energy, and P0 is the polarization
of the ferroelectric material [7]. With harmonic electric field
and polarization �E , �P = Re[ �E (�r), �P(�r) e−iωt ], we can write
Eqs. (2a)–(2c) in the matrix form

�P =
⎡
⎣1/c1 0 0

0 1/c2 0
0 0 1/c1

⎤
⎦ε0 �E , (4a)

where

c1 = −(ω/�p)2 + K⊥, c2 = −(ω/�p)2 + K‖. (4b)

Since �D = ε0 �E + �P,

�D =
⎡
⎣(1 + 1/c1) 0 0

0 (1 + 1/c2) 0
0 0 (1 + 1/c1)

⎤
⎦ε0 �E . (5)

One important difference with magnets is the absence of
the off-diagonal imaginary elements in the tensor relation
between �B and �H . The latter is a direct consequence of the
time-reversal symmetry breaking that gives rise to the chiral
properties of magnetization waves. Introduce the electric po-
tential ψ defined as

�E = −∇ψ. (6)

According to Eqs. (1), (5), and (6), the electric potential in a
ferroelectric material with polarization in the y direction obeys
the wave equation

(1 + 1/c1)

(
∂2ψ

∂x2
+ ∂2ψ

∂z2

)
+ (1 + 1/c2)

∂2ψ

∂y2
= 0 . (7)

(1)

(2)

(3)

z = d/2

z =− d/2

y
z

x
0P

FIG. 1. Illustration of a ferroelectric film with polarization in the
plane.

Interestingly, this equation is very similar to the Walker
equation for the magnetic potential in the magnetostatic
regime [22]:

(1 + χ )

(
∂2ψ

∂x2
+ ∂2ψ

∂z2

)
+ ∂2ψ

∂y2
= 0 , (8)

where χ is a parameter that depends on the frequency and the
magnetization of the material. In regions outside the ferroelec-
tric (or ferromagnetic) sample, the potential obeys the Laplace
equation

∇2ψ = ∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2
= 0. (9)

III. SOLUTIONS FOR A FERROELECTRIC FILM
POLARIZED IN THE PLANE

Consider a ferroelectric film of thickness d with polariza-
tion vector �P0 in the (in-plane) y direction, as shown in Fig. 1.

The electric potential is expressed by different functions in
the three regions of space, inside and outside the film: ψ1(�r)
in region (1), z > d/2; ψ2(�r) in region (2), −d/2 < z < d/2;
and ψ3(�r) in region (3), z < −d/2. In all regions Eqs. (7) and
(9) can be solved by the method of separation of variables,

ψλ (x, y, z) = Xλ(x)Yλ(y) Zλ(z), (10)

where each function depends on only one variable. We con-
sider propagating waves in the film plane, with wave vector
�κ = x̂ kx + ŷ ky. Thus, in order to satisfy the tangential bound-
ary conditions at the film surfaces, in all regions

Xλ(x)Yλ(y) = eikxxeikyy. (11)

The solutions for the function Zλ(z) are e±kzz in regions (1)
and (3) with signs chosen to vanish for z → ±∞, while in
region (2) we consider harmonic solutions. Hence

ψ1(�r) = Ce−k(e)
z zeikxxeikyy, (12a)

ψ2 (�r) = [A sin (kzz) + B cos (kzz)] eikxxeikyy, (12b)

ψ3(�r) = Dek(e)
z zeikxxeikyy, (12c)

where k(e)
z and kz denote, respectively, the wave numbers

in the exponents in Zλ(z) outside and inside the film. The
four coefficients in Eq. (12) are determined by the boundary
conditions at the surfaces, viz., continuity of the tangential
component of �E and continuity of the normal component of �D.
The first condition implies continuity of the electric potential,
i.e., ψ1 = ψ2 at z = d/2 and ψ2 = ψ3 at z = −d/2. The sec-
ond conditions read Dz = −(1 + 1/c1)ε0∂ψ/∂z inside, and
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Dz = −ε0∂ψ/∂z outside the film. In matrix form⎡
⎢⎢⎢⎢⎢⎣

sin(kzd/2) cos(kzd/2) −e−k(e)
z d/2 0

− sin(kzd/2) cos (kzd/2) 0 e−k(e)
z d/2

(1 + 1/c1) kz cos (kzd/2) −(1 + 1/c1) kz sin(kz d/2) k(e)
z e−k(e)

z d/2 0

(1 + 1/c1) kz cos (kzd/2) (1 + 1/c1) kz sin(kz d/2) 0 −k(e)
z e−k(e)

z d/2

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎝

A
B
C
D

⎞
⎟⎟⎠ = 0. (13)

We need two additional relations that eliminate k(e)
z and kz. When substituting either (12a) or (12c) in the Laplace

equation (9),

k2
x + k2

y − k(e)2
z = 0, (14)

while substituting (12b) in Eq. (7) gives

c1c2k2 + c2
(
k2

x + k2
z

) + c1k2
y = 0, (15)

where k2 = k2
x + k2

y + k2
z . This relation is the same as Eq. (7) of Ref. [7], obtained with a Green’s function approach to calculate

the electric field. Expanding the determinant of the matrix (13), using the relation k(e)
z = κ obtained from Eq. (14), the condition

det = 0 gives

2κ (c1 + 1)c1kz cos(kzd ) + [
c2

1κ
2 − (c1 + 1)2k2

z

]
sin(kzd ) = 0, (16)

which agrees with Eq. (8) of Ref. [7]. The solutions of Eqs. (15) and (16) are the dispersion relations for polarization waves in a
ferroelectric film with arbitrary thickness d . For a complex wavenumber kz = η1 + iη2 and using

sin(kzd ) = sin(η1d ) cosh(η2d ) + i cos(η1d ) sinh(η2d ), (17a)

cos(kzd ) = cos(η1d ) cosh(η2d ) − i sin(η1d ) sinh(η2d ), (17b)

Eq. (16) leads to two equations, for the real and imaginary parts, viz.,[(
η2

2 − η2
1

)
(c1 + 1)2 + c2

1κ
2
]

sin(η1d ) cosh(η2d ) + 2η1η2(c1 + 1)2 cos(η1d ) sinh(η2d )

+ 2κ (c1 + 1)c1η1 cos(η1d ) cosh(η2d ) + 2κ (c1 + 1)c1η2 sin(η1d ) sinh(η2d ) = 0, (18a)[(
η2

2 − η2
1

)
(c1 + 1)2 + c2

1κ
2
]

cos(η1 d ) sinh(η2d ) − 2η1η2(c1 + 1)2 sin(η1d ) cosh(η2d )

− 2κ (c1 + 1)c1η1 sin(η1d ) sinh(η2d ) + 2κ (c1 + 1)c1η2 cos(η1d ) cosh(η2d ) = 0. (18b)

Dividing both equations by cosh(η2d ) and rearranging terms we obtain two transcendental characteristic equations:

[(
η2

2 − η2
1

)
(c1 + 1)2 + c2

1κ
2 + 2κ (c1 + 1)c1η2 tan(η2d )

]
sin(η1d )

+ [2κ (c1 + 1)c1η1 + 2η1η2(c1 + 1)2 tanh(η2d )] cos(η1d ) = 0, (19a)[(
η2

2 − η2
1

)
(c1 + 1)2 + c2

1κ
2
]

tanh(η2d ) + 2κ (c1 + 1)c1η2] cos(η1d )

− [2η1η2(c1 + 1)2 + 2κ (c1 + 1)c1η1 tanh(η2d )] sin(η1d ) = 0. (19b)

Equations (15) and (19) give the frequency of polarization
waves for arbitrary wave vectors in a ferroelectric film with
any thickness.

IV. DISPERSION RELATIONS FOR SURFACE
AND VOLUME MODES

Ferroelectrics support waves of either surface or volume
nature [44]. In this section we derive the dispersion relations
for both modes in a ferroelectric film polarized in the plane
and calculate them for the parameters of the classic ferroelec-
tric LiNbO3.

A. Surface waves

The dispersion relations for surface waves follow from
Eq. (19b) by setting η1 = 0. In this case, kz is imaginary
and the modes are evanescent with exponentially decaying

amplitudes as a function of distance from one of the surfaces,
i.e., surface modes. For η1 = 0, Eq. (19b) can be written as

2c1(c1 + 1)η2κ + [
(c1 + 1)2η2

2 + c2
1κ

2] tanh(η2d ) = 0,

(20)
where

κ = (
k2

x + k2
y

)1/2
, (21)

and the coefficients c1 and c2 as defined by Eq. (4b) are
functions of frequency. On the other hand, Eq. (15) reads in
this case as

η2 = ±
[

k2
x + c1(c2 + 1)

c2(c1 + 1)
k2

y

]1/2

. (22)

Equations (20)–(22) can be solved numerically for the disper-
sion relations of the surface waves. When propagating along
the polarization in the ferroelectric film, the surface modes
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FIG. 2. Dispersion relations of surface mode polarization waves
in a ferroelectric LiNbO3 film polarized in the y direction, with wave
vectors in the film plane.

have two branches. For kx → 0, ky → 0, the higher (upper)
and lower frequencies are

ω0l = (K‖)1/2�p,

ω0u = (K⊥ + 1)1/2�p. (23)

For ky → 0 and kxd 	 1, or kx → 0 and kyd 	 1, the two
frequencies converge to

ω∞ =
(

K⊥ + K‖ + 1

2

)1/2

�p. (24)

Let us apply the results obtained to LiNbO3, a classic in-
sulating ferroelectric at room temperature. Its primitive cell
contains two formula units that allow 27 degrees of freedom
to be assigned to optical-phonon modes, that have been identi-
fied by Raman and neutron inelastic scattering, and calculated
in detail with lattice dynamics [45–47]. Considering the lon-
gitudinal and transverse optical phonons with frequencies
�LO = 9.7 THz and �TO = 7.3 THz, and using the expression
for the plasma frequency �2

p = �2
LO−�2

TO [48,49], we obtain
�p = 6.39 THz. As in Ref. [7], using the parameters for the
Landau free energy from Ref. [50], α = −2.012 J m/C2, β =
3.608 J m5/C4, λ = 1.345 × 109 J m/C2, and the polarization
at room temperature P0 = 0.746 C/m2, with Eq. (3) we find
K⊥ = 0.012 and K‖ = 0.036. We solve Eqs. (20)–(22) for
these parameters numerically.

Figure 2 shows a plot of the frequency dispersion relations
of the surface waves in a LiNbO3 film polarized in the plane
as a function of the in-plane components of the wave vector
times film thickness. There are two bands of surface modes:
those at lower frequencies are forward-moving waves with
positive group velocities, while those at higher frequencies
are backward-moving waves with negative group velocities.
Magnetostatic waves in ferromagnetic films magnetized in the
plane have only one band of purely forward-moving surface
waves that are chiral, i.e., when the in-plane wave vectors are
normal to the magnetization they can propagate on a given

FIG. 3. Dispersion relations of volume polarization waves in a
ferroelectric LiNbO3 film propagating in the y direction along the
equilibrium polarization.

surface in only one direction. Here, the polarization waves
may always propagate in opposite directions in the plane.

The limiting values of the frequencies for small and large
wave vectors, Eqs. (23) and (24), become for LiNbO3 ω0l =
1.212 THz, ω0u = 6.428 THz, and ω∞ = 4.626 THz, in quite
good agreement with the values in Fig. 2.

B. Volume waves

The volume modes in a ferroelectric film are characterized
by a real kz inside the film. Using η2 = 0 and setting kz = η1

in Eq. (19a), we obtain a transcendental equation

2κkzc1(c1 + 1) + [
c2

1κ
2 − k2

z (c1 + 1)2
]

tan(kzd ) = 0, (25)

where κ2 = k2
x + k2

y . Note that the periodicity of the tan(kzd )
function leads to multiple solutions that represent the ladder of
standing waves in the z direction. The full dispersion relations
of the volume modes are obtained by solving this equation
together with Eq. (15), that can be written as

c2(c1 + 1)k2
x + c1(c2 + 1)k2

y + c1c2k2
z = 0. (26)

Equations (25) and (26) can be solved numerically by fixing
a pair of values for kxd , kyd and finding the multiple roots
of Eq. (25) that correspond to different values of kz, i.e.,
perpendicular standing-wave modes. In contrast to the surface
modes, the bulk waves propagating normal to the polarization
vector, ky = 0, do not depend on kx because the electric fields
generated by the dynamic bound charges are perpendicular
to the polarization. The dispersion relations of waves prop-
agating along the polarization vector, kx = 0, are shown in
Fig. 3. They have two manifolds, one for backward-moving
waves at lower frequencies and one for forward-moving ones
at higher frequencies. The dispersion relations for the sur-
face waves in Fig. 2 lie in the gap of the volume waves,
which is again markedly different from the volume magneto-
static modes in a ferromagnetic film, with a single manifold
of backward-moving waves, similar to the lower branch
in Fig. 3.
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The frequency gap of the volume modes follows from
Eqs. (25) and (26) by setting kx = ky = 0. The solutions are
c1 + 1 = 0 or c2 = 0, which with Eqs. (4) give

ω0l = √
K‖ �p,

ω0u =
√

1 + K⊥ �p. (27)

Using the parameter values for LiNbO3 we obtain ω0l =
1.212 THz and ω0u = 6.428 THz. The asymptotic frequencies
for kx = 0 and ky → ∞ of Eqs. (25) and (26) are

ω∞l = √
K⊥ �p,

ω∞u = √
1 + K‖ �p. (28)

For LiNbO3 we obtain ω0l = 1.212 THz, ω0u = 6.428 THz,
ω∞l = 0.70, and ω∞u = 6.504 THz.

V. POLARIZATION WAVES IN PERPENDICULARLY
POLARIZED FILMS

In Secs. III and IV we focus on films polarized in the
plane. Analogously to the magnetostatic waves in ferromag-
netic films [20,22,28,32,37], volume and surface polarization
waves can be supported by ferroelectric films with polariza-
tion vector in any direction. Let us consider now a ferroelectric
film with polarization vector �P0 perpendicular to the plane,
pointing along the z direction in Fig. 1. The properties of the
polarization waves can be calculated as before, but with an
equation for the electric potential that differs from Eq. (7).
The matrix relation for the ac components of the electric field
and the displacement vector now reads

�D =
⎡
⎣(1 + 1/c1) 0 0

0 (1 + 1/c1) 0
0 0 (1 + 1/c2)

⎤
⎦ε0 �E , (29)

and an electric potential that is governed by

(1 + 1/c1)

(
∂2ψ

∂x2
+ ∂2ψ

∂y2

)
+ (1 + 1/c2)

∂2ψ

∂z2
= 0 . (30)

As in Sec. III, the coefficients of the solutions in the film and
the vacuum are determined by the electric boundary condi-
tions. The secular equation is similar to Eq. (13) and using
the relation k(e)

z = κ obtained from the Laplace equation (9),
gives

2 κkz (c2 + 1)c2 cos(kzz)

+ [
c2

2κ
2 − (c2 + 1)2k2

z

]
sin(kzz) = 0. (31)

Replacing c2 by c1 would lead to Eq. (16) for in-plane polar-
ization. Since kz is complex, we can use Eqs. (19a) and (19b)
by exchanging c2 and c1. Substituting the expression for the
potential inside the film into Eq. (30) leads to

c2(c1 + 1)κ2 + c1(c2 + 1) k2
z = 0. (32)

The dispersion relations for surface waves are obtained by
demanding evanescence with kz = iη2. Equation (31) then
leads to Eq. (20) but with c2 ↔ c1

2c2(c2 + 1)η2κ + [
(c2 + 1)2η2

2 + c2
2κ

2
]

tanh(η2 d ) = 0,

(33)

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

)z
HT(

ycneuqerF

FIG. 4. Dispersion relations of surface polarization waves prop-
agating in the film plane in a ferroelectric LiNbO3 film with
perpendicular polarization.

while Eq. (32) gives

η2 =
[

c2(c1 + 1)

c1(c2 + 1)

]1/2

κ. (34)

Substitution of η2 given by (34) in Eq. (33) leads to

2c1c2(c1 + 1)(c2 + 1)

+ [c1c2 + (c1 + 1)(c2 + 1)] tanh(η2 d ) = 0, (35)

with c1 and c2 from Eq. (4b). Numerical solutions of Eqs. (34)
and (35) for the parameters of LiNbO3 used in the previous
section gives the dispersion relations for surface waves in
Fig. 4. Reflecting the axial symmetry, the dispersion relation is
isotropic, i.e., it depends only on |�κ|. Again, and in contrast to
the magnetostatic surface waves in a ferromagnetic film mag-
netized in the perpendicular direction, we find two branches
with opposite radial group velocities.

From Eqs. (34) and (35) with κ → 0 we find the frequen-
cies of the lower and upper modes,

ω0l = (K‖)1/2�p,

ω0u = (K⊥ + 1)1/2�p, (36)

which are the same as those for films polarized in the plane.
For κd � 1, the two frequencies converge to a value identical
to that in films with in-plane polarization,

ω∞ =
(

K⊥ + K‖ + 1

2

)1/2

�p. (37)

For LiNbO3 the frequencies are ω0l = 1.212 THz, ω0u =
6.428 THz, and ω∞ = 4.626 THz.

Similarly, the dispersion relation of volume modes in a per-
pendicularly polarized ferroelectric film follows from Eq. (25)
with c1 and c2 exchanged:

2κkzc2(c2 + 1) + [
c2

2κ
2 − k2

z (c2 + 1)2
]

tan(kz d ) = 0, (38)

and from Eq. (32)

kz =
[
−c2(c1 + 1)

c1(c2 + 1)

]1/2

κ. (39)
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FIG. 5. Dispersion relations of volume polarization waves in a
ferroelectric LiNbO3 film polarized perpendicularly to the plane,
propagating in the film plane.

Since for the frequencies of interest, c1 < 0 and c2 > 0,
kz is real. Equations (38) and (39) can be solved numerically
by finding the multiple roots of (38) for a given value of
κd, corresponding to different values of kz. The solutions for
LiNbO3 are shown in Fig. 5. We observe again two manifolds,
for backward- and forward-moving waves. However, group
velocities are inverted since the forward-moving waves now
form the lower frequency band. The dispersion relations for
the surface waves, shown in Fig. 4, again lie in the gap of the
volume waves.

For κ= 0 Eqs. (38) and (39) reduce to

ω0l = (K⊥)1/2�p,

ω0u = (K‖ + 1)1/2�p, (40)

while for κd → ∞,

ω∞l = (K‖)1/2�p,

ω∞u = (K⊥ + 1)1/2�p. (41)

For LiNbO3 ω0l = 0.70 THz, ω0u = 6.504 THz, ω∞l =
1.212 THz, and ω∞u = 6.428 THz.

VI. CONCLUSIONS

We obtained the frequency dispersion relations for sur-
face and volume polarization waves in ferroelectric films and
compared them with the surface and volume magnetostatic
spin-wave modes in ferromagnetic films. The equation of
motion for the electric potential turns out to be similar to the
well-known Walker equation for magnetostatic waves. The
numerical results for ferroelectric LiNbO3 films, polarized
in-plane or perpendicular to the plane, lie in the experimen-
tally accessible low terahertz range. While in ferromagnets
surface and bulk modes emerge in single frequency bands,
they always come in two bands for each type in ferroelectrics.
We attribute this to the transverse and longitudinal character of
the polarization waves while magnetostatic waves are purely
transverse. In the near future, we intend to address the am-
plitudes of the polarization waves and their ferron character,
i.e., dc and ac electric polarization, and the associated polar-
ization transport and optical properties, also in the limit of
two-dimensional ferroelectrics.
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